
Carlos André Faria da Graça

Acceleration of computer-assisted 
image inspection algorithms
in medical scenarios 

Setembro de 2014

Dissertação de Mestrado em
Engenharia Electrotécnica e de Computadores





Acceleration of computer-assisted image inspection algorithms
in medical scenarios

Carlos André Faria Da Graça

Dissertação para obtenção do Grau de Mestre em
Engenharia Electrotécnica e de Computadores

Orientador: Doutor Gabriel Falcão Paiva Fernandes
Co-Orientadora: Doutora Isabel Maria Narra de Figueiredo

Júri
Presidente: Doutor João Pedro de Almeida Barreto
Orientador: Doutor Gabriel Falcão Paiva Fernandes
Vogais: Doutor Jorge Nuno de Almeida e Sousa Almada Lobo

Setembro de 2014





Agradecimentos

Gostaria de começar por agradecer ao meu orientador, o Doutor Gabriel Falcão pelo
seu acompanhamento constante do meu trabalho, pelas ideias propostas para melhorar o
projecto e pelo tempo dispensado a responder a inúmeras questões. Agradeço também
a minha co-orientadora Doutora Isabel Narra Figueiredo e ao Doutor Sunil Kumar pela
disponibilidade para esclarecer qualquer tipo de dúvidas acerca do projecto.

Gostaria de dar uma nota de destaque também aos colegas de laboratório que se dis-
puseram para me auxiliar sempre que fosse necessário, a todos os meus amigos, pelo
apoio proporcionado pelo facto de estarem perto, por terem manifestado interesse no meu
trabalho, e estarem dispostos a ouvir-me explicá-lo repetidamente.

Agradeço também à minha mãe e ao meu pai, à minha irmã, bem como a toda a minha
famı́lia, que sempre me apoiaram, em todo o meu percurso académico.

A todos vocês, um grande obrigado.



Abstract

Over the last years, image processing methods have been used with great success in
the diagnosis of medical diseases. Good examples can be found in the processing of im-
ages regarding the gastrointestinal tract or Retinal Fundus (RF) images. A huge number
of images is generated by new diagnosis methods, whose time consuming analysis needs
to be carried out by a doctor. Recently, a new computer-aided diagnosis system for blood
detection in Wireless Capsule Endoscopy (WCE) images has been proposed. The algo-
rithm is composed of two phases: segmentation (for discarding uninformative regions
in the image that can interfere with the blood detection); and the construction of an ap-
propriate shape-based detector function, aiming the detection of blob and tubular shapes.
This shape-based detector was also applied to High Definition (HD) RF images, in or-
der to detect Exudates (EXs), which are yellow lipid deposits identified as bright yellow
lesions. The presence of EXs is a good identifier for Diabetic Retinopathy (DR). This
segmentation and shape-based detector still does not serve the purpose of performing the
analysis within a small amount of time in any of the case studies presented. However,
these methods can indeed be parallelized using Graphics Processing Units (GPUs). In
this work, sequential and parallel image processing techniques are studied with emphasis
on the filtering procedure in order to obtain a faster implementation. The filtering pro-
cedure has been identified as being responsible for up to 98% of the global processing
time, in the shape-based detector functions (blood detection in WCE images). So, we
implemented several versions of the filtering process and we concluded that separable
time-domain approaches executing on GPU are faster for small filters and that frequency-
domain GPU methods are more efficient for larger filters. By using parallel computing,
a suitable single-GPU and an adaptative hybrid multi-GPU framework is proposed for
speeding up the segmentation and shape-based detection procedures. It is shown that in
the blood detection on WCE images the accelerated procedure running on a fast single-
GPU version is on average 92 times faster than the original sequential Central Processing
Unit (CPU) version, and is able of processing 119 frames-per-second (FPS). The pro-
posed hybrid GPU-GPU system with Dual GPU NVidia GTX TITAN shows to be capable
of processing 218 fps, which allows that the approximate total number of 56000 frames,



generated by a complete WCE exam (8 hours), can be computed in less than 5 minutes.
In HD RF images only shape-based object detection is used, and the fastest single-GPU
system can process 16 FPS with an average speedup of 179 times compared to sequential
CPU version. In the proposed hybrid GPU-GPU system we can process 30 FPS with an
average speedup 324 times faster than the original CPU version. With such high through-
puts we are able to build real-time systems to automatically detect bright lesions in fundus
images and blood in WCE images, which may help the medical practitioner improving
the diagnosis procedure.

Keywords

Object shape recognition, Wireless Capsule Endoscopy, Exudates detection, Parallel
image processing, Hybrid GPU-GPU Systems, CUDA



Resumo

Nos últimos anos, métodos de processamento de imagem têm sido utilizados com
grande sucesso em diagnóstico médico. Encontramos bons exemplos disso, quer no pro-
cessamento de imagens do trato gastrointestinal quer imagens da retina humana. Um
grande número de imagens é gerado pelos novos métodos de diagnóstico, cuja análise
deve ser realizada por um médico, tornando o processo bastante demorado. Recen-
temente, foi proposto um novo sistema de diagnóstico auxiliado por computador para
deteção de sangue em imagens obtidas por Wireless Capsule Endoscopy (WCE). Este
algoritmo é composto por duas fases distintas: a segmentação (para descartar regiões
não informativas na imagem) e a construção de um detetor baseado na forma. Este de-
tetor baseado na forma, também foi aplicado a imagens da retina, afim de detetar Ex-
sudatos (EXs). EXs são depósitos lipı́dicos identificados como lesões amarelas brilhantes
e a sua presença é considerada como um bom identificador para detetar a Retinopatia
Diabética (DR). Os processos de segmentação e deteção ainda não servem o propósito
de realizar uma análise rápida para qualquer um dos casos de estudo apresentados. No
entanto, estes métodos podem ser paralelizados utilizando Unidades de Processamento
Gráfico (GPUs). Neste trabalho, são estudadas técnicas de processamento de imagem
sequenciais e paralelas com ênfase sobre o processo de filtragem a fim de obter uma
implementação mais rápida. O processo de filtragem foi identificado como responsável
por 98% do tempo global de processamento, nas funções do detetor baseada na forma.
Neste sentido, implementamos várias versões do processo de filtragem, concluindo que o
método separável no domı́nio do tempo executado em GPUs é o mais rápido para filtros
pequenos e que os métodos no domı́nio da frequência na GPU são mais eficientes para
filtros maiores. Tirando partido de computação paralela, um sistema single-GPU (NVidia
GTX TITAN) e um sistema hı́brido multi-GPU são propostos para acelerar os proced-
imentos de segmentação e deteção. Mostra-se que na deteção de sangue nas imagens
WCE, o sistema mais rápido nas versões single-GPU é, em média, 92 vezes mais rápido
do que a versão sequencial original Unidade de Processamento Central (CPU), sendo ca-
paz de processar 119 imagens por segundo (FPS). O sistema hı́brido GPU-GPU proposto
com duas GPUs NVidia GTX TITAN revela-se capaz de processar 218 FPS, permitindo



que aproximadamente 56000 imagens, geradas por um exame WCE completo, possam
ser processadas em menos de 5 minutos. Em imagens HD da retina humana, apenas
a deteção de objetos com base em forma é aplicada, sendo que, o sistema mais rápido
single-GPU consegue processar 16 FPS tornando-se, em média, 179 vezes mais rápido
quando comparado com a versão sequencial CPU. No sistema hı́brido GPU-GPU pro-
posto, podemos processar 30 FPS sendo o sistema em média 324 vezes mais rápido do
que a versão original na CPU. Com os resultados obtidos, somos capazes de construir
sistemas de tempo real para detetar automaticamente lesões brilhantes da retina humana
e zonas de sangramento em imagens WCE, o que pode ajudar o médico na melhoria do
processo de diagnóstico.

Palavras Chave

Reconhecimento de objectos baseado na forma, Capsula Endoscópica, Deteção de
Exsudatos, Processamento paralelo de imagem, Sistemas hı́bridos GPU-GPU, CUDA

i





Contents

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Main contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4 Dissertation outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Shape-Based Detection Theory 7
2.1 Blood Detection Color Space . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Exudates Detection Color Space . . . . . . . . . . . . . . . . . . . . . . 8

2.3 Segmentation Function . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3.1 Segmentation Results . . . . . . . . . . . . . . . . . . . . . . . . 10

2.4 Shape-Based Detector Function . . . . . . . . . . . . . . . . . . . . . . 11

2.5 Blood Detector Configuration . . . . . . . . . . . . . . . . . . . . . . . . 12

2.6 Exudates Detector Configuration . . . . . . . . . . . . . . . . . . . . . . 12

2.7 Blood Detector Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.8 Exudates Detector Outline . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.9 Blood Detection Results . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.9.1 Blood Images . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.9.2 Non Blood Images . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.10 Exudates Detection Results . . . . . . . . . . . . . . . . . . . . . . . . . 16

3 Parallelization of the algorithm 17
3.1 General overview of the GPU architecture . . . . . . . . . . . . . . . . . 18

3.1.1 Simple Tips to Efficient Parallelization . . . . . . . . . . . . . . 21

3.2 Filtering Parallelization . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.2.1 Principles Behind Separable Time-Domain Filtering . . . . . . . 23

3.2.1.A Separable Filtering CUDA . . . . . . . . . . . . . . . 24

3.3 Blood detector parallelization . . . . . . . . . . . . . . . . . . . . . . . . 26

3.3.1 Segmentation parallelization . . . . . . . . . . . . . . . . . . . . 26

iii



Contents

3.3.2 Detector parallelization . . . . . . . . . . . . . . . . . . . . . . . 27
3.4 Exudates detection parallelization . . . . . . . . . . . . . . . . . . . . . 27
3.5 Hybrid GPU-GPU Computing . . . . . . . . . . . . . . . . . . . . . . . 28

4 Experimental Results and Speedup 31
4.1 Results Using Single-GPU Systems . . . . . . . . . . . . . . . . . . . . 32

4.1.1 Blood detection results . . . . . . . . . . . . . . . . . . . . . . . 32
4.1.1.A Segmentation results . . . . . . . . . . . . . . . . . . . 32
4.1.1.B Detection results . . . . . . . . . . . . . . . . . . . . . 32
4.1.1.C Complete blood detection procedure - Global Speedup . 33

4.1.2 Exudates detection results . . . . . . . . . . . . . . . . . . . . . 34
4.2 Results Using Multi-GPU Systems . . . . . . . . . . . . . . . . . . . . . 35

4.2.1 Blood detection results . . . . . . . . . . . . . . . . . . . . . . . 35
4.2.1.A Segmentation results . . . . . . . . . . . . . . . . . . . 35
4.2.1.B Detection results . . . . . . . . . . . . . . . . . . . . . 35
4.2.1.C Complete blood detection procedure - Global Speedup . 35

4.2.2 Exudates detection results . . . . . . . . . . . . . . . . . . . . . 36

5 Conclusions 39
5.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

A Appendix A 47

B Appendix B 53

C Appendix C 71

iv



List of Figures

1.1 Left image: image of the capsule. Right image: view inside the cap-
sule (M2A model features: 1-Optical, Dome 2-Lens Holder, 3-Lens, 4-
Ilumination LEDs, 5-CMOS (Complementary Metal Oxide Semiconduc-
tor), 6-Battery, 7-Transmisor ASIC, 8-Antenna) . . . . . . . . . . . . . . 3

1.2 a) Normal retina fundus image. b) Exudates lesions visible in retina fun-
dus image. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1 First row: Original WCE image where we can find uninformative regions
like: bubbles on left image: dark regions on center image; trash in right
image. Second row: Segmentation mask. Third row: Original WCE
image with segmentation curve superimposed. . . . . . . . . . . . . . . . 10

2.2 First row: Original WCE image with blood regions. Second row: A1 color
channel. Third row: Function F. Fourth row: Function B+T. . . . . . . . 14

2.3 First row: Original WCE image without blood region, and where we can
find uninformative regions like: bubbles on left image: dark regions on
center image; trash impurities from the intestinal walls in right image.
Second row: A1 color channel. Third row: Function F. Fourth row: Func-
tion B+T. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.4 First row: Original retinal fundus image. Second row: Wavelet candidates
(see step 2 in exudates detection outline 2.8). Third row: Function B.

The result of the exudates detection when applied to three retinal fundus
images are shown (normal image on first column; abnormal images on
second and third columns). The exudates detector results, highlights the
exudates as sets of small bright dots as shown in third row. . . . . . . . . 16

3.1 Illustration of the structure of a grid and thread blocks and how the same
segment of code is executed by multiple threads. Each thread computes
the result for one pixel. . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

v



List of Figures

3.2 Simplified GPU arquitecture. An example of how thread blocks are pro-
cessed on GPU multiprocessors. A multiprocessor can execute more then
one thread block concurrently. . . . . . . . . . . . . . . . . . . . . . . . 19

3.3 Coalesced memory accesses illustrating a warp of 32 threads reading/writing
the respective 32 data elements on a single clock cycle. . . . . . . . . . . 20

3.4 Execution times for filtering procedure applied to images with 576×576
pixel varying the processing platform and filter size: 49× 49; 61× 61;
73×73 and 85×85. The tests were performed on WCE images executing
on NVidia Geforce GTX 680 GPU, applying 3 filters for each dimension. 23

3.5 Execution times for filtering procedure applied to images with 1728×1728
pixel varying the processing platform and filter size: 145× 145; 181×
181; 217×217 and 253×253. The tests were performed on resized WCE
images 3 times larger than the original size executing on NVidia Geforce
GTX 680 GPU, applying 3 filters for each dimension. . . . . . . . . . . . 23

3.6 Horizontal filter pass processed by a single thread block. Here, a single
thread can load and process multiple pixels in the horizontal direction. . . 25

3.7 In the vertical pass, the concept of implementation is the same as in the
horizontal pass, but note that the redundant pixels in the shared mem-
ory are initialized to zero this time (not loaded from global memory), as
loading additional pixels would imply redundant memory transactions as
well. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.8 Segmentation pipeline processed on the GPU. . . . . . . . . . . . . . . . 26

3.9 Detection pipeline processed on the GPU. . . . . . . . . . . . . . . . . . 27

3.10 Execution pipeline of segmentation procedure on hybrid GPU-GPU as-
semblies. a) Assembly 1 (GPU NVidia Tesla C1060; GPU NVidia Tesla
C2050; GPU NVidia GTX 680) b) Assembly 2 (Dual GPU NVidia GTX
TITAN) c) Kernel execution order to process an image. In the segmenta-
tion procedure, we identify a short segment which include two different
loops: Loop 1 and Loop 2. Loop 1 is responsible to call Loop 2, find
mean values and updating the fitting term (see chapter 2.3), this loop runs
3 times (see Figure 3.8. Loop 2 is responsible to compute finite differ-
ences method: Back and Front and update vector u and v, this loop runs
10 times for every call (with this, Loop 2 will run 30 times). . . . . . . . 29

vi



List of Figures

3.11 Execution pipeline of shape-based detection procedure on hybrid GPU-
GPU assemblies. For blood detection s= 8,10,12,14 and s= 2,5,8,11,14
for exudates detector. a) Assembly 1 (GPU NVidia Tesla C1060; GPU
NVidia Tesla C2050; GPU NVidia GTX 680) b) Assembly 2 (Dual GPU
NVidia GTX TITAN) c) Kernel execution order to process an image. In
the shape-based detector procedure, we identify a short segment which
includes a loop. This loop runs one time for each scale value s, in order to
compute Hessian matrix (see equation 2.8) and detector functions (please
see equation 2.11 and 2.12) for s value (for blood detector this code runs
4 times and 5 times to compute exudates detector). . . . . . . . . . . . . 30

vii



List of Figures

viii



List of Tables

4.1 Computation times in milliseconds (ms) for the segmentation procedure
and throughput measured in FPS. All tests were performed on WCE im-
ages with 576×576 pixels. . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.2 Computation times in millisecons (ms) for the blood detector function and
throughput measured in FPS. All tests were performed on WCE images
with 576×576 pixels. . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.3 Throughput measured in FPS and speedup archived to the complete blood
detector algorithm (Segmentation and Blood Detector) comparing against
a sequential version running on an Intel i7 CPU. Tests performed on WCE
images with 576×576 pixels. . . . . . . . . . . . . . . . . . . . . . . . 33

4.4 Cost per Processed frame per second in blood detector algorithm (Seg-
mentation and Blood Detector). Tests performed on WCE images with
576×576 pixels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.5 Computation times in millisecons (ms) for the exudates detector proce-
dure and throughput measured in FPS. The tests were performed on HD
RF images with 2416×1736 pixels. . . . . . . . . . . . . . . . . . . . . 34

4.6 Speedup obtained to the exudates detection, when compared against a
sequential version running on an Intel i7 CPU. Tests performed on HD
RF images with 2416×1736 pixels. . . . . . . . . . . . . . . . . . . . . 34

4.7 Cost per processed frame per second in exudates detector algorithm. Tests
performed on HD retinal fundus images with 2416×1736 pixels. . . . . . 34

4.8 Computation times in milliseconds (ms) for the segmentation procedure
and throughput measured in FPS. The tests were performed on WCE
images with 576×576 pixels. . . . . . . . . . . . . . . . . . . . . . . . 35

4.9 Computation times in millisecons (ms) for the blood detector function and
throughput measured in FPS. The tests were performed on WCE images
with 576×576 pixels. . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

ix



List of Tables

4.10 Throughput measured in FPS and speedup archived to the complete blood
detector algorithm (Segmentation and Blood Detector) comparing against
a sequential version running on an Intel i7 CPU. Tests performed on WCE
images with 576×576 pixels. . . . . . . . . . . . . . . . . . . . . . . . 36

4.11 Cost per Processed FPS in blood detector algorithm (Segmentation and
Blood Detector). Tests performed on WCE images with 576×576 pixels. 36

4.12 Computation times in millisecons (ms) for the exudates detector proce-
dure and throughput measured in FPS. The tests were performed on HD
RF images with 2416×1736 pixels. . . . . . . . . . . . . . . . . . . . . 37

4.13 Speedup obtained to the exudates detector algorithm (Retinal Fundus Im-
ages) comparing against a sequential version running on an Intel i7 CPU.
Tests performed on HD RF images with 2416×1736 pixels. . . . . . . . 37

4.14 Cost per processed frame per second in exudates detector algorithm. Tests
performed on HD RF images with 2416×1736 pixels. . . . . . . . . . . 37

x



List of Acronyms

CPU Central Processing Unit

CUDA Compute Unified Device Architecture

GCC GNU Compiler Collection

GPU Graphics Processing Unit

RAM Random Access Memory

WCE Wireless Capsule Endoscopy

CE Capsule Endoscopy

FPS frames-per-second

DR Diabetic Retinopathy

RF Retinal Fundus

EXs Exudates

HD High Definition

FFT Fast Fourier Transform

xi



List of Acronyms

xii



1
Introduction

Contents
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Main contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4 Dissertation outline . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1



1. Introduction

This work has been developed aiming the detection of tubular and blob shapes, having
as motivation the acceleration of medical image processing using Graphics Processing
Units (GPUs). It was applied to two case studies, namely: blood detection in Wireless
Capsule Endoscopy (WCE) images and Exudates (EXs) detection in Retinal Fundus (RF)
images.

1.1 Motivation

Segmentation and shape-based detection are two fundamental problems in computer
vision which have been a major focus of research activities. Segmentation is the process of
partitioning an image into distinct regions containing pixels with similar attributes. Some
of the applications of image segmentation consist of locating tumors, aberrant Crypt Foci
and other pathologies, or used in satellite images (roads, forests, etc.), face and finger print
recognition, among many others. We are also interested in shape-based object detection,
in particular objects that have blob/tubular shapes. Detection of blob and/or tubular struc-
tures in images is an important step in the analysis of large-scale scientific data, as for
example, detection of blood regions in WCE images, bright lesions in RF images, nodule
detection in thorax x-ray images, enhancement of vascular structures, to name a few. Re-
cently, a new computer-aided diagnosis system for blood detection in WCE images has
been proposed [1]. The algorithm is composed of two phases: segmentation (for discard-
ing uninformative regions in the image that can interfere with the blood detection); and
the construction of an appropriate shape-based detector function, aiming the detection of
blob and tubular shapes and was also applied to High Definition (HD) RF images in order
to detect EXs, which are yellow lipid deposits identified as bright yellow lesions [2].

