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Abstract

Vehicle classification has been a highly focused topic amongst the scientific community due to its

application in automatic tolling systems, road surveillance, traffic monitoring, etc. Image-based

classification using computer vision techniques provides a non-invasive, cost effective, automated

option to these systems. In traffic video surveillance systems vehicle detection and classification

help provide more accurate and detailed statistics that can be used in intelligent transport sys-

tems.

We implemented a non-invasive vision based vehicle classification system able to operate in both

multilane free flow environments and in toll stations. Additionally, it can be used in surveillance

cameras present in various motorways to provide not only quantitative information about flowing

traffic but also qualitative.

In this work we implement three hog-based descriptors as well as an additional edge points groups

SIFT-based descriptor. These were tested on four distinct datasets captured using cameras al-

ready present in tolling/surveillance locations in various motorways.

We were able to obtain an average of 97% accuracy using a global HOG descriptor. Using mul-

tiple SVM trained with local HOG descriptors we slightly improved results when high quality

images were used, but more importantly showed the potential application of this method when

well localized highly descriminatory sections of an object exist. Additionally we showed that the

HOG-based descriptors classification was able to outperform the SIFT-based edge points groups

across all datasets.

Keywords: Computer Vision, Machine Learning, Vehicle Classification.





Resumo

A classificação de véıculos tem sido um tópico muito focado pela comunidade cient́ıfica devido

à sua aplicação em sistemas de portagens automáticas, vigilância, monotorização de tráfico, etc.

Classificação baseada em imagem usando técnicas de visão por computer fornece uma opcção não

invasica, de baixo custo e automática a estes sistemas. Em sistemas de monotorização de tráfego,

detecção e classificação de véıculos ajudam a fornecer estatisticas mais detalhadas e exatas que

podem ser usadas em sistemas de transporte inteligentes.

Implementamos um sistema de classificação baseado em image não invasivo e que é capaz de

operar em ambientes de circulação livre bem como em portagens. Além disso, o sistema pode

ser usado em cameras de vigilância presents em várias estradas de forma a fornecer não apenas

informação quantitativa acerca do tráfego, mas também informação quantitativa.

Neste trabalho implementamos três descritores baseado em HOG (histograma de gradientes ori-

entados) bem como um descritor adicional de grupos de points fronteira baseado em SIFT (trans-

formada de caracteŕısticas invariantes à escala). Estes descritores foram testados usando quatro

conjuntos de dados constitúıdos por images capturadas usando cameras já instaladas (para out-

ras tarefas) em portagens e outras localizações.

Obtemos em média uma 97% de classificações correctas usando um descriptor HOG global, 95%

usando um descritor HOG em piramide. Conseguimos melhorar ligeiramente os resultados usando

um sistema com múltiplos classificadores SVM (máquinas de vectores de suporte) treinados com

descritores HOG locais. Mais importante mostramos o potencial deste método quando existem

secções bem localizadas e altamente descriminadoras de um objecto. Por fim mostramos que a

classificação que usou descritores baseados em HOG obteve melhores resultados que o método de

classificação baseado em grupos de pontos de fronteira em todos os conjuntos de dados testados.

Palavras Chave: Visão por Computador, Apredizagem de Máquina, Classificação de Véıculos.
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Chapter 1

Introduction

1.1 Motivation

Vehicle traffic surveillance has attracted significant interest in the computer vision community

due to its high number of possible applications. Important statistics such as traffic density,

queueing, average speed of vehicles could all be extracted from surveillance cameras and used

in an intelligent transport system (ITS). Another important situation where computer vision

can make a difference is when dangerous situations occur, they can be detected much quicker

enabling a prompt response. In 2009, there were 10.8 million recorded traffic accidents in the

United States alone resulting in 33808 deaths [5]. An early notification could significantly improve

survival rate in these situations [10]. Automatic tolling systems can also benefit from computer

vision techniques. In 2014, according to the European Association of Tolled Motorways, Bridges

and Tunnels [34], there were more than 45500km of tolled ways in Europe with about 16300

toll lanes. Some methods of vehicle classification currently being used [21] are invasive, which

means they require some hardware to be installed on the pavement. Despite achieving great

results, this situation proves problematic when maintenance is required as it involves stopping

traffic. Non-invasive methods are also used to some extent [35], however they often require

precision hardware which can be expensive. With the development of image/video technology,

image-based classification provides a robust, non-invasive alternative to these methods. The

great majority of tolling locations already have cameras installed for surveillance and security

reasons, which means that applying this type of vehicle classification would come with little to

no added cost.

1



In our work we will focus on using images from these pre-installed cameras to classify vehicles

into five general classes such as ’cars’, ’vans’, ’trucks’, ’motos’ and ’buses’. Even though most

motorways operators have their own classification criteria we feel that these five categories are

suited as they often tend to match classes defined by the motorway operators giving it a wider

application range.

1.2 Main contributions

We developed a non-invasive image-based vehicle classification system and investigated its via-

bility when using pre-installed surveillance cameras in tolling locations. Three different datasets

were manually labelled throughout the project and an additional dataset was created by extract-

ing vehicles from a CCTV (Closed-Circuit TeleVision) surveillance video feed. For the duration

of our work we noted that it was difficult to find publicly available datasets suited for vehicle

classification. For this reason we will make the dataset we created publicly available to be used

in similar projects.

We implemented three HOG-based descriptors (global HOG, Local HOG, PHOG) which were

used in combination with SVM classifiers. Additionally we extended the work of Ma and Grimson

[24] to up to five classes in order to use it in our work. We were able to achieve as high as 97%

accuracy using HOG-based descriptors and 95% using Ma and Grimson’s constellation model.

1.3 Structure of the thesis

The organization of this thesis was devised with the objective of introducing the various com-

ponents of a object classification system sequentially and in a easy to consult manner. Chapter

2 goes over relevant research developed in the area as well the current system implemented by

Brisa [19] in many Portuguese highways. In chapter 3 the datasets used in this work are de-

scribed. Chapter 4 goes over the theoretical background of the descriptors used throughout our

work as well as how they were implemented. Similarly, in chapter 5 we can find the different

classifier methods used. Chapter 6 presents the developed work and the results obtained. Finally,

in chapter 7 we draw some conclusions from the developed work and present key directions for

future work.
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Chapter 2

State of the Art

Vehicle classification has received much attention by the scientific community in past years. Due

to the relative low cost of cameras, high performing image-based classification systems are highly

desired. As such a wide variety of approaches have been proposed in recent years.

2.1 Vehicle Classification

Image based classification techniques have been slowly but surely replacing other methods of

vehicle classification systems [21], [35] which are normally tailored at a single motorway operator’s

classification criteria. Xiang et al [35] use a pair of infra-red laser emitter and receiver to count

a vehicles axles. Their system uses this information to label a vehicle into one of the 12 distinct

classes defined by Austroads [2]. Most recent approaches to vehicle classification attempt to

either classify vehicles into boarder categories like van, truck, car [15], [1], [24], [8] or try to

determine the vehicle make and model (ex: Fiat Punto) [9], [31], [29], [11], [36]

3D-model based approaches compute the vehicle’s 3D parameters to create a 3D-model of the

vehicle’s shape. In [3] the authors use gaussian mixture model to estimate background from

a CCTV video feed. The contours of the foreground blobs are then compared with existing

vehicle models and maximum overlap gives the final estimation. Two different types of models

were tested, project silhouettes and using HOG (histogram of Oriented Gradients) descriptors on

patches defined in a 3D-model space. This 3DHOG approach was able to deal with challenging

scenes where using motions silhouettes wielded the incorrect result.

Various PCA-based (Principal Component Analysis) approaches have also been proposed [37],
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[1], [26]. Ambarkedar et al proposes three different approaches [1]. In PCA+DFVS (distance

from vehicle space) an eigenspace (vehicle space) is created for each class and the decision is

given by the closest distance out of all seperate vehicle spaces. In PCA+DIVS (distance in

vehicle space) a single vehicle space is created with all training samples regardless of label. By

projecting training images to this vehicle space a mean vector of weights (principal component)

is determined for each class. By calculating the Mahalanobis distance to each class’ mean vector

the final decision is made. Finally, in PCA+SVM (Support Vector Machine), after projecting

training images to a vehicle space as done in PCA+DIVS, instead of calculating a mean vector,

a SVM is trained using the training samples’ mean vectors. Peng et al in [26] used a similar

approach to PCA+DIVS in order to distinguish between five classes of vehicles based on their

frontal view. However, Peng et al also used K-means clustering to each class in order to decrease

intra-class variability by creating a number of sub-classes.

Appearance-based methods rely on extracting a set of features (HOG, SIFT, Sobel Edges) to

represent the vehicle’s appearance. Petrovic and Cotes [29] tested various edge-based features

including sobel response and square mapped gradients. These features together with simple

measure based decision modules like the dot product and euclidean distance were able to produce

interesting results detecting a vehicle’s make and model. Ma et al grouped modified SIFT

descriptors using mean shift technique to form repeatable edge group points. These points were

in turn used to create constellation models for each class and a Bayesian decision rule provided the

final classification. They were able to achieve high performance using low resolution surveillance

camera images. Zezhi et al [7] extracted individual vehicles from a CCTV video and used multiple

measures (ex: area, equivdiameter, disperseness) in combination with Pyramid Histogram of

Oriented Gradients (PHOG) to classify vehicles into multiple classes.

Methods relying on Neural Networks have also been recently emerging in the scientific community

[16], [13]. Dong et al in [16] propose a biologically inspired multi-layer feed forward convolutional

neural network. Their method is able to automatically learn good features which are discriminant

enough to work well in complex scenes. The softmax classifier is trained by multi-task learning

with small amounts of labelled data.
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2.2 Brisa’s Current System

Before explaining the current system it is important to understand that it was designed with

Brisa’s vehicles classes in mind. These classes are distinguished according to the number of axes

the vehicle has as well as by the height measured as from the first axis. In our work we tried to

emulate as much as possible this classification criteria with the limitation that determining the

height was not possible and not always the number of axes was shown in the used images. As

such a small approximation can be made between Brisa’s classes and the classes used in this work.

