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Abstract

This paper explores the fusion of inertial information with vision for 3D reconstruction. A method is proposed for vertical
line segment detection and subsequent local geometric map building. Visual and inertial sensing are two sensory modalities
that can be explored to give robust solutions on image segmentation and recovery of 3D structure from images, increasing
the capabilities of autonomous vehicles and enlarging the application potential of vision systems. From the inertial sensors, a
camera stereo rig, and a few system parameters we can recover the 3D parameters of the ground plane and vertical lines. The
homography between stereo images of ground points can be found. By detecting the vertical line segments in each image, and
using the homography of ground points for thefoot of each segment, the lines can be matched and reconstructed in 3D. The
mobile robot then maps the detected vertical line segments in a world map as it moves. To build this map an outlier removal
method is implemented and a statistical approach used, so that a simplified metric map can be obtained for robot navigation.
© 2003 Elsevier Science B.V. All rights reserved.
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1. Introduction

Robot mapping focuses on the problem of acquir-
ing models of the physical environment, and has
been considered one of the important subjects for the
advance of autonomous mobile robotic systems. Mo-
bile robots will perform given tasks if they can keep
track of relevant objects’ state in the environment,
especially in dynamic environments. This paper ex-
plores the fusion of inertial information with vision
to recover 3D structures in the environment.

Research started in the 1980s, and the most com-
mon representations of space adopted were either
metric or topological. A metric maprepresents the
environment according to the absolute geometric
position of the objects, capturing the geometric prop-
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erties of the environment. Atopological mapis an
abstract representation that describes relationships
and connectivity among features of the environment,
without any absolute reference system.

More recent approaches aim to deal with the uncer-
tainty in the constructed map and are known as prob-
abilistic techniques. Amongst these, the Occupancy
Grid map, first introduced by Moravec and Elfes[1],
has been widely used[2–7]. An alternative mapping
was proposed by Chatila and Laumond[8] to describe
the environment geometry by polyhedron. In our pre-
vious work [9] we used occupancy grids and vision
to represent the environment as a two-dimensional
array of cells, each of which indicates the probability
of being occupied. The input measurements for these
maps are provided by sonar range-finders sensors and
a stereo vision system. This type of map is suitable
for imprecise range sensors, but for other sensors
like laser range finders other probabilistic techniques
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have been proposed[10–13]. Geometric feature maps,
based on line features, have been explored by many
researchers[14–21].

Many of these techniques have correspondent inter-
est in the computer vision literature and the connec-
tions are still rather under-explored[9,22–24]. This
paper explores the combination of inertial cues with
stereo vision for building ametric mapof world ver-
tical features.

The proposed method detects vertical line segments
in the world and maps them in ametric map. From
inertial measurements one can only determine an es-
timate for linear acceleration and angular velocity. By
detecting gravity, the inertial sensors provide a verti-
cal reference and an artificial horizon. In the follow-
ing sections we show how this can be combined with
stereo image data to map 3D vertical features and de-
termine the ground plane parameters.

This work is part of ongoing research into the fusion
of inertial sensor data in computer vision systems. In
[25,26] the inertial sensors and system prototype are
described and results presented for ground plane seg-
mentation, in[27] a method is proposed for camera
focal distance calibration using a vanishing point and
the vertical reference, in[28] the vertical line segmen-
tation method is described in more detail and some
preliminary results presented. In this paper the focus is
on the 3D reconstruction and mapping of the detected
vertical line segments.

The paper is organized as follows:Section 2de-
scribes the system’s geometric model. The geometric
features extracted from the inertial sensor data, the ver-
tical, the horizon and the homography of ground plane

Fig. 1. Vision and inertial system on mobile robot, and system frames of reference.

image points, are discussed in this section.Section 3
discusses a method for image segmentation of image
lines. In Section 4, we describe how the correspon-
dence problem between image features is solved. In
Section 5.1the feature mapping method and an out-
lier removal process is described. The experimental
setup used and experimental results are presented in
Section 6.

