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Abstract

Least squares prediction is a technique used for foreseeing pixel values during im-
age coding by finding the minimum square error of neighboring pixels. It has shown
considerable gains in performance, especially for complex images with high variations
in pixel intensities (i.e., edges). The drawback of this technique consists of high com-
putational complexity, which makes it difficult to implement in fast, lossy image coders.
One challenge of this thesis is therefore to reduce the computational time of this predictor
through the use of some parallel techniques, making it more attractive for state-of-the-art
Coder-Decoder (CODEC)s. Also, a couple of algorithmic propositions were made, trying
to reduce the time spent in exchange for acceptable loss in rate-distortion performance.
These propositions are senseful since this predictor is used not only in lossless but also
in lossy image coding. Another aim of our work is to analyze energy efficiency among
different types of platforms for this signal processing algorithm. We provide comparisons
from very powerful to low-cost, General Purpose Graphics Processing Units (GPGPUS).

Keywords

Least squares prediction, Image prediction, Multidimensional Multiscale Parser (MMP),
Image coding, Lossy image coding, Parallel processing, Graphics Processing Unit (GPU)
processing, Energy efficiency, Manycore platforms



Resumo

A prediçāo pelos mı́nimos quadrados é uma técnica usada para prever os valores dos
pı́xeis durante o processo de codificaçāo de uma imagem através do cálculo do erro
mı́nimo quadrático dos seus pı́xeis vizinhos. Esta técnica já mostrou ganhos de quali-
dade no processo de codificaçāo especialmente para imagens complexas, com grandes
variações de intensidades de pixeis (vulgo, arestas). O aspeto negativo desta técnica con-
siste no seu alto custo computacional, que a torna de difı́cil implementaçāo em codifi-
cadores de imagens rápidos e com perdas. Um dos desafios desta tese é, portanto, o
de reduzir o tempo computacional deste preditor através do uso de algumas práticas de
computaçāo paralela, que o tornarāo mais atrativo a ser incorporado nos Codificadores-
Descodificadores (CODECs)s do estado da arte. Par além disso, sāo aqui propostas algu-
mas melhorias para este preditor em termos algorı́tmicos, que visam também a reduzir o
tempo gasto em troca de alguma qualidade final da codificaçāo. Estas propostas fazem
todo o sentido uma vez que este preditor é não só usado em codificaçāo sem perdas, mas
também com perdas. Outro objetivo do nosso trabalho consiste em analizar a eficiência
energética para várias plataformas de computaçāo para este algoritmo de processamento
de sinal. Fazemos comparações desde GPUs de grande potência até GPUs de baixo custo
para fins gerais.

Palavras Chave

Prediçāo mı́nimos quadrados, Prediçāo de Imagem, MMP, Codificaçāo de imagem,
Codificaçāo de imagem com perdas, Processamento paralelo, Processamento em GPU,
Eficiência energética, Plataformas manycore
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1. Introduction

Prediction is an important process to reduce the amount of information stored in image
coding. There are a lot of different prediction modes, each appropriate to a certain set of
image characteristics. For smooth images, low complexity predictors may do the job...
but for complex, compound images, these predictors may not suffice. For hard images
(with sudden variations in pixel intensities, i.e., edges), there is a particular predictor that
tends to increase performance: the Least Squares Predictor (LSP). The LSP is especially
good at predicting edges, but even for text and compound images, it does not present rate-
distortion losses [3]. LSP is a generic predictor thay may be applied to any image coding
standard. In this thesis it is applied in the Multidimensional Multiscale Parser (MMP), a
context-based, adaptive codec that presents state-of-the-art performance in rate-distortion,
but lacks in computational speed.

These predictors are known for having a considerable impact on time consumption and
computational complexity and therefore the use in manycore platforms seems completely
justified.

Parallel computation is gaining an increased relevance in modern times, as hardware
becomes more and more powerful. Signal processing algorithms are generally time con-
strained and need the acceleration that parallel computation offers. Signal processing
images are especially vulnerable to delays. Mobile parallel processing platforms, too, are
evolving at a significant rate in terms of the number and power of the cores. They may
not have the processing power of modern desktops, but are cheaper and allow achieving
higher levels of energy efficiency.

1.1 Motivation

This thesis is all about exploring the possibilities of parallel computing on image
codecs and particularly high complexity predictors. This paralelization does not restrict
to platform types, as there is a comparison between mobile, desktop and super powerful
GPUs. It is a promising area of studies that stands on the idea that large problems can
often be divided into smaller ones, which can be solved concurrently, thus reducing the
processing time of programs. In order to follow the industry’s higher demands in time
response we need to explore the hardware capabilities of these devices. An additional
motivation for the realization of this thesis is the evolution of energy consumption levels
of recent devices... so an analysis on this metric between different platforms is timely and
essential for future studies.

The least squares prediction is the most time consumer of the whole MMP algorithm
proposed in [3]. This was the main initial motivation for this work.

2



1.2 Objectives

1.2 Objectives

This thesis aims at exploring the benefits of using parallel computing in signal pro-
cessing algorithms, specificaly: i) Obtaining time gains for the LSP (and consequently
the MMP) and comparing between desktop and mobile processors. Although the LSP
produces quality gains for almost all types of images, we need to reduce its time in or-
der to verify whether or not it represents a plausible predictor mode. This was made by
the use of several parallelization techniques conveniently illustrated. ii) Analyzing the
energy efficiency between different processors. Super-fast GPUs are known for driving
very high levels of compute-performance. While this may lead to significant reduction
in computation times, it may also lead to little energy efficiency, compared to low-cost,
general-purpose processors.

1.3 Main contributions

This thesis shows that the use of parallel computing in signal processing can offer
advantages in both time and energy efficiency. The results are thought to be particularly
good for complex image codecs (like the MMP), but even for less complex codecs it can
be an option to bear in mind. The results achieved with the mobile processor allow us to
claim with confidence that mobile platforms can play an important role in the future of
signal processing. This work resulted in the article ”Improving least squares prediction for
image coding using mobile parallel processing” submitted to the International Conference
on Acoustics, Speech, and Signal Processing and is availabe in Appendix A. Moreover, a
tutorial on OpenCL development on the Snapdragon processor was documented, to help
anyone who wants to enter the world of parallel processing on mobile devices, and is
presented in Appendix B.

1.4 Dissertation Outline

This thesis is structured in 6 chapters. It starts with a short introduction followed by
the principles of MMP in chapter 2. In chapter 3, we describe a family of mobile plat-
forms in parallel computing and we overview the Open Computing Language (OpenCL)
development framework, as well as a guide for development under android devices. In
chapter 4 we present some techniques used in the parallelization of LSP and we pro-
pose algorithmic optimizations. In chapter 5 we present our results regarding all tested
platforms. In the last chapter, a conclusion is made for the results obtained and we also
discuss future work, new goals and possibilities.
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2.1 Block matching

MMP comes with very interesting ideas of how image compression could be made.
Its potential has been taken into consideration and studied in the last years and several
approaches have been proposed. For this thesis I use the approach presented in [3] and
take the MMP as the basis of my work.

2.1 Block matching

MMP-based encoders make out for their recurrent pattern matching and extensive dic-
tionary search. This dictionary saves the most used elements (codewords) in the coding
procedure, and is therefore suitable for recurring input data.
Once a codeword is found in the input data, the corresponding dictionary index is entropy
encoded. Therefore, shorter length codes are attributed to frequently occurring code-
words. On the opposite side, elements that do not appear in the dictionary are encoded
in a less efficient manner. MMP exploits the probability of occurring a match between
blocks of different scales (due to the images self-similarity property). This means that
parts of the images are compared to others of different scales.

Figure 2.1: Similar parts of the image.

There are two possible outcomes of this. Either a similar match is found, or the block
has reached its last possible segmentation. In this case, the value that will be used for the
entropy coding is the corresponding pixel.

5



2. Multidimensional Multiscale Parser

Figure 2.2: Multiscale pattern matching procedure.

The result of this process is a binary segmentation tree. The tree leaves represent the
sub-blocks and the tree nodes represent a block segmentation (Figure 2.3).

Figure 2.1 highlights self-similar parts of the bike image and Figure 2.2 illustrates the
multiscale pattern matching process. This process is made in order to increase the prob-
ability of finding a similar match, since the number of elements tested is greater. Each
encoded block is divided if no similar match is found, regarding that particular scale.

Figure 2.3: Block segmentation.

The resulting bitstream is easy to decode. The segmentation flags sent by the encoder
are read by the decoder and a similar tree is constructed with the indexes correspondent

6



2.2 Improvements along time (overview)

to the dictionary codewords.
Also notice that the values of the output bitstream are encoded along with the block di-
mension, which enhances the performance of the arithmetic encoder (since the probability
of a block to be segmented is different for different sized blocks).

