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This paper performs an assessment of 41 agricultural biogas plants located in Austria to determine their
relative performance in terms of economic, environmental, and social criteria and corresponding indica-
tors. The comparison of these renewable energy conversion plants is based on two complementary anal-
yses. Data envelopment analysis (DEA) was conducted to provide measures of radial efficiency relative to
the observed frontier of production possibilities. Multi-criteria decision analysis (MCDA), using the IRIS/
ELECTRE TRI methodology, was conducted to obtain a different perspective on the results, and as a tool
that would enable to incorporate managerial preferences easily. To be able to use IRIS while keeping the
spirit behind DEA, the evaluation criteria were defined as different output/input efficiency ratios, and no
information about criteria weights was introduced at the outset. The results suggest that MCDA, and the
use of IRIS in particular, constitutes a useful approach that can be applied in a complementary way to
DEA.

� 2008 Elsevier B.V. All rights reserved.
1. Introduction

Over the last two decades, a growing environmental awareness
has changed the focus of energy planning processes from an almost
exclusive concern with cost minimization of supply-side options to
the need of explicitly including multiple and potentially conflicting
aspects, such as cost and environmental issues, in decision support
models. It is now widely recognized that the largest source of
atmospheric pollution stems from fossil fuel combustion, upon
which current energy production and use patterns throughout
the world rely heavily. Therefore, severe environmental problems
arise from energy demand to sustain human needs and economic
growth. A more intensive use of renewable energy sources (RES)
by means of modern energy conversion technologies can be an
important remedy. Although the effective potential of RES is far
from being fully exploited, they are becoming increasingly impor-
tant as supply-side options to satisfy energy needs, taking into ac-
count their dispersed generation capabilities, low levels or absence
of pollutant emissions, and waste valuation potential. However,
some drawbacks can also be associated with RES, such as their
intermittent nature, as in the case of wind turbines, and various
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types of negative environmental impacts (Abbasi and Abbasi,
2000; Dincer and Rosen, 1999).

The Kyoto Protocol, the EU Renewables Directive 2001/77/EC,
and the European Biomass Action Plan are examples of ambitious
political goals fostering the development of energy conversion
technologies based on RES. In this paper we address the case of
agricultural biogas plants in Austria, which use mainly energy
crops (silage) for anaerobic digestion, that have been effectively
promoted over the last couple of years through investment subsi-
dies (capital grants) and, probably more importantly, also by
means of guaranteed feed-in tariffs for electricity sold to the grid.

From an interdisciplinary point of view, the assessment of the
global performance of different entities (potential solutions,
courses of action, decision alternatives) can no longer be based
on a single-dimensional axis of evaluation, such as cost or benefit.
In most cases, multiple, incommensurate, and often conflicting
axes of evaluation of distinct nature are inherently at stake. There-
fore, economic, technical, societal, and environmental aspects must
be explicitly taken into account in models for decision support,
rather than aggregated in a single (and typically economic)
indicator.

This paper uses both data envelopment analysis (DEA) and mul-
ti-criteria decision analysis (MCDA) approaches for assessing the
efficiency of 41 agricultural biogas plants, with the purpose of
gaining some new insights about combining these complementary
evaluation techniques as well as the underlying methodologies. On
ormance of biogas plants with multi-criteria and data ..., European

mailto:rmadlener@eonerc.rwth-aachen.de
mailto:cantunes@ inescc.pt
mailto:cantunes@ inescc.pt
mailto:ldias@inescc.pt
http://www.sciencedirect.com/science/journal/03772217
http://www.elsevier.com/locate/ejor


2 R. Madlener et al. / European Journal of Operational Research xxx (2008) xxx–xxx

ARTICLE IN PRESS
the one hand, DEA is the tool generally used to evaluate the effi-
ciency of decision making units (DMUs). These are comparable
organizational entities performing similar tasks in a homogeneous
operating environment. On the other hand, MCDA is the tool gen-
erally used to conciliate multiple evaluation criteria, taking into ac-
count the preferences of a decision-maker. The introduction of
managerial preference information is often relevant when assess-
ing the relative performance of the DMUs. In fact, a manager is nor-
mally not indifferent as to whether a unit turns out to be efficient
by using a less important combination of inputs and/or outputs,
and by underweighting inputs and/or outputs of high importance
to the business concerned.

With these intentions in mind, this paper also addresses the
challenge of determining how MCDA methods can be used in the
context of efficiency evaluation, trying to keep the spirit behind
DEA, while being able to use MCDA’s capabilities of explicitly
incorporating the preferences of a decision-maker, not necessarily
in the form of trade-off restrictions.

Uncertainty is an intrinsic characteristic of real-world problems
arising from multiple sources of distinct nature. Uncertainty
emerges from the ever-increasing complexity of interactions with-
in social, economic environmental and technical systems, charac-
terized by a fast pace of technological evolution, changes in
market structures, and new societal concerns. It is generally
impracticable to envisage decision aid models that would capture
all the relevant interrelated phenomena at stake, incorporate and
process all the necessary information, and also account for the
changes and/or hesitations associated with the explicit expression
of the stakeholders’ preferences. Besides structural uncertainty
associated with the global knowledge about the system being
modeled, input data may also suffer from imprecision, incomplete-
ness, or may be subject to changes. In this context, it is important
to provide managers and decision-makers with robust conclusions
(Roy, 1998; Vincke, 1999). The concept of a robust solution is gen-
erally linked to (1) a certain degree of ‘‘immunity” to data uncer-
tainty, (2) an adaptive capability (or flexibility) regarding an
uncertain future or ill-specified preferences, and (3) the guarantee-
ing of an acceptable performance even under changing conditions
(drifting from ‘‘nominal data”). This motivated the choice of the
IRIS/ELECTRE TRI methodology, which is fairly robust to changes
in data, is able to cope with imprecisely defined preferences, and
produces only a partitioning of the DMUs into classes, rather than
a complete ranking of the DMUs.