Brisa’s Classes Our Classes

Class 1 ’Cars’

Class 2 ’Vans’ + ’Buses’

Class 3 ’Trucks’

Class 4 ’Trucks’

Class 5 ’Motos’

Table 2.1: Mapping between Brisa’s classes and classes used in our work.

Figure 2.1: Brisa’s classification criteria. Motorcycles are considered class 5 in electronic tolling.

The system currently installed and being used by Brisa was proposed in [21]. It consists in

an Integrated Vehicle Classification System (IVCS) designed to operate in a multi-lane free-flow

(MLFF) environment. This system manages several basic units, the Automatic Vehicle Detection

and Classification modules (AVDC), working in parallel. It also processes the image captured by

the Advance License Plate Recognition unit (ALPR) and the profile returned by the AVDC.
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The AVDC makes use of a treadle installed in the pavement which triggers a signal every time

it detects a vehicle passing above it. When triggered a high-speed pulsed-laser starts taking

measurements of the height of the passing vehicle. Special importance is placed on the height

above the first axle and the number of axles the vehicle has. With this information the system

generates a classification. In addition, it also stores the vehicle’s profile and image for the IVCS

to use. With only this classification the authors achieved an accuracy rate of 99,31% when testing

in a real traffic environment.

This system was also developed to be able to classify vehicles according to their profiles. The

vehicle’s profile consists on the measurements taken by the laser during the time between the

vehicle’s detection (first axle on treadle) and the vehicle’s leaving the system (last axle leaving

treadle). The amount of samples varies according to the passing vehicle’s length and speed,

therefore they had to be re-sampled. Afterwards, the authors used PCA to design the classifier.

For this classification vehicles were separated into more generic classes such as: Big Truck, Big

Van, Car, SUV, MPV, Open Truck, Small Truck with Box, Small Van. This approach is more

convenient as it allows greater freedom since it isn’t limited by a very specific classification

critera. It achieved high accuracy rate amongst the most distinct classes (car, Big Van), however

it struggled with more similar classes (SUV, MPV).

The system used the image for license plate recognition, however a image based classification

method was also proposed. A region of interest of the vehicle would be extracted which would

be used in the 2D Linear Discriminant Analysis (2D-LDA). This would provide vehicle labelling

an model recognition.

The IVCS would then manage all these inputs (more than one AVDC per vehicle can be triggered)

to generate the final label and confidence level.

Having a treadle installed in the pavement is a requirement of this system. This means that any

time Brisa needs to do maintenance work the traffic has to be stopped. Additionally it is an

expensive solution if applied at a large scale.
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Chapter 3

Datasets’ Description

We used 4 different datasets each containing different types of images. This images were obtained

using already installed setups in various motorways. In this chapter we will describe each dataset

as well as present some image samples.

3.1 Rear View

The images in this dataset (figure 3.1 and 3.3) were captured in 4 toll stations of Portuguese

motorways (Valença, Mira, Odivelas, Olival) between the 16th and the 22nd of February of 2015.

These images were provided to us by Brisa [19] (largest Portuguese company responsible for

tolled motorways) for the purpose of research in this project. Currently Brisa uses these types

of images for license plate recognition and surveillance. From this group of images we were able

to create two distinct datasets. One where there was a toll station present and another in a

multi-lane free flow environment.

3.1.1 Toll Stations

For this first dataset we manually labelled a total of 11188 images resulting in a dataset with the

following distribution: 8009 cars, 1365 vans, 1733 trucks, 30 motorcycles and 51 buses (figure

3.2). This is by far the largest dataset we worked with, which allowed us to test scenarios with

a large amount of training samples. Also this dataset was the starting point for our work as it
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contained the type of images we would find were our work to be implemented.

Figure 3.1: Rear View with Toll Stations dataset image samples.

Despite all these images being from a rear view they vary greatly in a number of different

aspects (figure 3.1). Vehicles are located at different planes (further / closer to camera), images

were taken both during the day and during the night and finally, depending on the camera layout,

vehicles can have different orientations. Some techniques were explored to try to overcome these

variations. All images are 384x288 pixel in dimension and are in grayscale format.

Figure 3.2: Rear View with Toll Stations Dataset class distribution.
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3.1.2 Multi-Lane Free Flow

We had access to far fewer images in this condition, and as such only 2068 images compose this

dataset. The distribution is: 1224 cars, 259 vans, 559 trucks, 13 motorcycles and 13 buses (figure

3.4). Unlike the previous dataset where the day and night images had comparable quality, in

this dataset the lighting of the images captured during the night is much poorer. Images were

labelled not only for their class but also for whether they were taken during the day or during

the night.

Figure 3.3: Multi-Lane Free Flow dataset image samples.

Unlike the previous dataset this images are of much greater resolution (1392x1040) and are

also much more standardized. These images were taken at a location using the IVCS system

explained in chapter 2. Images were taken only when the pavement pressure sensor was triggered

and for this reason all vehicles appear at a constant scale in the image. Nevertheless, since this

images were taken in a free flow environment vehicles appear both centered and on the sides of

the image. This was mitigated using image segmentation techniques.

3.2 Frontal View

The images in this dataset (figure 3.5) were downloaded from http://mc.eistar.net/~pchen/

project.html and originally used in the work published in [25]. This dataset was put together

by its creators with the goal of vehicle colour recognition in mind, however due to the high

variety of vehicles present we were able to create a smaller dataset suitable for our task of vehicle

type classification. We manually labelled a total of 3099 vehicles resulting in a dataset with the
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Figure 3.4: Rear View Multi-lane Free Flow Dataset Distribution.

following distribution: 1684 cars, 655 vans, 529 trucks, 83 motorcycles and 148 buses (figure 3.6).

The images in this dataset are all in RGB colour format their sizes however, vary. They were

captured without special care to preserve scale invariance, therefore, unlike what happened in

previous datasets, the scale and size of the different classes will not be implicit described in the

features. Classification will rely on purely the difference in appearance to distinguish between

the classes. In order to extract features, we normalized the images to 384x288.

Figure 3.5: Frontal View dataset image samples.

3.3 Top Side View

The images in this dataset (Figure 3.7) were extracted from a video stream of CCTV cameras

present in an American motorway. The stream is made available at: http://www.traffic.

md.gov/TravInfo/trafficcams.php. Using a media download extension for firefox (Download-
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Figure 3.6: Frontal View Dataset Distribution.

Helper) we captured two videos: The first was 24 minutes long, the second was a one hour video.

The specific feed used was ICC MD 200 WB CRABBS BRANCH WAY MP 2.2. This choice

was due to various reasons: the camera position in relation to the road; the amount of traffic not

being too thick neither too scarce; having a decent number of vans and trucks passing through.

In order to build our dataset we needed to detect and extract the vehicles. For this purpose a

gaussian-mixtures based background subtraction algorithm [32] was used (figure 3.8). Although

this allowed for vehicle detection within each frame of the video, if vehicles were detected across

the entire image it would create problems in scaling. Vehicles detected further from the cam-

era would be smaller than those detect closer regardless of class. To attempt to minimize this

problem we placed a virtual sensor in the image so that only vehicles detected inside it would be

extracted. The virtual sensor consisted of 2 lines traced in the image (figure 3.9). The dataset

distribution was as follows: total - 2752; cars - 1975; vans - 466; trucks - 302; motos - 4; buses -

5 (figure 3.10)

Figure 3.7: Top Side View dataset image samples.
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Figure 3.8: Background subtraction mask.

Figure 3.9: Virtual sensor display.

Figure 3.10: Frontal View Dataset Distribution.
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Chapter 4

Descriptors

In order to classify any type of object in an image it is first necessary to create a representation of

the object. One first approach could be simply using the raw pixel values of the image, however a

small 300x200 image would originate 60000 individual values, many of which would not provide

relevant information. A good representation should be: sufficiently discriminatory to be able

to distinguish between different classes; robust to noise and illumination changes; concise so

that the cost of computing several samples is not prohibitively high. Many factors have to be

taken into consideration and tradeoffs will always exist. Various different approaches have been

proposed to tackle the problem of vehicle representation. Some focus on the image as a whole

(global descriptors) and include features like size and shape [8], [3] to represent the vehicle. This

however, is usually used when video is available to complement vehicle detection as the object is

well defined within the image in this situation. Geometric measures have also often been used,

however they either require camera calibration or very standardized images to be able to extract

a know feature, usually the license plate [13], as a reference measure. By far the most popular

methods make use of edges [24] or are gradient-based [12], [23], [29]. This has been shown to

be a good representation of the object’s appearance as gradients and edges are, to some extent,

invariant to illumination changes. There are some variations, however, regarding to where these

features are computed. Some methods compute the gradients of the entire image indiscriminately

(global descriptors) and some look for sections of the image describing the vehicle as a collection

of parts (local descriptors). The latter tend to be more robust to occlusion as even when parts

of the vehicle can’t be seen, visible parts can still provide sufficient information. On the other

hand, local features usually require complex methods to find the best sections of the image to

use [23].
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In our work we use Histograms of Oriented Gradients (HOG) in a number of ways. Firstly we used

the HOG to capture the global information of the image, extracting a single descriptor as proposed

in [12]. We also experimented extracting more detailed features in different sections of the image

as local descriptors. Our hypothesis was that by adding more detailed information about these

different sections our system would be able to deal with situations where it is undecided. PHOG

descriptors were also investigated. In addition to HOG we used edge point group features as

described in the work of Ma and Grimson [24].