2. System parameters and inertial data

The vision system used for this work has an iner-
tial unit at the middle of the stereo camera baseline,
as seen inFig. 1. The system was placed on a wheeled
mobile robot for our tests. Our system is completely
platform independent, and can be used, for instance,
on legged robots, aerial robots and hand-held devices.
The cameras’ pan is controlled so as to have a symmet-
ric verge angleθ and the system attitude is obtained
from the inertial sensor data.

The system’s coordinate frame of reference,{C},
is defined as having the origin at the center of the
baseline, with lengthb, of the stereo cameras.

2.1. Gravity vector defines vertical reference and
image horizon

The measurementsa taken by the inertial unit’s
accelerometers include the sensed gravity vectorg

summed with the body’s accelerationab. Assuming
the system is motionless,ab = 0, the measured ac-
celerationa gives the gravity vectorg in the system’s
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frame of reference. So, withax, ay andaz being the
accelerometer filtered measurements along each axis,
the vertical unit vector will be given by

Cn̂ =
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and Cn̂ provides a vertical reference and can be
mapped to the left and right camera frames of ref-
erence{L} {R}. From projective geometry we know
that any image point belonging to the horizon line
has a projective ray parallel to any leveled plane and
orthogonal to the vertical reference[29]. The horizon
line and the coordinates of the image point are related
by

nxu + nyv + nzf = 0, (2)

where(u, v) are image coordinates andf the camera’s
focal distance. Any vanishing point obtained from par-
allel lines of a leveled plane will belong to the hori-
zon. Therefore from(2) the camera focal distancef
can be estimated with just one vanishing point[27].

2.2. Robot navigation frame of reference

With the system mounted on the mobile robot, all
detected features can be charted onto the robot’s world
map and updated as the robot moves in its environ-
ment. It is not convenient to construct this map in the
system frame of reference{C}, and a better choice is to
convert the points to a robot navigation frame of ref-
erence{N}, seeFig. 1. The vertical unit vector̂n and
the sensor system heightd can be used to define{N}.
If we chooseNx̂ to be coplanar withCx̂ andCn̂, in or-
der to keep the same heading, any world pointP will
have the following coordinate frame transformation
NP = NT C · CP (3)

with

NT C =




√
1 − n2

x

−nxny√
1 − n2

x

−nxnz√
1 − n2

x

0

0
nz√

1 − n2
x

−ny√
1 − n2

x

0

nx ny nz d

0 0 0 1




,

(4)

whered is the system height from the ground plane.
In some applicationsd can be know or imposed by
the physical mount, but it can also be determined by
the stereo system through a process of visual fixation,
see[30,31] for details.

If a heading reference is available, then{N} should
not be restricted to havingNx̂ coplanar withCx̂ and
Cn̂, but use the known heading reference. In scenes of
man made environments, such as buildings, some van-
ishing points can provide a heading reference. Using a
vanishing pointm̂ = (mx, my, mz) as a reference we
get

NT C =




mx nymz − nzmy nx −nxd

my nzmx − nxmz ny −nyd
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−1

.

(5)

The update of{N} as the robot changes its position
is beyond the scope of this work, where{N} is just
relative to the robot’s position, and not truly world
fixed. Anyhow, using the robot’s odometry, the inertial
sensors and landmark matching, the update can be
accomplished.

2.3. Homography

The direct mapping or homography of ground
plane points between the stereo pair can be ob-
tained by calibration using know ground plane points
[32]. But knowing the geometric parameters of the
ground plane and the geometry of the stereo rig, we
can also compute this homography[28]. Since the
points belong to a single plane, the ground plane,
we can deduce a mapping between the left and
right image points belonging to the ground plane.
Considering the right and left camera homogra-
phies,Hr andHl , the direct mappingH of ground
plane points between the stereo pair can be obtai-
ned by

spli = H · pri = Hl · H−1
r · pri , (6)

wherepri andpli are right and left projective image
points, ands an arbitrary scale factor. For our system
geometry,H is given by
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H =
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This mappingH will be fundamental for the stereo
correspondence used inSection 4.