MMP stands out for its ability to be efficiently used in a wide variety of images. In
addition to this, MMP showed better results than H.264/AVC Intra mode [4] [5] or Joint
Photographic Experts Group (JPEG)2000 [6] for images resulted from computer graphics
or even scanned documents. For smooth images, however, it still lacks some robustness.

2.2 Improvements along time (overview)

2.2.1 MMP-Intra

MMP’s prediction was based on H.264/AVC standard [4]. For this algorithm, it was
applied only for a fixed block size of 16x16. MMP-Intra or MMP-I [7] [8] [9], was the
next prediction-based proposal.
Similar to the H.264/AVC standard [10], it used adaptive block size prediction, with
multiple block dimensions. There were three possible outcomes to the new block seg-
mentation:

• No segmentation

• Segmentation just on the residue block

• Segmentation on the whole block

The number of prediction modes used by the MMP-I algorithm were also increased
(vertical, horizontal, vertical right, vertical left, horizontal up, horizontal down, diagonal
down left, diagonal down right and Most Frequent Value (MFV)). The left and upper
block neighbors are the most available, due to the scanning order used. For pixels not yet
available, the closest available neighbor is then used.
Instead of using the DC mode, MMP-I prefers the use of the MFV among neighboring
pixels for the prediction, choosing one that exists in the picture’s histogram).

Notice that the prediction step dramatically increases MMP’s computational complex-
ity, since the dictionary search has to be made for each mode, in order to determine the
residue coding cost.

7



2. Multidimensional Multiscale Parser

2.2.2 MMP-II

The following techniques were implemented to create the MMP-II algorithm:

• Scale Restriction: To reduce the number of new elements that are put into the dic-
tionary is the restriction of scales, since scale transformation between too far apart
scales may be of no use for the image encoding.

• Norm equalization of scaled blocks: A norm equalization factor is used for scale
transforms that increase the block dimension.

• Geometric transforms: Adding blocks generated from geometric transforms, like
rotation and symmetry.

• Dictionary Redundancy Control: No need to add new patterns similar to a code-
word, since the codeword on the dictionary is already a good enough approxima-
tion for the block to be encoded. This process depends on the acceptable distortion
level.

These improvements enhance the rate-distortion performance and reduce the com-
putacional cost of the MMP, since the dictionary search process is the main responsible
for this.

2.2.3 MMP-FP

The MMP-Flexible Partition (FP) introduces a new idea: sending the segmentation
direction to the decoder. Calculations made in [3] show the following results, regarding
the MMP computational complexity:

Table 2.1 Number of calls of the search function for the best codeword
Block size 1x1 2x2 4x4 8x8 16x16
MMP 1 3 5 7 9
MMP-FP 1 8 48 224 960
MMP-FP Intra 9 28 500 7604 112340

2.2.4 MMP-FAST

This algorithm focuses on selecting the best prediction mode based on the residue’s
energy, instead of its coding cost. Since there are less dictionary indexes sent, the bitrate
is reduced and block segmentation is avoided.

Altough this process reduces dictionary searches (resulting in a lower computational
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2.3 Least squares prediction

complexity), there is a loss in coding performance. With this simple algorithm modifica-
tion, several dictionary searches are avoided. Results from [3] show a 6.9 times gain in
encoding time.

2.3 Least squares prediction

The Least squares prediction method adaptively filters a set of neighbours from each
pixel to be predicted. The filter coefficients used are selected based on training over a
window containing reconstructed data. This prediction value, Xp, can be calculated as
follows:

X p(pos(k)) =
N

∑
j=1

a jX(pos(k− j)) (2.1)

where aj are the weighting factors of the j-th position, N is the number of neighbours,
pos(k) is the position of the prediction and pos(k-j) are the neighbours (also called the
predictor mask). A causal training window is used to locally optimize the filter coeffi-
cients. In [11], a convenient training window corresponds to figure 2.5:

Figure 2.4: Neighborhood of 10 pixels used for prediction of current pixel x0.

Figure 2.5: Training window with T = 7

The coefficients can be determined by a least squares optimization, minimizing the
mean square error, as follows:

min||y−Ca||2 (2.2)
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2. Multidimensional Multiscale Parser

And the solution for this might be found in [12]:

a = (CTC)−1(CT y) (2.3)

2.3.1 Predicting arbitrarily oriented edges

If the training window has enough edge pixels (strong variations in pixel intensity),
then only one possible solution exists for the predictor’s coefficients. If this happens, the
prediction will correctly predict the new pixel and the edge direction.
To exemplify this behaviour, we shall consider a second order prediction (i.e., consider
just two neighbors: up and left) and a training window of 2 (i.e., for each prediction pixel,
there is a double-rectangular window with size of 2 to perform the training, as exemplified
in figure 2.6). In our example, the pixel intensities Z and W are very different, i.e.:

|W −Z| � 0 (2.4)

Figure 2.6: The orange pixels correspond to the training window of the black pixel.

The y vector corresponds to the training sequence (orange pixels). For each pixel in
the training window, we consider the up and left neighbors, forming the C matrix (the first
column corresponds to the left neighbor and the second column to the upper neighbor).

y =



Z
Z
Z
Z
Z
Z
W
W
W
W
W
W



(2.5)
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2.3 Least squares prediction

C =



Z Z
Z Z
Z Z
Z Z
Z Z
Z Z
Z W
Z W
W W
W W
W W
W W



(2.6)

The optimal solution will therefore be given by:

a = (CTC)−1(CT y)

=

[
8Z2 +4W 2 6Z2 +2ZW +4W 2

6Z2 +2ZW +4W 2 6Z2 +6W 2

]−1[
6Z2 +2ZW +4W 2

6Z2 +6W 2

] (2.7)

If we choose α , β and γ in order that:
α = 8Z2 +4W 2

β = 6Z2 +2ZW +4W 2

γ = 6Z2 +6W 2
(2.8)

We get:

[
a(1)
a(2)

]
=

 γ

αγ−β 2
−β

αγ−β 2

−β

αγ−β 2
α

αγ−β 2

[β

γ

]
=

 γβ−βγ

αγ−β 2

αγ−β 2

αγ−β 2

=

[
0
1

]
(2.9)

This shows that the prediction pixel should be aligned with the upper neighbor (since
the first element of the prediction is the left neighbor and the second is the upper one), as
we can see from figure 2.6. Experiments in [13] show that LSP predictors can adapt to
any edge orientation.

2.3.2 Pixel neighborhood

In [3], a very interesting approach was taken when considering pixel neighborhood.
Instead of using only causal neighbors (up and left), which would decrease quality of
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2. Multidimensional Multiscale Parser

prediction in the case of very distant neighbors, the closest ones are being chosen, even
if they have not been decoded yet. However, for block-based prediction, some of these
pixels may still need to be encoded and therefore for this case the training window needs
to become causal, as is illustrated in figure 2.7: Inside a block, there is still a need to use

Figure 2.7: Causal training window (T = 7).

prediction values, since there is no information about the decoded pixels yet.

2.4 Summary

MMP currently provides state-of-the-art performance. However, computational com-
plexity and encoding time have not been taken into consideration. Although it has lowered
with the introduction of the MMP-FAST, there is still a wide range of techniques that can
be used. One of them consists of the use of parallel processing and the power GPUs can
provide.

LSP offers a way to adaptively estimate local features. This makes LSP the main
prediction mode in MMP, especially for images with high frequency content (edges or
’nearly’ edges). However, the computation complexity cannot be ignored. The next chap-
ter explains how this computational burden may be softened, through the use of parallel
processing.
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3. Mobile parallel computing

3.1 Overview

The strict single-core era has ended [14] and parallel computing technologies are
present everywhere, from mobile devices to supercomputers. Computing economics and
market trends benefit low-cost general-purpose processors rather than specialized, perfor-
mance focused processors. [15] [16]

Mobile Central Processing Unit (CPU)s and Graphics Processing Unit (GPU)s have
found great improvements in the last years, and exploring the increasing number of cores
and speed of these devices seems very opportune. Currently, 64-bit octa-core CPUs with
clock frequencies up to 2,7GHz and GPUs with up to 192 pipelines and up to 950 MHz
clock frequencies turn mobile computing into a quite attractive and powerful signal pro-
cessing approach.

3.2 Snapdragon

All the experiments were performed under the Snapdragon processor (800 and 805).
General mobile instructions were always used, which makes the software produced portable
to other android devices. Snapdragon is a multiprocessor system that includes compo-
nents such as a multimode modem, CPU, GPU, Digital signal processor (DSP), loca-
tion/GPS, power management, Radio Frequency (RF) transceiver, memory and connec-
tivity (Wi-Fi, Bluetooth) units.

Other interesting research studies conducted on using mobile devices for general-
purpose computation can be found in [17], [18], [19], [20].