4.1 Histogram of Oriented Gradients

Using local intensity gradients has been shown to be an effective way to characterize the local ob-

ject appearance and shape. This serves as the basic idea behind this descriptor [12]. In an image

the gradient is a vector that points in the direction showing the greatest increase in scalar val-

ues in the neighbourhood. Considering and image I, the gradient vector at point (x,y) is given by:

5 I(x, y) =

[
δI

δx
,
δI

δy

]
(4.1)

The gradient magnitude is therefore given by:

| 5I |=

√(
δI

δx

)2

+

(
δI

δy

)2

(4.2)

And gradient orientation by:

θ = arctan
(
δI
δy / δI

δx

)
(4.3)

To compute HOG features the image is first divided into small cells inside of which gradients

are calculated for each pixel in order to form an Histogram of Oriented Gradients. Hence the name

HOG. A number of this small regions, cells, form a bigger region, blocks, inside of which the

values of all previously created histograms are normalized. This normalization helps compensate

for changes in illumination, shadowing, etc... By concatenating these normalized histograms we

get the HOG descriptor for the image.

The biggest difference between this type of features and others that are also gradient-based is
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Figure 4.1: Visualization of HOG features.

that the blocks can overlap allowing for a better local contrast normalization.

We used Piotr’s implementation [14] of the HOG features in our work. More specifically Piotr

Dollár’s implementation of the Felzenszwalb’s HOG [22]. This version gave almost identical

results but was much faster.

4.1.1 Global HOG descriptors

With this type of descriptor we used 48x48 cells, 96x96 blocks to create the histograms with

13 orientations bins. For the example of the Rear View with Toll Stations dataset, which had

384x288 sized images we would have 8 ∗ 6 = 48 cells. For each a histogram was computed. In

the FHOG implementation, each histogram is 3∗ 13 + 4 = 43 dimensional, where 2∗ 13 = 26 are

contrast sensitive orientation channels, 13 are contrast insensitive orientation channels and 4 are

texture channels. All the computed histograms were concatenated into a single 48 ∗ 43 = 2064

vector that represented the entire image. These values remained constant for all datasets as, after

performing a grid-search to determine the optimal values we discovered their influence wasn’t

very relevant (<0.6%). The image’s resolution varied however and the total size of the final

feature vector changed accordingly.

4.1.2 Pyramid HOG descriptors

Pyramid HOG features extract descriptors from the same region with increasingly small cell’s

sizes. Initially it produces one histogram calculated throughout the entire image. In the next

step, 4 cells are used each producing a histogram for its region. Finally 16 cells are used

originating 16 different histograms. In our work we only used three levels, but additional ones

could be used. All these histograms are then concatenated into a single vector that is used to
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describe the entire image. This method allows the descriptor to incorporate information of the

image at different scales.

Figure 4.2: Visualization of PHOG. Image taken from https://www.robots.ox.ac.uk/~vgg/

research/caltech/phog.html

4.1.3 Local HOG descriptors

Inspired by the PHOG we also tested a different approach. Instead of concatenating descriptors at

different scales into a single descriptor of the image we would use these more detailed descriptions

of different sections of the image to train multiple classifiers. These, in combination with a

classifier trained using global HOG descriptors, would be used to generate the final classification.

These local HOG would be computed using half the cell size of the global HOG. This effectively

means that in the region where these local HOG’s are being extracted we see the image with four

times more detail.

To determine these different sections we took a straight forward regular approach and divided

the image into six identical regions (figure 4.3a). The local HOG descriptors were computed for

each section individually in addition to the global HOG descriptors. We also tested an irregular

approach in order to try to capture more discriminatory information in each individual section.

To do this we used the known location of the license plate and defined three sections focusing on

known features of the vehicles, the left and right lights and the section above the license plate
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containing the mirror (figure 4.3b). Similarly, a fourth classifier was trained using global HOG

descriptors.

(a) Regular Division. (b) Irregular Division.

Figure 4.3: Regular and irregular divisions of the image.

4.2 Edge Points Groups of SIFT descriptors

Repeatability of detected features is a essential factor for successful recognition. Edge points

extracted by a Canny edge detector [4] share some similarities between different images of the

same class, however there are still quite evident variations. By grouping similar edge points

it is possible to further increase repeatability and decrease variations. In addition to being

repeatable a good set of features should also exhibit sufficient discriminability. Using only edge

points locations does not provide enough information to distinguish between similar classes,

specially if they share a similar size and shape. By associating edge points with SIFT descriptors

[23] we can increase discriminability. SIFT descriptors are created by computing the gradients

magnitude and orientation in a neighbourhood around an anchor point. The region is split into

rxr subregions for every of which an orientation histogram is formed by accumulating samples

within the subregion, weighted by gradient magnitudes. Concatenating the histograms from

subregions gives a SIFT vector. In order to group edge points that are both spatially close to

one another and have similar descriptors a mean shift technique was employed. The associated

coordinates and SIFT vectors for every edge point in one group define a feature. Let fı be the

ıth feature of a sample and  the number of edge points in the feature ı, j = 1...Jı. Then fı is

a 3-tuple {{p̃ı}, {s̃ı},~cı}, where {p̃ı} is the set of coordinates of all edges points in the group,

{s̃ı} is the set of SIFT vectors calculated around points belonging to the group and ~cı is the
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average SIFT vector of the feature ı.

To implement the edge points groups we used, for the calculation of the SIFT descriptors, the

work of [33].

Figure 4.4: Visualization of SIFT descriptors.. Image from http://www.codeproject.com/KB/

recipes/619039/SIFT.JPG
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Chapter 5

Classifiers

In every object classification system it is necessary to have a decision rule that will allow the

determination of the object’s class based on its features. To achieve this, it is required to have

a portion of the data labelled (supervised learning) to be used as examples to tune the decision

function. Some methods using unlabelled data (unsupervisioned learning) have also been used,

but to a much lesser extent due to its inherent computational complexity. Another important

characteristic of different classification methods is their output. Some methods do what is called

probabilistic classification and, instead of simply outputting the ”guessed” class, they output a

probability of membership for each class. This brings certain advantages as by having a confidence

level for the classification the system can opt to take certain decisions like abstaining or using

more information if available.

For vehicle classification numerous methods have been proposed. One intuitive way of tackling

this problem is to define an hyperplane that separates the data amongst the possible classes

(SVM, LDA) [11], [8], [12], [18]. Other methods [1], [26], [37] use Principal Component Analysis

(PCA) [28] to determine the features that show the most variance and use them to build a

representative average feature vector of each class. By calculating how similar a new vehicle is

to the average vectors a decision is made. Ma and Grimson [24] use a constellation model where

the features that are repeatable across various training samples are used to create a model of

each class. By comparing features extracted from test samples with their closest matches in each

model class the authors are able to determine the type of vehicle. Recently Neural Networks

have also been used to great success [16], [13].

In our work we chose to use Support Vector Machines (SVM) because of its simplicity and its

proven results in the available literature [12]. We used the implementation in [6]. In addition we
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also implemented the constellation model proposed by Ma and Grimson [24] in their work as an

alternative method.

5.1 Support Vector Machine

The general idea behind a support vector machine is that it creates a hyperplane to separate a

set of data. This hyperplane is chosen as to provide the largest distance possible to the nearest

data points of the different classes (boarder points). With this separation it is then possible to

classify unknown points depending on which side of the hyperplane they fall on. This simple and

intuitive yet powerful concept has made SVM one of the standards for data classification for the

past years.

5.1.1 Linear SVM

Let us assume we have some training data D = {(xı, yı)|xi ∈ <d, yı ∈ {−1, 1})2ı=1, where n is the

number of points in our set, xı is a d-dimensional vector and yı is the label of the corresponding

xı vector. Note that SVM deals only with binary classification, i.e, classification between two

classes (positive and negative).

Figure 5.1: Visualization of separating line for 2D data. Image taken from wikipedia.
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As can be seen in figure 5.1 SVM’s goal is to find the maximum margin hyperplane that

separates the points of each class. An hyperplane can be described as:

~w.~x− b = 0

where ~w is the normal vector to the hyperplane and b
‖~w‖ represents the offset of the hyperplane

from the origin.

Supposing the training data is linearly separable then we can define:

~w.~xx− b = 1

~w.~x− b = −1

that represent the boundary hyperplanes. This means that any point in our training data satis-

fying:

~w.~x− b ≥ 1

belongs to class 1 (positive samples), and points satisfying:

~w.~x− b ≤ 1

belong to class 2 (negative samples).

We therefore want to maximize the distance between these two boundaries. This distance is

given by:

width = (~x+ − ~x−)
~w

‖~w‖

where ~x+ is a positive sample in the boundary, ~x− is a negative sample in the boundary and ~w
‖~w‖

is the normalized normal vector to the hyperplane. From

~w.~x = 1 + b~w.~x = −1 + b

we then get

width = (~w.~x+ − ~w.~x−)
1

‖~w‖
=

2

‖~w‖

We conclude that, in order to maximize the width we need to minimize ‖~w‖. Since this mini-

mization problem involves the norm it is necessary to determine a square root. As a mathmatical
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convenience we can minimize for 1
2
‖~w‖ since we’ll arrive at the same answer. This minimization

can be achieved using the Lagrange multipliers:

L =
1

2
‖~w‖2 −

∑
αı [yi (~w.~x− b)− 1] (5.1)

where α = (α1, α2, ..., αn) are the Lagrange multipliers. Since we want to find an extrema of

the function we need to find the zeros of its derivatives:

δL

δ ~w
= ~w −

∑
αıyı~xı ⇒ ~w =

∑
αıyı~xı

δL

δb
= −

∑
αıyı = 0⇒

∑
αıyı = 0

From this we were able to come up with a value of ~w. By using this value on equation 5.1 we

get

L =
∑

αı −
1

2

∑∑
αıαyıy~xı.~x

At this stage quadratic programming techniques have to be employed. Once the vector

α∗ = (α∗1, α
∗
2, ..., α

∗
N) solution of the maximization problem has been found, the optimal separating

hyperplane is given by,

w∗ =
N∑
i=1

α∗ı yıxı

b∗ = −1

2
(w∗, xr + xs)

where xr and xs are any support vector from each class satisfying, αr, αs > 0 and yr =

−1, ys = 1.

