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Abstract

In this paper an interactive approach to deal with fuzzy multiple objective linear programming problems is pre-

sented, which is based on the analysis of the decomposition of the parametric (weight) diagram into indifference regions

corresponding to basic efficient solutions. This approach is illustrated to tackle uncertainty and imprecision associated

with the coefficients of an input–output energy-economy planning model, aimed at providing decision support to de-

cision makers in the study of the interactions between the energy system and the economy on a national level.
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1. Introduction

The energy sector is of outstanding importance

to the analysis of an economy on a national level,

because of direct and indirect consequences on

several well-being indicators ranging from eco-

nomical aspects to social and environmental ones.

For some industrialized countries, such as Portu-

gal, energy dependence is a crucial issue because of

the high level of imports of primary energy,
namely fossil fuels. In these circumstances, well-

founded information concerning economic devel-

opment constrained by limited energy resources

must be provided to decision makers (DMs). A
decision support model addressing the energy

sector in the broader context of the economic

system has been developed enabling to study their

interactions.

The interactions among different sectors of an

economy can be dealt with input–output analy-

sis. In the framework of input–output analysis

an economic system is disaggregated into a
number of interdependent sectors. Each sector in

the static input–output table produces a partic-

ular output, with fixed input and output struc-

ture, and no substitution between the outputs of

the different sectors (Leontieff, 1951). By pro-

viding a systemic view of macro-economic ag-

gregates and economic flows in a given economic

system, input–output analysis is an useful tool to
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assist in the formulation of economic planning

models.

Economy-energy planning problems are char-

acterized by the need of explicitly considering

multiple, conflicting, and incommensurate axes of

evaluation. Mathematical models for decision
support must address, in an explicit manner, as-

pects of distinct nature such as social, economical,

environmental, and technical ones rather than at-

tempting to encompass them in an one-dimen-

sional economic indicator (Zeleny, 1982; Steuer,

1986). Moreover, the multiple objective approach

intrinsically possesses a value-added role in the

modeling process and in model analysis, support-
ing reflection and creativity in face of a larger

universe of potential solutions rather than a single

‘‘optimal’’ solution.

A multiple objective linear programming

(MOLP) model based on input–output analysis

has been developed devoted to study the rela-

tionships between the economy and the energy

sector on a national level. The model allows for the
computation of the amount of energy required for

the provision of goods and services within an

economy, both for intermediate consumption (that

is, for sectors producing other goods or services)

and directly in final demand. Moreover, by asso-

ciating the consumption of fossil fuels and the

corresponding carbon content with the activity

level of each sector it is possible determine the
resulting amount of emissions of atmospheric

pollutants (such as carbon dioxide).

In a model possessing a great diversity and

complexity of input information, which is used to

derive the coefficients to the MOLP model, several

sources of uncertainty are at stake. These are taken

into account herein by considering some model

coefficients as triangular fuzzy numbers. Interac-
tive techniques based on the analysis of the de-

composition of the parametric (weight) diagram

into indifference regions corresponding to basic

efficient solutions have been developed and com-

putationally implemented as the core of a decision

support system (DSS) to deal with uncertainty in

MOLP models.

Section 2 presents some key concepts of MOLP
that are important to introduce the proposed

visual interactive approach to deal with fuzzy

MOLP problems. This approach is described in

detail in Section 3. In Section 4 a multiple objec-

tive input–output model for energy planning is

briefly presented, which is aimed at studying the

energy sector in the context of the economy on a

national level. Some illustrative results are re-
ported in Section 5. Finally, in Section 6 some

conclusions are drawn.

2. Multiple objective linear programming

Let us consider the following MOLP problem

with p linear objective functions and m linear
constraints:

\max" z ¼ Cx

s:t: x 2 X ¼ fx 2 Rn : Ax ¼ b; xP 0g
ð1Þ

where A is a m� n matrix, b is the m right-hand
side (RHS) column vector and C is a p � n matrix
of objective functions coefficients. ‘‘max’’ denotes

the operation of computing efficient solutions.

A feasible solution to (1) is called efficient if and

only if no other feasible solution exists that im-

proves one of the objective functions without de-

teriorating (at least one of the) other objective

functions. A relaxed notion is also generally used:
a feasible solution is called weakly efficient if and

only if there is no other feasible solution that

strictly improves all objective function values. For

definitions and mathematical details see, for in-

stance, Steuer (1986).