3. Image line segmentation

Knowing the vertical, the vanishing point of all im-
age lines that correspond to world vertical features is
known. This vanishing point is at infinity when there
is no tilt, and the vertical lines are all parallel in the
image. For small tilt values, the vertical lines can be
taken as parallel. Based on this assumption, the verti-
cal line segments found in the image will be parallel
to the local image vertical̂ni, the normalized image
projection of the vertical̂n. The image vertical refer-
ence corresponds to the unit sphere projection of the
vanishing point of all 3D vertical lines in the image
plane.

In order to detect vertical line segments we ex-
tracted the edges in the image using a modified Sobel
filter proposed by Jahne[33] that uses different coef-
ficients to obtain a lower angle error in the gradient.
By choosing an appropriate threshold for the gradient
magnitude, the potential edge lines can be identified.

To obtain the vertical edges we compare the pixel
gradient with the vertical. The dot product of the gra-
dient with the vertical should be null, so by setting a
tolerance threshold value the detected edge points can
be taken as vertical or not.

D · n̂i < tolerance. (8)

Fig. 2. Vertical line detection.

In order to extract the vertical lines in the image, all
edge points that satisfied(8)were mapped to a rectified
image table using(9), so that continuity could be tested
along the vertical edge direction. Each edge pointpi =
(u, v) contributed to the table at position

vert points(x, y) = (pi · ĥ, pi · n̂), (9)

whereĥ is the horizontal unit vector, perpendicular to
n̂ in the image plane, i.e.,

n̂i · ĥi = 0. (10)

The minimum line length and allowable gaps is set
and each column of the table parsed. The end result is
a set of lines, given by their end-points in the original
image. The parameters that need to be set are the gra-
dient magnitude and angle tolerance thresholds, and
the minimum line length and tolerated gap size.

We implemented this method with our system,
working real time at 10 frames per second.Fig. 2
shows an example of the results obtained. The re-
sults showed that the method performs well in man
made environments where vertical lines segments
are abundant, but required some parameter adjust-
ment to have good results with different types of
scenes. The gradient magnitude threshold used to
identify edges is sensitive to image lighting and con-
trast. The line length and gap size that work well
in an indoor structured environment might not work
well in highly textured but less structured outdoor
environments.
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4. 3D reconstruction

In the previous section a method was proposed for
vertical image line detection. But in order to find out if
they truly correspond to 3D vertical line segments they
have to be matched across the stereo image pair. Mak-
ing the assumption that the relevant vertical line seg-
ments start from the ground plane, and since we know
the homography of the ground plane image points, a
common unique point is identified. The lower point or
foot of each vertical feature in one image should map
to the correspondingfoot in the other image.

An algorithm for the 3D reconstruction of vertical
line segments can now be presented. For each detected
line in the right image, map itsfoot to the other image
using (7). The correspondent point and its neighbor-
hood in the left image can then be tested for a match
with the original point of interest in the right image by
parsing all the left image lines, determining the corre-
sponding left image pointpli with

pli = H · pri , (11)

wherepri is thefootof the right image line, and testing
an allowed neighborhood windowpli ± δ for the foot
of a left image vertical line. If there is a match, the
point belongs to the ground plane and must be the
foot of a true 3D vertical world line segment. The 3D
positionNP of the foot of this vertical line segment
is given by
NP̃ = H−1

r pri , (12)

whereNP̃ = [ X Y 1 ] andNP = [ X Y 0 1].
With the system mounted on the mobile robot, the

vertical line segments can be charted on a world map,
constructed as the robot moves in its environment. This
map is constructed in the robot’s navigation frame of
reference{N} previously defined.

Fig. 4. 3D vertical line segment reconstruction.

Fig. 3. 3D reconstruction algorithm.

Fig. 3 summarizes the implemented method, and
Fig. 4 shows an example of the results obtained.

4.1. Error analysis

The mapped features’ accuracy depends on the esti-
mated homography parameters and the detected lower
end points of the image vertical line segment. From
(7) it is clear thatH will be sensitive to small vari-
ations of the vertical reference provided by the iner-
tial sensors. When analyzing estimates of directions or
surface normals, the statistic distribution on a sphere
provides a good model, see[34] and sensor statistics
study inSection 6.3.