3.2.1 OpenCL architecture

The OpenCL parallel programming framework is supported on the Adreno 300, 400
series GPU, and is fully conformant to the OpenCL standard. [12] Figure 3.1 shows the
opencl architecture for the snapdragon processor.
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3.3 OpenCL Development

Figure 3.1: OpenCL architecture for the Adreno GPU

3.2.2 Hardware specifications

Table 3.1 Relevant specifications for the Snapdragon 805 processor
CPU Krait 450
GPU Adreno 420 with OpenCL 1.2 Full Profile
Cores 4

Core speed up to 2.7 GHz
Memory LPDDR3 800MHz Dual-channel 64-bit (25.6GBps)

3.3 OpenCL Development

The Open Computing Language (OpenCL) is a standard for parallel programming
of different types of computing platforms and is designed to meet the requirements of
devices with General Purpose GPUs (GPGPUs). This standard may be categorized into
four models.

• Platform Model - Consists of a host device connected to one or more devices, each
containing compute units, which are made of processing elements. Figure 3.2)
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3. Mobile parallel computing

Figure 3.2: Platform model for OpenCL [1]

Figure 3.3: Memory regions of OpenCL

shows this. These processing elements are processed in Single Instruction, Multiple
Data (SIMD) or Single program, Multiple Data (SPMD).

• Memory Model - There are four different memory regions (see figure 3.3): Global
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3.3 OpenCL Development

memory is accessible to all work-items; Local memory: Accessible by all work-
items inside a particular work group; Constant memory: Global memory that re-
mains constant during kernel running; Private memory: Accessible by one particu-
lar work-item. Local memory is shorter but has greater speeds, as opposed to global
memory.

• Execution Model - The execution of a kernel has a global size with 1, 2, or 3 dimen-
sions. This global work space is composed of kernel instances, work-items, that are
assigned a unique global ID. Work-items are organized in work-groups (see figure
3.4). Work-groups are also assigned a unique group ID and all work-items inside a
work-group execute at the same time.

• Programming model - The execution model supports task parallel programming and
data parallel programming models. In task parallel programming model, a single
instance of the kernel executes on the device; In data parallel model, each work-item
is responsible for one or more elements of memory.

Figure 3.4: Execution model of OpenCL [1]

Programming OpenCL on mobile GPUs is a challenging procedure that has seen little
relevance until recently [21] [22]. Since OpenCL is a C-based standard, one has to cross-
compile through the Native Development Kit (NDK) [23].
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3.3.1 Understanding Android project files
3.3.1.A jni/Application.mk

This file describes the native modules that our app requires, that being a static library,
a shared library, or an executable. It defines several variables for compilation such as the
platform to run the app, the modules or even the flags to be used. For example:

APP ABI := armeabi−v7a
APP PLATFORM := a n d r o i d −19
APP STL := g n u s t l s t a t i c
APP CPPFLAGS += − f e x c e p t i o n s − f r t t i

3.3.1.B jni/Android.mk

This file describes the sources and shared libraries to the build system and is useful
for defining settings for the entire program. It allows us to group our source files into
modules and be able to use a single source file in multiple modules, which is useful in the
organization since we have source files that belong to different parts of the program. This
way, we can create 2 separate modules which is useful for debuging and profiling.

3.3.2 Debugging
3.3.2.A Breakpoints

Different types of breakpoints can be used when attempting to debug a debug-enabled
OpenCL driver:

• Program line

• Kernel entry

• Conditional kernel entry

• Events

Program line breakpoints require the program to be loaded into the system and are
not pending. Their functionality is self-explanatory. Kernel entry breakpoints stop at the
entry of a kernel. They are pending and offer the possibility to indicate which device
you want to stop (CPU, GPU or both). Also, they stop on every single possible work-
item, one at a time. All work-items are known at a kernel entry breakpoint, including the
number of work-items per work-group. Conditional kernel entry breakpoints can receive
which work-item the user wants to stop, but loses the ability to specify which device to
stop. Event breakpoints act on OpenCL command events, such as CL SUBMITTED,
CL RUNNING, CL COMPLETE AND CL QUEUED.
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3.3.2.B GPU details

It is important to note that debugging on the Adreno GPU is very different from the
Snapdragon CPU. On the GPU each work-item represents a thread and each thread ap-
pears on the debugging process (which is very useful because it enables, for example,
thread switching).

Other important differences are:

• GPU kernels restrict to the maximum number of work-items on a work-group;

• All work-items suspend at the breakpoint specified;

• All work-items step or restart, if the user single-steps or continues after restart;

• On the GPU, the local information is obtained by the topmost frame of the stack;

• On the GPU, user-defined types or locals can’t be read with correct types;

• On the GPU, registers are impossible to be seen;

• On the GPU, disassembly cannot be viewed;

• On the GPU, local memory values cannot be changed.

3.3.3 Profiling our program

Profiling an application is a very important step needed, for example, during debug.
Knowing where the program wastes most of its time allows to make optimizations to ul-
timately produce better results.
The Adreno Profiler makes profiling OpenCL apps easier through the use of many perfor-
mance measurement metrics (number of ALU instructions, MOVs, No OPeration (NOP)s,
etc) and static analysis of OpenCL kernels.

Some of the important data that the Profiler displays are:

• Suggestions on potential performance problems;

• Information such as the number of Application Programming Interface (API) calls,
redundant calls and query calls;

• The number of general purpose registers used and the number of Arithmetic logic
unit (ALU) operations executed.
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3. Mobile parallel computing

Figure 3.5: Debugging times on Adreno Profiler [2]

3.4 Summary

This chapter presents an overview on the state-of-the-art mobile architectures for par-
allel computing and proposes one particular processor, the Snapdragon. The architecture
was presented for this processor and guidelines for using the OpenCL framework were
shown in order to produce acceptable results. The next chapter shows the developed ap-
proach to the LSP through the use of these guidelines. The debugging and profiling pro-
cesses contributed a lot for the results shown. Such good development practises should be
followed by a devoted programmer tackling the world of parallel mobile programming.
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4. LSP parallelization techniques

4.1 Overview

Since LSP has the ability to detect local characteristics derived on the fly, it is consid-
ered the dominant prediction mode in MMP [1]. However, its computational complexity
is considerable, since it performs a matrix inversion for each pixel. In addition to this, the
constant communication between host (CPU) and device (GPU) makes the paralellization
process more challenging.

In sequential running, the LSP is responsible for 25 to 40% of the total MMP process,
depending on the image to be compressed (Tables 5.2, 5.4 and 5.6). It is by far the
most time consuming process of the entire MMP compression. New and more efficient
approaches, considering execution time (and energy consumption), are possible. In fact,
the recent advent of mobile parallel processors has opened new paths to explore these pos-
sibilities and run heavy computational programs in a more efficient way. They provide
high processing capabilities and also stand for their energy efficiency, when compared to
performance-focused high-end processors.

An important decision to make before the paralellization was to choose if the predic-
tion should be made on a per-pixel or per-block basis. If we choose to apply prediction
on a per-pixel basis, all the prediction pixel values wait for the updated neighbours. On
the other hand, if we make a per-block prediction, all pixels inside that block will make
their predictions simultaneously, without waiting for each others. In this case, the original
values would be used for calculations.
Since the LSP is mainly used in lossless or almost lossless compression, the per-pixel
prediction was chosen, since it will inevitably produce better results.

4.2 A parallel approach

To start the paralellization process, the work to be performed is divided by the number
of available GPU threads (see figure 4.1). Since the LSP is block-based and the block
size changes continuously, we chose to make the number of GPU threads dependent on
the block size, i.e., dynamic. The block sizes vary from 4x4 to 16x16 and we attribute
each pixel to a number of threads (work-items) and have their values shared through local
memory. The number of threads per pixel is different in each device tested, being 4
work-items/pixel on the Snapdragon processor and MacbookAir and 32 work-items/pixel
on the high-end GPU. On the snapdragon processor 4 work-items/pixel is the maximum
possible number since each work-group has a limit of 1024 (for 16x16 block size, 4 work-
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items/pixel gives 1024). For a given pixel, its assigned threads concurrently execute the
prediction, which has a lot of work that can be run independently, like iterations of the
loop responsible for each LU decomposition (recall that a matrix inversion is performed
for each pixel).

Figure 4.1: Example of a 4x4 block with 4 threads per pixel.

The second procedure consists of optimizing local memory usage, making use of it
whenever it is available. Since a lot of this memory was already being used by the other
kernels in the MMP, we had to make consistent reductions of local memory usage until
the LSP reached the maximum possible storage occupation. Variables allocated in local
memory are shared by all work-items inside a work-group and exist only for the lifetime
of the work-group executing the kernel. The fact that the LSP needs a lot of dedicated
memory makes our work more challenging, since we have no option but to allocate the
majority of our buffers in slower, global memory. Local memory has significantly lower
access times and was thus exploited for maximum performance.

