
www.elsevier.com/locate/cviu

Computer Vision and Image Understanding 103 (2006) 208–217
A unifying geometric representation for central projection systems

João P. Barreto

Institute for Systems and Robotics, Department of Electrical and Computer Engineering, University of Coimbra, 3030 Coimbra, Portugal

Received 7 July 2005; accepted 7 June 2006
Available online 25 July 2006
Communicated by Seth Teller
Abstract

In this paper, we study projection systems with a single effective viewpoint, including combinations of mirrors and lenses (catadiop-
tric) as well as just lenses with or without radial distortion (dioptric systems). First, we extend a well-known unifying model for central
catadioptric systems to incorporate a class of dioptric systems with radial distortion. Second, we provide a new representation for the
image plane of central systems. This representation is the lifting through a Veronese map of the original image plane to the 5D projective
space. We study how a collineation in the original image plane can be transferred to a collineation in the lifted space, and we prove that in
the case of central parabolic systems and cameras with lens distortion the locus of the lifted points representing projections of world lines
is a plane. The similarities between paracatadioptric systems and lens with radial distortion are emphasized by extending to the latter
algorithms initially established for the former.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

A vision system has a single viewpoint whenever it mea-
sures the intensity of light traveling along rays which inter-
sect in a single point in 3D (the projection center). Vision
systems satisfying the single viewpoint constraint are called
central projection systems. The perspective camera is an
example of a central projection system. In this case the
mapping in homogeneous coordinates of points in the
scene into points in the image is linear and can be described
by a 3 · 4 projection matrix P (pin-hole model) [1]. Per-
spective projection can be modeled by intersecting a plane
with a pencil of lines going through the scene points and
the projection center O.

There are central projection systems whose geometry
can not be described using the conventional pin-hole mod-
el. In [2] Baker et al. derive the entire class of catadioptric
systems satisfying the single viewpoint constraint. Sensors
1077-3142/$ - see front matter � 2006 Elsevier Inc. All rights reserved.
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with a wide field of view and a unique projection center
can be built by combining a hyperbolic mirror with a per-
spective camera, or a parabolic mirror with an orthograph-
ic camera (paracatadioptric system). However, the
mapping between points in the 3D world and points in
the image is non-linear. Svoboda et al. show that in general
the central catadioptric image of a line is a conic section [3].
A unifying theory for central catadioptric systems is pro-
posed in [4]. Geyer et al. prove that central catadioptric
projection is isomorphic to a projective mapping from a
sphere, centered in the effective viewpoint, to a plane with
the projection center on the perpendicular to the plane.
Perspective cameras with non-linear lens distortion are
another example of central projection systems where the
relation in homogeneous coordinates between scene points
and image points is no longer linear. True lens distortion
curves are typically very complex and higher-order models
are introduced to approximate the distortion during cali-
bration [5,6]. However, simpler low-order models can be
used for many computer vision applications where an accu-
racy in the order of a pixel is sufficient. In this paper the
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radial lens distortion is modeled after the division model
proposed in [7,8]. The division model is not an approxima-
tion to the classical model in [5], but a different approxima-
tion to the true curve.

The present work proposes, a general image formation
model that accommodates conventional perspective cam-
eras, central catadioptric systems, and dioptric cameras
with lens distortion. The model is linearized by lifting
through Veronese maps the projective plane in the five-
dimensional space. Such an embedding provides new
insights about the geometric properties of each type of
projection. The contributions can be summarized as
follows:

(1) The unifying model of central catadioptric systems
proposed in [4] is extended to include radial distor-
tions. It is proved that the division model for lens
distortion is equivalent to a projective mapping from
a paraboloid to a plane, orthogonal to the parabo-
loid’s axis, and with projection center in the vertex
of the paraboloid. It is also shown that in general
the distorted projection of a line is a conic curve.

(2) For both catadioptric and radially distorted diop-
tric systems, we establish a new representation
through lifting of the image plane to a five-dimen-
sional projective space. In this lifted space, a collin-
eation in the original plane corresponds to a
collineation of the lifted points. We know that
world lines project to conic sections whose repre-
sentatives in the lifted space lie on a quadric. We
Fig. 1. Steps of the unifying model. The 3D point X is projected into poi
corresponds an intermediate point x0 which is mapped in the final image pla
represent a linear transformation or a non-linear mapping (see Table 1).