A measurement set from the accelerometers gives
the acceleration vector in Cartesian coordinates.
Spherical polar coordinates(θ, φ) can be used to rep-
resent the direction of the acceleration vector. The cor-
respondent direction cosinesl, m andn are given by

l = sinθ cosφ, m = sinθ sinφ,

n = cosθ, 0 < θ < π, 0 < φ < 2π. (13)

Let (li, mi, ni), i = 1, . . . , k, be k observed di-
rections. The spherical mean direction (l̄0, l̄0, l̄0) is
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Fig. 5. Outlier removal algorithm.

given by
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whereR is the length of the resultant given by
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(∑
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)2
}1/2

. (15)

The valueR is a measure of concentration about a
mean direction, and the spherical variance is defined
as

S∗ = k − R

k
, 0 ≤ R ≤ k, 0 < S∗ < 1. (16)

R andS can then be used to describe the error statis-
tics of the vertical reference provided by the inertial
sensors. These two values are critical for our applica-
tion and results of our tests are shown inSection 6.

5. Mapping of detected features

The vertical line segment detection method pro-
duces some outliers. Before using it to update the
world map, the detected feature data must be filtered
to remove the outliers.

5.1. Outlier removal

To deal with the outliers, a fast computational
method was developed in this work. This method is
iterative but with a simple computational implemen-
tation for real time performance. Since the system
detects several vertical line segments in the scene,
the method starts by clustering the measurements
on several sub-sets of vertical line segments. For
each of these sub-sets the method removes all outlier
measurements.

The process starts by searching the complete mea-
surement setM to determine a sub-set of measuresS,
with the biggest cardinality possible that is within an
initial window size, providing the currently best esti-
mate of one vertical line segment. After removing the
sub-setS from measurement setM, the process con-
tinues until the measurement set is empty or has mini-
mal cardinality.Fig. 5summarizes the outlier removal
method.

The measurements in the setM are pointsNP̃ =
[ X Y 1 ] obtained from(12). The outlier removal
method explores the bi-dimensionally of the data and
searches the measurement setM by using awindow.
Thewindow location changes its position and dimen-
sion during the searching process and all points in the
measurement setM are tested in each iteration.

When two vertical features fall within the same ini-
tial windows size, they are detected as a single feature.
If the distance between two vertical lines is less than a
threshold the outlier removal method assumes there is
only one vertical line. The threshold used is given by a
predefined ratio between two distances: from the sys-
tem to the verticals, and between the two vertical lines.

This method was compared with the RANSAC[35]
method, and the results of both methods are similar
but the RANSAC method is computationally slower.

After the outlier filtering the different sub-sets of
measurements are mapped in the world map represen-
tation. Each sub-set represents an estimation of one
vertical feature.

6. Results

6.1. Experimental setup

For the experiments we used the system inFig. 6
briefly described inSection 2. In this system an inertial
system prototype built at our lab was used[26]. The
system is based on low-cost inertial sensors and is
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Fig. 6. Vision system with inertial sensors, and system architecture.

intended for robotic applications. The sensors used in
the prototype system include three accelerometers and
three gyroscopes.

The inertial system prototype was mounted onto
the active vision system as seen inFig. 6. This figure
shows the architecture of the complete system, with a

Fig. 7. Stereo images with detected edges and vertical lines.

Fig. 8. World map with robot motionless.

large baseline to obtain better precision on the stereo
reconstruction.

6.2. 3D vertical line detection and mapping

With this experimental setup, the 3D vertical line
segment detection algorithm was tested.Fig. 7 shows
the stereo image pair with the identified image verti-
cal lines and the matchedfeetof the true 3D vertical
lines for a structured real scene.Fig. 8 shows the
map obtained without moving the robot. The robot
is represented by the semi-circle on the left side of
the map, the points represent thefeetof the detected
vertical line segments. The solid lines represent the
ground truth obstacles in the world (all ground truth
distances were tape measured). Thecloudsof points
at the line corners represent thefeet of the detected
vertical lines. These sets of points are characterized by
small ellipses representing the uncertainty of the set.
Fig. 9 shows the results of the robot moving along a
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Fig. 9. World map with robot moving without outlier removal.

trajectory without outlier removal. As expected
the results are more unstable due to vibration and
oscillation.