As we are constantly transfering data, we synchronize the prediction block between
host and device (figure 4.2). This maps the prediction block from the device buffer into
the host address space and thus everytime data changes in that block, the host updates
accordingly. In addition to this, the image also needs to be syncronized from host to
device. Imagine we are predicting the upper row of pixels in a block. Now those pixels
will need the ones above to correctly calculate the prediction. As we can see, the device
running our LSP kernel needs to have access to all the image content, otherwise our
approach would impose big losses to the final image. As stated above, we use a per-pixel
prediction, which means that there also needs to be a syncronization process between
pixels. This is done using a work-group barrier. All the work-items of a work-group (in
our case, the block containing the pixels) must execute the barrier before any are allowed
to continue execution beyond the barrier.
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Figure 4.2: Syncing between host and device.

A minor performance improvement but still worth mentioning was obtained when the
prediction block and the remaining kernel buffers were transformed from bidimensional
into uni-dimensional (figure 4.3). Since these buffers are constantly being accessed, this
decision reduced the LSP time even further.

Figure 4.3: Transforming bidimensional buffers into uni-dimensional.

4.2.1 Proposition 1 - Reducing prediction order

In [3] it is claimed that the LSP depends highly on the training process, and studies
have shown that the training window has an optimized value of 7. However, results from
that source show that reducing the prediction order doesn’t have a considerable perfor-
mance loss on the final result. A proposed change to the suggested parameters is then
reducing the prediction order from 10 to 2 in order to reduce computational complexity
even further, while keeping the training window with T = 7. In other words, making
each prediction pixel to be a weighted average of just 2 neighbouring pixels (usually the
left and up), while keeping each of these 2 pixels to be ’trained’ by a double-rectangular
window of size 7.

With this tradeoff proposal we aim to acheive processing time reductions in exchange
of acceptable performance quality.
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Figure 4.4: Proposed prediction order.

Figure 4.5: Original prediction order.

4.2.2 Proposition 2 - Conditional prediction

Since the LSP is great for areas of high frequency content (i.e., ’edges’ or ’near-
edges’), a very plausible way of reducing the LSP time consumption without compromis-
ing the overall performance of the image compression would be to apply the LSP only
for pixels that differ significantly from their neighbors. In this scenario, a second order
analysis is performed. For each pixel, we define an offset (basically a difference between
two pixel intensity values). If a pixel has intensity equal or greater than the offset, the
LSP is applied, otherwise, basic intra-prediction takes place. Left and upper pixels were
chosen as neighbourhood since this is the usual convention among image scanning order
approaches.

In the following figure we can see the pixels where the LSP is applied, for the Lena
image particular case.

Figure 4.6: The white pixels represent the chosen pixels for LSP prediction. They cor-
respond to edges or near-edges. The offset chosen was 20, i.e., the LSP was applied for
pixels that differ in intensity by 20 or more from their 2 neighbors (up and left).
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4.3 Summary

In this chapter we address the paralellization techniques applied to the LSP in order to
reduce the time burden. Some represent general methods, such as work-items partitioning,
while others are platform dependent. In addition to this, we proposed two new approaches
to the LSP, aiming to reduce even further the time and energy spent.
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5.1 Introduction

5.2 Apparatus

The experimental results were tested under 3 platforms, and the relevant information
about each platform is shown below:

Table 5.1 Details of the tested platforms
Platform A Platform B Platform C

CPU i7-4790K i5-4260U Krait 450
GPU Tesla K40c Intel HD Graphics 5000 Adreno 420
OS Ubuntu 14.04 OSX Yosemite 10.10.4 Android-19

Compiler gcc 4.8.4 clang-602.0.49 clang
Language C and OpenCL 1.2

5.3 Original LSP on multicores

The following experimental results correspond to the Lena image (figure 5.1a), with
low distortion. The final decoded image is shown in figure 5.1b. In figures 5.1c and
5.1d we can observe the intra prediction resulting image and the intra prediction error,
respectively. The same tests are then shown for smaller images.

The Peak Signal-to-Noise Ratio (PSNR) of the resulting images and of prediction
images are:

• Lena.pgm - PSNR: 39,647672 / PSNR PREDICTION: 30,876516

• Small.pgm - PSNR: 42,361934 / PSNR PREDICTION: 32,052278

• Xsmall.pgm - PSNR: 40,595199 / PSNR PREDICTION: 24,309624
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(a) Original image (b) Resulting image

(c) Intra prediction resulting image (d) Intra prediction error

Figure 5.1: Lena.pgm (512 x 512)
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(a) Original image (b) Resulting image

(c) Intra prediction resulting image (d) Intra prediction error

Figure 5.2: Small.pgm (176 x 144)

(a) Original image (b) Resulting image

(c) Intra prediction resulting image (d) Intra prediction error

Figure 5.3: Xsmall.pgm (48 x 48)

5.3.1 Platform A

Average power consumption: 186 W (for both sequential and parallel implementa-
tions).
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Table 5.2 Original LSP: Sequential version, platform A
Image Energy (Joules) MMP time (seconds) LSP time (seconds)
Lena 40928 220,0 108,4
Small 2959 15,9 8,6

Xsmall 228 1,2 0,5

Table 5.3 Original LSP: Parallel version, platform A
Image Energy (Joules) MMP time (seconds) LSP time (seconds)
Lena 30962 166,5 15,2
Small 1941 10,4 2,1

Xsmall 177 1,0 0,2

5.3.2 Platform B

Average power consumption: 180 W for the sequential and 190 W for the parallel
implementation.

Table 5.4 Original LSP: Sequential version, platform B
Image Energy (Joules) MMP time (seconds) LSP time (seconds)
Lena 124291 690,5 188,9
Small 10670 59,3 15,6

Xsmall 882 4,9 1,0

Table 5.5 Original LSP: Parallel version, platform B
Image Energy (Joules) MMP time (seconds) LSP time (seconds)
Lena 148588 782,0 183,6
Small 12950 68,2 15,5

Xsmall 1113 5,9 1,2

5.3.3 Platform C

Average power consumption: 3,3 W (for both sequential and parallel implementa-
tions).
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Table 5.6 Original LSP: Sequential version, platform C
Image Energy (Joules) MMP time (seconds) LSP time (seconds)
Lena 5483 1661,6 712,2
Small 361 109,3 11,7

Xsmall 41 12,3 1,2

Table 5.7 Original LSP: Parallel version, platform C
Image Energy (Joules) MMP time (seconds) LSP time (seconds)
Lena 3543 1073,5 168,3
Small 305 92,5 1,3

Xsmall 40 12,0 0,7

We can see that for platform A, we obtain a speedup of up to 1.53 for the MMP
and a speedup of up to 7.15 for the LSP. The power consumption of this device didn’t
change from the sequential to the parallel implementations. Platform B is the only one
that performs worse for the parallel verion of the MMP, although the LSP time becomes
slightly shortened. For this scenario, the energy consumption is also higher for the paral-
lel version, as opposed to the other platforms. Platform C performs similarly to platform
A. Gains of 1,55 for the MMP (Lena image) and 8,19 for the LSP (Small image) were
achieved. Comparisons of time and energy for both the sequential and the parallel ap-
proaches can be seen in the following figures.

Figure 5.4: Times for the sequential version.
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Figure 5.5: Times for the parallel version.

Figure 5.6: Energy for the sequential version.
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Figure 5.7: Energy for the parallel version.

5.4 Proposed LSP (Reducing prediction order) on multi-
cores

The PSNR of the resulting images and of prediction images are:

• Lena.pgm - PSNR: 39,590109 / PSNR PREDICTION: 29,65527

• Small.pgm - PSNR: 42,437122 / PSNR PREDICTION: 31,425513

• Xsmall.pgm - PSNR: 40,771614 / PSNR PREDICTION: 24,324429

5.4.1 Platform A

Table 5.8 Proposed LSP 1: Sequential version, platform A
Image Energy (Joules) MMP time (seconds) LSP time (seconds)
Lena 30921 166,2 21,3
Small 1745 9,4 1,8

Xsmall 176 1,0 0,1
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Table 5.9 Proposed LSP 1: Parallel version, platform A
Image Energy (Joules) MMP time (seconds) LSP time (seconds)
Lena 30866 165,9 15,2
Small 1775 9,5 1,3

Xsmall 184 1,0 0,1

5.4.2 Platform B

Table 5.10 Proposed LSP 1: Sequential version, platform B
Image Energy (Joules) MMP time (seconds) LSP time (seconds)
Lena 111121 617,3 74,5
Small 9221 51,2 6,7

Xsmall 805 4,5 0,5

Table 5.11 Proposed LSP 1: Parallel version, platform B
Image Energy (Joules) MMP time (seconds) LSP time (seconds)
Lena 141681 745,7 173,4
Small 12660 66,6 15,6

Xsmall 1107 5,8 1,3

5.4.3 Platform C

Table 5.12 Proposed LSP 1: Sequential version, platform C
Image Energy (Joules) MMP time (seconds) LSP time (seconds)
Lena 3569 1081,4 206,8
Small 311 94,3 9,6

Xsmall 35 10,5 0,3

Table 5.13 Proposed LSP 1: Parallel version, platform C
Image Energy (Joules) MMP time (seconds) LSP time (seconds)
Lena 3552 1076,4 165,1
Small 323 98,0 13,3

Xsmall 41 12,5 1,0

This sequential approach shows gains of 1.54 for MMP and 5.1 for LSP in comparison
with the original sequential approach. This change does not alter the power consumption
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5. Experimental results

of any device, thus reducing the energy consumption. Parallelization does not generally
bring speedups or energy reductions.