Let Cr: (r ¼ 1; . . . ; p) be the rth row of C. When
solving problem (1) by the weighted-sum ap-

proach, each objective Cr:x is associated with a
positive weight kr (an kr ¼ 0 could lead to a weakly

efficient solution). Without loss of generality, each

weighting vector can be normalized so that its el-

ements sum to one:

K ¼ fk : k ¼ ðk1; k2; . . . kpÞ 2 Rp;

Xp

r¼1
kr ¼ 1; kr > 0; r ¼ 1; . . . ; pg: ð2Þ

Therefore, basic efficient solutions can be obtained

by optimizing a scalarizing function consisting of a

weighted sum of the objective functions:
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max
Xp

r¼1
krðCr:xÞ

s:t: x 2 X ; k 2 K:

ð3Þ

Let K be the index set of the ðn� mÞ non-basic
variables associated with an optimal solution to
(3), which is an efficient basic solution to (1), which

has been computed by using a given weighting

vector. B and N are the submatrices of A corre-

sponding to the basic and non-basic variables,

respectively, and CBðxBÞ and CN ðxN ) are the sub-
matrices (subvectors) of CðxÞ corresponding to the
basic and non-basic variables, respectively. An

indifference region for the weights (set of weighting
vectors that leads to the same basic efficient solu-

tion) is defined in K and can be achieved by the

intersection of the n� m hyper-halfspaces resulting
from the reduced cost matrix of a multiobjec-

tive simplex tableau (Steuer, 1986) associated with

a basic efficient solution (W ¼ CBB�1N � CN ), that

is

\
k2K

Xp

r¼1
krwrk

(
P 0

)
; k 2 K: ð4Þ

wrk is the ðr; kÞ element of the reduced cost matrix
with respect to objective function r ¼ 1; . . . ; p, and
the non-basic variable k 2 K. The DM may be

indifferent to all combinations of weighting vectors

within it because they lead to the same basic effi-

cient solution. These indifference regions are de-

fined in a geometrical ðp � 1Þ-dimensional simplex
in a p-dimensional Euclidean space.

For three objective functions the use of visual

interactive graphical tools are particularly suited
for the exchange of information with the DM. The

decomposition of K into indifference regions lends

itself well to a progressive and selective learning of

the efficient solution set in MOLP (Cl�ıımaco and
Antunes, 1987, 1989).

Fig. 1 shows a three-dimensional weight space

where the hatched polygon is the indifference re-

gion associated with the basic efficient solution
computed by optimizing the weighted-sum LP

considering the weighting vector k ¼ P . Each of
the n� m (n� m ¼ 4 in this example) halfspaces

defined in (4) corresponds to a non-basic variable.

Pk is the plane obtained from the k halfspace in (4)

replacing the inequality �P � by �¼� and it is defined
by

P3

r¼1 krwrk ¼ 0. pk denotes the intersection of

Pk with K.
In the operational framework of the proposed

interactive fuzzy MOLP approach, the parametric

diagram, a geometrical two-dimensional simplex

in a three-dimensional Euclidean space, is used to

display relevant information in the same graph to

the DM. This enables the DM to visualize dy-

namically and interactively the behavior of effi-

cient solutions according to changes in the initial
model coefficients and DM�s preferences.

Fig. 1. Decomposition of K into indifference regions.
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3. Fuzzy analysis in MOLP

A great diversity of possible modifications to

the classical (crisp) LP problem (1) have been

proposed in a fuzzy environment and different
ways to deal with the corresponding types of

fuzziness in LP models are reported in the litera-

ture.

The coefficients of the vector b or the matrices C

or A can have a fuzzy character (Tanaka and Asai,

1984; Carlsson and Korhonen, 1986; Sakawa and

Yano, 1990) either because they are fuzzy in nature

or their perception is fuzzy.
The mathematical relations involved may also

be fuzzy (fuzzy objectives and/or constraints)

(Zimmermann, 1978, 1983; Chanas, 1983; Wer-

ners, 1987a,b). The DM may not be interested in

optimizing some of the objective functions; rather

he/she might want to ‘‘improve’’ as much as pos-

sible their values in order to reach some ‘‘aspira-

tion levels’’ which may not be crisply defined. The
constraints may also be fuzzy, that is the �¼� sign
might not be met in the strictly mathematical sense

but the DM may accept small violations on it.