Table 1
The mapping functions �h and ð and corresponding inverses

Perspective camera (n = 0,w = 0)
�hðxÞ ¼ ðx; y; zÞT;
�h�1ðx0Þ ¼ ðx0; y0; z0ÞT;

Hyperbolic mirror (0 < n < 1)
�hðxÞ ¼ ðx; y; zþ n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
ÞT;

�h�1ðx0Þ ¼ ðx0; y0; z0 � ðx2þy02þz02Þn
z0nþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z02þð1�n2Þðx02þy02Þ
p ÞT;

Parabolic mirror (n = 1)
�hðxÞ ¼ ðx; y; zþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
ÞT;

�h�1ðx0Þ ¼ ð2x0z0; 2y0z0; z02 � x02 � y02ÞT;

Radial distortion (n < 0)
ððx0Þ ¼ ð2x0; 2y0; z0 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z02 � 4nðx02 þ y02Þ

p
ÞT;

ð�1ðx00Þ ¼ ðx00z00; y00z00; z002 þ nðx002 þ y002ÞÞT;
prove that in the cases of parabolic catadioptric
projection and radial lens distortion this quadric
degenerates to a hyperplane.
2. A unifying model for perspective cameras, central

catadioptric systems, and lenses with radial distortion

In [4], a unifying model for all central catadioptric sys-
tems is proposed where conventional perspective imaging
appears as a particular case. This section reviews this image
formation model as well as the result that in general the
catadioptric image of a line is a conic section [3]. This
framework can be easily extended to cameras with radial
distortion where the division model [7,8] is used to describe
the lens distortion.

This section shows that conventional perspective camer-
as, central catadioptric systems, and cameras with radial
distortion underly one projection model. Fig. 1 is a scheme
of the proposed unifying model. A point in the scene X is
transformed into a point x by a conventional projection
matrix P. Vector x can be interpreted both as a 2D point
expressed in homogeneous coordinates, and as a projective
ray defined by points X and O (the projection center).
Function �h transforms x in the intermediate point x 0. Point
x 0 is related with the final image point x00 by function ð.
Both �h and ð are transformations defined in the two dimen-
sional oriented projective space [9]. They can be linear or
non-linear depending on the type of system, but they are
always injective functions with an inverse. Table 1 summa-
rizes the results derived along this section.
nt x = PX assuming the conventional pin-hole model. To each point x

ne by function ð. Depending on the sensor type, functions �h and ð can

ððx0Þ ¼ Kx0

ð�1ðx00Þ ¼ K�1x00

ððx0Þ ¼ Hcx0

ð�1ðx00Þ ¼ H�1
c x00

ððx0Þ ¼ Hcx0

ð�1ðx00Þ ¼ H�1
c x00

�hðxÞ ¼ Kx

�h�1ðx0Þ ¼ K�1x0;
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2.1. Perspective camera and central catadioptric systems

The image formation in central catadioptric systems can
be split in three steps [10] as shown in Fig. 1: world points
are mapped into an oriented projective plane by a conven-
tional 3 · 4 projection matrix P; the oriented projective
plane is transformed by a non-linear function �h (Eq. (1));
the last step is a collineation in the plane Hc (Eq. (2)). In this
case, the function ð is a linear transformation depending on
the camera intrinsics Kc, the relative rotation between the
camera and the mirror Rc, and the shape of the reflective sur-
face. As discussed in [4,10], parameters n and w in Eqs. 1 and
2, depend only on the system type and shape of the mirror.
For paracatadioptric systems n = 1, while in the case of con-
ventional perspective cameras n = 0. If the mirror is hyper-
bolic then n takes values in the range [0,1].

x0 ¼ �hðxÞ ¼ ðx; y; zþ n
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
ÞT ð1Þ

x00 ¼ KRc

w� n 0 0

0 n� w 0

0 0 1

264
375

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Hc

�hðxÞ
ð2Þ

The non-linear characteristics of the mapping are isolated
in �h which has a curious geometric interpretation. Since,
x 0 is a homogeneous vector representing a point in an ori-
ented projective plane, kx 0 represents the same point when-
ever k > 0 [9]. Assuming k ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
, it follows

from Eq. (1) that

x0 ¼ xffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2þy2þz2
p

y 0 ¼ yffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2þy2þz2
p

z0 � n ¼ zffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2þy2þz2
p

8>>><>>>:
Fig. 2. The sphere model for central catadioptric projection. Each projective ra
Xm. The new projective point x0 is defined by O 0 and Xm. The distance betwe
Assume that x and x 0 are projective rays defined in two dif-
ferent coordinates systems in R3. The origin of the first
coordinate system is the effective viewpoint O and x is a
projective ray going through O. In a similar manner x 0 rep-
resents a projective ray going through the origin O 0 of the
second reference frame. According to the previous equa-
tion to each ray x corresponds one, and only one, projec-
tive ray x 0. The correspondence is such that the pencil of
projective rays x intersects the pencil of rays x 0 in a set
of points lying on a unit sphere centered in O. The equation
of the sphere in the coordinate system centered in O 0 is

x02 þ y 02 þ ðz0 � nÞ2 ¼ 1

We have just derived the well-known sphere model pro-
posed in [4] (Fig. 2). The homogeneous vector x can be
interpreted as a projective ray joining a 3D point in the
scene with the effective projection center O, which inter-
sects the unit sphere in a single point Xm. Consider a point
O 0 in R3, with coordinates (X,Y,Z) = (0, 0,�n)T

(n 2 [0,1]). To each x corresponds an oriented projective
ray x 0, defined by points O 0 and Xm. The non-linear map-
ping �h is equivalent to projecting the scene on the sphere
surface and then re-projecting into a plane from a novel
projection center O 0. Points in the image plane x00 are ob-
tained after a collineation Hc of the 2D projective points
x 0 (Eq. (2)).