5.1.2 Multiclass Classification

SVM is inherently a binary classifier. This means it separates data divided into two classes.

Most problems, however require us to distinguish between more than that number. In order to

tackle this problem techniques have been devised that allows to reduce a multiclass problem into

multiple binary classifications. Two main techniques are used: OvA (One versus All) and OvO

(One versus One) [17].
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5.1.2.1 One versus All

Also known as One versus Rest this strategy involves training one binary classifier per class. It

takes the samples of the respective class as positive samples while using all other samples as

negative samples. We are essentially training the classifier to determine if the sample belongs to

that class or not. Ideally only one classifier would vote as the testing sample belonging to its

class, however, since this might not be the case, this strategy requires each classifier to produce

a confidence score for its decision.

Since this strategy requires that one classifier for each class be created and trained with the

entire training dataset, in total it will use C classifiers and C*N samples in training, where C is

the number of classes and N is the number of samples in the training set.

5.1.2.2 One versus One

This strategy involves creating one binary classifiers for each combination of two classes. Each

classifier will vote for one of its two alternatives and afterwards the most voted class will be

considered the correct prediction.

This requires the creation of C(C-1)/2 classifiers and will use (C-1)*N samples in training. Despite

creating more classifiers, since it uses less samples in training it is faster, especially when the

number of samples is high. For this reason we use this method in extending the SVM classifier

to a multiclass problem.

5.2 Constellation Model

A constellation model is a probabilistic model of a collection of parts. In their work, Ma and

Grimson use a modified version of Fergus et al work [20] where he model appearances of the

parts as independent Gaussians and shape configuration as a joint Gaussian of object parts’

coordinates.

Assuming two classes c1, c2, a Bayesian decision is given by:

C∗ = arg max
k=1,2

p(ck|F) = arg max
k=1,2

p(F|ck)p(ck) (5.2)

where F is the set of features of an object. If we define an hypothesis as a match between

detected feature and model parts and H as the set of all hypotheses then the likelihood items in
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equation 5.2 can be expanded as follows:

p(F|ck) =
∑
h∈H

p(F, h|ck) =
∑
h∈H

p(F|h, ck)p(h|ck

To avoid having to use a large number of hypothesis the authors defined the most probable

hypothesis h∗ as the mapping where each feature of an observed object corresponds to its most

similar part in the model. To measure this similarity the authors used χ2 − distance between

the average SIFT vector of both the object’s feature and the models’ part. We can then simplify

the previous equation to:

p(F|ck) ' p(F|h∗, ck)

As explained in chapter 4, the features used by Ma and Grimson (edge point group features)

are a 3-tuple vector {{p̃ı}, {s̃ı},~cı}, where {p̃ı} is the set of coordinates of all edges points in

the group, {s̃ı} is the set of SIFT vectors calculated around points belonging to the group and

c̃ı is the average SIFT vector of the feature ı. The authors developed two models the ”implicit

shape model” and the ”explicit shape model”. In our work we only implemented the ”implicit

shape model” due to the similar results and lower complexity. For this reason we will not go over

the details of the explicit model and ask those interested to refer to the original work [24].

5.2.1 Implicit Shape Model

By using a relatively large neighbourhood size to compute an edge point’s corresponding SIFT

vector, each descriptor effectively characterizes both the geometry and appearance of a large

portion of an observed object. Geometric information is implicitly present in these descriptors

to a certain degree. Therefore this models uses only the SIFT vectors leaving out their explicit

coordinates. In this case , with N being the number of features, we have:

p(F|ck) '
N∏
i=1

p({~sı}|h∗, ck)

The SIFT vectors item in this equation is modelled as a single Gaussian with diagonal co-

variance matrix
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p({~sı}|h∗, ck) = G({~sı}|µh∗(i),Σh∗(i))

where h∗(i) is the hypothesis that matches the corresponding model part to feature ı, h∗(i)

is the index of the part that matches feature i of the observed object, h∗(i) ∈ 1, ..., P , P is the

number of parts in the model, µh∗(i) is the mean vector and sumh∗(i) is the diagonal covariance

matrix of the underlying Gaussian.

5.2.2 Learning and recognition

Instead of using all features obtained from all training samples, the authors filtered them so that

only the most repeatable were used. In order to do this, for each class features from successive

samples were added to a feature pool and merged with other similar features from other samples

already present in the pool. Two features were consider similar if the χ2−distance between their

average descriptor was below 0.01. After this step was completed only features that were present

in more than rthresh value of samples were selected. These remaining features in the feature pool

are considered model parts and by using maximum likelihood estimation, µ,Σ are determined.

Using the Bayesian decision rule, (equation 5.2) the recognition result is determined.

25



26



Chapter 6

Development

In this chapter the results of the various algorithms developed along the project will be presented.

To prevent overfitting and ensure statistical significant results, every test involved 100 iterations.

In every one, the data was randomly sampled to ensure an unique combination of training and

testing data. Results presented are the average of all iterations. Each dataset was be tested using

the global HOG descriptors, local HOG descriptors, PHOG descriptors and edge points groups

descriptors in order to determine their performance in describing the image. We will focus on

the performance of each individual class, instead of the overall accuracy of the system as it is

very dependent on the distribution of classes when testing.

This chapter is divided into four sections, one for each dataset. Each section will present the

results for when the original image is considered as well as when a ROI (region of interest) is

extracted using the license plate location.

6.1 Rear View with Toll Stations

6.1.1 Original Images

6.1.1.1 Global HOG descriptors

When we were presented with this problem our first approach was simply to extract the HOG

features from the entire figure with no pre-processing and use an SVM classifier to learn and

classify the data.
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The dataset was initially divided into training and testing sets by simply allocating half the

data for each. Later we settled for 80% for train while 20% for test (figure 6.1). We chose these

value because, having a higher percentage of training samples allows for the SVM to learn a

better representation for each class while still leaving a considerable amount of samples to be

used as tests.

Figure 6.1: Results obtained using different percentages of total number of samples as training.

This simple division method has its advantages and disadvantages. Firstly, the distribution of

samples between the available classes will be very similar between the training and testing. This

will allow the classifier to train with more samples in the classes which are expected to appear

more frequently. This however creates a certain bias towards the most dominant class ’car’, as

can be seen by the following confusion matrix:

Cars Vans Trucks Motos Buses

Cars 0.9914 0.0074 0.0012 0 0

Vans 0.0778 0.8875 0.0333 0 0.0015

Trucks 0.0147 0.0307 0.9531 0.0003 0.0012

Motos 0.3636 0.0861 0 0.5503 0

Buses 0.0911 0.2304 0.3223 0 0.3563

Table 6.1: Confusion Matrix of Rear View with Toll Stations Dataset using 80% of samples as

training

As we can see, the class ’car’ is classified nearly perfectly, which is not the case for the other

classes. This of course inflates the final result as this class represents the vast majority of the

dataset (figure 3.2). After these results we were then interested in finding a way too boost the
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performance of other classes, even at the expense of a slight decrease in the dominant class.

To achieve this we decided to change the method we used to divided the samples into training

and testing. Our goal was to achieve a far more balanced distribution between the classes in

the training stage. We chose to test two different distributions for the training samples. The

first was simply one third of samples being from the ’car’ class, one third being from the ’van’

class and the remaining third for the ’truck’ class. The second still kept a slight bias towards the

dominant ’car’ class and had the following distribution: half the samples are ofthe class ’cars’

and the other half would be ’vans’ and ’trucks’, one quarter each. We omitted the ’motos’ and

’buses’ classes as they have too few samples to attempt to achieve any significant change. We did

however decide to allocate 90% of the total ’motos’ and ’buses’ samples to training to see if there

were any changes. We also had to reduce our ratio of samples for training as we are limited by

the number of samples of the ’vans’ and ’trucks’ classes. A ratio of 0.3 for the training samples

was used.

Cars Vans Trucks Motos Buses

Cars 0.9646 0.0310 0.0043 0.0002 0.0000

Vans 0.0324 0.9338 0.0317 0.0003 0.0019

Trucks 0.0052 0.0388 0.9532 0.0012 0.0016

Motos 0.1375 0.0900 0.0175 0.7550 0.0000

Buses 0.0229 0.1971 0.2171 0.0000 0.5629

Table 6.2: Confusion Matrix with equal distribution of classes in the training samples.

Cars Vans Trucks Motos Buses

Cars 0.9784 0.0188 0.0026 0.0001 0

Vans 0.0490 0.9169 0.0317 0.0002 0.0023

Trucks 0.0096 0.0390 0.9487 0.0010 0.0017

Motos 0.2000 0.0925 0.0075 0.7000 0

Buses 0.0329 0.1743 0.1857 0 0.6071

Table 6.3: Confusion Matrix with slightly bias distribution of classes in the training samples.

Both tested had somewhat expected results (tables 6.2, 6.3). On both, the classification of the

’car’ class was more error prone whereas the performance of the ’van’ class increased. The ’truck’

class had negligible changes The one that had an equal distribution of classes in the testing set

had a bigger increase in ’van’ classification and a bigger decrease in ’car’ classification. The other

29



distribution had smaller changes however still relevant. Both had a better overall classification

than the previous method for a 0.3 ratio of training samples, and were similar to those obtained

when using a 0.8 ratio using only less than half the samples. We opted to using the second

distribution as it doesn’t require as many samples of ’vans’ and ’trucks’ and allowed us to increase

the ratio of training samples to 0.4. This meant we were able to use more training samples which

allowed us to obtain even better results (table 6.4) and for this reason, for this dataset results

will be presented using this division method of samples between training and testing.

Cars Vans Trucks Motos Buses

Cars 0.9832 0.0165 0.0003 0 0

Vans 0.0402 0.9371 0.0188 0 0.0039

Trucks 0.0040 0.0147 0.9787 0.0004 0.0023

Motos 0.0792 0.0837 0.0563 0.7808 0

Buses 0.0247 0.1775 0.1957 0 0.6021

Table 6.4: Confusion Matrix with slightly bias distribution of classes in the training samples and

a 0.4 ratio.