Comparisons of time and energy for both the sequential and the parallel approaches
can be seen in the following figures.

Figure 5.8: Times for the sequential version.

Figure 5.9: Times for the parallel version.
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5.5 Another LSP proposal (Conditional prediction) on multicores

Figure 5.10: Energy for the sequential version.

Figure 5.11: Energy for the parallel version.

5.5 Another LSP proposal (Conditional prediction) on mul-
ticores

This data resulted from our second LSP proposal for platform A, with a 10th order
prediction.

The peak signal-to-noise ratios (PSNR) of the resulting images and of prediction im-
ages are:

• Lena.pgm - PSNR: 39,538339 / PSNR PREDICTION: 29,438908
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• Small.pgm - PSNR: 42,438508 / PSNR PREDICTION: 31,221927

• Xsmall.pgm - PSNR: 40,771614 / PSNR PREDICTION: 24,324429

Table 5.14 Proposed LSP 2: Sequential version, platform A
Image Energy (Joules) MMP time (seconds) LSP time (seconds)
Lena 27304 146,8 5,7
Small 1467 7,9 0,5

Xsmall 159 0,9 0,1

This approach reveals gains of 2.02 for MMP and 18.88 for LSP in comparison with
the original sequential approach. This change does not alter the power consumption of
any device. We can see a great decrease in energy consumption as well. In fact, for the
Small image, the energy consumed is halved. Parallelization of this approach does not
generally bring speedups.

5.6 Discussion

The first thing to point out is the time reduction from the parallel adaptation. Gains
of up to 7.15 times were obtained for the LSP, resulting in a 1.32 time reduction of the
MMP, with no performance loss. Also the energy dissipated was considerably lower for
the parallel processing scenario. Take notice that the power consumption of each device
does not represent the tested program alone, but also the idle power consumption needed
for that device to function properly. The snapdragon processor, while nearly 7x slower
when compared to platform A, is 5 to 8 times more energy efficient. Interesting results
regarding the energy efficiency of the snapdragon GPU may also be found in [24].

Figure 5.12 ilustrates this interaction between energy efficiency and time of computa-
tion, for platforms A and C (very powerful GPU and mobile GPU, respectively). Platform
B, which corresponds to the Intel HD Graphics 5000 GPU (Macbook Air) was left aside
since it takes no purpose in running with good performance GPU heavy applications. Ex-
perimental results from this Intel GPU show disadvantes in using our parallel solution
both in time and energy spent, since the difference in performance from the Macbook Air
CPU and GPU is not significant, as opposed to the other platforms.

Figure 5.13 compares prediction orders of the LSP, where we take into consideration
computation time of the MMP and LSP, for the Lena image particular case, executed in
platform A. The correspondent performance loss of the entire MMP process and of the
prediction alone is illustrated in figure 5.14.
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5.6 Discussion

Figure 5.12: Tradeoff between energy and time

Figure 5.13: Tradeoff between prediction orders.

On a side note, one may notice that for this prediction order reduction, there is no time
reduction from the parallel adaptation. This can be explained by the fact that the LSP
becomes less computational heavy and thus the use of a GPU kernel is not so appropriate.

Furthermore, making the LSP apply only to areas of the image with high frequency
content provides great acceleration, with little performance loss, as figures 5.15 and 5.16
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5. Experimental results

Figure 5.14: Tradeoff between prediction orders.

show, respectively.

Figure 5.15: Time comparison between the original LSP and the conditional prediction
proposition for the three images.

5.7 Summary

In this chapter, we compare time and energy of the MMP codec and the LSP algorithm
on different platforms, for the sequential and parallel approaches. Images with different
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5.7 Summary

Figure 5.16: Performance loss for the Lena image particular case, executed under platform
A for the sequential version.

sizes were used. In addition, we discuss and illustrate the energy-time paradigm. In the
next chapter we make conclusions with the results obtained and propose future work.
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6.1 Future work

The use of GPU computing benefits the LSP and, consequently, the MMP. Although
there is a lot of communication between CPU and GPU, the LSP is sufficiently complex to
benefit from this GPU parallel approach. This is not the case for the algorithmic proposi-
tions presented in this thesis, since the computational complexity is significantly reduced
for these approaches.

The snapdragon processor, while much slower than the high-end tested GPU, offers
great results in energy efficiency, which is very convenient, since this is a mobile pro-
cessor and mobile energy sustainability is a necessity and currently a very active field of
research [25] [26]. Furthermore, it is faster than the desktop GPU for the majority of the
experiments using a parallel approach.

The proposed prediction order reduction turns out to be an interesting tradeoff between
time reduction and performance loss. Since the LSP is mainly used in lossless or near-
lossless image coding, we propose the possibility to adapt this prediction order according
to the quality of compression (i.e., use a lower prediction order for higher acceptable
distortions).

The conditional prediction proposition, too, presents interesting results. The fact that
we choose the offset needed to activate the use of the predictor makes this approach
adaptive. And since the MMP is a context-based codec, this proposition seems very
opportune. We propose this implementation, or others based on this concept, for this type
of predictors.

6.1 Future work

The results obtained are very positive and encourage to continue to investigate this
subject. Although good performance has been observed, there are some aspects that can
be further studied, namely:

• Improve parallelization techniques to further reduce the LSP computational time,
such as creating image objects instead of regular C arrays to store the data trans-
ferred between host and device, which is possible using this optimized OpenCL
data type;

• Making new algorithmic approaches to both the LSP and MMP, since the compu-
tational complexity is much higher than that of competitors;

• Testing the developed kernels in other platforms, such as Field-Programmable Gate
Array (FPGA)s, since the energy consuption in low-power processor showed sig-
nificant results when compared to high-power ones;
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ABSTRACT

Least squares prediction is a technique used for foreseeing pixel val-
ues during image coding by finding the minimum square error of
neighboring pixels. It has shown considerable quality gains espe-
cially for complex images with high variations in pixel intensities
(i.e., edges). The drawback of this technique consists of high com-
putational complexity, which makes it difficult to implement in fast,
lossy image coders. One challenge is therefore to reduce the compu-
tational time of this predictor through the use of some parallel tech-
niques, making it more attractive for state-of-the-art Coder-Decoders
(CODECs). Also, a couple of algorithmic propositions were made,
trying to reduce the time spent in exchange for rate-distortion perfor-
mance. These propositions are senseful since this predictor is used
not only in lossless image coding, but in lossy as well. Another aim
of this article is to analyze energy efficiency among different types
of platforms for this signal processing algorithm. Comparisons are
provided on parallel computing processors ranging from very pow-
erful Graphics Computing Units (GPUs) to mobile General-Purpose
GPUs.

Index Terms— Least squares prediction, Image prediction, Im-
age processing, Lossy image coding, Parallel processing, Graph-
ics Processing Unit (GPU) processing, Energy efficiency, Manycore
platforms

1. INTRODUCTION

Prediction is an important process to reduce the amount of informa-
tion stored in image coding. There are a lot of different prediction
modes, each appropriate to a certain set of image characteristics. For
smooth images, low complexity predictors may do the job. But for
complex, compound images, these predictors may not suffice. For
hard images (with sudden variations in pixel intensities, i.e., edges),
there is a particular predictor that tends to increase image quality:
the Least Squares Prediction (LSP). The LSP is especially good at
predicting edges, but even for text and compound images, it does
not present rate-distortion losses. In this article, the LSP implemen-
tation conducted in [1] will be adopted as the basis of this work.
These predictors are known for having a considerable impact in time
consumption and computational complexity and therefore the use in
manycore platforms seems completely justified. Parallel computing
is gaining an increased relevance, with new processors becoming
more and more powerful. Signal processing algorithms are gener-
ally time constrained and can benefit from the acceleration that par-
allel computation offers. Signal processing images are especially

This work has been supported by UID/EEA/50008/2013

vulnerable to delays. Mobile parallel processing platforms, too, are
evolving at a significant rate in terms of the number and processing
capabilities of the cores. They may not have the processing power of
modern desktops, but are cheaper and allow achieving higher levels
of energy efficiency, since desktop GPUs still demand high levels of
power.

1.1. Motivation

The aim is to explore the possibilities of parallel computing on image
codecs and particularly high complexity predictors. A comparison
between mobile, desktop and super powerful GPUs is provided. An
additional motivation is the evolution of energy consumption levels
of recent devices. Thus, an analysis on this metric between different
platforms is timely and essential for future studies.