The first case-study addressed consists of WCEs, which consists of a noninvasive en-
doscopic procedure that allows visualization of the entire gastrointestinal tract, and in
particular the small intestine, without sedation or anesthesia, difficult to reach by con-
ventional endoscopies. Capsule Endoscopy (CE) is useful for detecting small intestine
bleeding/blood, polyps, inflammatory bowel disease (Crohn’s disease), ulcers and tumors,
among many others. As the name implies, CE makes use of a swallowable capsule (Pill-
Cam SB capsule by Given Imaging Ltd. in 2000 [3]) approved by the U.S. Food and Drug
Administration in 2001 that contains a 576×576 resolution video camera, a light source,
batteries, and a radio transmitter (please see Figure 1.1). In about 8 hours, the capsule
travels through the entire gastrointestinal tract, capturing thousands of images. Data is
stored on a recorder attached to the patient, so that physicians can review the images
offline and analyze the potential source of diseases.

A major problem with this new technology is that it consumes a considerable amount

2



1.1 Motivation

Figure 1.1: Left image: image of the capsule. Right image: view inside the capsule
(M2A model features: 1-Optical, Dome 2-Lens Holder, 3-Lens, 4-Ilumination LEDs, 5-
CMOS (Complementary Metal Oxide Semiconductor), 6-Battery, 7-Transmisor ASIC,
8-Antenna)

of time to analyze the approximately 56,000 images generated by the examination of a
single patient. In addition, some abnormalities may be missed because of their size or
distribution due to eyestrain. Therefore, it is very important to design a computerized
real-time method for inspecting capsule endoscopic images and thus provide valuable
help to the medical practitioner. In recent years, we have seen some new developments in
the automatic inspection of CE images, improving the detection of blood, ulcers, polyps,
tumors, among many others (see [4–13] for related work).

The main challenge for CE use is obscure digestive bleeding [6, 8–10, 12]. In fact, in
many of these cases, the source of the bleeding is located in the small bowel. However,
often these bleeding regions are not reached by traditional endoscopic techniques because
of the reduced diameter of the small intestine. That is why blood detection through en-
doscopy by WCE is so important. Utilizing Ohta color channel A1 = (R + G + B)/3
(where R, G and B denote the red, green and blue channel, respectively, of the input im-
age) [14], they employed the analysis of eigenvalues of the image Hessian matrix and
a multiscale image analysis approach for designing a function to discriminate between
blood and normal frames. The experiments show that the algorithm is quite promising in
distinguishing between both types of frames. However, a conventional Central Processing
Unit (CPU) is not able to process a high number of images produced by WCE examina-
tion of a patient, within a small stipulated amount of time. Nonetheless, the computations
of the algorithm can indeed be parallelized, and thus, process the large dataset of gen-
erated images faster. In the algorithm we identified two crucial steps: segmentation (for
discarding non-informative regions in the image that can interfere with blood detection);
and the construction of an appropriate blood detector function, which ended up responsi-
ble for consuming most of the global processing time.

3



1. Introduction

In the second case-study analyzed, the analysis consists of Diabetic Retinopathy (DR),
the leading cause of blindness among middle-aged population, a common complication
of the retina usually associated with diabetes. The central area of the retina which is
usually darker in digital fundus is called the macula (see Figure 1.2a). When the macula
is affected in diabetic patients, it can lead to diabetic maculopathy or diabetic macular
edema which is also considered as an advanced stage of DR. The presence of EXs, is
one of the best indicators of the presence of DR, therefore this work also focus on the
detection of EXs lesions. The severity of DR is determined by spatial distribution of
EXss, especially in relation to the fovea (the center of macula).

Macula

Exudates

Figure 1.2: a) Normal retina fundus image. b) Exudates lesions visible in retina fundus
image.

Recent years have witnessed some development on automatic inspection of RF im-
ages, improving the detection of exudates, glaucoma, vessel analysis, among others (see
[2, 15–18] for related work). This shape-based detector was also applied on HD RF im-
ages, in order to detect EXs (please see Figure 1.2b).

This RF images are taken using a Topcon TRC NW100 non-mydriatic retinal cam-
era, thus obtaining large HD images, which implies that the EXs detector computation
represents a computationally time expensive task.

1.2 Objectives

The core of this thesis work is to exploit image processing techniques and the potential
of parallel processing to implement versions of segmentation and shape-based detection
applied to blood detection and EXs detection algorithms, using GPUs under the C++
code for parallel applications based on the Compute Unified Device Architecture (CUDA)
framework [19]. The final goal consists of proving the feasibility of a WCE and EXs
detection in medical imaging systems, achieving higher frame-rates than current systems,
while exploiting the computational horsepower of multiple GPUs.

4



1.3 Main contributions

1.3 Main contributions

These algorithms (segmentation and shape-based detector) were originally developed
and coded to run under MATLAB by the authors of [1] and they built all mathemati-
cal background who supports this applications. But, to support current medical imaging
systems for blood detection in WCE images and EXs detection in RF images, massive
computing power and higher frame-rates are required to achieve real-time systems. In
this work, sequential and parallel image processing techniques are studied and compared
running in different CPU and GPU platforms. Below, we highlight the main contributions
of this work:

• Accelerated Filtering Procedure: We implemented and benchmark several versions
of filtering procedure (conventional and separable approaches in time-domain ver-
sions and frequency-domain approach running C/C++ code on CPU and GPU).
With the obtained results of this study, we select the fastest implementation in time-
domain (Separable filtering method) and frequency-domain under CPU and GPU
in order to perform more intensively benchmarks using small and large filters. This
filtering benchmarks are performed under original ones and resized WCE images
(in bigger images the size of objects (bleeding/blood regions) will be bigger im-
plying the use of larger filters). After intensive testing, we conclude that separa-
ble time-domain approach executing on GPU are the fastest for small filters and
frequency-domain approaches running on GPU are more efficient for larger filters.
In CPU implementations, the filtering process is faster for small and larger filters
using frequency-domain method with the FFTW3.3.3 library [20].

• Hybrid GPU-GPU Computing Framework: As a first approach, segmentation and
shape-based object detection algorithms using parallel C/C++ code are developed
to run on a single-GPU. Next, a suitable adaptative hybrid GPU-GPU framework
is proposed for speeding up the segmentation and shape-based detection execution
times even further. In hybrid GPU-GPU assemblies we exploit a balanced distri-
bution of heterogeneous GPU resources, thereby deciding how many images are
processed on each GPU. Our hybrid GPU-GPU algorithm automatically adapts to
the available resources (CUDA devices), which means it is 100% portable across
different machines who support CUDA, thats only need to run the training process
once.

• Real-Time System for Blood Detection: By applying the segmentation and shape-
based object detection on WCE images, experiments show that the accelerated
single-GPU setup procedure is on average 92 times faster than the original one

5



1. Introduction

executed on CPU and is capable of processing 119 frames per second. Our best hy-
brid GPU-GPU approach is on average 168 times faster than the original one (CPU
version) and is able to process 218 frames per second. With the obtained speedup,
our best hybrid GPU-GPU approach (Dual NVidia GTX TITAN) shows to be able
to process a complete WCE exam (approximate total number of 56000 frames) in
less than 5 minutes.

• Real-Time System for Exudates Detection: On HD RF images we only have to
apply shape-based object detection, and the fastest single-GPU system can process
16 frames per second with an average speedup of 179 times. In hybrid GPU-GPU
mode we are able to process 30 frames per second, with an average speedup of 324
when compared to the original CPU version.

The contribution of this work was recognized by the scientific community, having
been accepted for publication two papers: ”Cooperative Use of Parallel Processing with

Time or Frequency-domain Filtering for Shape Recognition” in EUSIPCO 2014 confer-
ence [21] which is shown in Appendix A; and ”A GPU accelerated algorithm for blood

detection in wireless capsule endoscopy images” [22] was published at Developments in

Medical Image Processing and Computational Vision, Lecture Notes in Computational

Vision and Biomechanics, Springer, 2014, which is shown in Appendix B. We also sub-
mitted a journal article ”Hybrid GPU-GPU computing: accelerated kernels for segmen-

tation and object detection with medical image processing applications” to the Journal

of Real-time Image Processing, which is shown in Appendix C.

1.4 Dissertation outline

This thesis is structured in six chapters. Following the introduction, chapter 2 focus on
shape-based detection theory wich includes a suitable color space selection, the segmen-
tation procedure and shape-based detector and visual results of applying the segmentation
and detection procedures are shown. In chapter 3 the basic principles of GPU architecture
are discussed, followed by an explanation of the parallel processing techniques. Chapter
4 features the experimental results and speedups obtained with the work developed. Fi-
nally, in Chapter 5, we address the conclusions of this work, while also providing a path
for future work in this field.

6



2
Shape-Based Detection Theory

Contents
2.1 Blood Detection Color Space . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Exudates Detection Color Space . . . . . . . . . . . . . . . . . . . . 8

2.3 Segmentation Function . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.4 Shape-Based Detector Function . . . . . . . . . . . . . . . . . . . . 11

2.5 Blood Detector Configuration . . . . . . . . . . . . . . . . . . . . . . 12

2.6 Exudates Detector Configuration . . . . . . . . . . . . . . . . . . . . 12

2.7 Blood Detector Outline . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.8 Exudates Detector Outline . . . . . . . . . . . . . . . . . . . . . . . 13

2.9 Blood Detection Results . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.10 Exudates Detection Results . . . . . . . . . . . . . . . . . . . . . . . 16

7



2. Shape-Based Detection Theory

This chapter has the purpose of conveying the reader with the basic principles to seg-
mentation and shape-based detection. Here, the segmentation function that is designed to
remove uninformative regions such as bubbles, trash, dark regions and others, which can
interfere with the detection of blood [1] in Wireless Capsule Endoscopy (WCE) images is
presented. To detect blob-like and tubular-like structures a shape-based detector function
is presented. With this detector it is possible to discriminate between blood and non-blood
frames in WCE images and detect Exudates (EXs) in Retinal Fundus (RF) images.

Notation: Let Ω be an open subset of R2, representing the image (or pixel) domain. For
any scalar, smooth enough, function u defined on Ω, ‖u‖L1(Ω) and ‖u‖L∞(Ω), respectively,
denote the L1 and L∞ norms of u.

2.1 Blood Detection Color Space

The Ohta color space [14] is a linear transformation of the RGB color space. Its color
channels are defined by A1 = (R+G+B)/3, A2 = R−B, and A3 = (2G−R−B)/2.

They observe that channel A1 has the tendency of localizing quite well the blood
regions, as is demonstrated in Figure 2.2. The first row corresponds to the original WCE
images with blood regions and the second row exhibits their respective A1 channel images.
They also want to note that, before computing the A1 channel of the images, they applied
an automatic illumination correction scheme [23] to the original images, to reduce the
effect of illumination.

2.2 Exudates Detection Color Space

They observe that green channel (RGB color space) has the tendency of localiz-
ing quite well the exudates lesions on retina. By computing the Isotropic Undecimated
Wavelet Transform (IUWT) of the green channel of the input image, they can see the
exudates lesions with great emphasis (see the second row in Figure 2.4).

2.3 Segmentation Function

Uninformative regions such as bubbles, trash, dark regions and so on are very com-
mon in WCE images, which can interfere with the blood detection (see [4] for more in-
formation). In CIE Lab color space they observe that the second component (which they
call henceforth a-channel) has the tendency of separating these regions from the infor-

8



2.3 Segmentation Function

mative ones. They first decompose the a-channel into geometric and texture parts using
the model described in [24] for better removal of the uninformative regions, and per-
form the two phase segmentation. With a reformulation of the Chan and Vese variational
model [24, 25], over the geometric part of the a-channel.

The segmentation method is described as follows: They first compute the constants
c1 and c2 (representing the averages of I in a two-region image partition). Solving the
following minimization problem

min
u,v

{
TVg(u)+

1
2θ
‖u− v‖2

L2(Ω)+
∫

Ω

(
λ r(I,c1,c2)v+α ν(v)

)
dxdy

}
(2.1)

where TVg(u) :=
∫

Ω g(x,y)|∇u|dxdy is the total variation norm of the function u, weighted
by a positive function g; r(I,c1,c2)(x,y) :=

(
c1− I(x,y)

)2−
(
c2− I(x,y)

)2 is the fitting
term, θ > 0 is a fixed small parameter, λ > 0 is a constant parameter weighting the fitting
term, and α ν(v) is a term resulting from a reformulation of the model as a convex uncon-
strained minimization problem (see [24, Theorem 3]). Here, u represents the two-phase
segmentation and v is an auxiliary unknown. The segmentation curve, which divides the
image into two disjoint parts, is a level set of u, {(x,y)∈Ω : u(x,y)= µ}, where in general
µ = 0.5 (but µ can be any number between 0 and 1, without changing the segmentation
result, because u is very close to a binary function).

The above minimization problem is solved by minimizing u and v separately, and
iterated until convergence. In short they consider the following two steps:
1. v being fixed, they look for u that solves

min
u

{
TVg(u)+

1
2θ
‖u− v‖2

L2(Ω)

}
. (2.2)

2. u being fixed, they look for v that solves

min
v

{ 1
2θ
‖u− v‖2

L2(Ω)+
∫

Ω

(
λ r(I,c1,c2)v+α ν(v)

)
dxdy

}
. (2.3)

It is shown that the solution of (2.2) is ( [24, Proposition 3])

u = v−θdivp, (2.4)

where div represents the divergent operator, and p = (p1, p2) solves

g∇(θdivp− v)−|∇(θdivp− v)|p = 0 (2.5)

The problem for p can be solved using the following fixed point method

p0 = 0, pn+1 =
pn +δ t∇(divpn− v/θ)

1+ δ t
g |∇(divpn− v/θ)|

. (2.6)

Again from [24, Proposition 4], they have

v = min{max{u−θλ r(I,c1,c2),0},1}. (2.7)

9



2. Shape-Based Detection Theory

2.3.1 Segmentation Results

Figure 2.1 shows of the applied segmentation function. As expected, all uninformative
regions such as bubbles, trash and dark regions, which can interfere with the detection of
blood has been removed by this segmentation method.

Figure 2.1: First row: Original WCE image where we can find uninformative regions
like: bubbles on left image: dark regions on center image; trash in right image. Second
row: Segmentation mask. Third row: Original WCE image with segmentation curve
superimposed.

In these experiments the values chosen for the parameters involved in the definition
of (2.1), are those used in [24], being g the following edge indicator function g(∇u) =

1
1+β‖∇u‖2 and β = 10−3 [1].

10



2.4 Shape-Based Detector Function

2.4 Shape-Based Detector Function

Through the analysis of eigenvalues of the image Hessian matrix and multiscale image
analysis approach. Based on the eigenvalues, both blob-like and tubular-like structures
can be detected. For a scalar image I : Ω ⊆ R2→ R, they define the Hessian matrix of
one point (x,y), and at a scale s, by

Hs(x,y) =
(

Is
xx Is

xy
Is
xy Is

yy

)
, (2.8)

where Is
xx, Is

xy and Is
yy are the second-order partial derivatives of I and the scale s is

involved in the calculation of these derivatives. The Hessian matrix describes the second
order local image intensity variations around the selected point. Suppose λs,1 and λs,2

are two eigenvalues of the Hessian matrix Hs. Further, suppose that |λs,1| ≤ |λs,2|. Setting
Fs = λ 2

s,1 +λ 2
s,2, they define

F(x,y) = max
smin≤s≤smax

Fs(x,y), (2.9)

where smin and smax are the minimum and maximum scales at which the blood regions are
expected to be found. Remarking that, they can be chosen so that they cover the whole
range of blood regions.

Setting now

f1 = exp
(
−βF2

s
)

and f2 =

(
1− exp

(
−α

(
λs,1

λs,2

)2
))

, (2.10)

and motivated from [26], they define the blob (Bs) and tubular (Ts) detectors (at each
point of the domain)

Bs =

{
0, if λs,1λs,2 < 0 or |λs,2−λs,1|> δ

(1− f1) f2, otherwise,
(2.11)

and

Ts =

{
0, if λs,2 > 0,

(1− f1)(1− f2), otherwise.
(2.12)

Here α and β are the parameters which control the sensitivity of the functions and δ is an
user chosen threshold. Then, they compute the maximum for each scale

B(x,y) = max
smin≤s≤smax

Bs(x,y) (2.13)

and
T (x,y) = max

smin≤s≤smax
Ts(x,y), (2.14)

11



2. Shape-Based Detection Theory

2.5 Blood Detector Configuration

In blood detection computations, they take s = 8,10,12,14. The results of the func-
tions F and the sum B+T, for blood and non-blood WCE images are displayed in Figures
2.2 and 2.3, respectively. Choosing α = 1000 and β = 1 which control the sensitivity of
the detector.

2.6 Exudates Detector Configuration

EXs detection algorithm is designed to discriminate between normal and non-normal
frames in RF images. The EXs detector is very similar to detector blood. Here, the shape-
base detector described in Section 2.4 is applied making minor configuration changes.
Here, they only use the detection of blob-like structures (equation 2.11), using different
scale values s = [2 5 8 11 14] and choosing different values for α = 1 and β = 1 which
control the sensitivity of the detector. Then, they compute the maximum for each scale
(equation 2.13).

The results of functions F and B, for normal and abnormal RF images are displayed
in Figure 2.4, where we can identify EXs as sets of small bright dots.

2.7 Blood Detector Outline

Here we describe briefly the main steps of automated method for blood detection in
WCE images proposed in [1]. Note that in the method both segmentation and shape-based
object detection approaches are used appropriately. For each WCE image the method
consists of the following main steps:

1. Firstly, they remove additional details (such as patient name, date and time) from the
original image. For this purpose, they clip around the circular view of the original
image.

2. They then consider the Ohta color channel (R+G+B)/3 for the input image.

3. They next apply the segmentation method (as described in Section 2.3) for remov-
ing uninformative regions (such as bubbles, trash, liquid, and so on) over the geo-
metric part of the second component of the CIE Lab color space.

4. Finally, they compute the function B + T (using the approach described in 2.4,
where 8,10,12,14 are the values of the scale parameter s).

12



2.8 Exudates Detector Outline

2.8 Exudates Detector Outline

The main steps of automated method proposed in [27] for bright lesions detection in
fundus images are briefly described here. Note that in the method only shape-based object
detection approach is used in an appropriate way. For each fundus image the method
consists of the following main steps:

1. Firstly, they compute the Isotropic Undecimated Wavelet Transform (IUWT) of the
green channel of the input image, and consider W2 +W3 +W4, where Wj is the
wavelet level at iteration j.

2. They then extract 20% highest pixels of W2 +W3 +W4 and take the (pixelwise)
product of the thresholded image with W2 +W3 +W4 and remove the pixels corre-
sponding to the optic disc.

3. Finally, from the resulting image, they compute the function B+T (using the ap-
proach described in 2.4, where 2,5,8,11,14 are the values of the scale parameter
s).

13



2. Shape-Based Detection Theory

2.9 Blood Detection Results

The results of shape-based object detector function B+T, for some blood and non-
blood images are displayed in Figures 2.2 and 2.3. For classification results of the blood
detection method we refer the reader to [1, 22].

2.9.1 Blood Images

As shown in Figure 2.2, the blood detector works with good sensitivity. All blood
regions are detected with acceptable accuracy.

 

 

0

10

20

30

40

50

60

70

80

 

 

0

10

20

30

40

50

60

70

80

 

 

0

10

20

30

40

50

60

70

80

 

 

0

100

200

300

400

500

600

 

 

50

100

150

200

250

300

 

 

0

50

100

150

200

250

300

350

400

 

 

0

0.1

0.2

0.3

0.4

0.5

 

 

0

0.1

0.2

0.3

0.4

 

 

0

0.1

0.2

0.3

0.4

0.5

Figure 2.2: First row: Original WCE image with blood regions. Second row: A1 color
channel. Third row: Function F. Fourth row: Function B+T.