The paper is organized as follows: Section 2 introduces and
compares the two analytical frameworks studied. Section 3 de-
scribes the case study and how DEA and MCDA have been applied.
The main results obtained are reported in Section 4. In Section 5
the findings from the analysis are discussed and some conclusions
are drawn.

2. Comparison of analytical frameworks

2.1. DEA

The attainment of high levels of performance is a key issue for
the success of every organization. Therefore, an adequate manage-
ment framework is necessary for evaluating the current perfor-
mance, identifying benchmarks to use in seeking improvements,
and understanding why some units in a particular organization
are operating (in-)efficiently.

DEA is a non-parametric performance measurement technique,
based on linear programming (LP), for assessing the efficiency of
DMUs (e.g., Charnes et al., 1985; Cooper et al., 2000) relative to
an observed set of production possibilities. DMUs are homoge-
neous entities (such as sales outlets, electricity distribution compa-
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nies, bank branches, schools, university departments, etc.) with
some decision autonomy, operating a production process that con-
verts a set of inputs into a set of outputs. DEA models use these in-
puts and outputs to compute an efficiency score for a given DMU
when this particular DMU is compared with all the other DMUs
considered. The relative efficiency of a DMU is usually defined as
the ratio between the sum of its weighted output levels to the
sum of its weighted input levels. The weights are chosen by the
LP model such that a DMU is ‘‘shown in its best light”, i.e., that
its efficiency score is maximized. In contrast to parametric econo-
metric approaches, such as stochastic frontier analysis, DEA does
not assume any specific functional form, thus avoiding problems
of model misspecification.

In DEA, a DMU is considered efficient if there is no other DMU,
or a linear combination of inputs and outputs of several DMUs, that
can improve one input or output, without worsening the value of
at least another one. The frontier is defined by the observed values
of the (relatively) efficient DMUs. If a DMU does not belong to this
envelopment surface and lies in its interior, then that DMU is oper-
ating inefficiently. DEA models usually return an efficient projec-
tion point of operation on the frontier for each inefficient DMU,
thus identifying the DMUs that can be used as performance bench-
marks (the ‘‘peers”) for the DMUs that are operating inefficiently.

Three basic DEA models are generally distinguished: CCR mod-
el, BCC model, and Additive model (see Cooper et al., 2000, 2004;
for a presentation and comparative analysis of these models).
The CCR model was presented in the seminal work of Charnes
et al. (1978). It is based on the radial minimization (maximization)
of all inputs (outputs) and assumes an environment of constant re-
turns to scale (CRS), i.e., if an efficient DMU increased its inputs by
a factor of a, then its outputs would be expected to increase by the
same factor.

Let us consider n DMUs to be evaluated; each of them consumes
m inputs to produce p outputs. The input data is denoted by the
matrix Xm�n and the output data is denoted by the matrix Yp�n.
We denote by Xj (the jth column of X) the vector of inputs con-
sumed by DMUj, and by xij (a positive quantity) the quantity of in-
put i consumed by DMUj. Analogous notation Yj and yij is used for
outputs. We denote by 1 the summation vector (1, . . . ,1).

The envelopment linear programming formulation to assess the
efficiency of a DMU (Xk,Yk) and its dual, the multiplier formulation,
for the (input-oriented) CCR model can be written as

min h� eð1sþ 1eÞ max lYk

s:t: Yk� s ¼ Yk; s:t: mXk ¼ 1;
hXk � Xk� e ¼ 0; lY � mX 6 0;
k P 0; m P e1;
e P 0; s P 0: l P e1:

DMU (Xk,Yk) is considered efficient only if the optimal solution of
the envelopment formulation yields h = 1 (the radial efficiency mea-
sure) and all ‘‘slacks” are null (i.e., s = 0 and e = 0). The multiplier
formulation emphasizes the relative weight vectors chosen by the
DMU for the inputs (m) and the outputs (l). A very small constant
e prevents null weights.

For the cases where the constant returns to scale assumption is
dropped, Banker et al. (1984) proposed a variable returns to scale
(VRS) version of the CCR model, referred to as the BCC model.
The difference between the two types of envelopment surfaces,
CRS and VRS, is that the latter is subject to a ‘‘convexity constraint”
so that the set of production possibilities is defined as the set of
convex combinations of the observed DMUs. In the envelopment
form of the linear programming formulation, this amounts to add-
ing the constraint 1k = 1. The third type of DEA model, the Additive
model (Charnes et al., 1985), also assumes VRS but is less fre-
quently applied.
ormance of biogas plants with multi-criteria and data ..., European
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DEA models have been extensively used to assess the perfor-
mance of DMUs in a broad range of real-world problems. However,
some important issues regarding the application of DEA with real-
world data remain. Firstly, the complete weight flexibility assumed
by DEA models often leads to efficiency results that are difficult to
justify. The freedom of each DMU to choose the weights of inputs
and outputs that show it under the best possible light can lead to
the assignment of very low weights to some inputs or outputs. In
practice, this means that certain inputs or outputs are effectively
ignored (a disturbing effect of the free specialization allowed in
DEA models, which is not generally acceptable in practice).

Moreover, the inputs and outputs can be weighted in a manner
that contradicts the views and/or preferences of the organizations
and their stakeholders, or even in a quite counterintuitive manner
by valuing secondary inputs or outputs more than priority ones
(Joro and Viitala, 2004). In fact, the inputs and outputs are not gen-
erally equally relevant and some preference information must be
included in the analysis. Also, whenever the number of inputs
and outputs grows, the trend is that more DMUs become efficient,
thus impoverishing the discriminating power of the DEA models.