Moreover, the solution of a fuzzy linear pro-

gramming problem may be crisp (Zimmermann,

1978, 1983; Tanaka and Asai, 1984; Werners,

1987a,b; Sakawa and Yano, 1990) or fuzzy (Cha-

nas, 1983; Carlsson and Korhonen, 1986). In the
latter case a solution set (of all fuzzy efficient so-

lutions) is presented to the DM and he/she must

choose the one that is more in accordance with his/

her preferences.

In this study the objective function coefficients

and the constraints� RHS as well as the coefficients
in the technological matrix and in the objective

functions associated with a new decision variable
are considered fuzzy coefficients and are charac-

terized by triangular membership functions de-

fined by (Fig. 2):

l~ccðxÞ ¼

0 if x6 cL;

ðx� cLÞ
ðcM � cLÞ

if x 2 	cL; cM½;

1 if x ¼ cM;

ðcR � xÞ
ðcR � cMÞ

if x 2 	cM; cR½;

0 if xP cR:

8>>>>>>>>>><
>>>>>>>>>>:

A triangular fuzzy number can be denoted as
~cc ¼ ðcL; cM; cRÞ where cM is the central value

(maximum grade of membership), cM–cL is the left
spread and cR–cM is the right spread.

Interactive techniques to deal with fuzzy MOLP

models have been developed and implemented as

the core of a DSS. The DM can visualize dynam-

ically the changes in the indifference regions cor-
responding to the initial (crisp) basic efficient

solutions and compute new basic efficient solu-

tion(s) in an interactive manner by varying con-

tinuously the grades of membership as well as by

changing the values of cL and cR (and also the

value of cM when introducing a new variable) for

each fuzzy coefficient. The new basic efficient so-

lutions are computed by using the Simplex or
Dual–Simplex method starting from the multiob-

jective Simplex tableaux corresponding to an effi-

cient solution previously computed with maximum

grade of membership and considering weighting

vectors within regions of K not yet filled with in-

difference regions (Borges and Antunes, 2000).

The aim of the proposed interactive DSS is to

help the DM to exploit the uncertainty associated
with the initial problem, modeled by means of

fuzzy numbers, to gather further knowledge on the

problem as well as to reinforce or weaken his/her

own convictions and preferences in order to make

a better informed decision. During the interactive

study the DM is always allowed to revise prior

preference information and exploit new search

directions.

3.1. Objective function matrix

The objective function coefficients are defined

as triangular fuzzy numbers where the centralFig. 2. A triangular membership function.
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values (cM) are the crisp model parameters, and
the grade of membership (y) is the same for all

objective functions.

For each different y only the objective function

coefficients are changing. Therefore, the extreme

points of the feasible region remain unchanged.
However, the reduced cost matrix values, W ¼
CBB�1N � CN , vary and the efficient region can

eventually change. The indifference regions corre-

sponding to the basic efficient solutions to the initial

problem are then changing continuously, in size and

shape, with changes of the grade of membership.

New basic efficient solutions can be computed

by using weighing vectors within regions of K not
yet filled with indifference regions. The new basic

efficient solutions are computed by using the

Simplex method starting from the multiobjective

Simplex tableaux corresponding to an efficient

solution previously computed with maximum

grade of membership (corresponding to the cM
value) and selected by the DM.

The indifference regions associated with the
computed basic efficient solutions can even disap-

pear meaning that the corresponding extreme

point becomes dominated.

3.2. Right-hand side

The constraints� RHS coefficients are defined as
triangular fuzzy numbers, with the central value
(cM) corresponding to the crisp model parameters,
and the grade of membership (t) is the same for all

constraints.