14



2.9 Blood Detection Results

2.9.2 Non Blood Images

As depicted in Figure 2.3, we can see the blood detector results when applied to non
blood WCE images. All images are classified like non-blood images (please see classifi-
cation details in [1, 22]).

 

 

0

10

20

30

40

50

60

70

80

 

 

0

10

20

30

40

50

60

70

80

 

 

0

10

20

30

40

50

60

70

80

 

 

0

50

100

150

200

 

 

0

20

40

60

80

100

 

 

20

40

60

80

100

120

140

160

 

 

0

0.05

0.1

0.15

0.2

0.25

 

 

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

 

 

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Figure 2.3: First row: Original WCE image without blood region, and where we can find
uninformative regions like: bubbles on left image: dark regions on center image; trash
impurities from the intestinal walls in right image. Second row: A1 color channel. Third
row: Function F. Fourth row: Function B+T.

15



2. Shape-Based Detection Theory

2.10 Exudates Detection Results

The results of Wavelet candidates and function B, for normal and abnormal RF images
are shown in Figure 2.4, where we can identify exudates as sets of small bright dots.

 

 

2

4

6

8

10

12

14

16

18

 

 

0

5

10

15

20

25

30

35

40

45

 

 

0

5

10

15

20

25

30

35

 

 

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

0

5

10

15

20

25

2

4

6

8

10

12

14

16

18

20

22

Figure 2.4: First row: Original retinal fundus image. Second row: Wavelet candidates
(see step 2 in exudates detection outline 2.8). Third row: Function B. The result of the
exudates detection when applied to three retinal fundus images are shown (normal image
on first column; abnormal images on second and third columns). The exudates detector
results, highlights the exudates as sets of small bright dots as shown in third row.

16



3
Parallelization of the algorithm

Contents
3.1 General overview of the GPU architecture . . . . . . . . . . . . . . 18

3.2 Filtering Parallelization . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.3 Blood detector parallelization . . . . . . . . . . . . . . . . . . . . . . 26

3.4 Exudates detection parallelization . . . . . . . . . . . . . . . . . . . 27

3.5 Hybrid GPU-GPU Computing . . . . . . . . . . . . . . . . . . . . . 28

17



3. Parallelization of the algorithm

In this chapter we start by describing general facts about the apparatus specifications.
In particular, we detail the Graphics Processing Units (GPUs) adopted and the underlying
architectures. Finally, we address the parallelization of the algorithms proposed, namely
by detailing the segmentation and shape-based detector parallelization procedures for the
current medical datasets on the GPU.

The pipeline of the algorithm, described in Chapters 2.3 and 2.4, has been first im-
plemented on a Central Processing Unit (CPU) Intel Core i7 950 @ 3.07GHz, with
12GB of Random Access Memory (RAM) clocked at 1600MHz, running a GNU/Linux
kernel 3.8.0-31-generic. The C/C++ code was compiled using GNU Compiler Collec-
tion (GCC)-4.6.3. In order to process more frames-per-second (FPS), the segmentation
and shape-based detection have been parallelized, for execute in these GPUs: NVidia
Tesla C1060; NVidia Tesla C2050; NVidia GTX 680; NVidia GTX TITAN, compiled
using NVIDIA Compute Unified Device Architecture (CUDA) driver 5.5 [19].

3.1 General overview of the GPU architecture

Generally the host system consists of a CPU which orchestrates the entire processing,
sending data and launching parallel kernels on the GPU device. At the end of process-
ing, the host collects the data calculated from the device and terminates execution. The
parallelization of segmentation and blood detection procedures is carried out using the
CUDA parallel programming model, by exploiting the massive use of thread- and data-
parallelism on the GPU. CUDA allows the programmer to write in a transparent way,
scalable parallel C code [19] on GPUs.

As shown in Figure 3.1, usually each thread processes one or more pixels (this depends
on the algorithm; e.g., in 2D Separable Filtering using CUDA [28], each thread processes
more than one pixel) and thus multiple elements can be processed at the same time. This
represents a potential reduction in overall processing time of the proposed algorithm.
When the host launches a parallel kernel, the GPU device executes a grid of thread blocks,
where each block has a predefined number of threads executing the same code segment.
All the threads execute synchronously and are time-sliced among the stream processors
of each multiprocessor, as they run organized in groups of 32 threads (a warp).

A simplified overview of the GPU architecture is presented in Figure 3.2. As shown,
several multiprocessors contain a certain number of stream processors (the number of
stream processors and multiprocessors varies with the model and architecture of the
GPU). In the present case, the GPU NVidia GTX TITAN contains 14 multiprocessors
with each multiprocessor containing 192 stream processors, performing a total of 2688
CUDA cores, which allows to expect the faster execution performances of the algorithm.

18



3.1 General overview of the GPU architecture

CPU
(Host)

T(0,0) T(x ,y)

Block (Bx-1,By-1)

Block
(Bx-1,0)

Block
(0,0)

Block
(0,By-1)

P(x,y)

Image on GPU Memory

Grid on GPU

//hExecutionhcodehbyhT<x}y[
__global__hvoidhscaleImage<floath]y}consthuinthn[{
hhh//h<uinthi[hishanhequivalenthofhpixelhindexhofhthehimage

hhhuinthih=hblockIx.xh]hblockDim.xh1hthreadIdx.x;
hhhif<i<n[{h//hverifyhifhindexhishvalid
hhhhhhy[i]=hmaximumh]hy[i]h1h1;h//hscale
hhh}
}

Figure 3.1: Illustration of the structure of a grid and thread blocks and how the same
segment of code is executed by multiple threads. Each thread computes the result for one
pixel.

SharedMemory

GPU Device

Multiprocessor
N-1

Multiprocessor
0

Image on Global Memory

Fast
Shared Memory

Fast
Shared Memory

SP SP

SP SP

SP SP

SP SP

CPU
,Host)

Execution on
Multiprocessor

Thread block ,x,y)

T,0,0) T,x,y)

P,x,y)

Figure 3.2: Simplified GPU arquitecture. An example of how thread blocks are processed
on GPU multiprocessors. A multiprocessor can execute more then one thread block con-
currently.

19



3. Parallelization of the algorithm

Before processing starts on the GPU, data is uploaded to device memory. This process
is typically slow and consists in transferring the information from the host CPU memory
to the GPU global memory (device). In opposition, at the end of processing, results must
be transferred from the device memory to the host CPU memory.

T(0,2)T(0,0)

T(0,1) T(0,3) T(0,29) T(0,31)

T(0,28) T(0,30)

warp_0warp_0warp_0warp_0

T(0,0) T(0,31)

imagePdata

Thread Block (0,0) Image on GPU

dataPalignment

dataPonPdevice
globalPmemory

warp_0

Figure 3.3: Coalesced memory accesses illustrating a warp of 32 threads reading/writing
the respective 32 data elements on a single clock cycle.

In the GPU, there are several memory types and they have different impacts in through-
put performance. We highlight two of them:

• Global memory accesses are time consuming operations with high latency and may
represent a bottleneck in the desired system’s performance. Thus, coalesced ac-
cesses should be employed whenever possible. They imply data in global memory
to be contiguously aligned, so that all 32 threads within a warp can access the re-
spective 32 data elements concurrently on the same clock cycle, with thread T(x,y)
accessing pixel P(x,y), as depicted in Figure 3.3.

• Also, modern GPUs have small and fast blocks of memory tightly coupled to the
cores, which is shared by all threads within the same blocks on multiprocessors.
We can have several threads processing the same local data to optimize memory
bandwidth (typically shared memory is faster than global memory when we need to
share information among several threads), but shared memory is small in size. To
optimize its use and performance, it is essential to consider these size limitations.
Whenever large amounts of data have to be processed, data has to be partitioned in
smaller blocks in order not to exceed the limits of shared memory. This procedure

20



3.1 General overview of the GPU architecture

can also represent penalties, since the amount of data exchanges with global mem-
ory in this case increases. Therefore, in the current work we use shared memory
for calculating some procedures and only global memory to perform the remaining
functionalities, globally achieving an efficient memory usage as reported later in
chapter 4.

3.1.1 Simple Tips to Efficient Parallelization

The main goal of parallel computing is to minimize the execution time of a process,
for which we have to use hardware resources efficiently. Thus, when designing a CUDA
kernel, there are some techniques that we should be considered, since they optimize sig-
nificantly the throughput performance of the program:

• Asynchronous Memory Transfers: Normally, one of the main performance bottle-
necks in CUDA applications consists of data transfers between host (CPU) and
device (GPU). In order to optimize data transfers and kernel executions it is possi-
ble to exploit CUDA streams and asynchronous memory transfers [19]. A stream
is a sequence of commands that execute in order, and different streams can run
concurrently. So, as an example we can create three different streams (for devices
with two copy engines and one kernel engine) for each device (GPU) with different
functionalities, which are: upload data to device; kernels execution; download data
from device. By using this technique we can overlap memory transfers and kernel
execution, thus increasing the overall throughput of the program.

• Coalesced Memory Accesses: When the kernel runs, and threads inside a warp need
to perform a memory load, the device knows if the addresses being read by consec-
utive threads are consecutive or separated by a constant stride multiple of 32. When
the device detects that addresses being read by consecutive threads are separated by
a constant stride multiple of 32 (or zero), the program coalesces multiple memory
accesses in the same clock cycle, thus allowing to reduce the number of memory
transactions.

• Thread Divergence: When the kernel runs, consecutive threads are grouped for exe-
cution in groups of 32 threads (a warp). When a divergent condition is present (such
as if or case statements), the warp checks both possible paths of execution, result-
ing in an additional clock cycle. If all threads follow a different path, execution is
serialized. Thus, whenever possible, all divergent branches should be eliminated.

21



3. Parallelization of the algorithm

3.2 Filtering Parallelization

The segmentation and shape-based detector algorithms proposed (Chapter 2.3 and
2.4) make use of the filtering process intensively, which is a time expensive procedure.
The filtering procedure has been identified as being responsible for up to 98% of the
global processing time (please see [21]), involved in computing the Hessian matrix in the
shape-based detector functions (blood detection in Wireless Capsule Endoscopy (WCE)
images). So, we studied and implemented several versions of filtering procedure (conven-
tional and separable approaches in time-domain versions and frequency-domain approach
running C/C++ code on CPU and GPU). With the obtained results of this study, we select
the fastest implementation in time-domain (Separable filtering method) and frequency-
domain under CPU and GPU in order to perform more intensively benchmarks using
small and large filters. The CUDA separable filtering (Time-Domain) approach running
on GPU makes use of global memory, constant memory and shared memory as described
below in Algorithm 1.

Algorithm 1 Separable Filtering CUDA Algorithm
1: (load image) Load image to CPU memory
2: (compute filter) Compute 1D filter’s on CPU (Rows and Column)
3: (CPU→GPU memory transfer) Copy image and filter data to GPU Global memory
4: (GPU memory transfer) Copy rows and columns filter data to GPU Constant memory
5: (GPU memory transfer) Copy image data to GPU Shared memory
6: (filter rows) Filter image rows with row filter, each thread computes just one pixel from reading N(filter

lenght) neighbor pixels of image by sharing memory between threads of the same block
7: (GPU memory transfer) Store results on buffer in GPU global memory
8: (GPU memory transfer) Copy buffer from GPU global memory to GPU shared memory
9: (filter columns) Filter buffer columns with column filter, each thread computes just one pixel from

reading N(filter length) neighbor pixels of buffer by sharing memory between threads of the same
block

10: (GPU memory transfer) Store filtering results in Global memory
11: (GPU→CPU memory transfer) Copy filtering results to CPU memory

The CUDA Fast Fourier Transform (FFT) 2D filtering (Frequency-Domain) approach
running on GPU makes use of global memory as described below in Algorithm 2.

Algorithm 2 FFT 2D Filtering CUDA Algorithm
1: (load image) Load image to CPU memory
2: (compute filter) Compute 2D filter on CPU
3: (CPU→GPU memory transfer) Copy image data and filter data to GPU Global memory
4: (compute FFT2D) Convert image and filter to (Frequency-Domain) using ”cuFFT” FFT2D
5: (multiply”filter”) Perform the point-wise multiplication of the FFT of image and filter (Complex Num-

ber Multiplication), each thread processes just one pixel, reading one entry from image and one entry
from filter to perform the two complex number multiplication

6: (compute IFFT2D) Convert result to (Time-Domain) using ”cuFFT” IFFT2D
7: (GPU→CPU memory transfer) Copy filtering result data to CPU memory

22



3.2 Filtering Parallelization

Next, we show filtering benchmarks that are performed under original and resized
WCE images. The resized WCE images are 3 times larger than original ones, and thus,
the size of objects (blood regions) will be larger, implying the use of filters with higher
dimensions.

49 61 73 85
10

−4

10
−2

10
0

Filter Size (NxN)px

E
xe

cu
tio

n 
T

im
e 

(s
)

Execution Time / Filter Size

 

 
CPU Separable Time−Domain
CPU Frequency−Domain
GPU Separable Time−Domain
GPU Frequency−Domain

Figure 3.4: Execution times for filtering procedure applied to images with 576×576 pixel
varying the processing platform and filter size: 49× 49; 61× 61; 73× 73 and 85× 85.
The tests were performed on WCE images executing on NVidia Geforce GTX 680 GPU,
applying 3 filters for each dimension.

145 181 217 253
10

−2

10
0

10
2

Filter Size (NxN)px

E
xe

cu
tio

n 
T

im
e 

(s
)

Execution Time / Filter Size

 

 
CPU Separable Time−Domain
CPU Frequency−Domain
GPU Separable Time−Domain
GPU Frequency−Domain

Figure 3.5: Execution times for filtering procedure applied to images with 1728×1728
pixel varying the processing platform and filter size: 145× 145; 181× 181; 217× 217
and 253× 253. The tests were performed on resized WCE images 3 times larger than
the original size executing on NVidia Geforce GTX 680 GPU, applying 3 filters for each
dimension.

Thus, through Figures 3.4 and 3.5 we can conclude that separable time-domain ap-
proaches executing on GPU are faster for small filters and that frequency-domain ap-
proaches running on GPU are more efficient for larger filters (see [21] for more informa-
tion). In CPU implementations, for the filter dimensions tested, the filtering process is
always faster using the frequency-domain method with the FFTW3.3.3 library [20].

3.2.1 Principles Behind Separable Time-Domain Filtering

Filtering procedure has been proved to be a useful method in image processing, but
it’s a time expensive task [21]. To perform a 2D filtering in time-domain using a filter
with width x, it takes x2wh multiplications and additions (using an image with w× h

size). However, some 2D filtering filters used in image processing can be broken down

23



3. Parallelization of the algorithm

to two 1D filters. Through these two filters, we can perform a horizontal and vertical
filtering, with lower complexity: only 2kwh multiplications and additions are needed.
With this separable filtering method, the obtained results are the same of obtained through
conventional 2D filtering [29].

A 2D filter is separable, if the filter K can be expressed as the outer product of two 1D
vectors u and v. Take this 3×3 matrix as example:

K = v⊗u =




v1
v2
v3


 ⊗

[
u1 u2 u3

]
=




v1u1 v1u2 v1u3
v2u2 v2u2 v2u3
v3u3 v3u2 v3u3


 (3.1)

Once these vectors are calculated, the filter is separated: u represents the horizontal,
and v the vertical 1D filter. In image processing applications there are several image filters
that can be implemented this way (e.g. Averaging Filter; Gaussian Filter; Sobel Operator;
Prewitt Operator; and all other filters with rank of the K matrix being 1).

We compute our equivalent separable filters using MATLAB functions which are:
Separate Kernel in 1D kernels [30] and Kernel decomposition [31].

3.2.1.A Separable Filtering CUDA

By dividing the image into parts each to be processed in a block, it is possible to
ensure that each thread block has a properly aligned base address for coalesced memory
accesses. But, in filtering procedure there is a portion of pixels around the image block
within a thread block, called by halo region. This halo region of pixels has the same
width of filter radius and is required in order to filter the image block. Thus, each thread
block must load into shared memory the image pixels to be filtered and the image halo
pixels as well. Normally, the threads with horizontal index 0 (threadIdx.x == 0) load
all the leftmost halo pixels, thus memory accesses won’t be aligned and we will produce
coalesced memory accesses. The solution to this problem is presented in Figure 3.6.
Using a small extra amount of shared memory, we can ensure that memory accesses of
the threads are properly aligned: the entire block loads both the left and right halo pixels
inside the block width. These redundant memory loads will not represent a penalty and
the load of the entire halo region will be coalesced and performed in a single clock cycle.
With this, each thread loads the same number of pixels to the shared memory and no
branching is necessary to check if the thread is inside the halo.

The vertical filter uses a similar approach, but this time with the thread index increas-
ing perpendicularly to the filter direction rather than along it. Figure 3.7 depicts the layout
of memory accesses in the vertical filtering pass. To match coalescing requirements, it is
preferable to set the width to 32 (whenever possible, but with large filters, we can not do it
due to the size limitations of shared memory), so that each row of the block can be loaded

24



3.2 Filtering Parallelization

blocksize.X

blocksize.Y

Kernel
radius

AlignedSradius

ProcessedSpixels
HaloSpixels
RedundantSpixels

LoadedSbyStheSsameSthread

SharedSMemory

InputSimageSprocessedSinStiles

GlobalSMemory

Figure 3.6: Horizontal filter pass processed by a single thread block. Here, a single thread
can load and process multiple pixels in the horizontal direction.

InputLimageLprocessedLinLtiles

GlobalLMemory

blocksize.x

KernelLradius

ProcessedLpixels
HaloLpixels
InitializedLtoLzero

SharedLMemory

blocksize.Y

LoadedLbyLtheLsameLthread

Figure 3.7: In the vertical pass, the concept of implementation is the same as in the
horizontal pass, but note that the redundant pixels in the shared memory are initialized to
zero this time (not loaded from global memory), as loading additional pixels would imply
redundant memory transactions as well.

25



3. Parallelization of the algorithm

in a single clock cycle. As the horizontal pass, here each thread loads multiple elements
to the shared memory, reducing the number of overlapped pixels of different tiles. A full
description of 2D separable filtering using CUDA can be found in [28].

3.3 Blood detector parallelization

The blood detection algorithm is composed by two steps: segmentation and shape-
based detection (described in chapters 2.3 and 2.4). In this chapter we present a descrip-
tion of blood detection parallelization.

3.3.1 Segmentation parallelization

In Figure 3.8, we depict the segmentation pipeline executed on GPU, where in all
steps data is computed in parallel.

InputsimagefI:

FindsMaxsValue

RGBstosGraysScale

EdgesDetector

ScalesImage
Outs=smaxsIfgraysscale:s&1

FindsMaxsValue
Inicializesusandsv Segmentation

Output

2DsFilters13x13s
Gaussianssmooth

FinitesDiferences:sBacks3
sFrontsinsfx,y:sdirectionss

-sIterativesProcesss-s
ComputesSegmentation

Output

Figure 3.8: Segmentation pipeline processed on the GPU.

Some operations in the segmentation process, referred in Chapter 2.3, need to share
image data between threads. In order to achieve higher processing speed, shared memory
should be used, whenever possible as mentioned before (see [32] for a related work).
The developed functions capable of exploiting shared memory are: finding maximum and
mean values; and 2D separable filtering [28]. All other functions perform slower if shared
memory is used, since the total number of transactions with global memory introduces
higher penalties.

The results of maximum and mean values are processed in two stages: the first stage
uses GPU grids with 256× 256 block size; and the second one uses 1× 256. In the 2D

26



3.4 Exudates detection parallelization

filtering, block sizes of dimension 16×16 are used.

The remaining functions in the segmentation process only use global memory and
GPU grids with 1296×256 block sizes as best performing configurations.

3.3.2 Detector parallelization

Figure 3.9 depicts the detector pipeline executed on the GPU, where again in all steps
data is computed in parallel.