Consider a line in space lying on a plane P with normal
n = (nx,ny,nz)

T and going through the effective viewpoint O

(Fig. 2). The 3D line is projected in a great circle which is
the intersection of P with the reference sphere. Projective
rays x 0, joining O 0 with points in the great circle, form a
central cone with vertex O 0. The central cone intersects
the canonical image plane P1 in a conic curve X 0. The
equation of X 0 is provided in 3 and depends of the normal
y x intersects the unit sphere, centered in the projection center O, at point
en the origins O and O 0 is n which depends on the mirror shape [10].
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n and parameter n [4,10]. The original 3D line is projected
in the catadioptric image on a conic section X00, which is
the projective transformation of X0ðX00 ¼ H�t

c X0H�1
c Þ [4,3].

X0 ¼
n2

xð1� n2Þ � n2
z n

2 nxnyð1� n2Þ nxnz

nxnyð1� n2Þ n2
yð1� n2Þ � n2

z n
2 nynz

nxnz nynz n2
z

264
375 ð3Þ

Notice that the re-projection center O 0 depends only on the
mirror shape. In the case of parabolic mirrors point O 0 lies
in the sphere surface and the re-projection is a stereograph-
ic projection. For hyperbolic systems n 2 (0, 1) and point
O 0 is inside the sphere in the negative Z-axis. The conven-
tional perspective camera is a degenerate case of central
catadioptric projection where n = 0 and O 0 is coincident
with O.

2.2. Dioptric systems with radial distortion

In perspective cameras with lens distortion the mapping
between points in the scene and points in the image is no
longer described by a linear function. Following the pin-
hole model, each point in the scene X originates a projec-
tive ray x = PX which is transformed into a 2D projective
point x 0 = Kx. The image point x00 is related with x 0 by a
non-linear transformation that models the lens radial dis-
tortion. In this paper, we consider the so called division
model [7,8] for lens distortion. The non-linear transforma-
tion is provided in Eq. (4) with parameter n quantifying the
amount of radial distortion. Remark that if n = 0 then
points x 0 and x00 are the same, and the camera is modeled
as a conventional pin-hole. The function of Eq. (4) is the
inverse of ð (see Fig. 1 and Table 1), and isolates the
non-linear characteristics of the mapping. In the case of
Fig. 3. The paraboloid model for perspective cameras equipped with lens with
to a projective mapping from a paraboloid to a plane with projection center
defined by the distortion parameter n.
dioptric systems with radial distortion function �h is a linear
transformation K (matrix of intrinsic parameters). The
division model of Eq. (4) requires that points x 0 and x00

are referenced in a coordinate system with origin in the
image distortion center. If the distortion center is not
known in advance, we can place it at the image center with-
out significantly affect the correction [6].

x0 ¼ ð�1ðx00Þ ¼ ðx00z00; y00z00; z002 þ nðx002 þ y002ÞÞT ð4Þ
Transformation ð has a geometric interpretation similar to
the sphere model derived for central catadioptric image
formation. As stated before, x 0 and kx 0 represent the same
point whenever k is a positive scalar [9]. Assuming
k ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x002 þ y002

p
in Eq. (4) yields

x0 ¼ x00z00

x002þy002

y 0 ¼ y00z00

x002þy002

z0 � n ¼ z002

x002þy002 :

8>><>>: ð5Þ

Reasoning as in the previous section, x 0 and x00 can be
interpreted as projective rays going through two distinct
origins O 0 and O00. From Eq. (5) follows that the two
pencils of rays intersect on a paraboloid with vertex O00.
The equation of this paraboloid in the coordinate system
attached to the origin O 0 is

x02 þ y 02 � ðz0 � nÞ ¼ 0

The scheme of Fig. 3 is the equivalent of Fig. 2 for the sit-
uation of lens with radial distortion. It shows an intuitive
‘concrete’ model for the non-linear transformation ð (Table
1) based on the paraboloid derived above. Since in this case
the n parameter is always negative [8], the effective projec-
tion center O 0 lies inside the parabolic surface. The projec-
tive ray x 0 goes through the viewpoint O 0 and intersects the
radial distortion. The division model for lens distortion [7,8] is isomorphic
on the vertex O00. The distance between O00 and the effective viewpoint is
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paraboloid at point Xm. By joining Xm with the vertex O00