6.1.1.2 Local HOG descriptors

Figure 6.2: Image showing the different sections of the image used to train the different classifiers.

So far we were simply extracting the global HOG descriptors for the entire image and training

one single classifier in order to do the classification. Here we tested the possibility of training

more than one classifier and using their combined results to boost performance.

Having the classifiers return probability estimates provides greater flexibility when combining

30



the results of the multiple classifiers. In order to do this we made use of Platt’s Scaling [30]

which allowed us to transform SVM output into probabilities estimates using logistic regres-

sion. The image was then divided into six regular sections (figure 6.2) and for each, local HOG

descriptors were extracted and used to train a different SVM. A seventh classifier was trained

with the global HOG features as was being done so far, which we will refer to as main classifier.

Each classifier contributed to the final result with their estimates multiplied by a constant weight.

Individually each classifier presented very distinctive results (table 6.33), ranging from 80%

to 93%. In our first approach we gave each of the first six classifiers the same weight towards

the determination of the final result. This is of course problematic because of the wide range

of individual performances. In an attempt to counter this we gave the main classifier a weight

2.5 times greater than the others. Our goal was to provide the system with more information

so that it could deal with situations where the global HOG descriptor was unsure on the correct

classification.

Classifier Individual Accuracy

1 82%

2 89%

3 92%

4 80%

5 92%

6 93%

7 96,5%

Table 6.5: Individual Classifiers Accuracy.

Cars Vans Trucks Motos Buses

Cars 0.9986 0.0013 0.0001 0.0000 0.0000

Vans 0.1862 0.7912 0.0226 0.0000 0.0000

Trucks 0.0393 0.0211 0.9394 0.0000 0.0001

Motos 0.7124 0.0867 0.0002 0.2007 0.0000

Buses 0.0384 0.1211 0.7148 0.0000 0.1257

Table 6.6: Confusion Matrix using the multiple classifiers for different sections in the image for

the Rear View with Toll Stations Dataset.

By analysing the confusion matrix for this method we easily conclude that the misclassi-

31



fication of other class as ’cars’ greatly increased and the correct classification of cars is close

to perfect. The classifiers that were trained with only part of the image didn’t have as much

discriminatory information and then built an even stronger bias towards the dominant class.

Whenever this classifiers were unsure, they would always default to the most probable result

according to their training, the class ’car’. Additionally both the less represented classes of ’mo-

tos’ and ’buses’ suffered from decrease performance, but for different reasons. The ’motos’ class,

being a smaller vehicle was not well represent in all sections of the image, which made individ-

ual classifiers unable to distinguish this class. On the other hand, although ’buses’ appeared in

all sections, the information in individual sections shared a big resemblance with other classes,

especially the ’trucks’ classes. This meant it was often confused as the ’truck’ class had far more

available samples for training and was better represented.

6.1.1.3 PHOG descriptors

The PHOG descriptor workflow of the system followed a similar path to that of the global HOG

descriptor. PHOG descriptors are extracted for using the entire image and a SVM classifier is

trained using this data.

Cars Vans Trucks Motos Buses

Cars 0.9598 0.0308 0.0078 0.0004 0.0011

Vans 0.0622 0.8871 0.0459 0.0005 0.0043

Trucks 0.0242 0.0461 0.9236 0.0010 0.0051

Motos 0.2833 0.1667 0.0333 0.5167 0

Buses 0.1000 0.1250 0.3000 0 0.4750

Table 6.7: Confusion Matrix obtained using PHOG descriptors on original images of the Rear

View with Toll Stations Dataset.

The descriptor was unable to extract enough descriminatory information for the few ’motos’

and ’buses’ classes samples with both being classified correctly only around 50% of the time. For

all the other classes the results were also slightly worse than those obtained when global HOG

descriptors were used.
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6.1.2 Segmented Images

So far, the images in the dataset had suffered no preprocessing before the extraction of the HOG

features. As we can see in the images displayed in figure 3.1, this meant that a lot of background

was included in our description of the image. In order to limit this we used the license plates

localization to extract a region of interest (ROI) focusing on the rear of the vehicles (figure 6.3)

a window of 240x180 was used. The localization of the license plate was provided to us by Brisa

since their system captures this information, however it often fails to correctly recognize the

correct location. Therefore we used only the portion of the dataset where the correct location

was detected leaving a total of: 7217 vehicles; 5806 cars; 747 vans; 618 trucks; 8 motos; 38 buses.

Figure 6.3: Rear View with Toll Stations images samples after segmentation

6.1.2.1 Global HOG descriptor

We tested using global HOG descriptors on these segmented images. We also normalized the

distribution of classes in the training samples using the ratios: 50% ’car’, 25% ’van’ and 25%

’truck’. The classes ’motos’ and ’buses’ suffered the same treatment as previously where 90%

of these classes samples were allocated to the training stage. Due to the low amount of ’vans’

and ’trucks’ samples only 30% of the total samples were used for training when using segmented

images.

Comparing with the results obtained in the same circumstances using unsegmented images

(table 6.3) we see that while both the class ’vans’ and ’trucks’ suffered no change, however there

was a 2% increase in the ’car’ class. This was the recorded approximate loss when we normalized
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Figure 6.4: Rear View with Toll Stations Dataset class distribution using correct license plate

location.

Cars Vans Trucks Motos Buses

Cars 0.9910 0.0084 0.0006 0 0

Vans 0.0446 0.9171 0.0383 0 0.0034

Trucks 0.0115 0.0390 0.9496 0 0.0004

Motos 0.1250 0.1500 0 0.7250 0

Buses 0.0100 0.0800 0.3600 0 0.5500

Table 6.8: Confusion Matrix using global HOG descriptors segmented images of the Rear View

with Toll Stations Dataset.

the training class distribution.

6.1.2.2 Local HOG descriptor

We were interested in seeing how local HOG descriptors would behave when used with segmented

images. Our hypothesis was that by having the segmented images, every single section would

have more relevant information within it, unlike previously where same sections would sometimes

be mainly composed of background.

Overall, there was less disparity between the performance of individual classifiers. As pre-

dicted, relevant information was much better distributed between the different sections, however

34



Classifier Individual Accuracy

1 87%

2 89%

3 89%

4 88%

5 90%

6 92%

7 97%

Table 6.9: Individual Classifiers Accuracy

there was still not enough discriminatory information to achieve high individual levels of accu-

racy. Additionally, despite achieving slightly better results, the main classifier was more often

not confident in its output (30% more samples in which it was not confident) which made the

influence of individual classifiers more noticeable in the final result.

Cars Vans Trucks Motos Buses

Cars 0.9988 0.0012 0.0000 0.0000 0.0000

Vans 0.1902 0.7836 0.0171 0.0000 0.0091

Trucks 0.0453 0.0234 0.9170 0.0000 0.0143

Motos 0.4810 0.0869 0.1321 0.3000 0.0000

Buses 0.0000 0.2640 0.4812 0.0000 0.2548

Table 6.10: Confusion Matrix using the multiple classifiers for different sections in the image for

the segmented Rear View with Toll Stations Dataset.

Individual classifiers still didn’t have access to very discriminatory information which, as can

be seen in the confusion matrix (table 6.10), meant the system tended to default to the most

dominant class. This meant a very good classification of the ’car’ class at the expense of a very

high misclassification rate of other classes as ’cars’.

6.1.2.3 PHOG descriptor

Using PHOG descriptors the system still struggled to distinguish between vans and the other

two classes. A great number of vans were misclassified as either cars or trucks while many trucks

were also misclassified as vans indicating that a good separation between this two classes was

not achieved using this descriptor. Segmenting the image didn’t improve the classification of the
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Cars Vans Trucks Motos Buses

Cars 0.9836 0.0132 0.0032 0 0.0005

Vans 0.0522 0.8951 0.0528 0.0007 0.0039

Trucks 0.0179 0.0485 0.9336 0 0.0045

Motos 0.2167 0.2667 0.0167 0.5000 0

Buses 0.0800 0.1000 0.2400 0 0.5800

Table 6.11: Confusion Matrix using PHOG descriptors on segmented images of the Rear View

with Toll Stations Dataset.

’motos’ and ’buses’ classes.

6.1.2.4 Edge group SIFT based descriptor

As these static images were not obtained from video, the boundaries of the object within the

image are not well defined. For this reason we only decided to apply this descriptor to segmented

images to reduce the amount of background that was being considered. Additionally to build

an equally representative model for all classes, the same number of samples were used to build

each of the classes’ models. 100 samples from each class were used in training and an additional

100 samples from each class were used for testing. The ’motos’ and ’buses’ classes were not

considered due to lack of samples.

Cars Vans Trucks

Cars 0.9803 0.0094 0.0103

Vans 0.0675 0.8745 0.0580

Trucks 0.0500 0.0027 0.9473

Table 6.12: Confusion Matrix using the edge points groups descriptor in segmented images of

the Rear View with Toll Stations Dataset.

This descriptor provided a good representation of the ’car’ and ’truck’ classes, and the system

was often confident in its classification. However this was not the case for the class ’van’, as

interestingly enough the was very rarely entirely confident in its response, even when the correct

classification was obtained. Often the classification probability was close for the 3 classes.
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6.1.3 Comparative Evaluation and discussion

As can be seen by the graphs in figures 6.5, 6.6 all descriptors behaved similarly in the sense

that the class car had the most accurate classification. The biggest difference was that when

the system used local HOG descriptors it struggled to correctly classify vehicles as vans. Apart

from the global HOG descriptor, every single descriptor was unable to generate a descrimina-

tory representation of the class ’motos’ and ’buses’ from the small amount of samples available,

especially the local HOG descriptors.

Figure 6.5: Graph comparing the performances of the system using the different descriptors on

the original unsegmented images.