Prekprocessed

image(scale(s

Calculation(of(Hessian(2D(Matrix

DGaussxx
DGaussxy
DGaussyy

Filter(Size(:(=6sb1²x=6sb1²

Ixx
Ixy
Iyy

Scale(Values
Out=s²Iyy

Scale(Values
Out=s²Ixy

Scale(Values
Out=s²Ixx

Find(maximum(pixel
values(from(buffer

=pixel(by(pixel²Final(Detector

Compute(Detector
Store(result(in(buffer

one(image(result(for(each(scale(s

Make(filter(coordinates
and(2nd(Gaussian(

Derivatives

Iyy(scaled

Ixy(scaled

Ixx(scaled

Figure 3.9: Detection pipeline processed on the GPU.

To accelerate the detection of blood described in Chapter 2.4 (Shape-Based Detector),
only one operation shares image data between threads: 2D separable filtering [28]. If
we use shared memory to perform the remaining functions we observe slower through-
put, since the total number of data exchanges with global memory represents a penalizing
impact. The results of 2D separable filtering are computed using block sizes of dimen-
sion 16× 16 and 8× 8 for the scale values s = [8 10] and s = [12 14] (see Chapter 2.4),
respectively. All other functions always use global memory with 8×8 block size.

3.4 Exudates detection parallelization

For speeding up the Exudates detection procedure, described in Chapter 2.4 (Shape-
Based Detector), we only use one function that shares image data between threads: 2D
separable filtering [28]. Again, the remaining functions perform slower if we use shared
memory because the total number of transactions to global memory would assume a

27



3. Parallelization of the algorithm

higher impact. The results of 2D separable filtering are computed using block sizes of
dimension 8× 8 for the scale values s = [2 5 8 11 14] (see Chapter 2.4). All other func-
tions always use global memory blocks with size 8×8.

3.5 Hybrid GPU-GPU Computing

To achieve higher throughput performance we propose to use a multi-GPU approach.
In this chapter, a suitable hybrid GPU-GPU framework is proposed for speeding up the
segmentation and shape-based detection procedures. In hybrid GPU-GPU assemblies,
we need to find a suitable load balance between resources, deciding a priori how many
images we can process on each GPU within the same approximate period of time. This
decision is performed by a training process, which checks how many CUDA devices are
available on the machine and runs several times the single-GPU versions (segmentation
and blood detector in WCE images or exudates detection in retinal fundus images) for
each GPU. For all CUDA devices, the average execution times in single-GPU assemblies
allows finding the ratio of performance between all GPUs. This training process just needs
to be run once (unless hardware changes have been made, more specifically if any CUDA
device has changed), in order to build a simple configuration file. Our hybrid GPU-GPU
algorithm automatically adapts to the available resources (CUDA devices), which means
it is 100% portable across different machines who support CUDA, thats only need to run
the training process first.

We propose two multi-GPU assemblies. In the first hybrid GPU-GPU assembly (NVidia
GTX 680, NVidia Tesla C1060 and C2050), the training process has shown that we should
process a different number of image per GPU. The values obtained in the training pro-
cess are different for segmentation and shape-based detection. The obtained values: for
segmentation are [3,1,2]; and for shape-based detection are [3,1,3], respectively. The dif-
ferent results in the training process between segmentation and shape-based detection are
caused by small performance differences between all CUDA devices, some of which are
faster than others regarding to data transfers (global and shared memory), while others
have higher compute capabilities, namely regarding to mathematical calculations. As ex-
pected, in the second hybrid GPU-GPU assembly (Dual GPU NVidia GTX TITAN), the
training process has shown a 50−50% workload balance on each GPU, since we use the
same GPU model with equivalente computational power. Figures 3.10 and 3.11 illustrate
the execution profile in all CUDA devices. Through these figures it is shown that multiple
tasks are performed concurrently, such as kernels execution and data transfers. By using
these multi-GPU assemblies it is possible to process multiple frames at the same time in
different devices.

28



3.5 Hybrid GPU-GPU Computing

Time Evolution

H2D

H2D

D2H

D2H

Kernel exec.

Kernel exec.

NVidia Tesla C1060

NVidia Tesla C2050

H2D

D2H

Kernel exec.NVidia GTX 680

Time Evolution

H2D

H2D

D2H

D2H

Kernel exec.

Kernel exec.

NVidia GTX TITAN

NVidia GTX TITAN

LoopI2kIRunI)yItimes

LoopI)kIRunI3Itimes

FindIMaximumIvalueIkI)stIPartIReductionIAlgorithm
FindIMaximumIvalueIkI2ndIPartIReductionIAlgorithmI
ScaleIImage
SeparableIConvolutionIkIRows
SeparableIConvolutionIkIColumns
Gb_CalcIkIEdgeIDetectionIFunction
initializeIvectorIkIU

FiniteIDifferences:IBackIinIzxByU
FiniteIDifferences:IFrontIinIzxByU

FindImeanIvalueIkI2ndIReduction

updateIvectorIkIU
binarizeIvectorIkIU

FindImeanIvalueIkI)stIReduction

Figure 3.10: Execution pipeline of segmentation procedure on hybrid GPU-GPU assem-
blies. a) Assembly 1 (GPU NVidia Tesla C1060; GPU NVidia Tesla C2050; GPU NVidia
GTX 680) b) Assembly 2 (Dual GPU NVidia GTX TITAN) c) Kernel execution order
to process an image. In the segmentation procedure, we identify a short segment which
include two different loops: Loop 1 and Loop 2. Loop 1 is responsible to call Loop 2, find
mean values and updating the fitting term (see chapter 2.3), this loop runs 3 times (see
Figure 3.8. Loop 2 is responsible to compute finite differences method: Back and Front
and update vector u and v, this loop runs 10 times for every call (with this, Loop 2 will
run 30 times).

29



3. Parallelization of the algorithm

Time Evolution

H2D

H2D

D2H

D2H

Kernel exec.

Kernel exec.

NVidia Tesla C1060

NVidia Tesla C2050

H2D

D2H

Kernel exec.NVidia GTX 680

Time Evolution

H2D

H2D
D2H

D2H
Kernel exec.

Kernel exec.

NVidia GTX TITAN

NVidia GTX TITAN

Loop - run one time for each scale value s

Separable Convolution - Rows
Separable Convolution - Columns
Scale Image

Compute Tubular/Blob detectors
Find maximum values of 
Tubular/Blob detectors

Sum values of 
Tubular and Blob
Detectors

Figure 3.11: Execution pipeline of shape-based detection procedure on hybrid GPU-GPU
assemblies. For blood detection s = 8,10,12,14 and s = 2,5,8,11,14 for exudates detec-
tor. a) Assembly 1 (GPU NVidia Tesla C1060; GPU NVidia Tesla C2050; GPU NVidia
GTX 680) b) Assembly 2 (Dual GPU NVidia GTX TITAN) c) Kernel execution order
to process an image. In the shape-based detector procedure, we identify a short segment
which includes a loop. This loop runs one time for each scale value s, in order to com-
pute Hessian matrix (see equation 2.8) and detector functions (please see equation 2.11
and 2.12) for s value (for blood detector this code runs 4 times and 5 times to compute
exudates detector).

30



4
Experimental Results and Speedup

Contents
4.1 Results Using Single-GPU Systems . . . . . . . . . . . . . . . . . . . 32

4.2 Results Using Multi-GPU Systems . . . . . . . . . . . . . . . . . . . 35

31



4. Experimental Results and Speedup

4.1 Results Using Single-GPU Systems

In this chapter, the results and speedup obtained by applying parallelization techniques
to the two case studies are presented.

4.1.1 Blood detection results

The speedups obtained in the blood detection algorithm, are separated into two steps:
segmentation and shape-based detection.

4.1.1.A Segmentation results

The computation times regarding the segmentation procedure are presented in Ta-
ble 4.1, that shows the frames-per-second (FPS) obtained using parallel computation on
single-Graphics Processing Unit (GPU) systems. As displayed, this procedure runs 68
times faster on GPU NVidia GTX TITAN (processing one image in 3.5ms), when com-
pared to an Intel i7 Central Processing Unit (CPU).

Processing Platform
Segmentation
execution time

(ms)
FPS

CPU Intel i7 240.0 4.2
GPU NVidia Tesla C1060 12.91 77.46
GPU NVidia Tesla C2050 5.84 171.23

GPU NVidia GTX 680 4.81 207.90
GPU NVidia GTX TITAN 3.5 285.71

Table 4.1: Computation times in milliseconds (ms) for the segmentation procedure and
throughput measured in FPS. All tests were performed on WCE images with 576× 576
pixels.

4.1.1.B Detection results

Processing Platform
Detector

execution time
(ms)

FPS

CPU Intel i7 529.9 1.9
GPU NVidia Tesla C1060 17.78 56.24

GPU NVidia GTX 680 7.00 142.86
GPU NVidia Tesla C2050 6.65 150.38
GPU NVidia GTX TITAN 4.84 206.61

Table 4.2: Computation times in millisecons (ms) for the blood detector function and
throughput measured in FPS. All tests were performed on WCE images with 576× 576
pixels.

32



4.1 Results Using Single-GPU Systems

The blood detector computation times are presented in Table 4.2. This algorithm runs
109 times faster on GPU NVidia GTX TITAN (processing one image in 4.84ms), when
compared to an Intel i7 CPU.

4.1.1.C Complete blood detection procedure - Global Speedup

Table 4.3 shows throughput measured in FPS and the corresponding speedups achieved
performing the complete blood detection algorithm (segmentation and shape-based detec-
tor).

Processing Platform
Segmentation
and Detector

(fps)
Speedup

GPU NVidia Tesla C1060 32.58 25.06x
GPU NVidia Tesla C2050 80.06 61.58x

GPU NVidia GTX 680 84.67 65.13x
GPU NVidia GTX TITAN 119.90 92.23x

Table 4.3: Throughput measured in FPS and speedup archived to the complete blood
detector algorithm (Segmentation and Blood Detector) comparing against a sequential
version running on an Intel i7 CPU. Tests performed on WCE images with 576× 576
pixels.

The blood detection procedure runs 92 times faster on GPU NVidia GTX TITAN
(fastest single-GPU version). With the obtained speedup, the GPU NVidia GTX TITAN
shows to be able of processing 119.90 FPS, which is equivalent to observe that the ap-
proximate total number of 56000 frames, generated by a complete WCE exam, can be
computed in less than 8 minutes.

Processing Platform
GPU

Cost($) Cost($)/FPS

GPU NVidia GTX 680 291.95 3.45
GPU NVidia Tesla C1060 199.95 6.14
GPU NVidia GTX TITAN 1078.73 9.00
GPU NVidia Tesla C2050 750 9.37

Table 4.4: Cost per Processed frame per second in blood detector algorithm (Segmenta-
tion and Blood Detector). Tests performed on WCE images with 576×576 pixels.

In Table 4.4 we show the current GPUs cost, and depict a relation between the cost
and throughput measured in FPS. By analyzing this table we can see that for a simple
blood detection in real-time, like a common endoscopy, the NVidia GTX 680 GPU can
perform in vivo diagnosis. With an inexpensive NVidia GTX 680 GPU card ($291.95) we
are able to process 84.67 FPS.

33



4. Experimental Results and Speedup

4.1.2 Exudates detection results

The computation times of the exudates detector procedure are presented in Table 4.5,
showing time in millisecons (ms) and throughput measured in FPS.

Through Table 4.6, we clearly see the speedup obtained using parallel computation
on GPU. This algorithm runs 179.45 times faster on GPU NVidia GTX TITAN, when
compared to an Intel i7 CPU. With this obtained speedup, the NVidia GTX TITAN GPU
shows to be able of processing 16.73 FPS.

Processing Platform
Detector

execution time
(ms)

FPS

CPU Intel i7 10725.5 0.093
GPU NVidia Tesla C1060 236.52 4.23

GPU NVidia GTX 680 86.85 11.51
GPU NVidia Tesla C2050 81.97 12.2
GPU NVidia GTX TITAN 59.77 16.73

Table 4.5: Computation times in millisecons (ms) for the exudates detector procedure
and throughput measured in FPS. The tests were performed on HD RF images with
2416×1736 pixels.

Processing Platform Speedup
GPU NVidia Tesla C1060 45.35x

GPU NVidia GTX 680 123.49x
GPU NVidia Tesla C2050 130.85x
GPU NVidia GTX TITAN 179.45x

Table 4.6: Speedup obtained to the exudates detection, when compared against a se-
quential version running on an Intel i7 CPU. Tests performed on HD RF images with
2416×1736 pixels.

In Table 4.7 we present the current GPU’s cost, and show a relation between cost and
throughput measured in FPS. The analisys of this table allows to conclude that the NVidia
GTX 680 GPU is the most inexpensive, considering cost per frame.

Processing Platform
GPU

Cost($) Cost($)/FPS

GPU NVidia GTX 680 291.95 25.36
GPU NVidia Tesla C1060 199.95 47.30
GPU NVidia Tesla C2050 750 61.48
GPU NVidia GTX TITAN 1078.73 64.48

Table 4.7: Cost per processed frame per second in exudates detector algorithm. Tests
performed on HD retinal fundus images with 2416×1736 pixels.

34



4.2 Results Using Multi-GPU Systems

4.2 Results Using Multi-GPU Systems

We present bellow the results and speedup obtained by applying parallelization tech-
niques in both case studies, which are: detection of blood in WCE images and detection
of exudates in HD RF images, using hybrid GPU-GPU systems.

4.2.1 Blood detection results

The speedup obtained in the blood detection algorithm, is separated into two steps:
segmentation and shape-based detection.

4.2.1.A Segmentation results

Processing Platform
Segmentation
execution time

(ms)
FPS

CPU Intel i7 240.0 4.2
GPU C1060 + C2050 + GTX680 3.22 310.56

GPU Dual GTX TITAN 1.98 505.05

Table 4.8: Computation times in milliseconds (ms) for the segmentation procedure and
throughput measured in FPS. The tests were performed on WCE images with 576×576
pixels.

The computation times regarding the segmentation procedure are presented in Ta-
ble 4.8, that shows the FPS obtained using parallel computation on hybrid GPU-GPU
systems. As displayed, this procedure runs 121 times faster on DUAL NVidia GTX TI-
TAN, when compared to an Intel i7 CPU. With this fastest hybrid GPU-GPU approach,
we can process 1.77 times faster than best single-GPU version (NVidia GTX TITAN).

4.2.1.B Detection results

The computation times of the blood detector function are presented in Table 4.9. This
algorithm runs 204 times faster on DUAL NVidia GTX TITAN, when compared to an
Intel i7 CPU. With this fastest hybrid GPU-GPU approach, we can process 1.87 times
faster than best single-GPU version (NVidia GTX TITAN).

4.2.1.C Complete blood detection procedure - Global Speedup

Table 4.10 shows throughput measured in FPS and the speedup achieved in full blood
detector algorithm (Segmentation and Shape-Based Detector).

35



4. Experimental Results and Speedup

Processing Platform
Detector

execution time
(ms)

FPS

CPU Intel i7 529.9 1.9
GPU C1060 + C2050 + GTX680 3.51 284.90

GPU Dual GTX TITAN 2.59 386.10

Table 4.9: Computation times in millisecons (ms) for the blood detector function and
throughput measured in FPS. The tests were performed on WCE images with 576×576
pixels.

Processing Platform
Segmentation
and Detector

(fps)
Speedup

GPU C1060 + C2050 + GTX680 148.59 114.30x
GPU Dual GTX TITAN 218.82 168.32x

Table 4.10: Throughput measured in FPS and speedup archived to the complete blood
detector algorithm (Segmentation and Blood Detector) comparing against a sequential
version running on an Intel i7 CPU. Tests performed on WCE images with 576× 576
pixels.

The blood detection procedure runs 168 times faster on DUAL NVidia GTX TITAN,
when compared to an Intel i7 CPU. With this fastest hybrid GPU-GPU approach, we can
process 1.83 times faster than best single-GPU version (NVidia GTX TITAN).

Thus, the Dual NVidia GTX TITAN assembly shows to be able of processing 218.82
FPS, which is equivalent to observe that the approximate total number of 56000 frames,
generated by a complete WCE exam, can be processed in less than 5 minutes.

Processing Platform
GPU

Cost($) Cost($)/FPS

GPU Dual GTX TITAN 2157.46 9.86
GPU C1060 + C2050 + GTX680 1941.9 13.07

Table 4.11: Cost per Processed FPS in blood detector algorithm (Segmentation and Blood
Detector). Tests performed on WCE images with 576×576 pixels.

In Table 4.11 we show the current GPUs cost, and depict a relation between cost and
throughput measured in FPS. Through this table, we can see that the Dual GTX TITAN
assembly is the most inexpensive regarding cost per frame.

4.2.2 Exudates detection results

The computation times of the exudates detector procedure are presented in Table 4.12
and the achieved speedup is shown in Table 4.13. This algorithm runs 324.23 times faster
on a hybrid GPU-GPU configuration with DUAL NVidia GTX TITAN, when compared
to an Intel i7 CPU.

36



4.2 Results Using Multi-GPU Systems

Processing Platform
Detector

execution time
(ms)

FPS

CPU Intel i7 10725.5 0.093
GPU C1060 + C2050 + GTX680 41.12 24.32

GPU Dual GTX TITAN 33.08 30.23

Table 4.12: Computation times in millisecons (ms) for the exudates detector procedure
and throughput measured in FPS. The tests were performed on HD RF images with
2416×1736 pixels.

Processing Platform Speedup
GPU C1060 + C2050 + GTX680 260.83x

GPU Dual GTX TITAN 324.23x

Table 4.13: Speedup obtained to the exudates detector algorithm (Retinal Fundus Images)
comparing against a sequential version running on an Intel i7 CPU. Tests performed on
HD RF images with 2416×1736 pixels.

With the obtained speedup, the hybrid GPU-GPU configuration with DUAL NVidia
GTX TITAN shows to be able of processing 30.23 FPS, which allows to perform in vivo

diagnosis.

Processing Platform
GPU

Cost($) Cost($)/FPS

GPU Dual GTX TITAN 2157.46 71.37
GPU C1060 + C2050 + GTX680 1941.9 79.85

Table 4.14: Cost per processed frame per second in exudates detector algorithm. Tests
performed on HD RF images with 2416×1736 pixels.

In Table 4.14 we show the current GPU’s cost, and point a relation between cost and
throughput measured in FPS. Through this table, we verify that the Dual GTX TITAN
assembly is the most inexpensive, considering cost per frame.

37



4. Experimental Results and Speedup

38



5
Conclusions

Contents
5.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

39



5. Conclusions

With the rapidly enhancing performances of Graphics Processing Units (GPUs), im-
proved programming support, and excellent price-to-performance ratio, GPUs have emerged
as competitive parallel computing platforms for computationally expensive and demand-
ing tasks in a wide range of medical imaging applications. A GPU-based framework for
image segmentation (designed to remove uninformative regions such as bubbles, trash,
dark regions, which can interfere with the detection of blood in Wireless Capsule En-
doscopy (WCE) images) and shape-based detection are proposed. The core of the shape-
based detection algorithm lies in the definition of a good discriminator for detecting
blob-like and tubular-like shapes in several applications in image processing. This is
accomplished by choosing a suitable color channel, image Hessian eigenvalue analysis
and multiscale image analysis approach. This segmentation and shape-based detection is
applied in blood detection in WCE images. For the Exudates (EXs) detection on Retinal
Fundus (RF) images only the shape-based detector needs to be applied. It should be con-
sidered that different configurations were adopted for the two case studies. Experimental
results for our current dataset show that the proposed algorithm is effective and achieves
89.56% accuracy when applied to WCE images [1].