we obtain the projective ray associated with the distorted
image point x00. Our model is in accordance to the fact that
the effects of radial distortion are more noticeable in the
image periphery than in the image center. The reference
paraboloid is a quadratic surface in }}}}}3 which is tangent
to the plane at infinity at point (X 0,Y 0,Z 0,W 0)T =
(0,0,1,0)T. If the angle between the projective ray x 0 and
the Z 0 axis is small, then the intersection point Xm is close
to infinity. In this case the rays associated with x 0 and x00

are almost coincident and the effect of radial distortion is
negligible. The paraboloid model herein presented was also
derived by Ying et al. [20].

Consider a line in the space that, according to the con-
ventional pin-hole model, is projected into a line
n0 ¼ ðn0x; n0y ; n0zÞ

T in the projective plane. Points x 0, lying
on line n 0, are transformed into image points x00 by the
non-linear function ð. Since, n 0Tx 0 = 0 and x0 ¼ ð�1ðx00Þ,
then n0Tð�1ðx00Þ ¼ 0. After some algebraic manipulation
the previous equality can be written in the form
x00TX00x00 = 0 with X00 given by Eq. (6). In a similar way
to what happens for the central catadioptric systems, the
non-linear mapping ð transforms lines n 0 into a conic sec-
tions X00 (see Fig. 3).

X00 ¼

nn0z 0 n0x
2

0 nn0z
n0y
2

n0x
2

n0y
2

n0z

26664
37775 ð6Þ
3. Embedding }}}}}2 into }}}}}5 using Veronese maps

Perspective projection can be formulated as a transfor-
mation of R3 into R2. Points X = (X,Y,Z)T are mapped
into points x = (x,y)T by a non-linear function f(X) =
(X/Z,Y/Z)T. A standard technique used in algebra to

render a nonlinear problem into a linear one is to find an
embedding that lifts the problem into a higher dimensional
space. For conventional cameras, the additional homoge-
neous coordinate linearizes the mapping function and
simplifies most of the mathematic relations. In the previous
section we established a unifying model that includes
central catadioptric sensors and lens with radial distortion.
Unfortunately the use of an additional homogeneous
coordinate does no longer suffice to cope with the non-lin-
earities in the image formation.

In this paper, we propose the embedding of the projec-
tive plane into a higher dimensional space in order to study
the geometry of general single viewpoint images in a unified
framework. This idea has already been explored by other
authors to solve several computer vision problems. High-
er-dimensional projection matrices are proposed in [11]
for the representation of various applications where the
world is no longer rigid. In [12], lifted coordinates are used
to obtain a fundamental matrix between paracatadioptric
views. Sturm generalizes this framework to analyze the
relations between multiple views of a static scene where
the views are taken by any mixture of paracatadioptric,
perspective or affine cameras [13].

The present section discusses the embedding of the pro-
jective plane }}}}}2 in }}}}}5 (Eq. (7)) using Veronese mapping
[14,15]. This polynomial embedding preserves homogeneity
and is suitable to represent quadratic relations between
image points [16,17]. Moreover there is a natural duality
between lifted points ex and conics which is advantageous
when dealing with catadioptric and distorted projection
of lines. It is also shown that projective transformations
in }}}}}2 can be transposed to }}}}}5 in a straightforward manner.

x 2 }}}}}2 ! ex ¼ ðx0; x1; x2; x3; x4; x5ÞT 2 }}}}}5 ð7Þ
3.1. Lifting point coordinates

Consider an operator C which transforms two 3 · 1 vec-
tors x, �x into a 6 · 1 vector as shown in Eq. (8)

Cðx; �xÞ ¼ x�x;
x�y þ y�x

2
; y�y;

x�xþ z�x
2

;
y�zþ z�y

2
; z�z

� �T

ð8Þ

The operator C can be used to map pairs of points in the
projective plane }}}}}2, with homogeneous coordinates x and
�x, into points in the 5D projective space }}}}}5. To each pair
of points x, �x corresponds one, and only one, pointex ¼ Cðx; �xÞ which lies on a primal S called the cubic sym-
metroid [14]. The cubic symmetroid S is a non-linear subset
of }}}}}5 defined by the following equation:

x0x2x5 þ 2x1x3x4 � x0x2
4 � x2x2

3 � x5x2
1 ¼ 0; 8ex2S

ð9Þ

By making �x ¼ x the operator C can be used to map a sin-
gle point in }}}}}2 into a point in }}}}}5. In this case the lifting
function becomes

x! ex ¼ Cðx; xÞ ¼ ðx2; xy; y2; xz; yz; z2ÞT: ð10Þ
To each point x in the projective plane corresponds one,
and only one, point ex lying on a quadratic surface V in
}}}}}5. This surface, defined by the triplet of Eq. (11), is called
the Veronese surface and is a sub-set of the cubic symmet-
roid S [14,15]. The mapping of Eq. (10) is the second order
Veronese mapping that will be used to embed the projective
plane }}}}}2 into the 5D projective space.