6.2 Rear View Multi-Lane Free Flow

In this dataset, since we had not only more standardized but also higher resolution images, we

were expecting to achieve better results. However we were also cautious about the lower amount

of samples when compared with the other rear view dataset. In the first test we conducted

we used all the images, both those taken during the day and night. The only exception was

that we didn’t feel it was necessary to use the samples of buses and motos since it was already

demonstrated that this low amount of samples (figure 3.4) aren’t enough to achieve any significant

results.
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Figure 6.6: Graph comparing the performances of the system using the different descriptors on

the segmented images.

6.2.1 Original Images

6.2.1.1 Global HOG descriptors

As before, our first approach was to extract global HOG descriptors for the entire image and use

them to train an SVM classifier.

Cars Vans Trucks

Cars 0.9935 0.0060 0.0005

Vans 0.1057 0.8538 0.0405

Trucks 0.0084 0.0173 0.9743

Table 6.13: Confusion Matrix when using a training samples ratio of 0.8.

Cars Vans Trucks

Cars 0.9789 0.0206 0.0005

Vans 0.0861 0.8900 0.0239

Trucks 0.0092 0.0344 0.9564

Table 6.14: Confusion Matrix when using normalized distribution in the training samples.

The trend of what was seen in previous dataset continues to show here, as cars are classified
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with a very accuracy while vans struggle, even after adjusting the attempting to adjust the

distribution of training samples amongst the classes. Testing binary classifications (only using

samples from two classes at a time) we were able to determine that the biggest difficulty was

distinguishing between cars and vans (table 6.15). ’Cars’ vs ’Trucks’ obtained an almost perfect

score and ’vans’ vs ’trucks’ achieve a respectable result of around 97% classification for both

classes.

Cars Vans

Cars 0.9905 0.0095

Vans 0.1124 0.8876

Table 6.15: Confusion Matrix ’Cars’ vs ’Vans’.

In order to determine just how much the low quality night images were influencing the results

we decided to separate our dataset into ’day’ and ’night’. Of the 2068 images 1227 images on

the day set remain.

Cars Vans Trucks

Cars 0.9784 0.0204 0.0012

Vans 0.0682 0.9118 0.0200

Trucks 0.0049 0.0345 0.9636

Table 6.16: Confusion Matrix when using only day images

Results improved as expect, but perhaps not as much as expected. The most affected class

was ’vans’ that registered an improvement of 2%. Other classes weren’t as affected. As can

be seen in figure 3.3, the rear of the vehicle is still visible, even in these night images. The

most important information that is lost is the length of the vehicle which is important when

distinguishing between cars and vans. As can be noted the number of misclassifications of ’vans’

as ’cars’ decreased.

For the other descriptors the system was tested using only day images.

6.2.1.2 Local HOG descriptors

Due to the high width of the images, some sections of the image contained only background. For

this reason we didn’t use this type of descriptors for the original images of this dataset. It will

be used for the segmented images.
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6.2.1.3 PHOG descriptors

Cars Vans Trucks

Cars 0.9653 0.0287 0.0060

Vans 0.1163 0.8469 0.0367

Trucks 0.0136 0.0300 0.9564

Table 6.17: Confusion Matrix using PHOG descriptor on segmented images of the Front View

Dataset.

The system was not as capable of recognising vehicles as ’vans’ when using PHOG descriptors

when compared to when using global HOG descriptors. PHOG descriptors don’t capture as much

detail of the image as the global HOG.

6.2.2 Segmented Images

Since these images were also provided to us by Brisa, the license plate location was part of the

information we had access to therefore we were able extract a ROI of the images easily following

a procedure similar to that described in section 6.1. With these changes we obtained a far clearer

view of the rear of vehicles when compared to the dataset where toll stations where present. Only

day images were used.

Figure 6.7: Samples of segmented images from Rear View Multi-lane Free Flow Dataset.
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6.2.2.1 Global HOG descriptors

Global HOG features were extracted using the segmented images. For training, 50% of the

samples were used and the distribution of classes was normalized to: 50% cars, 25% vans and

25% trucks.

Cars Vans Trucks

Cars 0.9895 0.0070 0.0034

Vans 0.0393 0.9396 0.0211

Trucks 0.0003 0.0096 0.9901

Table 6.18: Confusion Matrix using global HOG descriptor on segmented images of Rear View

Multilane Free Flow Dataset.

With this change we were able to increase overall performance. Both trucks and ’vans’ classes

registered an improvement of almost 3% . There was even a slight increase in ’car’ classification.

The information in the background is not rich in relevant information and was not contributing

to the differentiation of the vehicles. Also, as the images were of higher resolution, even after

segmentation the remaining image still retained a great number of detail.

6.2.2.2 Local HOG descriptors

Figure 6.8: Sections in segmented image of the Rear View Multi-lane Free Flow Dataset.
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Since our segmented images have little background and the vehicles are well standardized

within the image they provide an ideal condition to test the method using local HOG descriptors.

Every section of the image contains important and relevant information of the vehicle (figure 6.8)

which boosted the individual classifiers performance (table 6.19).

Classifier Individual Accuracy

1 95%

2 96%

3 94%

4 95%

5 95%

6 95%

7 98%

Table 6.19: Individual Classifiers Accuracy.

Cars Vans Trucks

Cars 0.9920 0.0035 0.0045

Vans 0.0495 0.9302 0.0202

Trucks 0.0039 0.0021 0.9940

Table 6.20: Confusion Matrix using the multiple classifiers for different sections in the image for

the segmented Rear View Multi-lane Free Flow Dataset.

Case 1 51.83%

Case 2 14.96%

Case 3 20.82%

Case 4 11.89%

Case 5 0.50%

Table 6.21: Behaviour of final results when the classifier’s confidence was below 0.65.

As expected the individual classifiers overall performance is much higher than before. This

means we can have more confidence in their results and we therefore lowered the strength of our

main classifier’s vote from 2.5x to 1.5x. We were interested in analysing the behaviour of the

system when the main classifier was not confident in its output. In order to do this, every time

the main classifier had a probability estimate of 65% or lower on its result we checked to see the

behaviour of the system. There are five possible scenarios:
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1 - Both the main classifier and the final output of the system are correct. Correctly didn’t

change the correct classification.

2 - The main classifier is incorrect and the final system output shares the same label. Didn’t

change a wrong classification.

3 - The main classifier is incorrect but the final output of the system is correct. Correctly

changed a wrong classification into the correct one.

4 - Both the main classifier and the final output of the system are wrong but don’t share the

same label. Changed a wrong classification into another wrong classification.

5 - The main classifier is correct but the final output of the system is not. Changed the

correct classification into a wrong classification.

Possibilities 1,2,5 have no effect on the overall performance of the system while possibility 3

increases performance and 5 decreases it. As we can see in table 6.33, successful changes are

more prevalent than unsuccessful ones. This means overall, the system performed better than

how it performs with only global HOG descriptors. Looking at the confusion matrix (table 6.20)

we see that while the ’van’ classification is still classified less accurately, however both the ’cars’

and ’trucks’ classes are almost perfectly classified.

6.2.2.3 PHOG descriptor

Cars Vans Trucks

Cars 0.9876 0.0084 0.0039

Vans 0.0593 0.9202 0.0205

Trucks 0.0074 0.0187 0.9739

Table 6.22: Confusion Matrix using PHOG descriptors on segmented images from Rear View

Multi-lane Free Flow Dataset.

The system was able to still achieve a high performance when using PHOG descriptors. The

system shared a similar performance as when using other descriptors in the sense that despite

performing well, the class ’van’ performed poorer when compared to the other classes.
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6.2.2.4 Edge group SIFT based descriptor

This method was proposed as a solution for vehicle classification in low resolution surveillance

images. In these conditions it achieved good results, however in this dataset the available images

are very different (1392x1040 resolution).

Cars Vans Trucks

Cars 0.9667 0.0167 0.0164

Vans 0.1833 0.8003 0.0164

Trucks 0.0633 0.0200 0.9167

Table 6.23: Confusion Matrix using Edge based SIFT

This method used only edges points as possible keypoints in the image as in low resolution

images they represent the most repeatable and stable features. In higher resolution images, there

are many details that don’t necessarily fall on image edges. In that regard, this method is limiting

and isn’t taking advantage of all the possible information, which results in lower performance

when compared to other methods.

6.2.3 Comparative Evaluation and discussion

Finally

Figure 6.9: Results obtained using different percentages of total number of samples as training
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Figure 6.10: Results obtained using different percentages of total number of samples as training

We only tested 2 descriptors using the originals unsegmented images. In this case, the system

as able to achieve a better performance when using global HOG descriptors. For the segmented

images, we were able to increase the system overall performance using the local HOG descriptors.

Having said that, every single HOG-based descriptor achieves high performance. The edge group

SIFT based descriptor was not able to create a discriminatory representation of the vehicles

on par with the other tested descriptors. This was due to the fact this method places pivotal

importance on the images edges which filters a high amount of important information on higher

quality images.

6.3 Frontal View

6.3.1 Original Images

6.3.1.1 Global HOG descriptor

Our first attempt was of course similar to what was tried in the previous dataset. The global

HOG descriptors were extracted, the data was divided into training (80%) and testing (20%) sets

and SVM was used to make the classification. A normalization of the class distribution using the

training samples was also used following the same pattern as before except, since more ’motos’
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and ’buses’ samples are available, only 60% of these classes’ samples were allocated to training.

Additionally, as more ’vans’ and ’trucks’ samples were available, a ratio of training samples of

0.5 was used.

Cars Vans Trucks Motos Buses

Cars 0.9897 0.0099 0.0002 0 0.0001

Vans 0.0491 0.9165 0.0303 0.0018 0.0023

Trucks 0.0001 0.0121 0.9878 0 0

Motos 0 0.0161 0.0157 0.9682 0

Buses 0 0.0109 0.0347 0 0.9544

Table 6.24: Confusion Matrix of Front View Dataset using 80% of samples as training.