The values of the b vector are changing with t

and so the feasible region changes. If some deci-

sion variable values regarding a basic efficient so-

lution, xB ¼ B�1b, become negative, then the

corresponding solution becomes infeasible. Since
the objective function coefficients remain un-

changed, then for a given basis the reduced cost

matrix W ¼ CBB�1N � CN does not change and the

optimality condition is never violated. Therefore,

the indifference regions corresponding to the basic

efficient solutions do not change continuously, as

in the case of objective functions, but they change

�suddenly� as they appear or disappear, meaning
that the corresponding efficient basis becomes

feasible or infeasible, respectively.

New basic efficient solutions can be computed

by using weighing vectors within regions of K not

yet filled with indifference regions by using the

Dual-Simplex method and starting from the mul-

tiobjective Simplex tableaux corresponding to an

initial basic efficient solution. The starting efficient
solution is such that the selected weighing vector

belongs to the initial corresponding indifference

region.

If the selected weighing vector is within regions

of K not initially filled with indifference regions

then the DM is asked to previously compute the

corresponding initial basic efficient solution

(computed with maximum grade of membership
value, that is considering the cM values).

3.3. Introduction of new decision variables

The coefficient vectors in the objective functions

and in the technological matrix of a new decision

variable are defined as triangular fuzzy numbers,
~CCxnew and

~AAxnew , respectively. Two distinct grades of
membership are considered: one for all the objec-

tive functions and another one for all constraints.

When both grades of membership are changing

the reduced cost matrix column regarding the new

variable (Wxnew ¼ CBB�1 ~AAxnew � ~CCxnew ), must satisfy

fkTðCBB�1 ~AAxnew � ~CCxnewÞP 0g; k 2 K; ð5Þ
for the basic solution under analysis to remain

efficient.

The introduction of a new decision variable into

a MOLP leads to the creation of new extreme

points with non-zero value in the new variable as

well as new edges and faces (Antunes and Cl�ıımaco,
1992). The new variable may be classified, with
respect to a selected basic efficient solution, as:

• non-efficient variable, whenever (5) does not af-
fect the initial (4) associated with the selected ef-

ficient solution ((5) is redundant with respect to

the initial (4));

• efficient variable, whenever (5) does intersect the
initial (4) associated with the selected efficient
solution;

• ‘‘must be made basic’’ variable, because the se-
lected efficient solution becomes dominated

(the initial (4) associated with the selected effi-
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cient solution does not belong to the hyper-half-

space defined by (5)).

A non-basic variable is efficient with respect to a

given efficient basis if and only if when introduced
into the basis it leads to an adjacent efficient basis

through an efficient edge. In this situation, in ad-

dition to ‘‘update’’ the selected basic efficient so-

lution (that is, to compute the intersection of the

initial (4) with (5) to determine the new indiffer-

ence region), new basic efficient solutions with

non-zero value in the new variable can be com-

puted.
If the variable ‘‘must be made basic’’ new basic

efficient solutions with non-zero value in the new

variable can be computed.

The new basic efficient solutions are computed

as described in Section 3.1.

Whenever the introduction of new decision

variables is considered, the triangular membership

functions associated with the parameters (corre-
sponding to the new variable) can be changed by

modifying not only the corresponding cL and cR
but also the cM values.

4. An input–output MOLP model for energy-

economy planning

An input–output table based on statistical data

available from several Portuguese and interna-

tional sources has been developed which considers

21 economic sectors. The energy sector compo-

nents have been disaggregated in detail, allowing

the distinction between primary and secondary

energy sources, by means of 23 artificial sectors

that are used for distributing the output of the oil
refining sector and the by-products through the

consuming sectors. Energy flows (in toes, tons of

oil equivalent) and monetary flows (in monetary

units) are considered. The anatomy of the input–

output model is as follows: a (44� 44) matrix with
the inter- and intra-sector flows, six column vec-

tors with the components of final demand (private

consumption, collective consumption, gross fixed
capital formation, positive and negative stock

changes, and exports), one column vector for the

competitive imports and three row vectors for the

primary inputs (wages, net indirect taxes, and

operating surplus).

The consumption of fossil fuels is associated

with the level of activity of each sector, enabling

to evaluate the embodied energy required to

manufacture a good or service. The analysis is
then extended to account for emissions of air

pollutants resulting from the burning of fossil

fuels by incorporating the requirements of pri-

mary energy for the economic activities. Total

emissions from each sector and the whole econ-

omy can be computed by using coefficients that

relate the amount of carbon dioxide produced

per unit of fuel consumed (through its calorific
value). The top–down methodology proposed by

the Intergovernmental Panel for Climate Change

(IPCC, 1996) has been used to model carbon di-

oxide (CO2) emissions, which is based on the

principles of combustion and composition of fu-

els.