One of the techniques generally used to circumvent these issues
is the introduction of additional restrictions on the variation al-
lowed for the weights. The most common type of weight restric-
tions (for a review see Thanassoulis et al., 2004) are assurance
regions of type I (intra inputs or intra outputs) or of type II (relating
inputs to outputs); other variants include transforming the data
matrices, or adding fictitious (unobserved) DMUs. However, as
pointed out by some authors (e.g., Podinovski, 2004), the resulting
efficiency score of weight-restricted models cannot be interpreted
as a realistic improvement factor (because the efficient radial tar-
get of an inefficient DMU is no longer technologically feasible). Fur-
thermore, these approaches are not natural to capture scale-
independent subjective value judgments elicited from the manag-
ers on the perceived importance of inputs and outputs: they are
more appropriate to reflect objective information such as prices.
However, in real-world problems in which inputs and outputs
are less tangible, market costs and prices may not be readily avail-
able, which introduces an additional degree of arbitrariness to the
results.

2.2. MCDA

The above-mentioned considerations about DEA led us to envis-
age the use of MCDA models to perform efficiency evaluation.
MCDA (see, e.g., Roy, 1996) includes a variety of sound theoretical
frameworks for eliciting and representing preferences. Some of
these frameworks, such as the one suggested in this paper, require
weights that do not necessarily represent prices or re-scaling
coefficients.

Instead of attempting to assign an efficiency measure to each
DMU we believe that, in most real-world situations, assigning
the DMUs to ordered efficiency categories is sufficient for analysis
and provides more confidence about the results, in the sense of
robustness to changes either in data or managers’ preferences, than
a single numerical figure. Moreover, a more detailed analysis with-
...

b0 b1 b2 b3

C1 C2 C3

Fig. 1. Definition of categories C1, . . . ,Ck
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in each efficiency category is always possible whenever it is found
useful to improve the discrimination of the evaluation model.

In assessing the performance of DMUs in which technical, eco-
nomic and environmental aspects are at stake, it is often important
to use known standards (or theoretical maxima) and efficiency
profiles. There are also situations in which DMUs must be ap-
praised for efficiency on an ‘‘as they come” basis, i.e., they are
not included in a given set of DMUs (e.g., in growing markets,
where more and more DMUs are established over time). This re-
quired capability of evaluating each DMU in absolute terms, and
not just in comparison with other peers, as well as the need to in-
clude evaluation aspects expressed in different units, using any
sort of scales (including qualitative), can be achieved using the
ELECTRE TRI method (Yu, 1992).

The ELECTRE TRI method belongs to the ELECTRE family of mul-
ti-criteria methods developed by Bernard Roy and his co-workers
(Roy, 1996). ELECTRE methods are based on the construction and
exploitation of a so-called outranking relation (‘‘outranking” in this
context means ‘‘is at least as good as”). ELECTRE TRI is devoted to
the sorting problem (in contrast to choice or ranking problems),
which consists in partitioning a set of entities being evaluated into
a pre-defined set of ordered categories, according to several evalu-
ation criteria. Each entity object of evaluation (DMUs, in DEA lan-
guage, or ‘‘action”, in ELECTRE language) is described through a
vector of multi-criteria performances. The categories (C1, . . . ,Ck)
are also defined by specifying multi-criteria performance vectors
(b0, . . . ,bk), or reference profiles. Each reference profile
bh(h = 1, . . . ,k � 1) is simultaneously the upper bound of category
Ch and the lower bound of category Ch+1 (see Fig. 1).

The assignment of each entity a to a category Ch is done by com-
paring its value in each criterion to the reference profiles. The pro-
cedure assigns each entity to the highest category such that its
lower bound is outranked by a. The outranking relation is verified
by comparing a credibility index, computed by using the differ-
ences in performance and the criterion weights, with a cutting le-
vel k (k 2 [0.5,1]), which defines the ‘‘majority requirement” and
hence the exigency of the classification. For further details about
ELECTRE TRI see Yu (1992) and Mousseau et al. (2000), among
others.

Multi-criteria methods usually require a set of parameters that
embody the preferences of the decision-makers. The ELECTRE TRI
method requires the specification of the reference profiles associ-
ated with the categories (b0, . . . ,bk), the criterion weights, and the
cutting level (k). Also, a set of indifference (qj), preference (pj)
and veto (vj) thresholds for each criterion j and reference profiles
can be defined. Indifference and preference thresholds characterize
the acceptance of imprecision in the judgment by considering two
entities as indifferent when their individual performances in each
criterion j differ less than a specified amount qj. Moreover, the
transition from indifference to preference is made gradual, chang-
ing linearly from qj to pj. The veto thresholds are aimed at captur-
ing situations in which very bad scores in any criterion should
prevent an entity of being classified in the best category, or if these
bad scores should force it to be classified in the worst category
independently of having very good scores in all other criteria. This
1st Criterion

bk-1 bk

Ck

2nd Criterion
3rd Criterion

Last Criterion

through reference profiles b0, . . . ,bk.
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enables, as it is often required in practice, to introduce a certain le-
vel of non-compensation into the evaluation model.

In the present application of dealing with an efficiency evalua-
tion problem by means of a multi-criteria sorting model the soft-
ware IRIS has been used (Dias and Mousseau, 2003). IRIS
implements a methodology developed by Dias et al. (2002) that
is based on the ELECTRE TRI method, but which does not require
precise values for some input parameters (criteria weights and
the cutting level). Information about these parameter values can
be provided through the introduction of intervals, linear con-
straints, or even sorting examples (which are translated into con-
straints on the parameters that guarantee that those example
results are reproduced). Given these constraints on the parameter
values, IRIS infers a ‘‘central” vector through the maximization of
the minimum slack associated with the constraints, when the con-
straints are consistent. For each entity being evaluated, IRIS shows
the category corresponding to this central combination, and the
other possible classifications that respect the constraints imposed.
In case the set of constraints is inconsistent, IRIS suggests the con-
straint subsets that may be removed to restore consistency.