x2
1 � x0x2 ¼ 0 ^ x2

3 � x0x5 ¼ 0 ^ x2
4 � x2x5 ¼ 0; 8ex2V

:

ð11Þ
3.2. Lifting lines and conics

A conic curve in the projective plane }}}}}2 is usually repre-
sented by a 3 · 3 symmetric matrix X. Point x lies on the
conic if, and only if, equation xTXx = 0 is satisfied. Since
a 3 · 3 symmetric matrix has 6 parameters, the conic locus
can also be represented by a 6 · 1 homogeneous vector ex
(Eq. (12)). Vector ex is the representation in lifted coordi-
nates of the planar conic X
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X ¼
a b d

b c e

d e f

264
375! ex ¼ ða; 2b; c; 2d; 2e; f ÞT: ð12Þ

Point x lies on the conic locus X if, and only if, its lifted
coordinates ex are orthogonal to vector exðexT:ex ¼ 0Þ.
Moreover, if points x and �x are harmonic conjugates with
respect to the conic then xTX�x ¼ 0 and exT:Cðx; �xÞ ¼ 0. In
the same way as points and lines are dual entities in }}}}}2,
there is a duality between points and conics in the lifted
space }}}}}5. Since the general single viewpoint image of a line
is a conic (Eqs. 3 and 6), this duality will prove to be a nice
and useful property.

Conic X = m.lT + l.mT is composed of two lines m and l
lying on the projective plane }}}}}2. In this case, the conic is
said to be degenerate, the 3 · 3 symmetric matrix X is rank
2, and Eq. (12) becomes

X ¼ mlT þ lmT ! ex ¼
1 0 0 0 0 0

0 2 0 0 0 0

0 0 1 0 0 0

0 0 0 2 0 0

0 0 0 0 2 0

0 0 0 0 0 1

2666666664

3777777775
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}eD

:Cðm; lÞ

ð13Þ
In a similar way a conic locus can be composed by a single
line n = (nx, ny, nz)

T. Matrix X = n.nT has rank 1 and the
result of Eq. (12) can be used to establish the lifted repre-
sentation of a line

n! en ¼ eD:Cðn; nÞ ¼ ðn2
x ; 2nxny ; n2

y ; 2nxnz; 2nynz; n2
z Þ

T ð14Þ

Consider a point x in }}}}}2 lying on line n such that nT.x = 0.
Point x is on the line if, and only if, its lifted coordinates en
are orthogonal to the homogeneous vector enðenTex ¼ 0Þ.
Points and lines are dual entities in }}}}}2 as well as in the lifted
space }}}}}5. By embedding the projective plane into }}}}}5 lines
and conics are treated in a uniform manner. The duality be-
tween points and lines is preserved and extended for the
case of points and conics. The space of all conics is the dual
5D projective space }}}}}5*, because each point ex corresponds
to a conic curve X in the original 2D plane. The set of all
lines n is mapped into a non-linear subset V* of }}}}}5*, which
is the projective transformation of the Veronese surface V

by eD (Eq. (14)).

3.3. Lifting linear transformations

In the previous sections, we discussed the representation
of points, lines and conics in the 5D projective space }}}}}5.
However a geometry is defined not only by a set of objects
but also by the group of transformations acting on them
[18]. This section shows how a linear transformation on
the original space }}}}}2 can be coherently transferred to the
lifted space }}}}}5.
Consider a linear transformation, represented by a 3 · 3
matrix H, which maps any two points x and �x into points
Hx and H�x. Both pairs of points can be lifted to }}}}}5 using
the operator C of Eq. (8). We wish to obtain a new opera-
tor K that has the following characteristic

CðHx;H�xÞ ¼ KðHÞ:Cðx; �xÞ ð15Þ
The desired result can be derived by developing Eq. (15)
and performing some algebraic manipulation. The opera-
tor K, transforming a 3 · 3 matrix H into a 6 · 6 matrixeH, is provided in Eq. (16) with v1, v2 and v3 denoting the
columns of the original matrix H.