The model considers three objective functions:

• energy imports (to be minimized, taking into ac-
count the energy dependence of the country);

• self-production of electricity (to be maximized,
in order to encourage the use of alternative

forms of energy, valuing the recycle of wastes

and allowing both energy economies and the

minimization of waste disposal);

• CO2 emissions (to be minimized, due to the im-
pact of energy resources on the environment,

specifically air pollution).

Energy imports and self-production of electric-

ity are expressed in physical units of energy (toes)

and CO2 emissions is in Gg.

Several categories of constraints are considered

in the MOLP model:

• balance of payments (to guarantee a certain le-
vel of external equilibrium);

• public deficit (to take into account European
Union requirements);

• upper and lower bounds on the production ca-
pacity of each activity sector;

• upper and lower bounds on imports and exports
(to avoid an over-specialization since they are

not linked to the model coefficients);
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• storage capacity and security stocks for hydro-
carbons (to guarantee that positive stock

changes never exceed storage capacity and neg-

ative stock changes are never below security

stocks);
• coherence constraints for goods and services

(imposing that the use of a specific good or ser-

vice, for intermediate consumption and final de-

mand, cannot exceed the resources available,

resulting from national production and compet-

itive imports);

• defining constraints for gross added value (an
indicator enabling to quantify the resources gen-
erated within the country) and gross domestic

product (both according to expense and product

definitions).

Please see Oliveira and Antunes (2000) and

Antunes et al. (2002) for further details on the

input–output structure and the mathematical

model.

5. Some illustrative results

After performing a progressive and selective

learning of the efficient solution set in a crisp en-

vironment, the DM is given the possibility of in-

teractively studying the effects of the fuzziness
arising in the parameters of the objective func-

tions, the constraints� RHS or in the objective

functions and constraints of a new decision vari-

able. Different membership functions (associated

with the fuzzy parameters) can be considered by

the DM and for each set of them the grades of

membership can be continuously changed. The

comparative graphical analysis of the decomposi-
tion of the parametric (weight) diagram into in-

difference regions corresponding to the initial

(crisp) basic efficient solutions and the new ones

computed in a fuzzy environment, as well as the

numerical values provided by the DSS, enable the

DM to study the fuzzy efficient solution set.

Firstly, a search for basic efficient solutions has

been progressively performed in order to have an
overview of solutions with different characteristics

for the energy-economy planning model. Surpris-

ingly, K become completely filled with few indif-

ference regions, as displayed in Fig. 3, meaning

that, in crisp environment, all basic efficient solu-

tions have been found. The objective function

values (as well as the indifference region areas) of

those solutions are shown in Table 1.

In general, the aim is to compute ‘‘well-dis-
persed’’ solutions to gain some insights into the

problem, which a further selective search could be

based on. This usually happens for medium-sized

MOLP problems in which hundreds of basic effi-

cient solutions can be found. In particular, it is the

case of models similar to the one herein presented

but considering other objective functions (Oliveira

and Antunes, 2000; Antunes et al., 2002).
Fig. 3 and the further ones are actual copies of

the screens presented to the user.

Let us take into account the effect of the un-

certainty associated with the objective function

coefficients modeled as triangular fuzzy numbers

on the behavior of efficient solutions. Let us sup-

pose that the DM considers solution 5 (previously

computed with maximum grade of membership) as
a good compromise solution and he/she is inter-

ested in studying its stability regarding changes of

the grade of membership.

The DM can dynamically visualize the changes

(in size and shape) of the indifference regions

corresponding to the initial computed basic effi-

cient solutions by changing the grade of member-

Fig. 3. Indifference regions corresponding to the initial basic

efficient solutions.

310 A.R. Borges, C.H. Antunes / European Journal of Operational Research 145 (2003) 304–316



ship y (objective functions). New solutions corre-
sponding to regions of K not yet filled that the DM
is interested in studying can also be computed.