A relevant issue in this context is the meaning of the weights in
ELECTRE methods. In this type of methods, weights are perceived
as true coefficients of importance assigned to the criteria, and
not just as technical devices for translating the performances in
the criteria considered into a common value measure. Therefore,
they are scale-independent (that is, they are not linked to the
scales in which each criterion is measured), thus making them eas-
ier to be specified by managers. These parameters bear the prefer-
ence information and insights into the sorting process. In principle,
they must be elicited from managers and stakeholders (preferably
via an analyst with expertise on the methodological component). It
should be noted that this method imposes a non-negligible burden
associated with the specification of all the parameters required.
However, some of these parameter data can be preset according
to the experience of the analyst, in general associated with previ-
ous case studies. For instance, indifference and preference thresh-
olds can be fixed as percentages (say 1% and 10%, respectively) of
the value ranges in each category.

The IRIS software allows for the consideration of uncertainty in
the weights (as well as in the cutting level). This feature contrib-
utes to reducing the data requirements and increasing the confi-
dence in the results.

3. Case study

In Austria, an effective promotion of renewable energy technol-
ogies has been pursued in recent years, driven by the need to
achieve ambitious energy and climate policy goals. These include
the goals contained in the Kyoto Protocol (�13% greenhouse gas
emissions by 2008/12, relative to 1990 levels) and the EU Renew-
ables Directive 2001/77/EC (to raise the renewable electricity share
of Austria to 78.1% by 2008, compared to 70% in 1997). In particu-
lar, the last few years witnessed a remarkable boom in the con-
struction of agricultural biogas plants, mainly due to the
introduction of substantial feed-in tariffs of between 10.3 and
16.5 Cents€/kWhel (depending on the plant size and the type of
substrate used) for ‘‘biogas electricity” fed into the grid, which
are guaranteed for a period of 13 years (Green Electricity Act,
2002).1 As a consequence, the number of plants rose from 119 at
the end of 2003 to 231 by the end of year 2005 (Braun et al.,
2007). These plants use mainly energy crops (silage) for digestion.
1 Note that in 2006 a revised Green Electricity Act and Ordinance entered into
force, with amended feed-in tariffs and budget restrictions (BGB1. I Nr. 105/2006,
BGBl. II Nr. 401/2006; for details see Energie-Control, 2006).
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However, up to now the promotion of energy crop digestion
was hardly linked to any specific cost effectiveness or energy effi-
ciency or other performance criteria. As a result, many different
technologies, design concepts, and specific applications occurred
on the market, some of which were either not very productive, en-
ergy-efficient, or reliable.

Due to the attractive feed-in tariffs granted, anaerobic digestion
of energy crops currently mainly aims at the generation of electric-
ity, and much less so at heat generation (or the feed-in of purified
biogas into the natural gas grid, if available). As a consequence, the
heat energy produced in cogeneration units remains largely
wasted. Furthermore, many plants use electricity for cooling pur-
poses, in order to prevent adverse effects that arise from the self-
heating of crop digesters. Therefore, in many cases up to two thirds
of the available technical energy potential remains unused (Braun
et al., 2005, 2007; Walla, 2005).

A comprehensive monitoring and benchmarking project was
initiated in March 2004, which includes a detailed investigation
of a set of 41 Austrian energy crop digestion plants spread all over
the country.2 The project, completed in February 2007, also aimed at
creating and establishing an evaluation system for the transparent
assessment and benchmarking of the productivity of biogas plants
by means of energetic, business economic, ecological and socio-eco-
nomic criteria, characterizing the overall production cycle of biogas.
Since anaerobic digestion has the potential of reducing greenhouse
gas emissions (Braschkat et al., 2003), an important objective of
the project was to evaluate the environmental impacts through the
overall ‘‘crops to energy” process. Finally, positive and negative so-
cio-economic impacts were accounted for to a limited extent by
means of a questionnaire survey among plant operators (subjective
valuation by the farmers interviewed, supplemented by measurable
data); see Braun et al. (2007) for further details.

4. Results

4.1. Description of the data and parameters used

The DMUs considered are a representative set of energy crop
digestion plants in Austria, aimed at covering the whole spectrum
of existing plant types and operating conditions. Samples were ta-
ken from the substrate, digester, fermentation residues and biogas
plant types. Cooling, safe transport and appropriate storage were
also scrutinized. The sampled installations are geographically well
distributed over the country. They range from small-scale installa-
tions using mainly manure and energy crops (down to 18 kWel) to
larger-scale plants that use considerable amounts of co-substrates
(up to 1.7 MWel). Both single substrate (energy crops or manure)
installations as well as co-digestion plants (agricultural by-products
and industrial bio-wastes) have been considered in the analysis.

The main groups of evaluation aspects at stake for assessing the
efficiency of energy crop digestion plants are: (1) substrate provi-
sion, storage and pre-treatment; (2) biogas production (by means
of anaerobic digestion); (3) net utilization of heat and electricity;
(4) digestate handling and disposal; and (5) greenhouse gas
(GHG) emissions.3
Based on life cycle analysis, a biogas plant may or may not reduce greenhouse gas
emissions, compared to a situation where the plant does not exist. The net amount of
GHG emissions attributable to a particular biogas plant depends, in essence, on the
type of fertilizer used, the fossil fuel use for substrate production and transporting,
and the methane emissions released from the digested substrate storage facility, the
spreading of digested substrate in the fields, and the cogeneration unit.

ormance of biogas plants with multi-criteria and data ..., European

http://www.energiesystemederzukunft.at/results.html/id3469?active
http://www.energiesystemederzukunft.at/results.html/id3469?active
http://www.rdb.ethz.ch


Table 1
Descriptive statistics (N = 41)

Mean SD Min Max

Inputs
i1 – labor 1581.29 1958.51 50.42 10950.00
i2 – ODS 1508.00 1333.75 119.94 5514.04