Kð½v1v2v3�|fflfflffl{zfflfflffl}
H

Þ ¼

Cðv1; v1ÞT

Cðv1; v2ÞT

Cðv2; v2ÞT

Cðv1; v3ÞT

Cðv2; v3ÞT

Cðv3; v3ÞT

26666666664

37777777775
|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}eH

eD
ð16Þ

It can be proved that K, not only satisfies the relation stat-
ed on Eq. (15), but also has the following properties

KðH�1Þ ¼ KðHÞ�1

KðH:BÞ ¼ KðHÞ:KðBÞ
KðHTÞ ¼ eD�1:KðHÞT:eD
KðI3�3Þ ¼ I6�6

ð17Þ

From Eq. (15) comes that if x and y are two points in }}}}}2

such that y = Hx then ey ¼ KðHÞ:ex where ex and ey are
the lifted coordinates of the points. The operator K maps
the linear transformation H in the plane into the linear
transformation eH ¼ KðHÞ in }}}}}5. The transformation of
points and conics are transferred to the 5D projective space
in the following manner

y ¼ Hx! ey ¼ eHex
W ¼ H�tXH�1 ! ew ¼ eH�t ex ð18Þ

We just proved that the set of linear transformations in }}}}}2

can be mapped into a subset of linear transformations in
}}}}}5. Any transformation, represented by a singular or
non-singular 3 · 3 matrix H, has a correspondence ineH ¼ KðHÞ. However note that there are linear transforma-
tions in }}}}}5 without any correspondence in the projective
plane.
4. The subset of line images

This section applies the established framework in order
to study the properties of line projection in central catadi-
optric systems and cameras with radial distortion. If it is
true that a line is mapped into a conic in the image, it is
not true that any conic can be the projection of a line. It
is shown that a conic section ex is the projection of a line
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if, and only if, it lies in a certain subset of }}}}}5 defined by the
sensor type and calibration. This subset is a linear subspace
for paracatadioptric cameras and cameras with radial dis-
tortion, and a quadratic surface for hyperbolic systems.
4.1. Central catadioptric projection of lines

Assume that a certain line in the world is projected into a
conic section X00 in the catadioptric image plane. As shown
in Fig. 2, the line lies in plane P that contains the projection
center O and is orthogonal to n = (nx, ny, nz)

T. The catadiop-
tric projection of the line is X00 ¼ H�t

c X0H�1
c with Hc the cal-

ibration matrix. The conic X 0 is provided in Eq. (3) and
depends on the normal n and the shape of the mirror.

The framework derived in the previous section is now
used to transpose to }}}}}5 the model for line projection dis-
cussed in Section 2.1. Conic X 0 is mapped into x 0 in the
5D projective space. As shown in Eq. (3) the conic depends
on the normal n and on parameter n. This dependence can
be represented in }}}}}5 by ex0 ¼ eDcen with eDc given by Eq. (19).
The lifted coordinates of the final image of the line areex00 ¼ eHc

eDcen. Hence forth, if nothing is said, the collinea-
tion eHc is ignored and we will work directly withex0 ¼ eH�1

c ex00.
a0

2b0

c0

2d 0

2e0

f 0

2666666664

3777777775
|fflfflffl{zfflfflffl}ex0

¼

1� n2 0 0 0 0 �n2

0 1� n2 0 0 0 0

0 0 1� n2 0 0 �n2

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

2666666664

3777777775
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}eDc

n2
x

2nxny

n2
y

2nxnz

2nynz

n2
z

2666666664

3777777775
|fflfflfflfflffl{zfflfflfflfflffl}en

ð19Þ
Notice that the linear transformation eDc, derived from Eq.
(3), does not have an equivalent transformation in the pro-
jective plane (Eq. (16)). The catadioptric projection of a
line, despite of being non-linear in }}}}}2, is described by a lin-
ear relation in }}}}}5.

As stated in Section 3.2, a line n in the projective plane is
lifted into a point en which lies on the quadratic surface V*

in }}}}}5*. From Eq. (19) it follows that a generic conic ex0 is
the catadioptric projection of a line if, and only if,eD�1

c ex0 2 V�. Since surface V* is the projective transforma-
tion of the Veronese surface V (Eq. (11)) by eD, thenex0 ¼ ða0; 2b0; c0; 2d 0; 2e0; f 0ÞT is the projection of a line if,
and only if,

d 02ð1� n2Þ � f 0ða0 þ f 0n2Þ ¼ 0

e02ð1� n2Þ � f 0ðc0 þ f 0n2Þ ¼ 0; 8ex0 2f
b02 � ða0 þ f n2Þðc0 þ f 0n2Þ ¼ 0

8>><>>: ð20Þ

Eq. (20) defines a quadratic surface f in the space of all
conics. The constraints of Eq. (20) have been recently intro-
duced in [19] and used as invariants for calibration
purposes.
4.2. Line projection in paracatadioptric cameras

Let’s consider the situation of paracatadioptric cameras
where n = 1. In this case point O 0 lies on the sphere surface
(Fig. 2) and the re-projection from the sphere to the plane
becomes a stereographic projection [4]. Eq. (21) is derived
from Eq. (20) by making n = 1. For the particular case of
paracatadioptric cameras the quadratic surface f degener-
ates into a linear subspace u which is the set of all line pro-
jections ex 0.
a0 þ f 0 ¼ 0 ^ c0 þ f 0 ¼ 0 ^ b02 ¼ 0; 8ex0 2u ð21Þ

Stating this result in a different manner, the conic X 0 is the
paracatadioptric projection of a line if, and only if, the cor-
responding lifted representation ex0 is on the null space of
matrix Np.