For instance, with y ¼ 0:0500R efficient solu-

tions 1, 6, 7 and 8 previously computed become

dominated (their corresponding indifference re-

gions disappear) and it is possible to calculate 6

new basic efficient solutions (L–Q) as displayed in

Fig. 4(a) (Table 2). Notice that the areas of the
indifference regions corresponding to the efficient

solutions computed in crisp environment have

changed.

If the DM is not interested in some solutions

they can be disregarded further on. Once more the

DM may conclude, namely by analyzing the ob-

jective function values of the relevant solutions,

that certain regions of K are not worthwhile to
search.

For example, in Fig. 4(b) solutions L, O and Q
are eliminated because the DM may consider that

the last one has a high value for energy imports

and the other ones have small values with respect

to self-production of electricity.

If the grade of membership y is changed from

0:0L to 0:0R the results presented in Table 3 are
obtained. Even though the core idea behind our

approach is not to perform an exhaustive study of
all basic efficient solutions it has been done for the

sake of illustration and because it is not compu-

tationally heavy.

In Fig. 5(a) and (b) the decompositions of the

weight diagram for y ¼ 0:0000L and y ¼ 0:0000R
are displayed.

With y ¼ 0:0000L the efficient solution 7 previ-
ously computed becomes dominated and the new
basic efficient solutions A–I can be reached.

Fig. 4. Fuzzy analysis of the objective function coefficients (y ¼ 0:0500R).

Table 1

Initial basic efficient solutions

Solution Energy imports Self-production of electricity CO2 emissions Area (%)

1 12 271 100 179 513 1 591 600 12.8149

2 87 769 700 22 622 700 30 606 300 35.5831

3 12 727 600 164 322 1 246 240 8.7248

4 13 222 500 1 334 770 2 776 380 3.6413

5 14 844 100 2 187 230 3 890 810 6.2979

6 12 395 100 986 354 2 799 170 19.4846

7 14 592 700 2 182 660 4 589 630 6.3779

8 85 810 100 22 499 000 34 996 400 7.0706
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Table 2

Fuzzy analysis of the objective function coefficients (y ¼ 0:0500R)