Outputs
o1 – electricity 1940136.06 1960911.08 123600.83 7760000.00
o2 – heat 735319.76 1112935.01 0.00 6000000.00
o3 – GHG (undesirable

output)
248532.63 282431.82 �203248.11 1123981.23
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In a first series of model specifications, the following criteria
have been considered for evaluating the efficiency of the energy
crop digestion plants (for the sake of comparison between the
DEA and the MCDA approaches): (1) labor (i.e., time) spent for
plant operation; (2) amount of substrate used (organic dry sub-
stance, ODS); (3) amount of biogas or net electricity produced
(i.e., electricity delivered by the biogas plant for external consump-
tion, net of what the plant consumes itself); (4) net heat produced
(for external consumption); and (5) net GHG emissions released to
the atmosphere (including credits that accrue from a comparison
with the base case of not having the biogas plant, measured in
CO2 equivalent). For further details on data collection see Braun
et al. (2005, 2007) and Laaber et al. (2005), and for further details
about the various inputs and outputs and DEA model specifications
scrutinized see Madlener (2006). Some descriptive statistics are
displayed in Table 1.

4.2. DEA

In the first DEA model considered in this paper, we have used
substrate (i2) and labor (i1) as inputs and the amount of net elec-
tricity (o1) and external heat (o2) as (desirable) outputs. GHG emis-
sions (o3) have been considered as well in a second model, as an
undesirable output. We chose to consider these emissions as an in-
put in the DEA model, which is a common option to model unde-
sirable outputs. Although other options exist (e.g., see Scheel,
2001; Seiford and Zhu, 2002), and although the choice influences
the results, there does not seem to be an undisputed ideal method
to handle undesirable outputs (Dyson et al., 2001). A scale transla-
CCR-O / Labor and O
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Fig. 2. DEA results without GHG emissions (input
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tion was used to account for the negative net values, another mod-
eling option known to have an influence on the results (Lovell and
Pastor, 1995). Fig. 2 depicts the outcome of the (output-oriented)
CCR DEA model specification (CCR-O). DMUs 12, 17, 18, 20 and
28 form the efficiency frontier.

A similar analysis was performed considering GHG emissions.
These results are depicted in Fig. 3. The main consequence of incor-
porating this new factor into the analysis is that DMU 15, which
has relatively low net emissions, joins the set of efficient solutions.
On the other end of the spectrum, DMUs 5, 13, 14, 25, 26, 33, and
39 appear as some of the worst-performing plants, irrespective of
whether GHG emissions are considered or not.

The DEA results just reported are part of a wider study (Braun
et al., 2007; Madlener and Honegger, 2006) where other models
were considered as well (e.g., considering the output Biogas in-
stead of Electricity and Heat), including versions using the BCC
model to benefit DMUs not operating at an optimal scale. In this
paper, however, we will consider only the results presented in Figs.
2 and 3, with the underlying assumption of constant returns to
scale, since the MCDA approach described below will also not take
into account the scale of operation. Keeping the same inputs and
outputs presented here, the main implications of using the variable
returns to scale version (BCC-O) would be to add DMU 15 to the set
of efficient units, without GHG emissions, and adding DMUs 33 and
38 to the set of efficient units, with GHG emissions considered.

4.3. MCDA

In the MCDA approach the objective was to identify groups of
DMUs that could be assigned to different efficiency labels, rather
than computing a precise efficiency score or deriving a complete
ranking. Four efficiency categories were defined to classify the
DMUs according to their efficiency: C1 = ‘‘Poor”, C2 = ‘‘Fair”,
C3 = ‘‘Good”, and C4 = ‘‘Very good”. Each plant has to be assigned
to one of these ordered categories, according to the multiple eval-
uation criteria.

To define the different categories in IRIS, it is necessary to set
the category bounds b0, . . . ,b4 according to ncrit criteria/indicators
which we denote as the evaluation functions gj(�) (j = 1, . . . ,ncrit).
The decision-maker must set these bounds, taking into account
that according to an indicator gi(�) a DMUk with
gi(DMUk) 2 [gi(bj�1), gi(bj)[ should be placed into category Cj. When
DS - Electricity and Heat
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Fig. 3. DEA results when including GHG emissions (inputs: labor, substrate, GHG; outputs: electricity, heat).
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attempting to set these parameters, it became clear that the inputs
and outputs from the DEA could not be taken as sorting criteria
without some kind of adaptation. For instance, in which efficiency
category should a DMU with electricity production (indicator o1) of
900000 be sorted? Clearly, such questions concerning the effi-
ciency of a specific plant cannot be answered without knowing
at least the dimension of the plant or the inputs it consumes.

One of the modeling options would be to consider as sorting
indicators the ratio of inputs and outputs regarding some surrogate
for the dimension of the plant, e.g., the amount of organic dry sub-
strate (ODS) used. The indicators would then be labor/ODS (i1/i2),
electricity/ODS (o1/i2), heat/ODS (o2/i2), and GHG/ODS (o3/i2). An-
other option, which we have used in the experiments described be-
low, is to use all ratios between the outputs and the inputs in the
DEA model: the multiple indicators are ratios combining an output
to maximize or minimize (in the numerator) with an input (in the
denominator). Thus, the following indicators have been consid-
ered: electricity/labor g1 = o1/i1 (max), electricity/ODS g2 = o1/i2
(max), heat/labor g3 = o2/i1 (max), heat/ODS g4 = o2/i2 (max),
GHG/labor g5 = o3/i1 (min), and GHG/ODS g6 = o3/i2 (min). The cor-
responding descriptive statistics are displayed in Table 2. Note that
although this approach leads to a high number of indicators as the
number of criteria increases, it mimics the spirit of DEA: to allow
each DMU to be evaluated according to multiple indicators and
to choose the most favorable indicators (within the constraints
that the decision-maker may impose, as we will illustrate further
below). It would also be possible to consider indicators electric-
ity/GHG (o1/o3) and heat/GHG (o2/o3), both to be maximized, for
Table 2
Descriptive statistics for the MCDA indicators (41 DMUs)

Mean SD Min Max

To maximize
g1 – electricity/labor 1803.49 2110.86 215.41 12814.42
g2 – electricity/ODS 1164.21 280.74 666.98 1874.74
g3 – heat/labor 641.20 666.02 0.00 2935.54
g4 – heat/ODS 593.39 531.00 0.00 2308.08

To minimize
g5 – GHGa/labor 1998.05 3079.48 147.80 19948.65
g6 – GHGa/ODS 1696.94 1665.57 301.43 8385.64

a The same scale translation as the one applied in DEA was used.
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replacing g5 and g6, respectively, since o3 is an undesirable output.
Although this would be closer to the DEA models, it was felt that g5

and g6 reflected better the perspective of an external evaluation
body responsible for assigning the plants to efficiency categories
or labels.