Cars Vans Trucks Motos Buses

Cars 0.9792 0.0197 0.0006 0.0001 0.0004

Vans 0.0415 0.9292 0.0257 0.0015 0.0022

Trucks 0.0004 0.0132 0.9858 0.0006 0

Motos 0 0.0169 0.0173 0.9658 0

Buses 0.0002 0.0113 0.0330 0 0.9554

Table 6.25: Confusion Matrix of Front View Dataset using normalization of training samples

distribution using 50% of the dataset as training samples.

’Cars, ’trucks’, ’motos’ and ’buses’ classes tend to be classified accurately classified, however

vans continue to present less optimal results. One definite conclusion that can be extracted is

that it was indeed the lack of samples for the ’motos’ and ’buses’ classes that was hindering

successful classification. Even a small increase (figure 3.6) in the percentage of samples lead to

great improvement. Another thing we noted is that, unlike previously, trying to normalize the

distribution of samples from each class in training, doesn’t lead to significant improvements. As

all classes already had considerably high performance in the first place, this change only really

affected the ’van’ class that did show some improvement, however the decrease in performance

of the ’car’ class counterbalances this change.

6.3.1.2 Local HOG descriptors

To test the effective of local HOG descriptors we used the same method as the one used in the

previous dataset. The image was divided into six regular sections (figure 6.11), the local HOG
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Figure 6.11: Image showing the different sections of the image used to train the different classi-

fiers.

descriptors were extracted for each section and used to train a SVM classifier.

Classifier Individual Accuracy

1 85%

2 82%

3 85%

4 88%

5 87%

6 90%

7 97%

Table 6.26: Individual Classifiers Accuracy

Cars Vans Trucks Motos Buses

Cars 0.9875 0.0111 0.0012 0.0015 0.0001

Vans 0.0630 0.9049 0.0312 0.0009 0.0000

Trucks 0.0005 0.0153 0.9832 0.0000 0.0009

Motos 0.0098 0.0326 0.1365 0.8211 0.0000

Buses 0.0000 0.0197 0.0698 0.0000 0.9104

Table 6.27: Confusion Matrix using local HOG descriptors on segmented images of the Front

View Dataset.

The disparity in performance between the main classifier and the other six classifiers continued

to be high which reflected on the results. The most affected classes were ’vans’ and ’motos’.
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6.3.1.3 PHOG descriptors

Cars Vans Trucks Motos Buses

Cars 0.9779 0.0180 0.0018 0.0015 0.0007

Vans 0.0847 0.8782 0.0294 0.0038 0.0040

Trucks 0.0030 0.0202 0.9661 0.0044 0.0063

Motos 0 0.0450 0.0150 0.9400 0

Buses 0 0.0156 0.0437 0 0.9406

Table 6.28: Confusion Matrix using PHOG descriptors on segmented images of the Front View

Dataset.

Overall, the system performs poorer when PHOG descriptors are used. The ’van’ class shows

the most decrease in performance indicating the less discriminatory power of this descriptor when

compared to global HOG.

6.3.2 Segmented Images

We wanted to see the impact of using only a ROI within the image so that less background

was captured. As before we used the localization of the license plate to establish the region

of interest, however, unlike what happened in the previous dataset, this localization was not

provided. Therefore we devised a method to detect the license plates position.

6.3.2.1 License Plate Localization

Fortunately, in this dataset, the license plates were censored by dyeing a gray colour (RGB code

= (128,128,128)) on top of them. This made it so that by being able to detect the grey in the

image we could localize the license plate.

Using the RGB colour code we conducted a dense search throughout the entire image where

we highlighted all the pixels that in every colour channel (red, green, blue) fell within a certain

threshold distance to the reference value.

As we can see by figure 6.12 there were a lot of points spread throughout the image that fit

this description. It was then necessary to conduct some extra filtering. We saw that it was only

in the license plate region that the detected pixels formed a compact region. On all the others

these pixels were further apart from each other. Using this information we decided to filter the
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Figure 6.12: All pixels within the threshold of the reference value.

pixels based on their proximity to other pixels that fit the colour criteria. We checked all these

matches and filtered all those that did not have matches in a 2 pixels range in all directions.

Only those that were completely surrounded my matches ended up being chosen and most of

the time this was enough to leave only the region of the license plate. However, in some cases a

few scattered pixels would also pass this second filter. These lingering points outside the license

plate region were filtered by calculating their distance to the median of the remaining points. If

it was above a certain threshold, they would be filtered (Figure 6.13).

Figure 6.13: Pixels remaining after applying filter.

Having the location of the license plate we used it as reference to extract a region of interest

around it. Examples of this image can be seen at (figure 6.14).
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Figure 6.14: Frontal View dataset images samples after segmentation.

6.3.2.2 Global HOG descriptor

Cars Vans Trucks Motos Buses

Cars 0.9808 0.0158 0.0029 0.0001 0.0004

Vans 0.0611 0.9087 0.0274 0.0008 0.0020

Trucks 0.0038 0.0088 0.9866 0.0006 0.0002

Motos 0.0210 0.0109 0.0047 0.9633 0

Buses 0.0045 0.0067 0.0387 0 0.9501

Table 6.29: Confusion Matrix using global HOG descriptors segmented images of the Front View

Dataset

Comparing the results obtained (table 6.27) with those obtained using the original images

(tables 6.24 and 6.25) we can see that there are no significant changes. One reason why this

change didn’t affect classification as strongly as it did in the previous dataset is that the original

images in this dataset had not only less background present, but also the background was much

less constant throughout different images. On the ”Rear View with Toll Stations” dataset, all

images were taken in just a few different spaces (images from a total of nine cameras were used),

whereas that doesn’t seem to be the case in this dataset. This means that background plays a

much lesser part on the classification process and therefore, filtering it through segmentation as

a much lesser impact.
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6.3.2.3 Local HOG descriptors

When applying the same regular division of the image into six sections we saw that there wasn’t

much improvement on the performance of the individual classifiers which resulted in slightly

worse results when compared to using only global HOG descriptors (table 6.30).

Cars Vans Trucks Motos Buses

Cars 0.9786 0.0182 0.0026 0.0005 0.0001

Vans 0.0716 0.8968 0.0304 0 0.0011

Trucks 0.0083 0.0134 0.9779 0.0005 0

Motos 0 0.0665 0.0432 0.8903 0

Buses 0.0051 0.0103 0.0570 0 0.9276

Table 6.30: Confusion Matrix using local HOG descriptors on segmented images of the Front

View Dataset with regular division.

For this reason we decided to test an irregular division focusing on specific well defined

sections of the vehicle, namely the lights and the front mirror. We used the three different

sections displayed in figure 6.15. As before, an additional classifier was trained using global

HOG descriptors.

Figure 6.15: Image showing the irregular sections of the image used to train the different classi-

fiers.

Using these different sections we were able to achieve much higher individual classifications

which allowed to increase the overall performance of the system slightly as can be seen in table

6.32. The most improved class was the ’motos’, but both the ’buses’ and ’vans’ classes recorded

some improvement.
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Classifier Individual Accuracy

1 95%

2 93%

3 95%

4 96.7%

Table 6.31: Individual Classifiers Accuracy.

Cars Vans Trucks Motos Buses

Cars 0.9886 0.0089 0.0024 0.0001 0

Vans 0.0616 0.9168 0.0205 0 0.0011

Trucks 0.0033 0.0084 0.9879 0 0.0005

Motos 0 0.0362 0.0121 0.9516 0

Buses 0.0128 0.0106 0.0296 0 0.9470

Table 6.32: Confusion Matrix using local HOG descriptors on segmented images of the Front

View Dataset with irregular division.

As we did in the previous dataset, we were interested in analysing the behaviour of the system

when the main classifier was not confident, below 65%. We did this by analysing the same five

possibilities as described in 6.2.2.2.

Case 1 47.42%

Case 2 25.77%

Case 3 13.40%

Case 4 13.40%

Case 5 0%

Table 6.33: Behaviour of final results when the classifier’s confidence was below 0.65.

The system didn’t change any correct answers, meaning there was no decrease in performance,

while 13.40% of the time the main classifier was not confident the system was able to change a

wrong classification into the correct one.

6.3.2.4 PHOG

When using segmented images, PHOG descriptors performed more on par with the global HOG

descriptor if only still slightly poorer. The classes ’motos’ and ’buses’ were the most affected as
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can be seen in the confusion matrix 6.34.

Cars Vans Trucks Motos Buses

Cars 0.9743 0.0206 0.0041 0.0005 0.0005

Vans 0.0771 0.8923 0.0264 0.0011 0.0030

Trucks 0.0050 0.0218 0.9700 0.0017 0.0015

Motos 0 0.0511 0.0252 0.9232 0.0004

Buses 0.0003 0.0107 0.0441 0.0033 0.9416

Table 6.34: Confusion Matrix using PHOG descriptor on segmented images of the Front View

Dataset.

6.3.2.5 Edge group SIFT based descriptor

We used 100 training samples for the ’car’, ’vans’ and ’trucks’ classes, but due to few samples

we only used 50 for both trucks and motos. In the test we used 60 samples for each class except

the ’motos’ class that didn’t have enough samples left. Only 33 ’motos’ samples were used for

the test for this reason.

Cars Vans Trucks Motos Buses

Cars 0.9779 0.0180 0.0018 0.0015 0.0007

Vans 0.0847 0.8782 0.0294 0.0038 0.0040

Trucks 0.0030 0.0202 0.9661 0.0044 0.0063

Motos 0 0.0450 0.0150 0.9400 0

Buses 0 0.0156 0.0437 0 0.9406

Table 6.35: Confusion Matrix using Edge group SIFT based descriptor on segmented images of

the Front View Dataset.