Finally, the computation results and speedups are shown in Chapter 4. Tables 4.1, 4.2
and 4.3 show that the GPU NVidia GTX TITAN is the faster single-GPU assembly, with a
throughput of 285.71 frames-per-second (FPS) on segmentation and 206.61 FPS on blood
detection. With the achieved speedup on single-GPU assemblies, the GPU NVidia GTX
TITAN is able to run the full algorithm 92.23 times faster than in the original sequential
Central Processing Unit (CPU) version. The proposed hybrid GPU-GPU system with
Dual GPU NVidia GTX TITAN achieves a speedup 168.32 faster than the original CPU
version and shows to be capable of processing 218.82 FPS, which is equivalent to observe
that the approximate total number of 56000 frames, generated by a complete WCE exam,
can be computed in less than 5 minutes (please see Tables 4.8, 4.9 and 4.10). In High
Definition (HD) RF images we only apply shape-based detection, and the fastest single-
GPU system can process 16 frames per second with an average speedup of 179 times
compared to the sequential CPU version (please see Tables 4.5 and 4.6). In the proposed
hybrid GPU-GPU system we can process 30 frames per second with an average speedup
324 times faster than the original CPU version (please see Tables 4.12 and 4.13).

With these throughputs we are able to build real-time systems to automatically detect
exudates lesions in the retina fundus and blood in endoscopic images, which may help
the medical practitioner improving the diagnosis procedure. The best hybrid GPU-GPU
approach is capable to process blood and exudates detection procedures 1.83 and 1.81
times faster, respectively, than with the best single-GPU version (NVidia GTX TITAN).

These speedups are achieved by parallelizing two crucial steps, segmentation and

40



5.1 Future Work

blood detector functionalities in the algorithm, that were consuming most of the global
processing time. To perform these steps more efficiently we run parallel code on GPUs
with an appropriate use of memory (shared and global). This novel approach allows pro-
cessing multiple images and multiple pixels of an image at the same time, thus sustaining
the obtained throughput levels.

5.1 Future Work

In the future, we expect to apply this procedure to an online real video feed, bench-
marking the algorithm in real world contexts under medical utilization and supervision,
namely with real patients. Another interesting topic of research consists of applying these
procedures to low-power and also low-energy consumption devices, that may allow the
development of portable devices in the future.

41



5. Conclusions

42



Bibliography

[1] I. N. Figueiredo, S. Kumar, C. Leal, and P. N. Figueiredo, “An automatic blood
detection algorithm for wireless capsule endoscopy images,” in Computational Vi-

sion and Medical Image Processing,VIPIMAGE 2013, João Tavares & Natal Jorge

(eds), 2014 Taylor & Francis Group, London, ISBN 978-1-138-00081-0 (ECCOMAS

Thematic Conference on Computational Vision and Medical Image Processing), pp.
237–241.

[2] M. U. Akram, A. Tariq, S. A. Khan, and M. Y. Javed, “Automated detection of
exudates and macula for grading of diabetic macular edema,” Computer Methods

and Programs in Biomedicine, pp. 141–152, 2014.

[3] G. Idan, G. Meron, and A. Glukhovsky, “Wireless capsule endoscopy,” Nature, vol.
405, pp. 417–417, 2000.

[4] M. Bashar, T. Kitasaka, Y. Suenaga, Y. Mekada, and K. Mori, “Automatic detection
of informative frames from wireless capsule endoscopy images,” Medical Image

Analysis, vol. 14, pp. 449–470, 2010.

[5] M. Coimbra and J. Cunha, “MPEG-7 visual descriptors-contributions for automated
feature extraction in capsule endoscopy,” IEEE Transactions on Circuits and Sys-

tems for Video Technology, vol. 16, pp. 628–637, 2006.

[6] L. Cui, C. Hu, Y. Zou, and M. Q.-H. Meng, “Bleeding detetction in wireless capsule
endoscopy images by support vector classifier,” in Proceedings of the 2010 IEEE

Conference on Information and Automation, Harbin, China, June 2010, pp. 1746–
1751.

[7] J. P. S. Cunha, M. Coimbra, P. Campos, and J. M. Soares, “Automated topographic
segmentation and transit time estimation in endoscopic capsule exams,” IEEE Trans-

actions on Medical Imaging, vol. 27, pp. 19–27, 2008.

43



Bibliography

[8] B. Li and M. Q.-H-Meng, “Computer-aided detection of bleeding regions for capsule
endoscopy images,” IEEE Transactions on Biomedical Engineering, vol. 56, pp.
1032–1039, 2009.

[9] G. Pan, F. Xu, and J. Chen, “A novel algorithm for color similarity measurement
and the application for bleeding detection in WCE,” I.J. Image, Graphics and Signal

Processing, vol. 5, pp. 1–7, 2011.

[10] B. Penna, T. Tilloy, M. Grangettoz, E. Magli, and G. Olmo, “A technique for blood
detection in wireless capsule endoscopy images,” in 17th European Signal Process-

ing Conference (EUSIPCO 2009), 2009, pp. 1864–1868.

[11] M. Liedlgruber and A. Uhl, “Computer-aided decision support systems for en-
doscopy in the gastrointestinal tract: a review,” IEEE Reviews in Biomedical En-

gineering, vol. 4, pp. 73–88, 2011.

[12] I. N. Figueiredo, S. Kumar, C. Leal, and P. N. Figueiredo, “Computer-assisted bleed-
ing detection in wireless capsule endoscopy images,” Computer Methods in Biome-

chanics and Biomedical Engineering: Imaging & Visualization, vol. 1, pp. 198–210,
2013.

[13] I. N. Figueiredo, S. Kumar, and P. N. Figueiredo, “An intelligent system for polyp
detection in wireless capsule endoscopy images,” in Computational Vision and Med-

ical Image Processing IV: VIPIMAGE 2013, ISBN: 9781315812922, Madeira Is-
land, Funchal, Portugal, 2013, pp. 229–235.

[14] Y.-I. Ohta, T. Kanade, and T. Sakai, “Color information for region segmentation,”
Computer Graphics and Image Processing, vol. 13, pp. 222–241, 1980.

[15] M. Usman Akram, S. Khalid, A. Tariq, S. A. Khan, and F. Azam, “Detection and
classification of retinal lesions for grading of diabetic retinopathy,” Computers in

biology and medicine, vol. 45, pp. 161–71, 2014.

[16] X. Zhang, G. Thibault, D. E., M. gui B., L. B., D. R., C. G., Q. G., L. M., M. P.,
C. A., V. Z., and E. A., “Exudate detection in color retinal images for mass screening
of diabetic retinopathy,” Medical Image Analysis, 2014.

[17] J. Cheng, J. Liu, Y. Xu, F. Yin, D. Wong, N.-M. Tan, D. Tao, C.-Y. Cheng, T. Aung,
and T. Y. Wong, “Superpixel classification based optic disc and optic cup segmen-
tation for glaucoma screening,” Medical Imaging, IEEE Transactions on, vol. 32,
no. 6, pp. 1019–1032, June 2013.

44



Bibliography

[18] M. Krause, R. Alles, B. Burgeth, and J. Weickert, “Fast retinal vessel analysis,”
Journal of Real-Time Image Processing, pp. 1–10, 2013.

[19] V. Podlozhnyuk, M. Harris, and E. Young, “NVIDIA CUDA C programming guide.”
NVIDIA Corporation, 2012.

[20] M. Frigo and S. G. Johnson, “The design and implementation of FFTW3,” Pro-

ceedings of the IEEE, vol. 93, no. 2, pp. 216–231, 2005, special issue on “Program
Generation, Optimization, and Platform Adaptation”.

[21] C. Graca, G. Falcao, S. Kumar, and I. N. Figueiredo, “Cooperative use of paral-
lel processing with time or frequency-domain filtering for shape recognition,” in
EUSIPCO 2014 (22nd European Signal Processing Conference 2014) (EUSIPCO

2014), Lisbon, Portugal, Sep. 2014.

[22] S. Kumar, I. N. Figueiredo, C. Graca, and G. Falcao, “A gpu accelerated algo-
rithm for blood detection in wireless capsule endoscopy images,” in Tavares and

J.M. and Renato and R.S.N.J. (eds) Developments in Medical Image Processing and

Computational Vision. Lecture Notes in Computational Vision and Biomechanics.
Springer, 2014.

[23] Y. Zheng, J. Yu, S. B. Kang, S. Lin, and C. Kambhamettu, “Single-image vignetting
correction using radial gradient symmetry,” in Proceedings of the 26th IEEE Con-

ference on Computer Vision and Pattern Recognition (CVPR ’08), Los Alamitos,
Calif., USA, June 2008, pp. 1–8.

[24] X. Bresson, S. Esedoglu, P. Vandergheynst, J.-P. Thiran, and S. Osher, “Fast global
minimization of the active contour/snake model,” J Math. Imaging Vis., vol. 28, pp.
151–167, 2007.

[25] T. F. Chan and L. A. Vese, “Active contours without edges,” IEEE Trans. Image

Processing, vol. 10, pp. 266–277, 2001.

[26] A. F. Frangi, W. J. Niessen, K. L. Vincken, and M. A. Viergever, “Multiscale vessel
enhancement filtering,” in Medical Image Computing and Computer-Assisted Inter-

vention, Cambridge, MA, USA, 1998, pp. 130–137.

[27] I. N. Figueiredo and S. Kumar, “Wavelet-based computer-aided detection of bright
lesions in retinal fundus images,” in Computational Modeling of Objects Presented

in Images. Fundamentals, Methods, and Applications, ser. Lecture Notes in Com-
puter Science, Y. Zhang and J. Tavares, Eds., 2014, vol. 8641, pp. 234–240.

45



Bibliography

[28] H. Lee, M. Harris, E. Young, and V. Podlozhnyuk, “Image convolution with CUDA.”
NVIDIA Corporation, 2007.

[29] S. E. (2006), “Separable convolution,” in MATLAB Central File Exchange. Retrieved

May 18, 2006.

[30] D.-J. K. (2010), “Separate kernel in 1d kernels,” in MATLAB Central File Exchange.

Retrieved May 18, 2006.

[31] C. L. (2010), “Kernel decomposition,” in MATLAB Central File Exchange. Retrieved

May 18, 2006.

[32] M. Martins, G. Falcao, and I. N. Figueiredo, “Fast aberrant crypt foci segmentation
on the GPU,” in ICASSP’13: Proceedings of the 36th IEEE International Confer-

ence on Acoustics, Speech and Signal Processing. IEEE, May 2013.

46



A
Appendix A

47



COOPERATIVE USE OF PARALLEL PROCESSING WITH TIME OR
FREQUENCY-DOMAIN FILTERING FOR SHAPE RECOGNITION

Carlos Graca? Gabriel Falcao? Sunil Kumar† Isabel N. Figueiredo†

? Instituto de Telecomunicações, Dept. of Electrical and Computer Eng., University of Coimbra, Portugal
†CMUC, Dept. of Mathematics, University of Coimbra, Portugal

ABSTRACT
For many computer vision applications, detection of blobs
and/or tubular structures in images are of great importance.
In this paper, we have developed a parallel signal processing
framework for speeding up the detection of blob and tubular
objects in images. We identified filtering procedure as be-
ing responsible for up to 98% of the global processing time,
in the used blob or tubular detector functions. We show that
after a certain dimension of the filter it is beneficial to com-
bine frequency-domain techniques with parallel processing to
develop faster signal processing algorithms. The proposed
framework is applied to medical wireless capsule endoscopy
(WCE) images, where blob and/or tubular detectors are useful
in distinguishing between abnormal and normal images.

Index Terms— Object shape recognition, Convolution,
Frequency-domain filtering, Parallel processing, Wireless
capsule endoscopy

1. INTRODUCTION

In the field of computer vision, blob/tubular detection refers
to methods that are aimed at detecting clustered points in the
image that are either brighter or darker than the surrounding.
Detection of blob and/or tubular structures in images is an
important step in the analysis of a large-scale of scientific
data, as for example, detection of bleeding/blood regions in
WCE images [1, 2], nodule detection in thorax x-ray images
citesch, nuclei detection in microscopic zebrafish images [3],
enhancement of vascular structures [4,5], detection of lesions
in images of multiple sclerosis patients [6], and so on.

In this paper it is proposed a parallel signal processing
framework which accelerates significantly the performance of
particular blob and tubular detectors. These latter rely on the
eigenvalues of the Hessian of the processed input image [5],
which involve the calculation of second derivatives, at multi-
ple scales, using Gaussian filtering. We identified this filter-
ing process as being responsible for a large part of the global
processing time, which turns it a natural candidate for paral-
lelization.

Recently, graphics processing units (GPU) have shown
significant speedups for signal processing algorithms in med-

ical imaging areas that require intensive computation [7, 8].
This technology supports specialized parallel kernel develop-
ment and efficient signal processing libraries that suit well
into a variety of biomedical image processing applications.

We propose to cooperatively exploit time- or frequency-
domain signal processing techniques combined with more
efficient parallel processing. These algorithmic transfor-
mations allow producing faster code that can accommodate
multi-thread based parallelism with an appropriate use of the
system’s memory hierarchy and coalesced memory accesses
for performing the most compute-intensive procedures on the
GPU. We show that depending on the filter size, different
domains and architectures can be adopted. For example, for
large filters the GPU-based frequency-domain approach ob-
tains higher speedups, while for smaller filters the separable
time-domain approach on the GPU performs faster.

Finally, we show an application of the proposed parallel
blob and tubular detector algorithm in the medical field, for
bleeding/blood detection in WCE images [1, 2]. Note that
WCE examination of a patient produces approximately 56000
images. Hence, a major and relevant direct application of the
proposed framework is the acceleration of an automated WCE
image analysis. In addition, the proposed parallelized pro-
cedure can also be incorporated in many other applications
(see for instance [3–6, 9]), where blob and/or tubular detec-
tors might be used.

After this short introduction, the rest of the paper is struc-
tured as follows. Section 2 introduces the blob and tubular
detectors. Section 3 describes the parallelization of blob and
tubular detectors. An application to medical images is ana-
lyzed in Section 4, and finally some conclusions are given in
Section 5.

2. SHAPE-BASED OBJECT RECOGNITION

The definition of the blob and tubular detectors used herein
rely on appropriate functions that involve the Hessian eigen-
values of the input image and on a multiscale analysis ap-
proach. For a scalar image I : Ω ⊆ R2 → R, we define the
Hessian matrix at a point (or equivalently at a pixel location)

48



(x, y), and for a scale s, by

Hs(x, y) =

(
Isxx Isxy
Isxy Isyy

)
.

Here Isxx, I
s
xy and Isyy are the second-order partial deriva-

tives of I and the scale s is involved in the calculation of
these derivatives using Gaussian filtering. The Hessian ma-
trix describes the second order local image intensity varia-
tions around the selected point. Suppose λs,1 and λs,2 are two
eigenvalues of the Hessian matrix Hs. Note that at a point be-
longing to a blob region, these two eigenvalues have the same
sign (the sign is an indicator of the brightness/darkness of the
blob: if positive it is a dark blob on a bright background, and
if negative it is a bright blob on a dark background) and sim-
ilar magnitudes. If the point belongs to a tubular structure
(like a ridge) one of the eigenvalues is close to zero and the
others absolute value is large. Moreover the tubular structure
is bright (resp. dark) if the eigenvalue with highest absolute
value is negative (resp. positive) (see [5]). Without loss of
generality we assume that |λs,1|≤ |λs,2|.

Defining now

f1 = exp
(
−βF 2

s

)
and f2 =

(
1− exp

(
−α

(
λs,1

λs,2

)2
))

,

and motivated from [5], we define the blob (Bs) and tubular
(Ts) detectors (at each point of the domain), by

Bs =

{
0, if λs,1λs,2 < 0 or |λs,2 − λs,1|> δ
(1− f1)f2, otherwise,

(1)
and

Ts =

{
0, if λs,2 > 0,
(1− f1)(1− f2), otherwise. (2)

Here α and β are the parameters which control the sensitivity
of the functions and δ is the user chosen threshold.

In order to automatically detect blobs (or tubes) of differ-
ent sizes, a multiscale approach is necessary. The response
of the detector functions will be maximum at a scale that ap-
proximately matches the size of the structure (blob or tube) to
detect. Hence, we define the final detector functions as fol-
lows:

B = max
smin≤s≤smax

Bs and T = max
smin≤s≤smax

Ts,

where smin and smax are the minimum and maximum scales
at which the structures are expected to be found.

3. PARALLELIZATION OF THE SHAPE-BASE
OBJECT RECOGNITION PROCEDURE

The procedure for detecting blob and tubular structures in
images, described in Section 2, is implemented using time-

DGaussxx

DGaussxy

DGaussyy

Pre-processed image

Make kernel

coordinates and

2nd Gaussian

Derivatives

scale s Calculation of Hessian 2D Matrix

Filter Size: (6s+1)x(6s+1)

Ixx

Iyy

Ixy

Ixx scaled

Ixy scaled

Iyy scaled

Scale Values

Out=s² Ixx

Scale Values

Out=s² Ixy

Scale Values

Out=s² Iyy

Fig. 1: Block diagram explaining the computation of the Hes-
sian matrix for each scale s (Ixx, Iyy, Ixy are the notations for
the second-order partial derivatives of image I).

and frequency-domain approaches for calculating the filter-
ing procedure (involved in computing the Hessian matrix),
and it is also tested under different execution environments
and platforms. The function used to perform the filtering
in the time-domain (C/CPU) was released by NVIDIA [10]
and in frequency-domain (C/CPU), we used the optimized
FFTW3.3.3 library [11]. We find out that the vast majority
of time spent processing each image is being consumed by
the filtering process (see Tables 1 and 2), which is heavily
used for the calculation of the Hessian matrix. As depicted
in Fig. 1, three filters are applied for each scale s with a filter
size (6s+ 1)× (6s+ 1).

3.1. GPU parallelization

The parallelization of the procedure for detecting blob and
tubular structures in images, described in Section 2, is carried
out using the Compute Unified Device Architecture (CUDA)
parallel programming model, by exploiting the massive use of
thread- and data-parallelism on the graphics processing units
(GPU). CUDA allows the programmer to write in a transpar-
ent way, scalable parallel C code [12] on GPUs. When the
host launches a kernel, the GPU device executes a grid of
thread blocks, where each block has a predefined number of
threads executing the same code segment.

3.1.1. Parallelization with Separable 2D Filtering

We perform a benchmark of CUDA separable filtering (Time-
Domain) [10]. This version uses global memory, constant
memory and shared memory as described below in Algo-
rithm 1 .

3.1.2. Parallelization with FFT 2D Filtering

Following a frequency-domain strategy, we also perform a
benchmark of CUDA FFT2D filtering (Frequency-Domain)
[13]. This version uses global memory as described in Algo-
rithm 2 .

49



Version & platform TUBULAR exec. time(s) Filtering (% of TUB. exec. time) BLOB exec. time (s) Filtering (% of BLOB exec. time)
SEP Time-Domain (CPU) 4.0597 94.3720 4.2253 94.5556
Frequency-Domain (CPU) 0.5209 68.4008 0.5299 68.2204
SEP Time-Domain (GPU) 0.2372 0.5011 0.2419 0.4900
Frequency-Domain (GPU) 0.4149 7.4623 0.3773 7.6093

Table 1: Total computation times (in seconds) for TUBULAR and BLOB object-shape detection, and the time percentages (with
respect to the total time) of the filtering step, for the different versions and platforms. Tests done with (576× 576 pixel) WCE
images, applying a total of 12 filters (3 for each dimension) with sizes: 49× 49, 61× 61, 73× 73, 85× 85 for TUBULAR test
and 49× 49, 61× 61, 73× 73, 97× 97 for BLOB test (SEP is the notation for Separable Filtering).

Version & platform TUBULAR exec. time(s) Filtering (% of TUB. exec. time) BLOB exec. time (s) Filtering (% of BLOB exec. time)
SEP Time-Domain (CPU) 108.1980 98.18 113.221 97.9193
Frequency-Domain (CPU) 5.5730 74.4302 5.411 73.4984
SEP Time-Domain (GPU) 3.1628 6.1323 3.6096 5.66
Frequency-Domain (GPU) 2.2628 2.8915 2.2924 3.3429

Table 2: Total computation times (in seconds) for TUBULAR and BLOB object-shape detection, and the time percentages (with
respect to the total time) of the filtering step, for the different versions and platforms. Tests done with (1728×1728 pixel) WCE
images, applying a total of 12 filters (3 for each dimension) with sizes: 145 × 145, 181 × 181, 217 × 217, 253 × 253 for
TUBULAR test and 145× 145, 181× 181, 217× 217, 289× 289 for BLOB test (SEP is the notation for Separable Filtering).