1 0 0 0 0 1

0 0 1 0 0 1

0 1 0 0 0 0

264
375

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Np

ex 0 ¼ 0
ð22Þ

We have already seen that if point x 0 is on conic X 0 thenex 0Tex0 ¼ 0. The lifted point ex0 must lie on the prime of}}}}}5 that
is orthogonal to ex 0 [14]. However, not all points in this prime
are lifted coordinates of points in }}}}}2. Section 3.1 shows that
only points lying on the Veronese surface V have a corre-
spondence on the projective plane. Thus, points x 0 lying on
X 0 are mapped into a subset of }}}}}5 defined by the intersection
of the prime orthogonal to ex0 with the Veronese surface V.

Consider the set of all conic sections X 0 corresponding
to paracatadioptic line projections. If this conic set has a
common point x 0 then its lifted vector ex0 must be on the
intersection of V with the hyperplane orthogonal to u.
Points eI0 and eJ0 are computed by intersecting the range
of matrix NT

p (the orthogonal hyperplane) with the Vero-
nese surface defined in Eq. (11). These points are the lifted
coordinates of the circular points in the projective plane
where all paracatadioptric line images X 0 intersect.eI 0 ¼ ð1; i;�1; 0; 0; 0ÞTeJ0 ¼ ð1;�i;�1; 0; 0; 0ÞT

(
! I0 ¼ ð1; i; 0ÞT

J0 ¼ ð1;�i; 0ÞT

(
ð23Þ

In a similar way, if there is a pair of points x, �x that are har-
monic conjugate with respect to all conics X 0 then, the corre-
sponding vector Cðx; �xÞ, must be in the intersection of S with
the range of NT

p . The intersection can be determined from
Eqs. 9 and 22 defining the cubic symmetroid S and matrix
Np. The result is presented in Eq. (24) where k is a free scalar.

gP0Q0 ¼ ð�k;1;k;0;0;0ÞT!
P0 ¼ ð1þ

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ k2

p
;k;0ÞT

Q0 ¼ ð1�
ffiffiffiffiffiffiffiffiffiffiffiffi
1þ k2

p
;k;0ÞT

(

gR0T 0 ¼ ð1;k;k2;0;0;1þ k2ÞT!
R0 ¼ ð1;k;�i

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ k2

p
ÞT

T0 ¼ ð1;k; i
ffiffiffiffiffiffiffiffiffiffiffiffi
1þ k2

p
ÞT

(
8>>>>>><>>>>>>:

ð24Þ
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According to Eq. (23), any paracatadioptric projection of a
line must go through the circular points. This is not surpris-
ing, since the stereographic projection of a great circle is al-
ways a circle (see Fig. 2). However, not all circles
correspond to the projection of lines. While points P 0, Q 0

are harmonic conjugate with respect to a all circles, the
same does not happen with the pair R 0, T 0. Thus, a conic
X 0 is the paracatadioptric image of a line if, and only if,
it goes through the circular points and satisfies
R 0TX 0T 0 = 0. This result has been used in [21,22] in order
to constrain the search space and accurately estimate line
projections in the paracatadioptric image plane.

4.3. Line projection in cameras with radial distortion

We have already shown that for catadioptric cameras the
model for line projection becomes linear when the projective
plane is embedded in }}}}}5. A similar derivation can be applied
to dioptric cameras with radial distortion. According to the
conventional pin-hole model a line in the scene is mapped
into a line n 0 in the image plane. However, and as discussed
on Section 2.2, the non-linear effect of radial distortion
transforms n 0 into a conic curve X00. If ex 00 and en0 are the
5D representations of X00 and n 0 it follows from Eq. (6) that
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|fflfflfflffl{zfflfflfflffl}ex 00
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0 0 0 0 0 0

0 0 0 0 0 n
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|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}eDr
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2n0yn
0
z

n02z
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37777777775
|fflfflfflfflffl{zfflfflfflfflffl}en 0

ð25Þ

For the paracatadioptric camera situation (n = 1) matrixeDc has a structure similar to matrix eDr. It can be proved
that a conic section ex00 is the distorted projection of a line
if, and only if, it lies on a hyperplane 1 defined as follows
Fig. 4. Estimation of radial distortion using line projections. On the left we sh
768 · 1024. For each test image we fitted 4 circles to the projection of 4 lines and
the radial distortion estimation was n = �7.3125 · 10�7. It corresponds to a di
The standard deviation of the estimated displacement was 9.925 pixels. The co
right side.
a00 � nf 00 ¼ 0 ^ c00 � nf 00 ¼ 0 ^ b002 ¼ 0; 8ex 021 ð26Þ