2. MOBILE PARALLEL COMPUTING

2.1. Overview

Computing economics and market trends benefit low-cost general-
purpose processors rather than specialized, performance focused
processors [2] [3]. Mobile CPUs and GPUs have found great im-
provements in the last years, and exploring the increasing number of
cores and speed of these devices seems very opportune.

2.2. Snapdragon

All the experiments were performed under the Snapdragon proces-
sor (800 and 805) [4]. Snapdragon is a multiprocessor system that
includes components such as a multimode modem, CPU, GPU, Dig-
ital signal processor (DSP), location/GPS, power management, Ra-
dio Frequency (RF) transceiver, memory and connectivity (Wi-Fi,
Bluetooth) units.

2.3. OpenCL Development

2.3.1. Overview

The OpenCL is a standard for parallel programming of different
types of computing platforms and is designed to meet the require-
ments of devices with General Purpose GPUs (GPGPUs), offering a
quick way to exploit parallelism in signal processing algorithms [5].
This standard may be categorized into four models:

• Platform Model - Consists of a host device connected to one
or more devices, each containing compute units, which are
made of processing elements.



• Memory Model - There are four different memory regions:
Global memory is accessible to all work-items; Local mem-
ory: Accessible by all work-items in a work group; Constant
memory: Constant global memory; Private memory: Acces-
sible by one work-item.

• Execution Model - The execution of a kernel has a global
size with 1, 2, or 3 dimensions. Work-items are organized in
work-groups. All work-items inside a work-group can poten-
tially execute at the same time.

• Programming model - The execution model supports task par-
allel programming and data parallel programming models.

Programming OpenCL on mobile GPUs is a challenging pro-
cedure that has seen little relevance until recently [6] [7]. Since
OpenCL is a C-based standard, one has to cross-compile through the
Native Development Kit (NDK) [8]. This means the adaptation of
one’s project settings to reach compatibility, namely the adaptation
of the build system and the description of the native modules needed
by the program.

2.3.2. Debugging

GPU details

It is important to note that debugging on the Snapdragon GPU
(Adreno) is very different from the Snapdragon CPU. On the GPU
each work-item represents a thread and each thread appears on the
debugging process (which is very useful because it enables, for
example, thread switching).

Other important differences are:
• GPU kernels are restricted to the maximum number of work-

items on a work-group;
• All work-items suspend at the breakpoint specified;
• All work-items step or restart, if the user single-steps or con-

tinues after restart;
• On the GPU, the local information is obtained by the topmost

frame of the stack;
• On the GPU, locals of user-defined types cannot be examined

with correct type information;
• On the GPU, registers are impossible to be seen;
• On the GPU, disassembly cannot be viewed;
• On the GPU, local memory values cannot be changed.

3. LEAST SQUARES PREDICTION

3.1. Overview

The Least squares prediction method adaptively filters a set of neigh-
bours (Fig. 1.a) from each pixel to be predicted. The filter coeffi-
cients used are selected based on training over a window (Fig. 1.b)
containing reconstructed data. This prediction can be represented by
the following formula (1):

Xp(p(n)) =
N∑

j=1

ajX(p(n− j)) (1)

where aj are the weighting factors of the j-th position, N is the num-
ber of neighbours, p(n) is the position of the prediction and p(n-j)
are the neighbours (also called the predictor mask, figure 1.a).

If the training window has enough edge pixels (strong variations
in pixel intensity), then only one possible solution exists for the pre-
dictor’s coefficients. If this happens, the prediction will correctly
predict the new pixel and the edge direction. The coefficients can be
determined by minimizing the Mean Square Error (MSE) inside the
training area (2):

(a) Predictor mask (b) Training window

Fig. 1: Predictor mask (10th order) and training window (T = 7)
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(2)
where M corresponds to the pixels inside the training window and
#(M) is the number of elements inside that window.

3.2. Parallel approach

To start the paralellization proccess, the work to be performed is di-
vided by the number of available GPU threads. Since the LSP is
block-based and the block size changes continuously, we chose to
make the number of GPU threads dependent on the block size, i.e.,
dynamic. The block sizes vary from 4x4 to 16x16 and we attribute
each pixel to a number of threads (work-items) and have their val-
ues shared through global memory. The number of threads per pixel
is different in each device tested. On the snapdragon processor 4
is the maximum possible number since each work-group has a limit
of 1024 (for 16x16 block size, 4 work-items/pixel gives 1024). The
second procedure consists of optimizing memory usage. Whenever
possible, we make use of the fast local memory available. Since a
lot of local memory was already being used by the other kernels in
the MMP, we had to make consistent reductions of local memory
usage until the LSP reached the maximum possible storage occupa-
tion. Local memory has significantly lower access times and needs
to be exploited for maximum performance. As we constantly need
to transfer data between host and device, the prediction is synchro-
nized. Indeed, the prediction blocks are mapped from the device
buffer into the host address space. This maps the prediction block
from the device buffer into the host address space and thus every-
time data changes in that block, the host updates accordingly. A
minor performance improvement but still worth mentioning was ob-
tained when the representation in memory of the prediction block
was transformed from 2-dimensional into uni-dimensional.

3.3. Algorithmic propositions

3.3.1. Reducing prediction order

In [1] it is claimed that the LSP depends highly on the training
process, and studies have shown that the training window has an
optimized value of 7. However, results from that source show that
reducing the prediction order does not have a considerable perfor-
mance loss on the final result. A proposed change to the suggested
parameters is then reducing the prediction order from 10 to 2 in or-
der to reduce computational complexity even further, while keeping



the training window. In other words, making each prediction pixel
to be a weighted average of just 2 neighbouring pixels (usually the
left and up), while keeping each of these 2 pixels to be ’trained’ by
7 neighbours.

(a) New (b) Old

Fig. 2: Left: Original prediction order; Right: Proposed prediction
order. The gray pixels are the neighbors considered for the prediction
of the black pixel

3.3.2. Conditional prediction

Since the LSP is great for areas of high frequency content (i.e.,
’edges’ or ’near-edges’), a very plausible way of reducing the LSP
time consumption without compromising the overall performance of
the image compression would be to apply the LSP only for pixels
that differ significantly from their neighbors. For each pixel, we
define an offset (basically a difference between two pixel intensity
values). If a pixel has intensity equal or greater than the offset, the
LSP is applied, otherwise, basic intra-prediction takes place. In the
following figure we can see the pixels where the LSP is applied, for
the Lena image particular case.

4. RESULTS

Experiments are tested on the Lena image, using MMP compression
with low distortion. The LSP times and energy measurements corre-
spond to the whole image coding process. Results were tested under
three platforms, and the relevant information about each platform is
shown in Table 1.

Platform A B C

CPU i7-
4790K i5-4260U Krait 450

GPU Tesla
K40c

Intel HD Graphics
5000

Adreno
420

OS Ubuntu
14.04

OSX Yosemite
10.10.4

Android-
19

Table 1: Details of the tested platforms

Power consumption

The average power consumption of the platforms is:

• Platform A: 186 W for both the parallel and sequential ap-
proaches

• Platform B: 180 W for the sequential approach and 190 W for
the parallel approach

• Platform A: 3.3 W for both the parallel and sequential ap-
proaches

4.1. Sequential

Experimental results for this approach can be seen in Table 2. The
resulting image can be found in Fig. 3.a. Initial PSNR of the entire
coding process and the prediction process:

• PSNR: 39.647672
• PSNR Prediction: 30.876516

Platform A B C
Time 108.4 188.9 712.2
Energy 20154 33999 2350

Table 2: Time (seconds) and energy (joules) of the original sequen-
tial LSP version, for platforms A, B and C.

4.1.1. Prediction order reduction

Experimental results for this approach can be seen in Table 3. The
resulting image can be found in Fig. 3.b.

Platform A B C
Time 21.3 74.6 206.8
Energy 2953 13866 682

Table 3: Time (seconds) and energy (joules) of the prediction order
reduction proposition, for platforms A, B and C.

• PSNR: 39.590109
• PSNR Prediction: 29.65527

4.1.2. Conditional prediction

Experimental results for this approach can be seen in Table 4. The
resulting image can be found in Fig. 3.d and the chosen pixels for
the LSP are found in Fig. 3.c.

Platform A B C
Time 5.7 60.0 342.4
Energy 1068 10796 1130

Table 4: Time (seconds) and energy (joules) from the conditional
prediction proposition for platforms A, B and C.

• PSNR: 39.538339
• PSNR Prediction: 29.438908

4.2. Paralellization

Experimental results for this approach can be seen in Table 5.

• PSNR: 39.647672
• PSNR Prediction: 30.876516

5. RELATED WORK

Least squares based approaches for image coding can be found in
[9], [10], [11], [12] and many other papers in the literature. How-
ever, for the best of our knowledge, none of them considers the al-
gorithm’s behaviour from an energy consumption perspective. In
this work, we developed a new parallel and optimized version of the



Platform A B C
Time 21.7 183.6 168.3
Energy 2819 34158 555

Table 5: Time (seconds) and energy (joules) of the paralellized op-
timized approach, for platforms A, B and C.