Algorithm 1 Separable (SEP) Filtering CUDA Algorithm
1: (load image) Load image to CPU memory
2: (compute filter) Compute 1D filter’s on CPU (Rows and Column)
3: (CPU→GPU memory transfer) Copy image and filter data to GPU

Global memory
4: (GPU memory transfer) Copy rows and columns filter data to GPU

Constant memory
5: (GPU memory transfer) Copy image data to GPU Shared memory
6: (convolve rows) Convolve image rows with row filter, each thread com-

putes just one pixel from reading N(filter lenght) neighbor pixels of im-
age by sharing memory between threads of the same block

7: (GPU memory transfer) Store results on buffer in GPU global memory
8: (GPU memory transfer) Copy buffer from GPU global memory to GPU

shared memory
9: (convolve columns) Convolve buffer columns with column filter, each

thread computes just one pixel from reading N(filter length) neighbor
pixels of buffer by sharing memory between threads of the same block

10: (GPU memory transfer) Store filtering results in Global memory
11: (GPU→CPU memory transfer) Copy filtering results to CPU memory

Algorithm 2 FFT2D Filtering CUDA Algorithm
1: (load image) Load image to CPU memory
2: (compute filter) Compute 2D filter on CPU
3: (CPU→GPU memory transfer) Copy image data and filter data to GPU

Global memory
4: (compute FFT2D) Convert image and filter to (Frequency-Domain) us-

ing ”cuFFT” FFT2D
5: (multiply”convolve”) Perform the point-wise multiplication of the FFT

of image and filter (Complex Number Multiplication), each thread pro-
cesses just one pixel, reading one entry from image and one entry from
filter to perform the two complex number multiplication

6: (compute IFFT2D) Convert result to (Time-Domain) using ”cuFFT”
IFFT2D

7: (GPU→CPU memory transfer) Copy filtering result data to CPU mem-
ory

4. APPLICATION TO MEDICAL IMAGES

In this section we apply the methodoloy proposed in this work
to wireless capsule endoscopy (WCE) images with 576×576

pixel and correspondent resized images with 1728 × 1728
pixel (in order to demonstrate the potential of this approach
for high resolution images).

A sequential version of blob and tubular detectors was uti-
lized in [1,2] for developing an automated algorithm to distin-
guish between abnormal (bleeding and/or blood) and normal
images. We refer the reader to [1] for more details.

The program is developed using CUDA driver 5.5 and
the C/C++ code compiled with GCC-4.6.3. The host sys-
tem has an Intel Core i7 950 CPU @ 3.07GHz and runs the
GNU/Linux kernel 3.8.0-31-generic. The GPU device con-
sists of a Geforce GTX 680 with 1536 CUDA cores.

The global filtering times, corresponding to the proposed
the blob and tubular detectors, for 576×576 WCE images are
shown in Fig. 2a), and for the resized 1728×1728 images are
shown in Fig. 2b). The Fig. 3 (a) displays two examples of
WCE images, having abnormalities, and columnn (b) shows
the correspondent scalar input images for the blob and tubular
detectors [1, 2]. The last column (c) exhibits the abnormal
regions successfully detected (bleeding, with the shape of a
blob, for the top image and blood, with the shape of a tube,
for the bottom image).

As depicted comparing Fig. 2a) and Fig. 2b), the time-
domain filtering on GPU performs faster than the frequency-
domain for 576 × 576 images and the frequency-domain fil-
tering on GPU performs faster for 1728 × 1728 images. The
size of the filter applied depends on the size of the objects
that we want to identify, consequently, larger images require
larger filters, assuming that images is of the same scene. For
smaller filters, the time-domain method is faster because this
method uses shared memory and the shared memory is fast
and seen by all threads within the same block. So we can
have several threads processing the same local data to opti-

50



49 61 73 85 97
10

−4

10
−2

10
0

Filter Size (NxN) pixel

E
x
e
c
u
ti
o
n
T
im

e
(s
)

Execution Time / Filter Size

TUBULAR −CPU Time

TUBULAR −CPU Freq.

TUBULAR −GPU Time

TUBULAR −GPU Freq.

BLOB −CPU Time

BLOB −CPU Freq.

BLOB −GPU Time

BLOB −GPU Freq.

(a) Execution time for images with 576×576 pixel.

145 181 217 253 289
10

−2

10
0

10
2

Filter Size (NxN) pixel

E
x
e
c
u
ti
o
n

T
im

e
(s

)

Execution Time / Filter Size

TUBULAR −CPU Time

TUBULAR −CPU Freq.

TUBULAR −GPU Time

TUBULAR −GPU Freq.

BLOB −CPU Time

BLOB −CPU Freq.

BLOB −GPU Time

BLOB −GPU Freq.

(b) Execution time for images with 1728×1728 pixel.

Fig. 2: Global filtering processing times for BLOB and TUBULAR shape detections, varying the filter size and platform. The
tests were performed on WCE images, applying 3 filters for each dimension.

mize memory bandwidth, but when filter size increases the
shared memory used increases too. Shared memory are typ-
ically small in size. Therefore, we need to reduce the block
size and this action increases the amount of data exchanges
with global memory and the number of memory accesses will
increase and slow down the process. On the other hand, in
the frequency-domain approach, for larger filters we can set a
fixed block size, thus using global memory more efficiently.

5. CONCLUSIONS

We have devised a parallel signal processing framework for
detecting blob and tubular structures in images which can be
helpful in many computer vision applications. The proposed
framework is applied to wireless capsule endoscopy images
for detecting bleeding/blood regions. The filtering process
represents the functionality with higher impact in the global
processing time, so we implemented several versions and we
conclude that time-domain approaches executing on GPU are
faster for small filters and that frequency-domain GPU meth-
ods are more efficient for larger filters. Through paralleliza-
tion of the algorithm, we obtain a speedup up to 17x on im-
ages with 576 × 576 pixel and up to 49x on images with
1728 × 1728 pixel. To the best of our knowledge, this is the
first GPU-accelerated algorithm to process WCE images in

order to speed up the findings of blood/bleeding regions. Fur-
thermore, this proposed approach has the potential to be used
in many other applications, as those mentioned in Section 1.

ACKNOWLEDGEMENTS

This work was partially supported by project PTDC/MATNA
N/0593/2012 from CMUC and FCT (Portugal) through the
European program COMPETE/ FEDER, and also by projects
PEst-C/MAT/UI0324/2011 and PEst-OE/EEI/LA0008/2013
from Instituto de Telecomunicações.

REFERENCES

[1] I. N. Figueiredo, S. Kumar, Carlos Leal, and Pe-
dro N. Figueiredo, “Computer-assisted bleeding detec-
tion in wireless capsule endoscopy images,” Computer
Methods in Biomechanics and Biomedical Engineering:
Imaging & Visualization, vol. 1, pp. 198–210, 2013.

[2] I. N. Figueiredo, Sunil Kumar, Carlos Leal, and Pe-
dro N. Figueiredo, “An automatic blood detection al-
gorithm for wireless capsule endoscopy images,” in
Computational Vision and Medical Image Process-
ing,VIPIMAGE 2013, João Tavares & Natal Jorge
(eds), 2014 Taylor & Francis Group, London, ISBN
978-1-138-00081-0 (ECCOMAS Thematic Conference

51



(a) Original WCE images.

0

20

40

60

80

0

5

10

15

20

25

30

(b) Pre-processed input images

0

2

4

6

8

10

x 10
−3

0.05

0.1

0.15

0.2

0.25

(c) Output detected bleeding/blood zones.

Fig. 3: From left to right: original input, intermediate images and detected regions of interest.

on Computational Vision and Medical Image Process-
ing), pp. 237–241.

[3] G. Li, T. Liu, J. Nie, L. Guo, J. Malicki, A. Mara, S. A.
Holley, W. Xia, , and S.T. Wong, “Detection of blob ob-
jects in microscopic zebrafish images based on gradient
vector diffusion,” Cytometry A, vol. 71, pp. 835–845,
2007.

[4] R. Manniesing, M. A. Viergever, and W. J. Niessen,
“Vessel enhancing diffusion: A scale space represen-
tation of vessel structures,” Medical Image Analysis,
vol. 10, no. 6, pp. 815 – 825, 2006.

[5] A. F. Frangi, W. J. Niessen, K. L. Vincken, and M. A.
Viergever, “Multiscale vessel enhancement filtering,” in
Medical Image Computing and Computer-Assisted In-
tervention, Cambridge, MA, USA, 1998, pp. 130–137.

[6] G. Gerig, G. Szekely, G. Israel, and M. Berger, “De-
tection and characterization of unsharp blobs by curve
evolution,” in In Proc. of Information Processing in
Medical Imaging, 165-176, 1995.

[7] S.A. Mahmoudi, F. Lecron, P. Manneback, M. Benjel-
loun, and S. Mahmoudi, “GPU-based segmentation of
cervical vertebra in X-Ray images,” in Cluster Comput-

ing Workshops and Posters (CLUSTER WORKSHOPS),
2010 IEEE International Conference on, 2010, pp. 1–8.

[8] M. Martins, G. Falcao, and I. N. Figueiredo, “Fast
Aberrant Crypt Foci Segmentation on the GPU,” Inter-
national Conference on Acoustics, Speech and Signal
Processing (ICASSP), IEEE, May, 2013.

[9] A. M. R. Schilham, B. van Ginneken, and M. Loogr,
“Multi-scale nodule detection in chest radiographs,” in
Lecture Notes in Computer Science, vol. 2878, 2003.

[10] H. Lee, M. Harris, E. Young, and V. Podlozhnyuk, “Im-
age convolution with CUDA,” NVIDIA Corporation,
2007.

[11] Matteo Frigo and Steven G. Johnson, “The design
and implementation of FFTW3,” Proceedings of the
IEEE, vol. 93, no. 2, pp. 216–231, 2005, Special issue
on “Program Generation, Optimization, and Platform
Adaptation”.

[12] V. Podlozhnyuk, M. Harris, and E. Young, “NVIDIA
CUDA C programming guide,” NVIDIA Corporation,
2012.

[13] V. Podlozhnyuk, “FFT-based 2D Convolution,”
NVIDIA Corporation, 2012.

52



B
Appendix B

53



A GPU accelerated algorithm for blood
detection in wireless capsule endoscopy images

Sunil Kumar 1, Isabel N. Figueiredo 1, Carlos Graca 2 and Gabriel Falcao 2

Abstract Wireless capsule endoscopy (WCE) has emerged as a powerful tool in
the diagnosis of small intestine diseases. One of the main limiting factor is that it
produces a huge number of images, whose analysis, to be done by a doctor, is an
extremely time consuming process. Recently, we proposed [8] a computer-aided
diagnosis system for blood detection in WCE images. While the algorithm in [8] is
very promising in classifying the WCE images, it still does not serve the purpose
of doing the analysis within a very less stipulated amount of time; however, the
algorithm can indeed profit from a parallelized implementation. In the algorithm we
identified two crucial steps, segmentation (for discarding non-informative regions
in the image that can interfere with the blood detection) and the construction of
an appropriate blood detector function, as being responsible for taking most of the
global processing time. In this work, a suitable GPU-based (graphics processing
unit) framework is proposed for speeding up the segmentation and blood detection
execution times. Experiments show that the accelerated procedure is on average 50
times faster than the original one, and is able of processing 72 frames per second.

1 Introduction

Wireless capsule endoscopy (WCE), also called capsule endoscopy (CE), is a nonin-
vasive endoscopic procedure which allows visualization of the small intestine, with-
out sedation or anesthesia, which is difficult to reach by conventional endoscopies.
As the name implies, capsule endoscopy makes use of a swallowable capsule that

1

CMUC, Department of Mathematics, Faculty of Science and Technology, University of Coimbra,
Portugal.
2

Instituto de Telecomunicações, Department of Electrical and Computer Engineering, Faculty of
Science and Technology, University of Coimbra, Portugal.

1

54



2 S. Kumar, I. N. Figueiredo, C. Graca and G. Falcao

(a) (b)

Fig. 1 (a) Image of the capsule. (b) Interior of the capsule.

contains a miniature video camera, a light source, batteries, and a radio transmitter
(see Figure 1). This takes continual images during its passage down the small in-
testine. The images are transmitted to a recorder that is worn on a belt around the
patients waist. The whole procedure lasts 8 hours, after which the data recorder is
removed and the images are stored on a computer so that physicians can review them
and analyze the potential source of diseases. Capsule endoscopy is useful for detect-
ing small intestine bleeding, polyps, inflammatory bowel disease (Crohn’s disease),
ulcers, and tumors. It was first invented by Given Imaging in 2000 [12]. Since its
approval by the FDA (U.S. Food and Drug Administration) in 2001, it has been
widely used in hospitals.

Although capsule endoscopy demonstrates a great advantage over conventional
examination procedures, some improvements remain to be done. One major issue
with this new technology is that it generates approximately 56,000 images per ex-
amination for one patient, which is very time consuming to analyse. Furthermore,
some abnormalities may be missed because of their size or distribution, due to vi-
sual fatigue. So, it is of great importance to design a real-time computerized method
for the inspection of capsule endoscopic images. Given Imaging Ltd. has also devel-
oped the so called RAPID software for detecting abnormalities in CE images. But its
sensitivity and specificity, respectively, were reported to be only 21.5% and 41.8%
[10], see also [19]. Recent years have witnessed some development on automatic
inspection of CE images, see [1, 4, 5, 6, 14, 18, 20, 15, 9, 7].

The main indication for capsule endoscopy is obscure digestive bleeding [5, 14,
18, 20, 9]. In fact, in most of these cases, the source of the bleeding is located in the
small bowel. However, often, these bleeding regions are not imaged by the capsule
endoscopy. This is why the blood detection is so important when we are dealing
with capsule endoscopy. The current work is an extension of the paper [8], where an
automatic blood detection algorithm for CE images was proposed. Utilizing Ohta
color channel (R+G+B)/3 (where R, G and B denote the red, green and blue chan-

55



A GPU accelerated algorithm for blood detection in WCE images 3

nel, respectively, of the input image), we employed analysis of eigenvalues of the
image Hessian matrix and multiscale image analysis approach for designing a func-
tion to discriminate between blood and normal frames. The experiments show that
the algorithm is very promising in distinguishing between blood and normal frames.
But, the algorithm is not able to process huge number of images produced by WCE
examination of a patient, within a very less stipulated amount of time. However, the
computations of the algorithm can indeed be parallelized, and thus, can process the
huge number of images within a very less stipulated amount of time. In the algo-
rithm we identified two crucial steps, segmentation (for discarding non-informative
regions in the image that can interfere with the blood detection) and the construction
of an appropriate blood detector function, as being responsible for taking most of
the global processing time. We propose a suitable GPU-based framework for speed-
ing up the segmentation and blood detection execution times, and hence the global
processing time. Experiments show that the accelerated procedure is on average 50
times faster than the original one, and is able of processing 72 frames per second.

This chapter is structured as follows. A choice of the suitable color channel is
made in Section 2.1 and segmentation of informative regions is done in Section
2.2. A blood detector function is introduced in Section 2.3. The outline of the the
algorithm is given in Section 2.4. Validation of the algorithm on our current data
set is provided in Section 3. The GPU procedure for speeding up the segmentation
and blood detection is described in Section 4. Finally, the chapter ends with some
conclusions in Section 5.

2 Blood detection algorithm

Notation: Let Ω be an open subset of R2, representing the image (or pixel) domain.
For any scalar, smooth enough, function u defined on Ω , ∥u∥L1(Ω) and ∥u∥L∞(Ω),

respectively, denote the L1 and L∞ norms of u.

2.1 Color space selection

Color of an image carries much more information than the gray levels. In many
computer vision applications, the additional information provided by color can aid
image analysis. The Ohta color space [17] is a linear transformation of the RGB
color space. Its color channels are defined by A1 = (R+G+B)/3, A2 = R−B, and
A3 = (2G − R − B)/2. We observe that channel A1 has the tendency of localizing
quite well the blood regions, as is demonstrated in Figure 3. The first row corre-
sponds to the original WCE images with blood regions and the second row exhibits
their respective A1 channel images. We also observe that, before computing the A1
channel of the images, we applied an automatic illumination correction scheme [22]
to the original images, to reduce the effect of illumination.

56



4 S. Kumar, I. N. Figueiredo, C. Graca and G. Falcao

2.2 Segmentation

Many WCE images contain uninformative regions such as bubbles, trash, dark re-
gions and so on, which can interfere with the detection of blood. More information
on uninformative regions can be found in [1]. We observe that the second com-
ponent (which we call henceforth a-channel) of the CIE Lab color space has the
tendency of separating these regions from the informative ones. More precisely, for
better removal of the uninformative regions, we first decompose the a-channel into
geometric and texture parts using the model described in [2, Section 2.3], and per-
form the two phase segmentation. This latter relies on a reformulation of the Chan
and Vese variational model [2, 3], over the geometric part of the a-channel.

The segmentation method is described as follows: We first compute the constants
c1 and c2 (representing the averages of I in a two-region image partition). We then
solve the following minimization problem

min
u,v

{
TVg(u)+

1
2θ

∥u− v∥2
L2(Ω) +

∫

Ω

(
λ r(I,c1,c2)v+α ν(v)

)
dxdy

}
(1)

where TVg(u) :=
∫

Ω g(x,y)|∇u|dxdy is the total variation norm of the function u,
weighted by a positive function g; r(I,c1,c2)(x,y) :=

(
c1 −I(x,y)

)2 −
(
c2 −I(x,y)

)2

is the fitting term, θ > 0 is a fixed small parameter, λ > 0 is a constant parameter
weighting the fitting term, and α ν(v) is a term resulting from a reformulation of
the model as a convex unconstrained minimization problem (see [2, Theorem 3]).
Here, u represents the two-phase segmentation and v is an auxiliary unknown. The
segmentation curve, which divides the image into two disjoint parts, is a level set of
u, {(x,y) ∈ Ω : u(x,y) = µ}, where in general µ = 0.5 (but µ can be any number
between 0 and 1, without changing the segmentation result, because u is very close
to a binary function).

The above minimization problem is solved by minimizing u and v separately, and
iterated until convergence. In short we consider the following two steps:
1. v being fixed, we look for u that solves

min
u

{
TVg(u)+

1
2θ

∥u− v∥2
L2(Ω)

}
. (2)

2. u being fixed, we look for v that solves

min
v

{ 1
2θ

∥u− v∥2
L2(Ω) +

∫

Ω

(
λ r(I,c1,c2)v+α ν(v)

)
dxdy

}
. (3)

It is shown that the solution of (2) is ([2, Proposition 3])

u = v−θdivp,

where div represents the divergent operator, and p = (p1, p2) solves

g∇(θdivp− v)−|∇(θdivp− v)|p = 0.

57



A GPU accelerated algorithm for blood detection in WCE images 5

Fig. 2 First row: Original image. Second row: Segmentation mask. Third row: Original image with
segmentation curve superimposed.

The problem for p can be solved using the following fixed point method

p0 = 0, pn+1 =
pn +δ t∇(divpn − v/θ)

1+ δ t
g |∇(divpn − v/θ)|

.

Again from [2, Proposition 4], we have

v = min{max{u−θλ r(I,c1,c2),0},1}.

The segmentation results for some of the WCE images are shown in Figure 2. The
first row corresponds to the original images, the second row shows the segmentation
masks, and the third row displays the segmentation curves superimposed on the
original images.

In these experiments (and also in the tests performed in section 3) the values
chosen for the parameters involved in the definition of (1), are those used in [2],
with g the following edge indicator function g(∇u) = 1

1+β∥∇u∥2 and β = 10−3.