Repeating the reasoning that we did for the paracatadiop-
tric camera, it can be shown that conic X00 is the distorted
projection of a line if, and only if, it goes through the cir-
cular points of Eq. (23) and satisfies the condition
M00TX00N00 = 0 with M00 and N00 given below

gM00N 00 ¼ ð1;k;k2;0;0;�nð1þk2ÞÞT!
M00 ¼ ð1;k;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nð1þk2Þ

q
ÞT

N00 ¼ ð1;k;�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nð1þk2Þ

q
ÞT

8><>:
ð27Þ
5. Experiments

Conventional perspective cameras, central catadioptric
systems and dioptric cameras with lens distortion underly
a common model for central projection (Fig. 1). Accord-
ing to this model the central projection of a line is in
general a conic curve that is dual to the lifted represen-
tation of image points (Section 3). The embedding of
the projective plane into }}}}}5 provides useful geometric
insights and shows the similarities between the different
types of sensors.

We proved that in the case of paracatadioptric systems
the lifted representation of a line projection lies in a plane
in the dual space }}}}}5*. This fact is explored in [21] in order
to calibrate the sensor using the image of lines. A similar
approach can be applied for the estimation of lens distor-
tion. Consider the projection of a line n0 ¼ ðn0x; n0y ; n0zÞ

T in
a camera with radial distortion. From Eq. (6) follows that,
if n 0 does not go through the distortion center ðn0z 6¼ 0Þ,
then its projection is a conic curve with lifted
representation

ex 00 ¼ n; 0; n;
n0x
0 ;

n0y
0 ; 1

� �T

: ð28Þ
ow one of the six images used in this experiment. The size of the image is
estimated the radial distortion parameter n (Eq. (28)). The mean value for

splacement along the radial direction of 273.55 pixels at the image corner.
rrection of radial distortion using the estimated value is exhibited on the



Fig. 5. Estimation of the distorted projection of a line from two image points selected by hand. The image size is 768 · 1024 and the radial distortion
causes a displacement of 273.55 pixels at the image corner. The conic curve X00, corresponding to the projection of a line, is estimated from two image
points knowing that X00 must go through the circular points and satisfies M00TX00N00 = 0 (Eq. (27)).
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As for the paracatadioptric camera situation, points x00 are
the distorted projection of a line if, and only if, they lie in a
certain plane of }}}}}5*. This plane is a subspace of the space of
all circles, and the distortion can be easily estimated by fit-
ting suitable circles to a set of line projections. The circles
must follow the structure of Eq. (28) which implicitly en-
codes the distortion parameter n. Fig. 4a shows an image
acquired by a camera with significant lens distortion. We
applied and edge detector in order to measure image points
x00 lying on 4 distinct line projections. We fitted 4 consistent
circles to the data points using normal least squares (Eq.
(28)). The procedure was repeated for 5 other images ac-
quired by the same camera. The mean estimation for the
radial distortion was n = �7.3125 · 10�7.

In [22], we propose an algorithm to robustly estimate the
projection of lines in calibrated paracatadioptric images. In
the experiment of Fig. 5 we extend the method to the case
of cameras with radial distortion. This extension is trivial
given the observed similarities in the geometry of line pro-
jection. In Section 4.3, we saw that a conic curve X00 is the
distorted projection of a line if, and only if, it goes through
the circular points I00 and J00 and satisfies M00TX00N00 = 0.
Remark that points M00 and N00 only depend on the distor-
tion parameter n that is known (Eq. (27)). Since a conic
curve has 5 degrees of freedom, the line projection X00 is
fully constrained by knowing 2 image points lying on it.
Fig. 5 shows the loci where three lines in the scene are pro-
jected. Each curve was determined using just two image
points selected by hand.

6. Conclusion

In this paper, we studied unifying models for central
projection systems and representations of projections of
world points and lines. We first proved that the two step
projection model through the sphere, equivalent to per-
spective cameras and all central catadioptric systems, can
be extended to cover the division model of radial lens dis-
tortion. Having accommodated all central catadioptric as
well as radial lens distortion models under one formula-
tion, we established a representation of the resulting image
planes in the five-dimensional projective space through the
Veronese mapping. In this space, a collineation of the ori-
ginal plane corresponds to a collineation of the lifted space.
Projections of lines in the world correspond to points in the
lifted space lying in the general case on a quadric surface.
However, in the cases of paracatadioptric and radial lens
distortions, liftings of the projections of world lines lie on
hyperplanes. In ongoing work, we study the epipolar geom-
etry of central camera systems when points are expressed in
this lifted space.
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