The reference profiles, which define the limits between each
category, were defined such that approximately 1/4 of the DMUs
are placed in each category according to each indicator individually
(see Table 3). Hence, for each indicator gj and for each category Ch,
there are approximately 10 plants that would be sorted into that
category according to the indicator concerned.

Fig. 4 presents some conclusions that may be drawn without
making any distinction between the relative importance of each
indicator. An ‘‘Optimistic” classification corresponds to what
would result if each DMU was allowed to choose one indicator,
i.e., if the DMU was allowed to specify the ELECTRE TRI weights
of the indicators, setting one of them to have a weight equal to 1
and all the remaining indicators as having null weight. These are
the classifications that are more in accordance with the spirit be-
hind DEA, but are not very discriminative when only four catego-
ries are used: 28 DMUs would be considered as ‘‘Very good” (C4)
and the remaining 13 DMUs would be considered as ‘‘Good” (C3).
A ‘‘Pessimistic” classification indicates the worst category sug-
gested by some indicator. This means that a DMU is classified into
category Ch if and only if all the six indicators place it in that cate-
gory (or in a better one). According to this classification, most of
the DMUs would be considered as ‘‘Poor”, six of them would be
considered as ‘‘Fair”, three of them would be considered as ‘‘Good”,
and only one (DMU 20) would be considered as ‘‘Very good”. An
intermediate classification (‘‘50% majority”) indicates what would
result if we required the support of at least half of the indicators:
a DMU is classified into category Ch if and only if three out of six
indicators place it in that category (or in a better one). In this (more
discriminating) case, 11 DMUs would be considered as ‘‘Very
good”, 13 DMUs would be considered as ‘‘Good”, 15 DMUs would
be considered as ‘‘Fair”, and two DMUs (number 30 and 32) would
be considered as ‘‘Poor”.

If the DMUs were entirely free to choose the weights assigned
to the indicators, then all DMUs would be sorted into the top
two categories, as in this case each DMU is allowed to be judged
according to only one of the six indicators, that single indicator
being chosen by the DMU. In order to decrease the number of
ormance of biogas plants with multi-criteria and data ..., European



Table 3
Category definitions for each indicator

Category g1 (max) electricity/labor g2 (max) electricity/ODS g3 (max) heat/labor g4 (max) heat/ODS g5 (min) GHG/labor g6 (min) GHG/ODS

C1 – poor <580 <960 <150 <130 >2000 >1800
C2 – fair [580,1100[ [960,1130[ [150,375[ [130,530[ ]1200,2000] ]1300,1800]
C3 – good [1100,2300[ [1130,1300[ [375,950[ [530,880[ ]675,1200] ]600,1300]
C4 – very good P2300 P1300 P950 P880 6675 6600
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Fig. 4. Pessimistic, 50% majority, and optimistic classifications (sorted by increasing DEA efficiency score).
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DMUs in the best categories, several options can be envisaged: (1)
to make the category bound more demanding; (2) to require the
support of more than one indicator (e.g., the support of half of
the indicators, as depicted in Fig. 4); and/or (3) to add some infor-
mation about the relative power of the indicators.

4.4. Comparing the results

The DMUs in Fig. 4 are ranked by order of their DEA efficiency
score (for the case with GHG emissions), from the worst (DMU
26) to the best (the last six DMUs – 12, 15, 17, 18, 20, and 28 – have
an efficiency score of 1). It can be seen that the IRIS classifications
tend to improve with the efficiency score, although there are some
exceptions. This is not unexpected, as the MCDA analysis is based
on very different grounds relatively to the DEA analysis.

A DMU is deemed inefficient by the CCR-O DEA model if there
exist other DMUs (or a conical combination of existing DMUs) that
yield a higher ratio of weighted outputs over weighted inputs than
the inefficient DMU, even when the latter chooses the weights
attempting to look as efficient as possible. The six most inefficient
Please cite this article in press as: Madlener, R. et al., Assessing the perf
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plants (featuring efficiency scores below 0.55) are depicted in
Fig. 5, which presents two plots: DEA factors on the left and MCDA
indicators (criteria) on the right. In both plots the scales are nor-
malized (difference to the worst performance divided by the
amplitude of the scale), such that ‘‘0” corresponds to the worst per-
formance and ‘‘1” corresponds to the best performance on each
scale. The DMUs in Fig. 5 exhibit similar profiles, i.e., small plants
performing very well in terms of inputs and emissions, but very
poor in terms of electricity and heat outputs. All of these DMUs
are considered inefficient in comparison with their peer that has
a similar profile (DMU 28, see Fig. 7), which does slightly worse
in terms of inputs by a small proportion, but better in terms of out-
puts produced by a much higher proportion.