58



6 S. Kumar, I. N. Figueiredo, C. Graca and G. Falcao

2.3 Detector function

We now introduce the detector function that is designed to discriminate between
blood and non-blood frames. We resort to the analysis of eigenvalues of the image
Hessian matrix and multiscale image analysis approach. Based on the eigenvalues,
both blob-like and tubular-like structures can be detected. For a scalar image I : Ω ⊆
R2 → R, we define the Hessian matrix of one point (x,y), and at a scale s, by

Hs(x,y) =

(
Is
xx Is

xy
Is
xy Is

yy

)
,

where Is
xx, Is

xy and Is
yy are the second-order partial derivatives of I and the scale s is

involved in the calculation of these derivatives. The Hessian matrix describes the
second order local image intensity variations around the selected point. Suppose
λs,1 and λs,2 are two eigenvalues of the Hessian matrix Hs. Further, suppose that
|λs,1| ≤ |λs,2|. Setting Fs = λ 2

s,1 +λ 2
s,2, we define

F(x,y) = max
smin≤s≤smax

Fs(x,y), (4)

where smin and smax are the minimum and maximum scales at which the blood re-
gions are expected to be found. We remark that they can be chosen so that they cover
the whole range of blood regions.

Setting now

f1 = exp
(
−βF2

s
)

and f2 =

(
1− exp

(
−α

(
λs,1

λs,2

)2
))

,

and motivated from [11], we define the blob (Bs) and ridge (Rs) detectors (at each
point of the domain)

Bs =

{
0, if λs,1λs,2 < 0 or |λs,2 −λs,1| > δ

(1− f1) f2, otherwise,
(5)

and

Rs =

{
0, if λs,2 > 0,

(1− f1)(1− f2), otherwise.
(6)

Here α and β are the parameters which control the sensitivity of the functions and
δ is an user chosen threshold. We then compute the maximum for each scale

B(x,y) = max
smin≤s≤smax

Bs(x,y) and R(x,y) = max
smin≤s≤smax

Rs(x,y),

In the computations, we take s = 8,10,12,14. The results of the functions F and
the sum B + R, for blood and non-blood images are displayed in Figures 3 and 4,
respectively.

59



A GPU accelerated algorithm for blood detection in WCE images 7

 

 

0

10

20

30

40

50

60

70

80

 

 

0

10

20

30

40

50

60

70

80

 

 

0

10

20

30

40

50

60

70

80

 

 

0

100

200

300

400

500

600

 

 

50

100

150

200

250

300

 

 

0

50

100

150

200

250

300

350

400

 

 

0

0.1

0.2

0.3

0.4

0.5

 

 

0

0.1

0.2

0.3

0.4

 

 

0

0.1

0.2

0.3

0.4

0.5

Fig. 3 First row: Original image with blood region. Second row: A1 color channel. Third row:
Function F. Fourth row: Function B+R.

We denote by Ω̃ , in the image domain, the segmented region of I, that is, Ω̃ =
Ω ∩ Ωseg, where Ωseg is the segmented sub-domain of I containing the blood. We
use the intensity and gradient information of the above functions for designing our
detector function, DF , which is defined by

DF =
||F ||L∞(Ω̃)

||B+R||L∞(Ω̃)

||B+R||L1(Ω̃)

.

60



8 S. Kumar, I. N. Figueiredo, C. Graca and G. Falcao

 

 

0

10

20

30

40

50

60

70

80

 

 

0

10

20

30

40

50

60

70

80

 

 

0

10

20

30

40

50

60

70

80

 

 

0

50

100

150

200

 

 

0

20

40

60

80

100

 

 

20

40

60

80

100

120

140

160

 

 

0

0.05

0.1

0.15

0.2

0.25

 

 

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

 

 

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Fig. 4 First row: Original image without blood region. Second row: A1 color channel. Third row:
Function F. Fourth row: Function B+R.

2.4 Algorithm outline

For each WCE image the algorithm consists of the following four steps:

1. Firstly, we remove additional details (such as patient name, date and time) from
the original image. For this purpose, we clip around the circular view of the
original image. Next, we apply an automatic illumination correction scheme [22],
for reducing the effect of illumination.

2. We then consider the Ohta color channel (R+G+B)/3 for the illumination cor-
rected image.

61



A GPU accelerated algorithm for blood detection in WCE images 9

3. We next apply the two-phase segmentation method [2] for removing uninforma-
tive regions (such as bubbles, trash, liquid, and so on) over the geometric part of
the second component of the CIE Lab color space.

4. Finally, we compute the functions F , B+R and the blood detector function DF.

3 Validation of the algorithm

We test the performance of the algorithm on a data set prepared by medical the
experts. Given Imaging’s Pillcam SB capsule was used to collect the videos in the
University Hospital of Coimbra. To make the data set representative, the images
were collected from 4 patients video segments. The data set consists of 27 blood
images and 663 normal images. We use standard performance measures: sensitivity,
specificity and accuracy. These are defined as follows:

Sensitivity =
TP

TP+FN
, Specificity =

TN
TN+FP

,

Accuracy =
TN+TP

TN+FP+TP+FN
,

where TP, FN, FP and TN represent the number of true positives, false negatives,
false positives and true negatives, respectively. For a particular decision threshold
T, if for an image frame J, DF > T, it is a positive frame; if DF ≤ T, it is a negative
frame. If J belongs to the class of blood image frames and it is classified as negative,
it is counted as a false negative; if it is classified as positive, it is counted as a true
positive. If J belongs to the class of non-blood image frames and it is classified as
positive, it is counted as a false positive; if it is classified as negative, it is counted
as a true negative.

Sensitivity represents the ability of the algorithm to correctly classify an image
as a frame containing blood, while specificity represents the ability of the algorithm
to correctly classify an image as a non-blood frame. The third measure, accuracy, is
used to assess the overall performance of the algorithm. There is also another perfor-
mance measure commonly used in the literature, false alarm rate (FAR). However,
it can be computed from the specificity: FAR=1-Specificity.

Receiver operating characteristic (ROC) curve is a fundamental tool for detection
evaluation. In a ROC curve sensitivity is plotted in function of FAR. Each point
on the ROC curve represents a sensitivity/FAR pair corresponding to a particular
decision threshold. It shows the tradeoff between sensitivity and specificity. Figure
5 represents the ROC curve with respect to the function DF. For FAR≤ 10%, the
best sensitivity achieved is 70.37%. In particular, the sensitivity, FAR and accuracy
obtained are 70.37%, 9.6% and 89.56%, respectively, for the threshold 2.8928E +
007. In summary, these results show that the presented algorithm is very promising
for the detection of blood regions.

62



10 S. Kumar, I. N. Figueiredo, C. Graca and G. Falcao

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

FAR = 1 − Specificity

S
en

si
tiv

ity

Fig. 5 ROC curve for function DF.

4 Speeding up the segmentation and detector performance

In this section we describe general facts about the apparatus specifications. In par-
ticular, we detail the GPUs adopted and the underlying architectures. Finally, we
address the parallelization of the algorithms proposed, namely by detailing the seg-
mentation and blood detector parallelization procedures on the GPU, and reporting
the results obtained for the current medical dataset.

The pipeline of the algorithm, described in Section 2, has been first implemented
on a CPU Intel Core i7 950 @ 3.07GHz, with 12GB of RAM, running a GNU/Linux
kernel 3.8.0-31-generic. The C/C++ code was compiled using GCC-4.6.3.

In order to process more frames per second, the segmentation and blood detector
steps have been paralellized, for executing on GPU NVidia C2050 and NVidia GTX
680, compiled using NVIDIA Compute Unified Device Architecture (CUDA) driver
5.5 [21].

4.1 General overview of the GPU architecture

The host system usually consists of a CPU that orchestrates the entire processing
by sending data and launching parallel kernels on the GPU device. At the end of
processing, it collects computed data from the device and terminates execution. The
parallelization of segmentation and blood detection procedures is carried out using
the CUDA parallel programming model, by exploiting the massive use of thread-

63



A GPU accelerated algorithm for blood detection in WCE images 11

CPU

(Host)

Grid on GPU Image on GPU Memory

__global__ void scaleImage(float* y, const uint n){

// (uint i) is an equivalent of pixel index of image

uint i = blockIdx.x * blockDim.x + threadIdx.x;

if (i < n){ // verify if index is valid

y[i] = (maximum * y[i]) + 1; // scale

}

T(0,0) T(x,y)

Block (Bx-1,By-1)

Block

(Bx-1,0)

Block

(0,0)

Block

(0,By-1)

// Execution code by T(x,y) 

P(x,y)

Fig. 6 Demonstration of the structure of a grid and thread blocks and how the same segment of
code is executed by multiple threads. Each thread computes the result for one pixel.

and data-parallelism on the GPU. CUDA allows the programmer to write in a trans-
parent way, scalable parallel C code [21] on GPUs.

As shown in Figure 6, each thread processes one pixel and thus multiple ele-
ments can be processed at the same time. This introduces a significant reduction
in the global processing time of the proposed algorithm. When the host launches a
parallel kernel, the GPU device executes a grid of thread blocks, where each block
has a predefined number of threads executing the same code segment. Organized
in groups of 32 threads (a warp), they execute synchronously and are time-sliced
among the stream processors of each multiprocessor.

Figure 7 depicts a simplified overview of the GPU architecture. It shows that
several multiprocessors contain a large number of stream processors (the number
of stream processors and multiprocessors depends on the model and architecture of
the GPU). In the present case, the NVidia GTX 680 GPU, which contains 8 multi-
processors with each multiprocessor containing 192 stream processors, performing
a total of 1536 CUDA cores, executes the algorithm faster.

Before processing starts on the GPU, data is uploaded to device memory. This
process is typically slow and consists in transferring the information from the host
CPU memory to the GPU global memory (device). At the end of the processing,
results are transferred from the GPU device global memory to the host CPU RAM
memory.

64



12 S. Kumar, I. N. Figueiredo, C. Graca and G. Falcao

Shared Memory

GPU Device

Multiprocessor

N-1

Multiprocessor

0

Image on Global Memory

Fast

Shared Memory
Fast

Shared Memory

SP SP

SP SP

SP SP

SP SP

CPU

(Host)

Execution on

Multiprocessor

Thread block (x,y)

T(0,0) T(x,y)

P(x,y)

Fig. 7 Simplified GPU arquitecture. An example of how thread blocks are processed on GPU
multiprocessors. A multiprocessor can execute more then one thread block concurrently.

In the GPU, there are several memory types and they have different impacts on
the throughput performance. We highlight two of them:

• Global memory accesses are time consuming operations with high latency and
may represent a bottleneck in the desired system’s performance. Instead, co-
alesced accesses should be performed whenever possible. They imply data in
global memory to be contiguously aligned, so that all 32 threads within a warp
can access the respective 32 data elements concurrently on the same clock cycle,
with thread T(x,y) accessing pixel P(x,y), as depicted in Figure 8.

• Also, modern GPUs have small and fast blocks of memory tightly coupled to the
cores, which is shared by all threads within the same block. We can have several
threads processing the same local data to optimize memory bandwidth (typically
shared memory is faster than global memory when we need to share informa-
tion among several threads), but shared memory is small in size. To maximize
its use and performance, it is important to consider such size limitations. When
large amounts of data have to be processed, data has to be partitioned in smaller
blocks in order not to exceed the limits of shared memory. This action also rep-
resents penalties, since it increases the amount of data exchanges with global
memory. Therefore, in the current work we use shared memory for calculating
some procedures and global memory to perform the remaining functionalities,
globally achieving an efficient memory usage as reported in later subsections.

65



A GPU accelerated algorithm for blood detection in WCE images 13

Image Data

warp_0

Thread Block (0,0)

warp_0warp_0warp_0

T(0,0) T(0,31)

data alignment

data on device 

global memory

warp_0

T(0,2)T(0,0)

T(0,1) T(0,3) T(0,29) T(0,31)

T(0,28) T(0,30)

image data

Fig. 8 Coalesced memory accesses illustrating a warp of 32 threads reading/writing the respective
32 data elements on a single clock cycle.

4.2 Segmentation parallelization

Some functions in the segmentation procedure, mentioned in Section 2.2, need to
share image data between threads (e.g. neighboring pixels on the convolution pro-
cedure). Therefore, the use of shared memory is the best option to achieve a higher
speedup (see [16] for a related work). These functions are: finding maximum and
mean values, and 2D separable convolution [13]. All other functions perform slower
if shared memory is used, because the total number of transactions to global memory
will be greater.

The results of maximum and mean values are processed in two steps: the first
step uses GPU grids with 256 × 256 block size; the second step uses 1 × 256 ; and
in the 2D convolution, block sizes of dimension 16×16 are used.

The remaining functions in the segmentation step always use global memory and
1296×256 block sizes.

Processing Platform Segmentation execution time (ms) Segmentation (fps)
CPU Intel i7 240.0 4.2

GPU NVidia C2050 6.0 166.7
GPU NVidia GTX 680 4.8 208.3

Table 1 Computation times in milliseconds (ms) for the segmentation procedure and throughput
measured in frames per second (fps). The tests were performed on WCE images with 576 × 576
pixels.

The computation times regarding the segmentation procedure are represented in
Table 1, that shows the real speedups obtained using parallel computation on the

66



14 S. Kumar, I. N. Figueiredo, C. Graca and G. Falcao

GPU; as displayed, this procedure runs 40 times faster on GPU NVidia C2050 and
50 times faster on GPU NVidia GTX 680, when compared to an Intel i7 CPU.

4.3 Blood detector parallelization

For speeding up the blood detector procedure, described in Section 2.3, we only
use one function that shares image data between threads: 2D separable convolution
[13]. The remaining functions perform slower if we use shared memory because the
total number of transactions to global memory would assume a higher impact. The
results of 2D separable convolution are computed using block sizes of dimension
16 × 16 and 8 × 8 for the scale values s = [8 10] and s = [12 14] (see Section 2.3),
respectively. All other functions always use global memory blocks with size 8×8.

The computation times of the blood detector procedure are presented in Table 2.
We clearly see the speedup obtained using parallel computation on GPU. This algo-
rithm runs 58.9 times faster on GPU NVidia C2050 and 59.5 times faster on GPU
NVidia GTX 680, when compared to an Intel i7 CPU.

Processing Platform Blood Detector execution time (ms) Blood Detector (fps)
CPU Intel i7 529.9 1.9

GPU NVidia C2050 9.0 111.1
GPU NVidia GTX 680 8.9 112.4

Table 2 Computation times in millisecons (ms) for the blood detector procedure and throughput
measured in frames per second (fps). The tests were performed on WCE images with 576 × 576
pixels.

4.4 Speedup

Table 3 shows throughput measured in frames per second (fps) and the speedup of
the full algorithm achieved. It can be seen that GPU NVidia GTX 680 is faster than
NVidia C2050.

Processing Platform Segmentation and Blood Detector (fps) Speedup
CPU Intel i7 1.3 ——-

GPU NVidia C2050 66.7 51.3 times faster
GPU NVidia GTX 680 72.9 56.1 times faster

Table 3 Throughput measured in fps and speedup archived to the complete algorithm (Segmenta-
tion and Blood Detector). Tests performed on WCE images with 576×576 pixels.

67



A GPU accelerated algorithm for blood detection in WCE images 15

With the obtained speedup, the GPU NVidia GTX 680 shows to be able of pro-
cessing 72 fps, which is equivalent to observe that the approximate total number of
56000 frames, generated by a complete WCE exam, can be computed in less than
13 minutes.

5 Conclusions

With the rapidly enhancing performances of graphics processors, improved pro-
gramming support, and excellent price-to-performance ratio, GPUs have emerged
as a competitive parallel computing platform for computationally expensive and de-
manding tasks in a wide range of medical image applications. We have proposed a
GPU-based framework for blood detection in WCE images. The core of the algo-
rithm lies in the definition of a good discriminator for blood and non-blood frames.
This is accomplished by choosing a suitable color channel, image Hessian eigen-
value analysis and multiscale image analysis approach. Experimental results for our
current dataset show that the proposed algorithm is effective, and achieves 89.56%
accuracy. Moreover, it is shown that the accelerated procedure is on average 50 times
faster than the original one, and is able of processing 72 frames per second. This is
achieved by parallelizing the two crucial steps, segmentation and blood detector
functionalities in the algorithm, that were consuming most of the global processing
time. To perform these steps more efficiently we now run parallel code on GPUs
with an appropriate use of memory (shared and global). This novel approach allows
processing multiple pixels of an image at the same time, thus sustaining the obtained
throughput levels.

Acknowledgements This work was partially supported by the project PTDC/MATNAN/0593/2012,
and also by CMUC and FCT (Portugal), through European program COMPETE/ FEDER and
project PEst-C/MAT/UI0324/2011. The work of Gabriel Falcao was also partially supported by
Instituto de Telecomunicações and by the project PEst-OE/EEI/LA0008/2013.

References

1. Bashar, M., Kitasaka, T., Suenaga, Y., Mekada, Y., Mori, K.: Automatic detection of informa-
tive frames from wireless capsule endoscopy images. Medical Image Analysis 14, 449–470
(2010)

2. Bresson, X., Esedoglu, S., Vandergheynst, P., Thiran, J.P., Osher, S.: Fast global minimization
of the active contour/snake model. J Math. Imaging Vis. 28, 151–167 (2007)

3. Chan, T.F., Vese, L.A.: Active contours without edges. IEEE Trans. Image Processing 10,
266–277 (2001)

4. Coimbra, M., Cunha, J.: MPEG-7 visual descriptors-contributions for automated feature ex-
traction in capsule endoscopy. IEEE Transactions on Circuits and Systems for Video Technol-
ogy 16, 628–637 (2006)

68



16 S. Kumar, I. N. Figueiredo, C. Graca and G. Falcao

5. Cui, L., Hu, C., Zou, Y., Meng, M.Q.H.: Bleeding detetction in wireless capsule endoscopy
images by support vector classifier. In: Proceedings of the 2010 IEEE Conference on Infor-
mation and Automation, pp. 1746–1751. Harbin, China (June 2010)

6. Cunha, J.P.S., Coimbra, M., Campos, P., Soares, J.M.: Automated topographic segmentation
and transit time estimation in endoscopic capsule exams. IEEE Transactions on Medical Imag-
ing 27, 19–27 (2008)

7. Figueiredo, I.N., Kumar, S., Figueiredo, P.N.: An intelligent system for polyp detection in
wireless capsule endoscopy images. In: Computational Vision and Medical Image Processing
IV: VIPIMAGE 2013, ISBN: 9781315812922, pp. 229–235. Madeira Island, Funchal, Portu-
gal (2013)

8. Figueiredo, I.N., Kumar, S., Leal, C., Figueiredo, P.N.: An automatic blood detection algo-
rithm for wireless capsule endoscopy images. In: Computational Vision and Medical Image
Processing IV: VIPIMAGE 2013, ISBN: 9781315812922, pp. 237–241. Madeira Island, Fun-
chal, Portugal (2013)

9. Figueiredo, I.N., Kumar, S., Leal, C., Figueiredo, P.N.: Computer-assisted bleeding detection
in wireless capsule endoscopy images. Computer Methods in Biomechanics and Biomedical
Engineering: Imaging & Visualization 1, 198–210 (2013)

10. Francis, R.: Sensitivity and specificity of the red blood identification (RBIS) in video capsule
endoscopy. In: 3rd INt. Conf. Capsule Endoscopy. Miami, FL, USA (Feb 2004)

11. Frangi, A.F., Niessen, W.J., Vincken, K.L., Viergever, M.A.: Multiscale vessel enhancement
filtering. In: Medical Image Computing and Computer-Assisted Intervention, pp. 130–137.
Cambridge, MA, USA (1998)

12. Idan, G., Meron, G., Glukhovsky, A.: Wireless capsule endoscopy. Nature 405, 417–417
(2000)

13. Lee, H., Harris, M., Young, E., Podlozhnyuk, V.: Image convolution with CUDA. NVIDIA
Corporation (2007)

14. Li, B., Q.-H-Meng, M.: Computer-aided detection of bleeding regions for capsule endoscopy
images. IEEE Transactions on Biomedical Engineering 56, 1032–1039 (2009)