The uncertainty increases when the robot moves
along a trajectory, because the vision system suffers
mechanical vibrations, and the robot’s odometry in-
troduces additional errors, as can be seen inFig. 9.
The distribution pattern clearly suggests that theX

coordinate is more unstable. This is due to the ac-
celerometer sensitivity and noise, and implies that
more filtering of the signal is required. The vision al-
gorithm is also more prone to errors in theX-direction
due to the stereo geometry. From the results we ob-

Fig. 10. World map with robot moving with outlier removal.

serve that the uncertainty ellipses of the vertical line
segments are quite large. This is due to the fact that
there are many data outliers generated when the robot
moves along a trajectory.

To remove the outliers we applied the iterative
method described inSection 5.1. The results, after
removing the outliers with this method, are shown in
Fig. 10. The results are better since the uncertainty
ellipses are smaller.

Fig. 11shows a second test made in a less structured
real scene. In this test, we only intend to see how our
system works in a less structured scene and with the
robot stopped.
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Fig. 11. Stereo images with detected edges and vertical lines, and raw map of vertical world features.

The detected verticals for the scene were mapped as
shown inFig. 12. The lines represent the ground truth
position of the table and chair in the world. InFig. 12
we observe that the uncertainty levels are bigger than
in the previous situation. These results were expected,
because in less structured scenes there is more noise
in edge detection than in a structured real scene.

The last test used an unstructured scene seen in
Fig. 13. A chair was placed in a natural environment
with plants and vases. The robot was initially at rest
and then set in motion, the results are shown inFigs. 14
and 15. The lines show the ground truth chair position,
the nearby circle a plant vase that occluded one of the
chair legs. The robot was placed on higher ground, and

Fig. 12. World map with the robot motionless.

the detected features were very near, therefore the error
spread along theX-direction is less than in previous
tests.Fig. 16shows the result after the outlier removal
process and a slight reduction of the uncertainty ellipse
can be observed.

6.3. Sensor statistics

To study the effect of sensor noise we characterized
the noise model of the accelerometers. The statisti-
cal distribution of the accelerometer data on a sphere
was analyzed as described inSection 4. Samples were
taken with the robot stopped and in motion.Table 1
shows the results.
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Fig. 13. Stereo images with detected edges and vertical lines.

Fig. 14. World map with robot motionless.

Fig. 15. World map with robot moving without outlier removal.

Fig. 16. World map with robot moving with outlier removal.
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Fig. 17. Accelerometer data—Robot moving.

Table 1
Accelerometer data

Robot R/samples S∗(×10−4)

Stopped 0.99972 2.7935
Moving 0.99898 9.9038

From Table 1it is clear that the robot motion adds
noise to the measurements, degrading the accuracy of
the vertical feature mapping. FromFig. 17we can see
that with the system motionless the error distribution
is close to isotropic, but when the robot is in motion a
longer error spreads along theX-direction. This will
propagate to the error along the same direction in the
final mapping of the detected features, as shown in
Section 6.

7. Conclusions

This paper presented our recent results on the use
and integration of two different sensor modalities, in-
ertial sensing and vision, for 3D reconstruction and
map-building. The integration of inertial and visual
information is used to detect world vertical features.
The horizontal plane given by the inertial sensors was
used to establish correspondence between stereo im-
age vertical lines, enabling the detection of true 3D
world vertical line segments. These features are used

to build ametric mapuseful to improve mobile robot
autonomy and navigation.

This approach permits a real-time implementation.
The results show that it works with less structured en-
vironments focusing well on the few structured scene
elements.

Future work will aim at improving the robustness
of the feature detection method. By using the vertical
vanishing point and not just the vertical reference,
the method will work for any camera rotation. Other
restrictions on the detected vertical features can be
explored, such as testing for different heights, and not
just therefeet. Using the gyro sensor data to de-couple
body acceleration and gravity, the static restriction
can also be removed. The map building process can
be improved so that it can be used autonomously by
the robot. Other applications for inertial and vision
sensor fusion will be explored, such as walking robots
or wearable sensing devices for human–machine
interface and augmented reality.
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