Fig. 6 is analogous to Fig. 5, but presents the worst DMUs in the
MCDA analysis: the set of DMUs that cannot reach category C4 in
their optimistic classification (roughly meaning they do not reach
the ‘‘top 10” in any of the six ratios considered) and have 50% or
more of the indicators placing them in C1 or C2. The DMUs in Figs.
5 and 6 have similar profiles with few exceptions, and four of them
are among the worst according to both approaches (DMUs 5, 13,
ormance of biogas plants with multi-criteria and data ..., European
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Fig. 5. Normalized DEA factors and MCDA indicators for the worst DMUs according to DEA (DMUs with efficiency scores <0.55).
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26, and 39, shown in thicker lines in both figures). The main excep-
tions in the correspondence of the two analyses are DMUs 37 and
38 (Fig. 6), which show a higher efficiency than the worst-perform-
ing DMUs according to DEA and different profiles: DMU 37 is
noticeably ranking better on ratio g2 (ELP/ODS); DMU 38 is rather
good (almost the best) in terms of factor o3 (GHG). Despite these
advantages, DMUs 37 and 38 are among the worst-performing
DMUs according to MCDA, according to the criterion defined
above. On the other hand, DMUs 14 and 33 have very low effi-
ciency according to DEA but are not considered among the worst
by MCDA: DMU 14, because it reaches C3 on half of the indicators;
DMU 33, because it reaches C4 on indicator g4 (HEA/ODS).

Considering now the DMUs that appear as the most efficient
ones in each approach, there are more pronounced differences.
Fig. 7 depicts the profiles of the DMUs with the best performance
according to DEA, the efficient ones; Fig. 8 depicts the profiles of
the best-performing DMUs according to MCDA which we have de-
fined to be those that reach C4 on half of the indicators (at least)
and are not placed in C1 by any indicator (i.e., ‘‘pessimistic” classi-
fication is C2 or better).

The set of efficient DMUs (Fig. 7) presents quite different pro-
files, but it can be noticed that each of these DMUs excels on one
of the 6 MCDA indicators. On the other hand, the efficient DMUs
12 and 17 have a very bad performance judged by two of the fac-
tors. Two of the efficient DMUs are also among the best-performing
according to MCDA (DMUs 15 and 20, shown in thicker lines in
both figures). The remaining efficient DMUs are not considered
Please cite this article in press as: Madlener, R. et al., Assessing the perf
Journal of Operational Research (2008), doi:10.1016/j.ejor.2007.12.051
to be among the best according to MCDA, for being classified in
C1 by one (or two) of the MCDA indicators: DMU 12 is penalized
by its low production of heat per ODS or per labor unit; DMUs
17, 18, and 28 are penalized by being among the 10 that produce
more GHG per labor unit. When considering the best DMUs on
MCDA (Fig. 8), the least efficient one is DMU 36 (with a relatively
high efficiency score of 0.89).

The main reason for the differences between the DEA and MCDA
analyses is, obviously, the mathematics behind each of these ap-
proaches, reflecting different philosophies. The best DMUs accord-
ing to DEA are the ones for which we cannot observe an objectively
better DMU (or a combination of DMUs). The best DMUs according
to MCDA are the ones attaining the highest categories in a given
number of indicators representing partial productivity measures
(for this comparison we considered half of the indicators, although
a higher majority level could have been required) and that do not
have any weaknesses.

Some differences between the two analyses can also be attrib-
uted to different degrees of discrimination. For instance, in MCDA
when we defined a lower bound of 2300 to be considered as ‘‘Very
good” for the indicator electricity/labor, a DMU with a ratio of 2300
is treated the same way as a DMU with a ratio of 3000. In DEA, this
change would probably have a high impact. The difference be-
tween the approaches can be diminished as the number of catego-
ries increases, as the discrimination among DMUs would increase
in the MCDA analysis. Another source of differences is the choice
of indicators g5 and g6 instead of electricity/GHG (o1/o3) and
ormance of biogas plants with multi-criteria and data ..., European
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Fig. 7. Normalized DEA factors and MCDA indicators for the best DMUs according to DEA (efficient DMUs).
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heat/GHG (o2/o3), respectively, which are closer to the option of
considering GHG as an input in DEA. The results would change,
but not radically: the set of the worst DMUs on MCDA would in-
clude the same ones plus the DMUs 37, 38, and 39; the set of the
best DMUs on MCDA would also include the present ones, plus
DMU 18. However, the intention of the MCDA study was not to
try to obtain results as close as possible to DEA results, but to eval-
uate the DMUs independently of the DEA results.

4.5. Further analyses with IRIS

The choice of the best and worst DMUs in the MCDA study was
performed without making any distinction between the indicators.
ELECTRE TRI/IRIS allows to incorporate the managerial judgment
about how important each indicator is and whether a very low per-
formance in some indicators may be an impediment to reach the
highest categories. Rather than demanding precise numerical
weights, the IRIS software can compute the range of categories
for a DMU that is compatible with a set of parameter constraints.
Let us consider, for instance, the following constraints as an illus-
trative case:

(a) The evaluator states that the most important output is Elec-
tricity, followed by GHG emissions (to be minimized), and
lastly by Heat. This implies that the importance of g1 (elec-
tricity/labor) cannot be lower than the importance of g5

(GHG/labor), which in turn cannot be lower than the impor-
Please cite this article in press as: Madlener, R. et al., Assessing the perf
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tance of g3 (heat/labor). Analogously, the importance of g2

(electricity/ODS) cannot be lower than the importance of
g6 (GHG/ODS), which in turn cannot be lower than the
importance of g4 (heat/ODS).

(b) Concerning the inputs, the evaluator states that ODS is more
important than labor. This implies that the importance of g2

(electricity/ODS) cannot be lower than the importance of g1

(electricity/labor). Analogously, the importance of g4 (heat/
ODS) cannot be lower than the importance of g3 (heat/labor),
and the importance of g6 (GHG/ODS) cannot be lower than
the importance of g5 (GHG/labor).