Despite using fewer samples for the creation of the ’motos’ and ’buses’ constellation models,

the system still managed to achieve a reasonable performance when classifying these types of

vehicles. Overall this system performs well considering how different the images are from the

images used in the work where this method was proposed. Apart from the ’van’ class, this system

performs at a similar level to that achieved when using global HOG descriptors.
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6.3.3 Comparative Evaluation and discussion

Overall, due to the larger amount of samples of the ’motos’ and ’buses’ classes the system was

able to perform much better when classifying these vehicles.

Figure 6.16: Graph comparing the performances of the system using the different descriptors on

the original unsegmented images.

Figure 6.17: Graph comparing the performances of the system using the different descriptors on

segmented images.
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All descriptors achieved similar results when classifying ’cars’ and ’trucks’. On the other hand

the classes ’vans’ and ’motos’ recorded the biggest discrepancy. By using an irregular division of

the segmented images, we were able to increase the overall system performance using local HOG

descriptors.

6.4 Top Side View

This dataset allowed to test out system when classifying low resolution images from surveillance

cameras. In lower resolution images, fewer details are available and for that reason the system

is not able to achieve the same levels of performance as in previous datasets. Due to the lack of

samples of the classes ’motos’ and ’buses’ we did not attempt to classify these types of vehicles.

6.4.1 Global HOG descriptors

As was the case with the previous datasets we extracted the global HOG descriptors for the

entire image and used a SVM classifier to learn and classify the data. However, because of the

lower resolution images, a smaller 8x8 cell region was used when computing the HOG.

We tested the system both using a standard division of samples between training (80%) and

testing (20%) (table 6.41) and a normalization of the distribution of classes in the training stage

(table 6.40).. In the latter, 30% of the dataset’s sample were used for training and followed the

distribution: 50% - cars; 25% vans; 25% trucks.

Cars Vans Trucks

Cars 0.9828 0.0169 0.0004

Vans 0.1586 0.8000 0.0414

Trucks 0.0073 0.0756 0.9171

Table 6.36: Confusion Matrix using 80% samples for training.

As can be seen by the confusion matrices the low resolution images make it especially hard to

classify ’vans’ as they become more and more similar to ’cars’. Even after attempting to normalize

the distribution of classes in the training samples the class ’van’ saw no significant change while

there was a trade-off between the performances of the truck’ and ’car’ classes. Attempting to

achieve accurate classification with such low quality samples is hard since inter-class variations
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Cars Vans Trucks

Cars 0.9641 0.0356 0.0003

Vans 0.1335 0.8091 0.0575

Trucks 0.0088 0.0608 0.9304

Table 6.37: Confusion Matrix using normalized distribution of training samples.

begin to be less and less noticeable. In a meeting with Brisa we were informed that the goal for

these types of images is traffic monitoring and surveillance. We were told that these cameras

would be used for vehicle counting, traffic queues detection and that, instead of distinguishing

between classes such as ’vans’, ’cars’ and ’trucks’ they were more interested whether a vehicle

classified as ’heavy’ or ’light’. This meant that the distinction between ’vans’ and ’cars’ would

not necessary as in most cases, they would both belong to the ’Light vehicles’ category. In order

to determine the effectiveness of the classifier in these conditions we distributed the ’van’ class

samples into the ’car’ and ’trucks’ based on their size (figure 6.18). We used 80% of the dataset

for training and 20% for testing.

Figure 6.18: Top Side View Dataset distribution of ’Heavy’ and ’Light’ vehicles.

Light Heavy

Light 0.9840 0.0160

Heavy 0.0268 0.9732

Table 6.38: Confusion Matrix using two broader classes.

As expected, using these broader classes it is possible to achieve very accurate results. For

monitoring and traffic estimation, these classifications errors are within what would be acceptable.
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6.4.2 Local HOG descriptor

Due to the low resolution of the images, we found no advantages of using this method as there

wasn’t enough discriminatory information in the individual sections (maximum individual accu-

racy of 70%). Some form of boosting of the combined result could be employed, however that

option wasn’t explored in this work.

6.4.3 PHOG descriptor

Cars Vans Trucks

Cars 0.9713 0.0277 0.0010

Vans 0.1578 0.7683 0.0738

Trucks 0.0052 0.1018 0.8929

Table 6.39: Confusion Matrix using PHOG descriptor on Top Side View Dataset images.

Light Heavy

Light 0.9916 0.0084

Heavy 0.0591 0.9409

Table 6.40: Confusion Matrix using PHOG descriptors and two broader classes.

Using PHOG descriptors the system achieved good performance when classifying the ’car’

class, however that was not the case for the other two classes. When classifying between the

’heavy’ and ’light’ classes the performance of the system improved.

6.4.4 Edge group SIFT based descriptor

In this dataset we used the images most similar to the ones used in Ma and Grimson’s original

work [24]. For this reason we were interested in seeing how this method would perform on a

similar setting, even though the vehicle’s view was slightly different.

The results were much lower than those obtained using HOG features. We believed the

classification was hindered because of the vehicle’s masks. As was explained in Chapter 2, the

SIFT features are computed for the vehicles edges. To make sure only the vehicle’s edges are

used and not other edges in the image the mask is used to filter the image edge points. The
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Cars Vans Trucks

Cars 0.9625 0.0350 0.0025

Vans 0.1200 0.7357 0.1443

Trucks 0.0049 0.0344 0.9607

Table 6.41: Confusion Matrix using edge points groups descriptor

Light Heavy

Light 0.9701 0.0299

Heavy 0.2139 0.7861

Table 6.42: Confusion Matrix using two classes ’heavy’ vs ’light’ filtering edges using an image

mask.

mask we were able to extract using the Gaussian Mixture based background extraction method

explained in Chapter 3 were not perfect as, they often didn’t cover the entire vehicle. This was

acceptable for vehicle detection, however we believe that might be one of the reasons why results

were so low. We decided to remove the mask filter and computed the SIFT features along the

edges of the entire image in order to see whether it would result in improved performance.

Light Heavy

Light 0.9751 0.0249

Heavy 0.1293 0.8707

Table 6.43: Confusion Matrix using two classes ’heavy’ vs ’light’ without filtering edges using an

image mask.

As expected there were some improvements, however they still come short of what was

achieved previously. A more refined background segmentation algorithm or processing the masks

in order to improve their representativeness of the vehicles location could further improve the

results.
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Chapter 7

Conclusions

Vehicle classification is a fundamental task in automatic tolling systems, surveillance and traffic

monitoring. Throughout this work we developed a system able to accurately distinguish between

up to five different classes of vehicles: ’cars’, ’vans’, ’trucks’, ’motos’, ’buses’. We implement four

different methods. Three used HOG-based descriptors (global HOG, local HOG, and PHOG) in

combination with SVM classifier(s) while the fourth was based on the work of Ma and Grimson

[24] and used edge points group SIFT based descriptors to build constellation models of the dif-

ferent classes. We manually labelled three different datasets containing static images of vehicles.

An additional fourth dataset was created from scratch using videos from surveillance cameras

installed in American motorways. This forth dataset will be made available to be used in similar

projects.

Throughout the course of this project it was possible to reach important conclusions. All meth-

ods tested were able to describe the images in a discriminatory manner allowing the system to

achieve good performance. The system was able to perform consistently well when using global

HOG descriptors, achieving better results than when using PHOG descriptors. Still, we were able

to increase performance by combining the outputs of multiple SVM classifiers trained using local

HOG descriptors. The best results were obtained when the individual results of every classifier

were high, which was possible when discriminatory information was present in different sections

of the image. With higher resolution , highly standardized images (”Rear View Multi-Lane Free

Flow Dataset”), a regular division of the image was enough, however for other types of images

this might not be the case. In this work we used an irregular division of the image focusing

on known features of the vehicle, namely the lights and front mirror (”Frontal View Dataset”),

which allowed the individual classifiers to achieve a high performance. Instead of applying this
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method indiscriminatingly, we propose that it be used when the systems confidence on a individ-

ual result is low, as a way to boost confidence level and eventually change the final classification

if necessary.

Generally speaking extracting a ROI from the image using the license plate localization helped

the system in achieving better results. Images have unnecessary background that can provide

non discriminatory information, hindering the classification process. Additionally, we were able

to increase the performance of the non-dominant classes (’vans’ and ’trucks’) by normalizing the

classes distribution in the training samples while also reducing the number of training samples

used by 50-62.5%. This reduction was necessary because we were limited by the number of sam-

ples available. We expect results to improve if more samples are used.

In conclusion, this work presents a system able to classify vehicles both from rear and frontal

views with high accuracy into five general classes. Additionally it is able to accurately distinguish

between ’heavy’ and ’light’ vehicles in images from surveillance cameras.

In the future one can search for additional discriminatory features of vehicles that could help

boost local HOG descriptors in different views of vehicles. Additionally, it would be interesting

to investigate the possibility of devising a learning method that could update the individual clas-

sifiers weights based on past performance. This would mean that the best performing sections

would contribute more strongly towards the final classification. In our work we achieved the

best results when scale invariance was accomplished. In the ”Rear View Multi-Lane Free Flow”

dataset it was assured using external hardware to make sure the images captured the vehicles

exactly in the same location and pose. However, it would be interesting to use a standardized

feature of the object, like the license plate width and height, to be able to determine a scale

factor in different images. This could be use to achieved a more standardized view of vehicles at

different scales.
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Acronyms and symbols

Abbreviation Meaning

ISR Institute of Systems and Robotics

ITS Intelligent Transport System

CCTV Closed-Circuit TeleVision

HOG Histogram of Oriented Histograms

FHOG Felzenszwalb’s Histogram of Oriented Histograms

PHOG Pyramid Histogram of Oriented Histograms

SVM Support Vector Machine

SIFT Scale Invariant Feature Transform

PCA Principal Component Analysis

SUV Sport utility vehicle

MPV Multi-purpose vehicle

LDA Linear Discriminant Analysis

IVCS Integrated Vehicle Classification System

MLFF Multi-Lane Free Flow

AVDC Automatic Vehicle Detection and Classification

ALPR Advance License Plate Recognition

OvO One versus One

OvA One versus All

ROI Region of Interest
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