15. Liedlgruber, M., Uhl, A.: Computer-aided decision support systems for endoscopy in the gas-
trointestinal tract: a review. IEEE Reviews in Biomedical Engineering 4, 73–88 (2011)

16. Martins, M., Falcao, G., Figueiredo, I.N.: Fast aberrant crypt foci segmentation on the GPU.
In: ICASSP’13: Proceedings of the 36th IEEE International Conference on Acoustics, Speech
and Signal Processing. IEEE (2013)

17. Ohta, Y.I., Kanade, T., Sakai, T.: Color information for region segmentation. Computer Graph-
ics and Image Processing 13, 222–241 (1980)

18. Pan, G., Xu, F., Chen, J.: A novel algorithm for color similarity measurement and the ap-
plication for bleeding detection in WCE. I.J. Image, Graphics and Signal Processing 5, 1–7
(2011)

19. Park, S.C., Chun, H.J., Kim, E.S., Keum, B., Seo, Y.S., Kim, Y.S., Jeen, Y.T., Lee, H.S., Um,
S.H., Kim, C.D., Ryu, H.S.: Sensitivity of the suspected blood indicator: An experimental
study. World J. Gastroenterolgy 18(31), 4169–4174 (2012)

20. Penna, B., Tilloy, T., Grangettoz, M., Magli, E., Olmo, G.: A technique for blood detection in
wireless capsule endoscopy images. In: 17th European Signal Processing Conference (EU-
SIPCO 2009), pp. 1864–1868 (2009)

21. Podlozhnyuk, V., Harris, M., Young, E.: NVIDIA CUDA C programming guide. NVIDIA
Corporation (2012)

22. Zheng, Y., Yu, J., Kang, S.B., Lin, S., Kambhamettu, C.: Single-image vignetting correction
using radial gradient symmetry. In: Proceedings of the 26th IEEE Conference on Computer
Vision and Pattern Recognition (CVPR ’08), pp. 1–8. Los Alamitos, Calif., USA (June 2008)

69



B. Appendix B

70



C
Appendix C

71



Journal of Real-Time Image Processing manuscript No.
(will be inserted by the editor)

Carlos Graca 1 · Gabriel Falcao 1 · Isabel N. Figueiredo 2 · Sunil Kumar 2

Hybrid GPU-GPU computing: accelerated kernels for segmentation
and object detection with medical image processing applications

Received: date / Revised: date

Abstract The last two decades have seen an amazing devel-
opment of image processing techniques targeted for medi-
cal applications. We propose hybrid GPU-GPU based par-
allel algorithms for segmentation and object detection, aim-
ing at accelerating two medical image processing methods:
automated blood detection in wireless capsule endoscopy
(WCE) images and automated bright lesion detection in reti-
nal fundus images. In the former method we identified seg-
mentation and object detection as being responsible for con-
suming most of the global processing time. While in the
latter, as segmentation was not used, object detection was
the compute-intensive task identified. Experimental results
show that the accelerated method running on hybrid GPU-
GPU systems for blood detection in WCE images is on av-
erage 168 times faster than the original CPU version and
is able to process 218 frames per second. By applying the
hybrid GPU-GPU framework for bright lesion detection in
fundus images we are able to process 30 frames per second
with a speedup average 324 times faster than the equivalent
CPU version.

Keywords Segmentation, Shape-based object detection,
Wireless capsule endoscopy, Fundus images, Automated
diagnosis, Parallel image processing, Hybrid GPU-GPU
Systems

1 Introduction

Segmentation and object detection are two fundamental prob-
lems in computer vision which have been a major focus of

1

Instituto de Telecomunicações, Department of Electrical and Computer
Engineering, Faculty of Science and Technology, University of Coim-
bra, 3030-290 Coimbra, Portugal.
E-mail: cgraca@co.it.pt E-mail: gff@co.it.pt
2

CMUC, Department of Mathematics, University of Coimbra, 3001 -
501 Coimbra, Portugal.
E-mail: isabelf@mat.uc.pt E-mail: skumar@mat.uc.pt

research activities. Segmentation is the process of partition-
ing an image into distinct regions containing pixels with
similar attributes. Many computer vision applications apply
image segmentation techniques during preprocessing to re-
duce image information for increased processing efficiency.
Some of the applications of image segmentation are in locat-
ing tumors and other pathologies, in satellite images (roads,
forests, crops, etc.), in face recognition, in finger print recog-
nition, in locating aberrant Crypt Foci, and others. In the
problem for object detection we are interested in shape-based
object detection, in particular objects that have blob/tubular
shapes. Blob/tubular detection refers to methods that are aimed
at detecting clustered points in the image that are either brighter
or darker than the surrounding region. Detection of blob
and/or tubular structures in images is an important step in
the analysis of large-scale scientific data, as for example,
detection of bleeding/blood regions in WCE images, bright
lesions in fundus images, nodule detection in thorax x-ray
images, nuclei detection in microscopic zebrafish images,
enhancement of vascular structures, detection of lesions in
images of multiple sclerosis patients, to name a few.

The purpose of this paper is to develop hybrid GPU-GPU
based parallel algorithms for segmentation and shape-based
object detection, aiming at accelerating two recently pro-
posed medical image processing methods: automated blood
detection in wireless capsule endoscopy (WCE) images [9]
and automated bright lesions detection in retinal fundus im-
ages [7]. WCE (see Figure 1) has emerged as a powerful
tool in the diagnosis of diseases of the gastrointestinal tract,
and in particular of the small intestine. One of the main lim-
iting factor of this technology is that it produces a huge
number of images, whose analysis, to be performed by a
doctor, is an extremely time consuming process. In recent
years, we have seen some developments of the methods used
for automatic inspection of WCE images, improving the de-
tection of bleeding/blood, ulcers, polyps and tumors (see
[2, 4, 5, 6, 16, 19, 20, 17, 10, 8, 14] and the references
therein). All these methods were developed aiming at high
classification accuracy. The natural next step would be to
build a real-time method with high classification accuracy
for automatically inspecting WCE images. With this goal in

72



2

(a) (b)

Fig. 1 (a) Image of the PillCam SB capsule. (b) Interior and compo-
nents of the capsule.

mind, we developed a real-time system for automated blood
detection in WCE images. The current method consists of
an accelerated version of the method in [9] that was shown
high classification accuracy. In the method of [9] we iden-
tified two crucial steps, segmentation (for discarding non-
informative regions in the image that can interfere with the
blood detection) and shape-based object detection (for con-
structing an appropriate blood detector function) being re-
sponsible for consuming most of the global processing time.

Our second medical image processing method is related
to diabetic retinopathy (DR), which is a serious sight threat-
ening complication caused by diabetes. Early detection and
treatment can limit the potential for significant vision loss
caused from DR. Therefore, retinal fundus images (see Fig-
ure 2) are routinely ordered to a diabetic patient for any
possible abnormality in eyes. DR lesions may be classified
as red lesions, such as microaneurysms and hemorrhages,
and bright lesions, such as exudates, drusen and cotton-wool
spots. Automated detection and diagnosis of DR through the
processing of retinal fundus images is a necessary step for
the implementation of a large scale screening of diabetic pa-
tients. Recent years have witnessed developments of other
methods, aiming at high classification accuracy, for detec-
tion of various DR lesions (see [7, 1, 22, 23] and the ref-
erences therein). In this paper we develop an accelerated
version of the method [7] proposed for automated detection
of bright lesions in fundus images. In the algorithm shape-

Optic Disc

(a)

Exudates

(b)

Fig. 2 a) A normal retina fundus image. b) Bright lesion visible in a
retina fundus image.

based object detection (for constructing an appropriate func-
tion for bright lesion detection) was the step responsible for
consuming most of the global processing time. The retinal
fundus images are captured using a Topcon TRC NW100
non-mydriatic retinal camera, thus producing large and compute-
intensive high definition (HD) images.

As a first approach, segmentation and shape-based ob-
ject detection algorithms using parallel C code are developed
to run on a single-GPU (graphics processing units) multi-
processor. Next, a suitable hybrid GPU-GPU framework is
proposed for speeding up the segmentation and shape-based
detection execution times even further. In hybrid GPU-GPU
assemblies we exploit a balanced distribution of GPU re-
sources, thereby deciding how many images are processed
on each GPU. This decision is made by a training process,
which checks how many CUDA devices are available on the
machine and runs several times the single-GPU versions in
all available CUDA devices. With average of single-GPU
execution times, we are able to calculate a suitable profile
and workload distribution between all GPUs. This training
process just needs to be performed once, in order to build a
configuration file.

When we apply the segmentation and shape-based ob-
ject detection on WCE images, experiments show that the
accelerated single-GPU setup procedure is on average 92
times faster than the original one executed on CPU and is
capable of processing 119 frames per second. Our best hy-
brid GPU-GPU approach is on average 168 times faster than
the original one (CPU version) and is able to process 218
frames per second. On HD retinal fundus images we only
have to apply shape-based object detection, and the fastest
single-GPU system can process 16 frames per second with
an average speedup of 179 times. In hybrid GPU-GPU mode
we are able to process 30 frames per second, with an average
speedup of 324 when compared to the original CPU version.
Note that in both applications, we use original images pro-
vided by professional medical imaging equipments without
manipulation or resizing.

This paper is structured as follows. In Section 2 we de-
scribe segmentation and shape-based object detection ap-
proaches and their application in medical image processing;
in particular, we analyse the case studies of blood detection
in WCE images and bright lesion detection in fundus im-
ages. Parallelization of the proposed methods is described
in 3. Illustration of some results is provided in Section 4,
while reported speedups using single-GPU assemblies are
described in Section 5. A detailed time analysis of hybrid
GPU-GPU computing is presented in Section 6. Finally, we
close the paper in Section 7.

2 Segmentation and object detection approaches

2.1 Variational image segmentation

The segmentation method relies on a reformulation of the
Chan and Vese variational model (see [3]), and is briefly de-

73



Temporarily unavailable for 
review

74



12

helpful in many computer vision applications. The proposed
framework is applied to WCE images for detecting blood re-
gions, and to HD retinal fundus images for detecting bright
lesion regions. The present hybrid GPU-GPU approach is
capable to process blood detection and bright lesion detec-
tion procedures 1.83 and 1.81 times faster, respectively, than
with the best single-GPU version (NVidia GTX TITAN).
This speedup is achieved by parallelizing two crucial steps,
segmentation and shape-based object detection functionali-
ties in the algorithm, that were consuming most of the global
processing time. In order to perform these steps more effi-
ciently, we make an appropriate use of memory (shared and
global) supported by parallel C code running on GPUs. This
novel approach allows processing multiple pixels of an im-
age concurrently, and hybrid GPU-GPU assemblies allows
to process more than one image at the same time in distinct
devices, thus sustaining the obtained throughput levels.

It is shown that in the blood detection on WCE images
the accelerated procedure running on faster single-GPU ver-
sion is on average 92 times faster than the original sequen-
tial CPU version, and is able of processing 119 frames per
second. The proposed hybrid GPU-GPU system with Dual
GPU NVidia GTX TITAN shows to be capable of process-
ing 218 fps, which allows that the approximate total num-
ber of 56000 frames, generated by a complete WCE exam,
can be computed in less than 5 minutes. In HD retinal fun-
dus images only shape-based object detection is used, and
the fastest single-GPU system can process 16 frames per
second with an average speedup of 179 times compared to
sequential CPU version. In the proposed hybrid GPU-GPU
system we can process 30 frames per second with an aver-
age speedup 324 times faster than the original CPU version.
With such high throughputs we are able to build real-time
systems to automatically detect bright lesions in fundus im-
ages and blood in WCE images, which may help the medical
practitioner improving the diagnosis procedure.

Acknowledgements This work was partially supported by the project
PTDC/MATNAN/0593/2012, and also by CMUC and FCT (Portugal),
through European program COMPETE/FEDER and project PEst-C/
MAT/UI0324/2011. The work was also partially supported by Instituto
de Telecomunicações and by project PEst-OE/EEI/LA0008/2013.

References

1. Akram, M.U., Tariq, A., Khan, S.A., Javed, M.Y.: Auto-
mated detection of exudates and macula for grading of
diabetic macular edema. Computer Methods and Pro-
grams in Biomedicine 114, 141–152 (2014)

2. Bashar, M., Kitasaka, T., Suenaga, Y., Mekada, Y.,
Mori, K.: Automatic detection of informative frames
from wireless capsule endoscopy images. Medical Im-
age Analysis 14, 449–470 (2010)

3. Bresson, X., Esedoglu, S., Vandergheynst, P., Thiran,
J.P., Osher, S.: Fast global minimization of the active
contour/snake model. J Math. Imaging Vis. 28, 151–
167 (2007)

4. Coimbra, M., Cunha, J.: MPEG-7 visual descriptors-
contributions for automated feature extraction in cap-
sule endoscopy. IEEE Transactions on Circuits and Sys-
tems for Video Technology 16, 628–637 (2006)

5. Cui, L., Hu, C., Zou, Y., Meng, M.Q.H.: Bleeding de-
tetction in wireless capsule endoscopy images by sup-
port vector classifier. In: Proceedings of the 2010 IEEE
Conference on Information and Automation, pp. 1746–
1751. Harbin, China (2010)

6. Cunha, J.P.S., Coimbra, M., Campos, P., Soares, J.M.:
Automated topographic segmentation and transit time
estimation in endoscopic capsule exams. IEEE Trans-
actions on Medical Imaging 27, 19–27 (2008)

7. Figueiredo, I.N., Kumar, S.: Wavelet-based computer-
aided detection of bright lesions in retinal fundus im-
ages. In: Y. Zhang, J. Tavares (eds.) Computational
Modeling of Objects Presented in Images. Fundamen-
tals, Methods, and Applications, Lecture Notes in Com-
puter Science, vol. 8641, pp. 234–240 (2014)

8. Figueiredo, I.N., Kumar, S., Figueiredo, P.N.: An in-
telligent system for polyp detection in wireless cap-
sule endoscopy images. In: Computational Vision and
Medical Image Processing IV: VIPIMAGE 2013, ISBN:
9781315812922, pp. 229–235. Madeira Island, Funchal,
Portugal (2013)

9. Figueiredo, I.N., Kumar, S., Leal, C., Figueiredo, P.N.:
An automatic blood detection algorithm for wireless
capsule endoscopy images. In: Computational Vision
and Medical Image Processing IV: VIPIMAGE 2013,
ISBN: 9781315812922, pp. 237–241. Madeira Island,
Funchal, Portugal (2013)

10. Figueiredo, I.N., Kumar, S., Leal, C., Figueiredo, P.N.:
Computer-assisted bleeding detection in wireless cap-
sule endoscopy images. Computer Methods in Biome-
chanics and Biomedical Engineering: Imaging & Visu-
alization 1, 198–210 (2013)

11. Frangi, A.F., Niessen, W.J., Vincken, K.L., Viergever,
M.A.: Multiscale vessel enhancement filtering. In: Med-
ical Image Computing and Computer-Assisted Interven-
tion, pp. 130–137. Springer, Heidelberg (1998)

12. Frigo, M., Johnson, S.G.: The design and implementa-
tion of FFTW3. Proceedings of the IEEE 93(2), 216–
231 (2005). Special issue on “Program Generation, Op-
timization, and Platform Adaptation”

13. Graca, C., Falcao, G., Kumar, S., Figueiredo, I.N.:
Cooperative use of parallel processing with time or
frequency-domain filtering for shape recognition. In:
EUSIPCO 2014 (22nd European Signal Processing
Conference 2014) (EUSIPCO 2014). Lisbon, Portugal
(2014)

14. Kumar, S., Figueiredo, I.N., Graca, C., Falcao, G.: A
gpu accelerated algorithm for blood detection in wire-
less capsule endoscopy images. In: Tavares, J.M. and
Renato, R.S.N.J. (eds) Developments in Medical Image
Processing and Computational Vision. Lecture Notes
in Computational Vision and Biomechanics. Springer
(2014)

75



13

15. Lee, H., Harris, M., Young, E., Podlozhnyuk, V.: Image
convolution with CUDA. NVIDIA Corporation (2007)

16. Li, B., Q.-H-Meng, M.: Computer-aided detection of
bleeding regions for capsule endoscopy images. IEEE
Transactions on Biomedical Engineering 56, 1032–
1039 (2009)

17. Liedlgruber, M., Uhl, A.: Computer-aided decision sup-
port systems for endoscopy in the gastrointestinal tract:
a review. IEEE Reviews in Biomedical Engineering 4,
73–88 (2011)

18. Martins, M., Falcao, G., Figueiredo, I.N.: Fast aberrant
crypt foci segmentation on the GPU. In: ICASSP’13:
Proceedings of the 36th IEEE International Confer-
ence on Acoustics, Speech and Signal Processing. IEEE
(2013)

19. Pan, G., Xu, F., Chen, J.: A novel algorithm for color
similarity measurement and the application for bleed-
ing detection in WCE. I.J. Image, Graphics and Signal
Processing 5, 1–7 (2011)

20. Penna, B., Tilloy, T., Grangettoz, M., Magli, E., Olmo,
G.: A technique for blood detection in wireless capsule
endoscopy images. In: 17th European Signal Processing
Conference (EUSIPCO 2009), pp. 1864–1868 (2009)

21. Podlozhnyuk, V., Harris, M., Young, E.: NVIDIA
CUDA C programming guide. NVIDIA Corporation
(2012)

22. Usman Akram, M., Khalid, S., Tariq, A., Khan, S.A.,
Azam, F.: Detection and classification of retinal lesions
for grading of diabetic retinopathy. Computers in biol-
ogy and medicine 45, 161–71 (2014)

23. Zhang, X., Thibault, G., Decencire, E., Marcotegui, B.,
La, B., Danno, R., Cazuguel, G., Quellec, G., Lamard,
M., Massin, P., Chabouis, A., Victor, Z., Erginay, A.:
Exudate detection in color retinal images for mass
screening of diabetic retinopathy. Medical Image Anal-
ysis 18, 1026 – 1043 (2014)

76



77


	Titlepage
	Abstract
	Resumo
	Index
	Contents
	List of Figures
	List of Tables
	List of Acronyms

	1 Introduction
	1.1 Motivation
	1.2 Objectives
	1.3 Main contributions
	1.4 Dissertation outline

	2 Shape-Based Detection Theory
	2.1 Blood Detection Color Space
	2.2 Exudates Detection Color Space
	2.3 Segmentation Function
	2.3.1 Segmentation Results

	2.4 Shape-Based Detector Function
	2.5 Blood Detector Configuration
	2.6 Exudates Detector Configuration
	2.7 Blood Detector Outline
	2.8 Exudates Detector Outline
	2.9 Blood Detection Results
	2.9.1 Blood Images
	2.9.2 Non Blood Images

	2.10 Exudates Detection Results

	3 Parallelization of the algorithm
	3.1 General overview of the GPU architecture
	3.1.1 Simple Tips to Efficient Parallelization

	3.2 Filtering Parallelization
	3.2.1 Principles Behind Separable Time-Domain Filtering
	3.2.1.A Separable Filtering CUDA


	3.3 Blood detector parallelization
	3.3.1 Segmentation parallelization
	3.3.2 Detector parallelization

	3.4 Exudates detection parallelization
	3.5 Hybrid GPU-GPU Computing

	4 Experimental Results and Speedup
	4.1 Results Using Single-GPU Systems
	4.1.1 Blood detection results
	4.1.1.A Segmentation results
	4.1.1.B Detection results
	4.1.1.C Complete blood detection procedure - Global Speedup

	4.1.2 Exudates detection results

	4.2 Results Using Multi-GPU Systems
	4.2.1 Blood detection results
	4.2.1.A Segmentation results
	4.2.1.B Detection results
	4.2.1.C Complete blood detection procedure - Global Speedup

	4.2.2 Exudates detection results


	5 Conclusions
	5.1 Future Work

	Bibliography
	A Appendix A
	B Appendix B
	C Appendix C