The results corresponding to these requirements are shown in
Table 4. The column ‘‘IRIS suggestion” indicates the classification
corresponding to the weight values inferred by IRIS (k1 = k6 = 0.2,
k2 = 0.2667, k3 = 0.0667, k4 = k5 = 0.1333). The column ‘‘Optimistic”
corresponds to a situation where the DMUs could choose their
weights (provided that the imposed constraints were satisfied).
Optionally, the ELECTRE TRI models also allow incorporating veto
thresholds, such that, for instance, a DMU that is classified as C1

according to a given indicator will not be able to reach category
C4 in a multi-criteria evaluation. Supposing the evaluator would
consider that the indicators concerning electricity production
should have veto power, such that a DMU with a ratio of less than
1100 on g1 (electricity/labor) or less than 1130 on g2 (electricity/
ODS), i.e., DMUs unable to reach C3 on these indicators, could not
ormance of biogas plants with multi-criteria and data ..., European



Table 4
Classification subject to importance constraints

DMU IRIS suggestion Optimistic DMU IRIS suggestion Optimistic

1 3 3 22 4 4
2 4 4 23 3 3
3 3 3 24 2 2
4 2 3 25 1 1
5 1 2 26 1 1
6 3 3 27 2 2
7 2 2 28 2 4
8 2 3 29 1 4
9 3 3 30 1 1
10 3 3 31 2 3
11 3 3 32 1 1
12 4 4 33 1 1
13 2 2 34 3 3
14 2 3 35 2 2
15 3 4 36 3 4
16 3 3 37 2 3
17 2 2 38 2 2
18 3 4 39 1 1
19 3 4 40 1 2
20 4 4 41 4 4
21 3 4
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achieve category C4, then DMUs 2, 12, 15, 28, and 29 could no long-
er reach the best category on the ‘‘optimistic” sorting.

Similar types of ad hoc robustness analysis could easily be car-
ried out in order to capture the imprecision associated with the
specification of some parameters and identify those for which
small changes reveal to have a substantial impact on the results.
A form which is easily perceived by managers is to ask for intervals
for some of the parameters (for instance, the weights), aimed at
capturing information that is not precisely known but can be taken
as bounded within some acceptable limits.

When taking the suggested parameters inferred by IRIS, tak-
ing into account the constraints imposed on the indicator (crite-
rion) weights, the results may be rather different from those
obtained with DEA. However, the MCDA analysis may comple-
ment the DEA analysis by providing another perspective from
which the conclusions of DEA may be either strengthened or
weakened.

5. Discussion and conclusions

DEA is a data-oriented approach that requires no a priori
specification of the functional form of the production model con-
verting inputs into outputs. Units are then free to choose their
most favorable weights for becoming efficient when compared
with their peers. On the other hand, this can present a disadvan-
tage whenever over-specialization must be avoided in the con-
sumption of inputs or the production of outputs, which
amounts to practically ignore some inputs and outputs. More-
over, managerial preference information is often required, since
inputs and outputs do not generally have the same importance
in assessing the efficiency of operational units. Therefore, models
for efficiency evaluation must explicitly incorporate meaningful
techniques to take weights into account, understood as coeffi-
cients of relative importance of inputs and outputs. This has
been the main motivation for the use of MCDA techniques, in or-
der to assess the extent by which these could overcome those
characteristics of DEA, and what adaptations would be needed
to improve the quality of the assessment.

We have chosen to frame the MCDA as a sorting problem,
which requires that the inputs and outputs are used in the form
of efficiency criteria, either combining all the possible indicators
(as in this study’s example), or selecting the most representative
Please cite this article in press as: Madlener, R. et al., Assessing the perf
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ones for the analyst, or by using a common denominator that
can act as a proxy for the scale of operation. By framing the
MCDA as a sorting problem, the analyst may enrich the DEA re-
sults by being able to separate the DMUs into meaningful cate-
gories, possibly taking into account the existence of absolute
standards. For instance, an authority certifying sustainable devel-
opment practices may use this type of MCDA to label energy
production plants according to their efficiency, taking into ac-
count the inputs they consume, the energy and other desirable
outputs they produce, as well as greenhouse gas emissions and
other undesirable outputs. Additionally, MCDA facilitates the def-
inition of meaningful constraints on the weights. The MCDA
analysis may also be used when not all DMUs are known, e.g.,
for a case-by-case evaluation of projected DMUs as they are sub-
mitted over a period of time.

The IRIS sorting tool used in this study allows incorporating
managerial information (weights, category bounds and possibly
veto thresholds) easily, yet not demanding precise values for the
weights. The results obtained with IRIS enable a rich analysis of
the DMUs: a conjunctive type of analysis where the weakest indi-
cator of each DMU determines the result, or a disjunctive type of
analysis where each DMU can choose the indicator that is more
favorable to its evaluation, or an intermediate majority may be re-
quired, or the proposal of IRIS may be used (based on weights
inference).

The ranking provided by DEA appears to be more discrimina-
tive, but the use of DEA to produce rankings has been criticized
(Bouyssou, 1999). Nevertheless, DEA models such as CCR and
BCC yield performance measures that can be communicated to
managers as indicating by how much outputs have to increase
(or inputs to decrease) to achieve efficiency. More importantly, it
allows indicating for each inefficient DMU a set of efficient peers
against which the DMU should compare itself as a benchmark for
improvement. Therefore, we are not proposing MCDA as an ap-
proach to replace DEA as a performance evaluation tool. DEA and
MCDA should rather be used as complementary techniques,
namely as far as the meaningful introduction of managerial prefer-
ences is concerned.

In a combined use of MCDA and DEA for evaluating biogas
plants, IRIS can be particularly suited to attribute efficiency labels
(corresponding to the categories) that take into account the impor-
tance that the evaluator (e.g., a regulator) attaches to each indica-
tor, as well as possibly some veto thresholds to prevent a plant that
is particularly weak at some indicator to achieve a high category.
DEA, on the other hand, can be particularly suited to identify DMUs
with efficiency gaps relative to the state of the art, given the ob-
served efficiency frontier. Knowing what can be done (DEA), and
what should be done (MCDA), would then help plant managers
to keep improving their operation.
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