(a) Original (b) Prediction order = 2

(c) LSP chosen pixels (d) Conditional prediction

Fig. 3: (a), (b) and (d) correspond to the resulting images of the
image coding process for the original image, the prediction order re-
duction and the conditional prediction, respectively. (c) corresponds
to the chosen pixels for LSP prediction

predictor, along with the entire image coder/decoder, targeted to a
low-power mobile processor environment. In addition to this, we
compare the energy consumed by the image coder with other plat-
forms.

The first thing to point out is the time reduction from the paral-
lel adaptation. Gains of up to 7.15 times were obtained for the LSP,
with no performance loss. Also the energy dissipated was consid-
erably lower for the parallel processing scenario. The snapdragon
processor, while nearly 7x slower when compared to platform A, is
5 to 8 times more energy efficient. Interesting results regarding the
energy efficiency of the snapdragon GPU may also be found in [13].
Experimental results from the Intel GPU show disadvantes in using
this parallel solution both in time and energy spent, since the dif-
ference in performance from the Platform B CPU and GPU is not
significant, as opposed to the other platforms. Furthermore, making
the LSP apply only to areas of the image with high frequency content
provides great acceleration, with little performance loss.

6. CONCLUSION

The use of GPU computing clearly benefits Least Squares Predic-
tion (LSP) for image coding. Although communications between

CPU and GPU impact performance, the LSP is sufficiently complex
to benefit from the proposed GPU parallelization. The mobile snap-
dragon platform, while slower than the high-end tested GPUs, offers
superior results in terms of energy efficiency, which is very conve-
nient, since mobile energy sustainability is a key aspect of modern
processing, and thus, currently a very active field of research. Fur-
thermore, it is faster than desktop GPUs for the majority of experi-
ments using a parallel approach. The parallelization process turns
the mobile, low-power processor a more viable option for signal
processing algorithms, since it reduced both time and energy con-
sumption levels. The proposed sequential algorithmic changes to
the LSP turn out to be interesting tradeoffs between energy and time
reduction, and an acceptable performance loss. For future work we
propose testing the developed LSP kernel in other platforms, such as
Field-Programmable Gate Arrays (FPGAs), since energy consump-
tion in costumized low-power processors has shown potential to im-
prove results even further.
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1 OVERVIEW

1 Overview

1.1 Snapdragon

Snapdragon is a multiprocessor system that includes components such as a multimode modem,
CPU, GPU, DSP, location/GPS, multimedia, power management, RF, optimizations to software
and operating systems, memory, connectivity (Wi-Fi, Bluetooth), etc.
For a list of current commercial devices that include Snapdragon processors and to learn more
about Snapdragon processors, go to:

http ://www. qualcomm . com/ snapdragon / de v i c e s

1.2 OpenCL on Snapdragon

This tutorial focuses on programming the GPU of the Snapdragon processor for general-purpose
data parallel computation using OpenCL.
OpenCL on GPU is supported on the Adreno 300, 400 series GPU, and is fully conformant to
the OpenCL standard.

Figure 1: OpenCL architecture [1]

1.2.1 GPU extensions

Table 1 lists available OpenCL extensions on Snapdragon chipsets for the GPU.
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1.2 OpenCL on Snapdragon 1 OVERVIEW

Table 1: OpenCL extensions [1]

Extension Description Supported
cl khr global int32 extended

atomics
Additional atomic operations on 32-bit inte-
gers in global memory (min/max/and/or/xor)

Yes

cl khr global int32 extended
atomics

Additional atomic operations on 32-bit inte-
gers in global memory (min/max/and/or/xor)

Yes

cl khr local int32 base atomics
Atomic operations on 32-bit integers in local
memory (add, sub, xchg, inc, dec, cmpxchg)

Yes

cl khr local int32 extended
atomics

Additional atomic operations on 32-bit inte-
gers in global local (min/max/and/or/xor)

Yes

cl khr byte addressable store Allows writing to char and short-based types Yes

cles khr int64
Support for 64-bit integers (long, ulong, longn,
ulongn)

No

cl khr fp16
Support for fp16 half data types (half, half2,
half4, half8, half16)

Yes

cl khr gl sharing
Shares OpenCL image data with texture and
buffer objects

Yes

cl qcom ion host ptr

Augments the functionality provided by
clCreateBuffer, clCreateImage2D, clCre-
ateImage3D allowing apps to specify a new
flag, CL MEM ION HOST PTR QCOM;
this new flag maps memory pointed to by Ion
host ptr to the GPU address space; hence,
usage of this flag prevents a copy of the host
memory to the device and vice versa

Yes

cl qcom limited printf

Introduces the printf built-in function to
OpenCL kernels on the earlier release of CL
1.1; this functionality is part of the CL 1.2
specification on the newer release

Yes

Cl khr egl event

Allows creating OpenCL event objects linked
to EGL fence sync objects, potentially improv-
ing efficiency of sharing images and buffers be-
tween the two APIs

Yes

EGL IMG image plane attribs
Allows creating an EGL image from a single
plane of a multiplanar Android native image
buffer

Yes

EGL KHR cl event

Allows creating an EGL fence sync object
linked to an OpenCL event object, poten-
tially improving efficiency of sharing images
between the two APIs

Yes

Cl qcom extended images
Allows app to allocate 2D and 3D images up
to a maximum of 8k x 8k size images

Adreno A3x
products
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2 INSTALLATION GUIDE

2 Installation Guide

2.1 Determine location for installed packages

Packages you need to install:

• Apache Ant

• Android NDK

• Android SDK

First thing is to choose an appropriate installation path for these. Mine are (under MAC OSX):

• APACHE ANT - /usr/local/bin/apache ant

• ANDROID NDK - /Users/pncordeiro/Library/Android/ndk

• ANDROID SDK - /Users/pncordeiro/Library/Android/sdk

2.2 Configuring paths

Edit ˜/.bashrc (or ˜/.bash profile) and add the paths to these packages. I did it this way (under
MAC OSX):

#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
# Android Development Setup
#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
export ANDROID\SDK=/Users / pncorde i ro / Library /Android/sdk
export ANDROID\NDK=/Users / pncorde i ro / Library /Android/ndk
export APACHE\ANT=/usr / l o c a l / bin /apache\ant
# Setup paths f o r Android Development t o o l s .
export PATH=$ANDROID\SDK/ t o o l s :$PATH
export PATH=$ANDROID\SDK/ platform−t o o l s :$PATH
export PATH=/usr / l o c a l / bin /apache\ant / bin :$PATH
export PATH=$ANDROID\NDK/ t o o l c h a i n s /arm−l inux−andro ideabi −4.9/

p r e b u i l t /darwin−x86/ bin :$PATH
export PATH=$ANDROID\NDK:$PATH

2.3 Apache ANT

Apache Ant is open source software that is used to package the components of an app into a
.apk file.

1. Download the package from http://ant.apache.org/bindownload.cgi

(a) Select the current release of Ant

(b) Select the tar.gz archive

2. Copy the downloaded file (apache-ant-1.8.4-bin.tar.gz) to a temp area, e.g., ˜/temp/a-
pache ant.

3. Extract the archive:
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2.4 Android SDK 2 INSTALLATION GUIDE

ta r −xvf apache−ant−1.8.4− bin . ta r . gz

4. Create a directory to store the Ant release:

mkdir −p $APACHE ANT

5. Copy the distribution

cp −r ˜/temp/ apache ant $APACHE ANT

6. Test Apache Ant

ant −v e r s i on

2.4 Android SDK

1. Go to the standard Android developer site:

http :// deve loper . android . com/sdk/ i n s t a l l i n g / index . html

2. Select the Stand-Alone version

3. After unpacking the installer:

cd $ANDROID SDK/ t o o l s

4. And execute:

android sdk .

Note: This downloads all the required Android packages. The process may take some time.

2.5 Android NDK

1. Go to the standard Android developer site:

http :// deve loper . android . com/ndk/downloads/ index . html

2. Select the download for your platform

2.5.1 Installing OpenCL library

1. Pull the libOpenCL.so library from the QTI development device:

$ adb p u l l / system/ vendor / l i b /libOpenCL . so

2. Install the library to your NDK lib directory, e.g.,

$ANDROID NDK/ plat fo rms / android−19/arch−arm/ usr / l i b /libOpenCL . so
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3 OPENCL DEVELOPMENT

3 OpenCL Development

3.1 Download Adreno SDK

1. Download the Adreno SDK for your platform:

https : // deve loper . qualcomm . com/ so f tware /adreno−gpu−sdk/ t o o l s

This SDK will bring you a framework (bunch of functions that are optimized for the Snap-
dragon processor), some Samples, Documentation, etc

2. Copy a Sample from the SDK folder (and rename it to your app name) under:

Development > Samples > OpenCL

3. Now open your new folder (with your app name) and you should see an Android project
file tree

3.2 Adreno framework

3.2.1 Overview

Platform-independence is achieved through the hardware and Operating System abstraction
layers of the Framework.
The Framework code is organized in a file hierarchy which enables all platform-independent to
be separated from platform-dependent code. You will see that platform-specific implementations
are kept in platform-specific directories. For example, the file FrmStdlib.h declares most of the
C standard library functions (with abstracted names) whose implementations can be found in
FrmStdlib Platform.cpp that is present in each supported platform directory. Each SDK sam-
ples has a class called CSample that derives from the CFrmApplication class. The derived class
is responsible for construction, initialization, handling resize events, updating and rendering the
scene, and cleanup.