Solution (y ¼ 0:0500R) Energy imports Self-production

of electricity

CO2 emissions Area (%) Number of

iterations

2 Crisp 87 769 700 22 622 700 30 606 300 35.5831 –

Fuzzy 59 014 100 25 846 400 27 751 500 56.0235 –

3 Crisp 12 727 600 164 322 1 246 240 8.7248 –

Fuzzy 10 477 700 187 738 1 148 910 8.1414 –

4 Crisp 13 222 500 1 334 770 2 776 380 3.6413 –

Fuzzy 10 668 100 1 524 980 2 496 820 4.8045 –

5 Crisp 14 844 100 2 187 230 3 890 810 6.2979 –

Fuzzy 11 888 100 2 498 910 3 478 520 5.6871 –

L Crisp 12 272 100 179 509 1 592 770 Non-efficient

Fuzzy 10 438 400 205 203 1 476 560 1.4773 11

M Crisp 12 396 200 985 552 2 799 340 Non-efficient

Fuzzy 10 550 100 1 125 990 2 549 910 0.7168 8

N Crisp 13 223 400 1 333 860 2 776 560 Non-efficient

Fuzzy 10 666 600 1 523 940 2 497 050 13.0926 8

O Crisp 12 728 400 164 196 1 247 130 Non-efficient

Fuzzy 10 476 900 187 822 1 149 740 6.9128 7

P Crisp 14 846 700 2 187 210 3 892 150 Non-efficient

Fuzzy 11 887 900 2 498 890 3 479 770 2.9264 2

Q Crisp 87 785 700 22 620 800 30 805 200 Non-efficient

Fuzzy 59 009 500 25 844 300 27 750 600 0.1531 2

Table 3

Fuzzy analysis of the objective function coefficients

y 2 Initial efficient solutions New efficient solutions

(i) [0:0000L; 0:0300L[ 1, 2, 3, 4, 5, 6, 8 A, B, C, D, E, F, G, H, I

(ii) [0:0300L; 0:0367L[ 1, 2, 3, 4, 5, 6, 7, 8 A, B, D, E, F, G, H, I

(iii) [0:0367L; 0:1733L[ 1, 2, 3, 4, 5, 6, 7, 8 A, B, D, E, F, G, I, J

(iv) [0:1733L; 0:1767L[ 1, 2, 3, 4, 5, 6, 7, 8 A, B, D, E, F, G, J

(v) [0:1767L; 0:1867L[ 1, 2, 3, 4, 5, 6, 7, 8 A, B, D, E, J

(vi) [0:1867L; 0:5133L[ 1, 2, 3, 4, 5, 6, 7, 8 A, B, D, J

(vii) [0:5133L; 0:5867L[ 1, 2, 3, 4, 5, 6, 7, 8 A, B, J

(viii) [0:5867L; 0:6100L[ 1, 2, 3, 4, 5, 6, 7, 8 A, J

(ix) [0:6100L; 0:6500L[ 1, 2, 3, 4, 5, 6, 7, 8 A

(x) [0:6500L; 0:7200R[ 1, 2, 3, 4, 5, 6, 7, 8

(xi) [0:7200R; 0:7133R[ 1, 2, 3, 4, 5, 6, 7

(xii) [0:7133R; 0:5400R[ 1, 2, 3, 4, 5, 6

(xiii) [0:5400R; 0:3167R[ 1, 2, 3, 4, 5, 6 L, M

(xiv) [0:3167R; 0:3100R[ 1, 2, 3, 4, 5, 6 L, M, N

(xv) [0:3100R; 0:3067R[ 1, 2, 3, 4, 5 L, M, N

(xvi) [0:3067R; 0:2967R[ 1, 2, 3, 4, 5 L, M, N, O

(xvii) [0:2967R; 0:1200R[ 2, 3, 4, 5 L, M, N, O

(xviii) [0:1200R; 0:1133R[ 2, 3, 4, 5 L, M, N, O, P

(xix) [0:1133R; 0:0000R] 2, 3, 4, 5 L, M, N, O, P, Q
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For y ¼ 0:0000R the efficient solutions 1, 6, 7
and 8 previously computed become dominated

and the new basic efficient solutions L–P can be

reached. The solutions that can be reached with

y ¼ 0:0000R and y ¼ 0:0500R are the same. Nev-
ertheless, the areas of the indifference regions

corresponding to the efficient solutions 3, 4, 5, L
and M become smaller than the ones in Fig. 4(a);

the areas corresponding to the efficient solutions 2,

N, O, P and Q become greater than the ones in

Fig. 4(a).

Having in mind the definition of a-level set
(Zadeh, 1965; Zimmermann, 1987, 1992) it can

also be envisaged a different way of analyzing the

results presented in Table 3. Often the DM may be
interested in knowing the computed basic efficient

solutions which are obtained if the grade of

membership y is at least a. For instance, consid-
ering a grade of membership above 0.5133 the

solutions A, B, J, L, M and 1–8 can be reached

(Fig. 6(a–f), and ranges (vii)–(xiii) in Table 3). For

a grade of membership above 0.65 only the crisp

basic efficient solutions 1 to 8 can be obtained
(ranges (x)–(xii) in Table 3).

If the DM wants to proceed the fuzzy analysis

of the objective function coefficients he/she could

select another crisp basic efficient solutions (ini-

tially computed with maximum grade of mem-

bership) as the ‘‘starting’’ one and/or change some

of the triangular membership functions associated

with those parameters (by modifying the corre-

sponding cL and cR values) and perform a similar

study.

Let us suppose that the DM also wants to study

the behavior of initial basic efficient solutions if

some of the RHS coefficients are triangular fuzzy

numbers. He/she can dynamically visualize the
changes in size of the indifference regions, by

changing the grade of membership t.

For instance, with t ¼ 0:3367R (Fig. 7 and

Table 4) the efficient solutions 1, 3, 5, 6 and 7 be-

come infeasible and it is possible to calculate 8 new

basic efficient solutions (A, D, E, F, G, H, I and J).