The following snippets are present in [2].

c l a s s CSample : pub l i c CFrmApplication
{

. . .
pub l i c :

CSample ( const CHAR∗ strName ) ;

v i r t u a l BOOL I n i t i a l i z e ( ) ;
v i r t u a l BOOL Res ize ( ) ;
v i r t u a l VOID Update ( ) ;
v i r t u a l VOID Render ( ) ;
v i r t u a l VOID Destroy ( ) ;

} ;

The CSample object is actually created in a global function called FrmCreateApplicationIn-
stance(). All samples using the Framework must supply this function, or else the sample will
fail to build.
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3.3 Understanding Android project files 3 OPENCL DEVELOPMENT

CFrmApplication∗ FrmCreateAppl icat ionInstance ( )
{

re turn new CSample ( ”Sample Name” ) ;
}

To better understand this framework’s features, like File I/O Abstraction or C Standard Library
Abstraction, you may read the Framework.htm file.

3.2.2 Reference

Inside the framework folder, you can find the functions that guarantee platform-independence.
To avoid wasting too much time searching for the correct functions, you should read the Frame-
workReference.htm file that shows you the main changes you need to make in your code.

3.3 Understanding Android project files

AndroidManifest.xml

The Android manifest is used to pull in all components in the SDK package.
Here you can edit your package name, android version, app permisions, and so on.

jni/Application.mk

The Application.mk file defines the compiler versions and Android platform version, e.g.:

APP ABI := armeabi−v7a
APP PLATFORM := android−19
APP STL := g n u s t l s t a t i c
APP CPPFLAGS += −f e x c e p t i o n s − f r t t i

jni/Android.mk

The Android.mk file is your makefile to build the NDK components that are included in the
SDK.
The output should be a library (.so) file.

3.4 Building/Installing the App

3.4.1 Manually

To compile a sample natively, use the ndk-build system (via Cygwin if using Windows).

1. Navigate to the Android/jni directory of the sample and run the following command:

$ ndk−bu i ld

2. Go to the Android/ directory for the sample (up one from jni/) and type (where <Sam-
pleName>is the name of the sample, e.g., BandwidthTest if building the BandwidthTest
sample):
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$ android update p r o j e c t −p . −n <SampleName> −t android−19

Note: Use ’android.bat’ if using Windows

3. To install the app assets and build the .apk package:

$ . / I n s t a l l A s s e t s . sh
$ ant debug

4. And to install the sample on the connected device, type:

$ adb i n s t a l l −r bin/<SampleName>−debug . apk

3.4.2 Automatically

The easiest way to build the Android samples is to run the script build.sh from Samples/Open-
CL/Build/Android or build android.sh under Samples/OpenCL. Running this script with no
command line options from the shell builds all of the Adreno SDK samples. The default An-
droid target to build is android-19.

• To build just your sample (in this case DeviceQuery):

$ . / bu i ld . sh −t DeviceQuery

Note: You may need super user privileges

• To build and install the sample on the device, use the following command: e.g., to build
the DeviceQuery sample and install it on the connected device (using adb):

$ . / bu i ld . sh −t DeviceQuery − i

• To just install an individual sample to the device:

$ . / i n s t a l l . sh −t DeviceQuery

3.5 Running the App

3.5.1 Manually

The samples can be run manually from a command line. To run the sample named <Sample-
Name>, type the following:

$ adb l o g c a t −c
$ adb s h e l l am s t a r t −n
com . qualcomm.<SampleName>/com . qualcomm . common . AdrenoNativeAct iv ity
−e DEVICE gpu −e RUNTESTS true
$ adb l o g c a t | grep OpenCL

The following command-line options are supported by the samples:

• -e DEVICE [gpu—all]
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• -e RUNTESTS [true—false]

To stop the sample, either close it from the Android user interface or type the following:

$ adb s h e l l am force−stop com . qualcomm.<SampleName>

3.5.2 Automatically (in test mode)

The easiest way to run Android samples on your device from your computer is to run the script
run tests.sh. To run an individual sample, e.g., VectorAdd, type the following:

. / r u n t e s t s . sh −t VectorAdd

3.6 Debugging the App with GDB

’ndk-gdb’ is a script that allows you to easily launch a native debugging session for your NDK-
generated machine code. It is located at the top-level directory of the NDK, and can be called
from your application project directory, or any of its sub-directories.

3.6.1 Requirements

1. Your application must be debuggable

To do this, you need to set the android:debuggable attribute to ’true’ in your Android-
Manifest.xml file.

2. You are running your application on Android 2.2 (or higher)

3.6.2 Usage

By default, ndk-gdb will search for an already-running application process, and will dump an
error if it doesn’t find one. You can however use the –start or –launch=<name>option to au-
tomatically start your activity before the debugging session.

When it successfully attaches to your application process, ndk-gdb will give you a normal GDB
prompt, after setting up the session to properly look for your source files and symbol/debug
versions of your generated native libraries.

To see a list of options, type ’ndk-gdb –help’.
You can find the GDB manual here:

https : //www. gnu . org / so f tware /gdb/ documentation /
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4 Monitoring/Profiling the App

4.1 Adreno Profiler

The Adreno Profiler tool facilitates with profiling the OpenCL app to identify optimization
opportunities through the use of many performance measurement metrics and static analysis of
OpenCL kernels.

4.1.1 Installation

In order to run Adreno Profiler the following two dependencies need to be installed:

• Mono Framework 2.10.5 (It is important to get that particular version of the Mono Frame-
work)
Download and install from:

http :// download . mono−p r o j e c t . com/ arch ive / 2 . 1 0 . 5/ macos−10−x86 /0/

• xQuartz
Download and install from:

http :// xquartz . macosforge . org / land ing /

4.1.2 Usage

First of all:

1. Verify ADB is available in your system PATH

2. Open an xQuartz Terminal window

3. Open AdrenoProfiler

Using Adreno Profiler to examine differences

Grapher

1. Click Grapher on the top tool bar to open the grapher panel.

2. n the Metrics Browser, click Grapher Metrics to display the metric list.

3. Expand EGL and double-click the FPS option to enable logging.

4. Start PostProcessCLGLES on the device and make sure it is running during profiling.

5. Click Connect on the tool bar and select the PostProcessCLGLES app from the popup
dialog.

6. Let the app run for a few seconds and click Disconnect.

7. The grapher should plot FPS in real time.
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Figure 2: Buttons for the previous steps [1]

Scrubber (captures useful data for a CL app)

1. Open a shell and run:

adb s h e l l s e tprop ADRENO PROFILER ENABLE OPENCL 1

2. Start up Adreno Profiler.

3. Click Scrubber CL on the top toolbar.

4. Start the PostProcessCLGLES app on the device and make sure it runs during profiling.

5. Click Connect and select PostProcessCLGLES from the popup dialog.

6. Click the red Record button in the scrubber panel.

7. Let the app run for a couple of seconds and click Record again to stop.

8. In the Gantt chart window, continue to zoom in until the API marker bars are visible.

NOTE: No extra API call is needed to copy the buffer. Mouse over the bar and the time
spent in the copying buffer API call appears. Copying occurs for every kernel operation that
increases the overall time.

11



4.1 Adreno Profiler 4 MONITORING/PROFILING THE APP

Figure 3: Buttons for the previous steps [1]

Figure 4: Time spent in the copying buffer API [1]
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Figure 5: With some detail [1]

4.2 Trepn Profiler

Trepn Profiler is an on-target power and performance profiling application for mobile devices.
Although Trepn runs on most Android devices, additional features are available when used with
devices featuring Qualcomm Snapdragon processors or development hardware.
With Trepn Profiler, developers can better understand the impact of their programming choices
on both power and performance.

4.2.1 Installation

• From Google Play:

https : // play . goog l e . com/ s t o r e /apps/ d e t a i l s ? id=com . q u i c i n c . trepn

• From QDN:

https : // deve loper . qualcomm . com/download/ trepn−p r o f i l e r . z ip
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Figure 6: Six fast loading presets allow you to quickly profile your device [3]

Figure 7: Real-time overlays allow you to see the impact of your actions on any app [3]
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Figure 8: Trepn Profiler shows whether an app is CPU or GPU-constrained [3]
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