The grade of membership t can be changed

from 0:0L to 0:0R and the results presented in
Table 5 are obtained. Considering those member-

ship functions no changes happen for t 2
½0:0L; 1:0½.
As for the case of the objective function coeffi-

cients, the DM may also be interested in knowing

which of the computed efficient bases are obtained

if the grade of membership t is at least a. For in-
stance, considering a grade of membership above
0.6 the bases associated with solutions E, F, J, L

and 1 to 8 can be reached (ranges (i) to (iii) on

Table 5). For a grade of membership above 0.9333

only the bases associated with the crisp efficient

solutions 1 to 8 are obtained (range (i) on Table 5).

Similarly, if the DM wants to proceed the fuzzy

analysis of the RHS coefficients he/she could

Fig. 5. Fuzzy analysis of the objective function coefficients. (a) (y ¼ 0:0000L), (b) (y ¼ 0:0000R).
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Fig. 6. Fuzzy analysis of the objective function coefficients (efficient solutions reached with y P 0:5133): (a) (y ¼ 0:5133L), (b)

(y ¼ 0:5867L), (c) (y ¼ 0:6467L), (d) (y ¼ 0:7233R), (e) (y ¼ 0:7167R), (f) (y ¼ 0:5133R).
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change some of the triangular membership func-

tions associated with these parameters (by modi-

fying the corresponding cL and cR values).

An analogous study can be performed if, for

example, the DM is interested in considering new

fuels or other forms of electricity production, by

means of the introduction of a new decision vari-

able in the initial problem, to study how it would

affect the computed basic efficient solutions.

6. Conclusions

Visual interactive techniques based on the

analysis of indifference regions related to the

weights have been developed and computationally

implemented as the core of a DSS to deal with

uncertainty in MOLP models by using fuzzy set

theory. It must be noticed that weights are used as

an operational and information exchange means

and not as a way for eliciting the DM�s preferences.
The DM has the possibility of interactively

changing the membership functions associated

with constraints and objective functions as well as

Table 4

Fuzzy analysis of the RHS coefficients (t ¼ 0:3367R)

Basis

(t ¼ 0:3367R)

Energy imports Self-production

of electricity

CO2 emissions Area (%) Starting basis Number of iterations

2 118 603 000 31 654 500 42 445 400 35.5831 – –

4 13 138 500 1 668 290 3 243 940 3.6413 – –

8 115 908 000 31 484 400 48 484 100 7.0706 – –

A 14 906 300 2 597 670 4 458 920 6.2980 5 1

D 12 252 700 1 274 350 3 269 700 21.1289 1 or 6 5 or 3

E 12 728 800 166 182 1 280 220 8.4277 3 2

F 12 252 700 181 764 1 634 470 9.9112 1 5

G 12 798 400 1 598 550 3 754 920 0.8651 6 4

H 14 624 400 2 592 540 5 242 590 6.3779 7 2

I 13 132 000 1 665 570 3 244 120 0.4887 1 or 6 5 or 4

J 13 137 500 1 665 990 3 240 930 0.2028 3 6

Table 5

Fuzzy analysis of the RHS coefficients

t 2 Initial efficient basis New efficient basis

(i) [0:0000L; 0:9300R[ 1, 2, 3, 4, 5, 6, 7, 8

(ii) [0:9300R; 0:9100R[ 1, 2, 4, 5, 6, 7, 8 E, J, M

(iii) [0:9100R; 0:5333R[ 2, 4, 5, 6, 7, 8 E, F, J, L

(iv) [0:5333R; 0:4933R[ 2, 4, 5, 6, 8 E, F, H, J, L

(v) [0:4933R; 0:4867R[ 2, 4, 5, 8 D, E, F, G, H, I, J

(vi) [0:4867R; 0:3333R[ 2, 4, 8 A, D, E, F, G, H, I, J

(vii) [0:3333R; 0:0000R] 2, 8 A, B, C, D, E, F, G, H

Fig. 7. Fuzzy analysis of RHS coefficients using indifference

regions (t ¼ 0:3367R).
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regarding the introduction of a new decision

variable into the model. Special attention has been

paid to the computational simplicity and graphical

interactivity, in order to visualize dynamically the

behavior of the efficient solutions according to

changes in the initial model coefficients, by dis-
playing the indifference regions. The grade of

membership functions can also be interactively

changed.

These techniques have been illustrated in a

multiple objective input–output model, supplied

with actual data for Portugal, aimed at studying

the interactions between the energy sector and the

economy on a national level.
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