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Soares, Pedro Pinto, João Amaro, João Ferreira, João Suzana Ferreira and Fran-

cisco Tavares. I hope you all enjoyed watching 97 sequences of 3D video without

special glasses. It meant a lot for my work.

Of course, to all my friends that accompanied me during these last years. You

were the ones who were there when things looked bad and always cheered me up. If

these were the best years of my life, I owe them to you. Thank you.

Finally, to my family: my father, my mother and my sister. I owe everything to

you, even when you were the ones that suffered the consequences of my bad humor

and absence, you always had a kind word to motivate me. My deepest thank you

”crazy family”.



Abstract

This thesis presents a research work on no-reference quality assessment models

for use in future 3D video broadcasts applications over packet loss prone channels,

such as Internet Protocols networks. The objective is to study the most recent

quality measures for 3D video available in the scientific literature, and to propose

new no-reference quality assessment models oriented towards packet loss effects on

the 3D quality of experience (QoE).

Two methodologies, with the same mathematical background, are proposed. The

models receive two types of input parameters: packet loss rate (PLR) and size of

lost packet (SLP). Each parameter is obtained from the texture and depth stream,

being further divided according to the type of frame: I, P or B, which totals 12 input

parameters. The proposed models output two different scores: the Structural Simi-

larity Index (SSIM) and 3D Synthesized View Image Metric (3DSwIM) of the DIBR

synthesized view. The developed models are based on neural networks (NN), which

can efficiently process large numbers of inputs and provide a functional relationship

between inputs and outputs. To train the proposed models with a considerable de-

gree of generalization, hundreds of simulations with different packet loss rates and

mean burst lengths were performed. Most of the proposed models achieve high ac-

curacy, as the Person Linear Correlation Coefficient (PLCC) of 0.90-0.97 between

the estimated and reference objective measures indicates. To verify the correlation

between the proposed models outputs and the corresponding subjective scores (mea-

sured in differential mean opinion score (DMOS)), a set of subjective tests involving

34 volunteers was conducted. The results show that DMOS correlates well with

estimated DMOS from the SSIM of the synthesized view (PLCC of 0.8624) and

correlate slightly worst with estimated DMOS from the 3DSwIM (PLCC of 0.8137).

The proposed models can be used in an industrial environment, either for service

or network providers, where real time systems need to be monitored in order to

identify packet loss events and quantify the impact these losses have on the user’s

QoE.

Keywords

3D video, texture-plus-depth, Quality of Experience, no-reference quality assess-

ment, neural networks, packet-losses, H.265/HEVC
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Resumo

Esta dissertação apresenta um trabalho de investigação no âmbito de modelos

sem referência para avaliação de qualidade de v́ıdeo 3D, no formato textura-mais-

profundidade. Futuramente, com a maior difusão do v́ıdeo 3D neste formato em

redes de pacotes sujeitas a perdas, como por exemplo redes IP, modelos como o

apresentado neste trabalho podem calcular o efeito das perdas na qualidade de ex-

periência do utilizador. O objectivo da dissertação é estudar os métodos de qualidade

de v́ıdeo 3D mais recentes publicados na literatura cient́ıfica, e propor novos mode-

los de avaliação sem referência espećıficos para degradações ocorridas por perda de

pacotes.

Neste trabalho são propostas duas metodologias com a mesma base matemática.

Os modelos recebem dois tipos de parâmetros de entrada: a taxa da perda de

pacotes e o tamanho médio dos pacotes perdidos. Cada parâmetro é obtido para os

streams de textura e profundidade, sendo posteriormente divididos consoante o tipo

de trama, I, P ou B, perfazendo no total 12 parâmetros de entrada. Os modelos

propostos resultam em duas sáıdas: o SSIM e o 3DSwIM da vista sintetizada a

ser avaliada. Para a modelação do prolema, foram usadas redes neuronais, pois

estas conseguem de forma eficiente processar várias entradas e produzir uma relação

matemática entre as sáıdas e as entradas. Para treinar os modelos propostos com um

certo grau de generalização, foram efectuadas centenas de simulações com diferentes

taxas de perda de pacotes e comprimentos médios de rajadas. A maioria dos modelos

revelou uma correlação elevada entre as sáıdas dos modelos e a qualidade estimada

pelas métricas objectivas conforme o ı́ndice linear de correlação de Pearson (PLCC

de 0.90-0.97) indica. Para verificar a correlação entre os modelos desenvolvidos e a

opinião subjetiva de diferentes pessoas (DMOS), foi organizada uma sessão de testes

subjectivos que envolveu 34 voluntários. Os resultados mostram que o DMOS tem

uma boa correlação com o DMOS estimado a partir do SSIM (PLCC de 0.8624)

e uma correlação relativamente boa entre o DMOS estimado a partir do 3DSwIM

(PLCC de 0.8137).

Os métodos propostos podem ser implementados num ambiente industrial, quer

para fornecedores de serviços ou redes, onde sistemas que funcionam em tempo

real precisam de ser monitorizados com o objectivo de identificar perdas de pacotes

ii



durante a transmissão e quantificar o efeito que essas perdas têm na qualidade de

experiência final do utilizador/cliente.

Keywords

Vı́deo 3D, textura-mais-profundidade, qualidade de experiência, avaliação de

qualidade sem referência, redes neuronais, perda de pacotes, H.265/HEVC
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Chapter 1

Introduction

The wide market of 3D video is yet to be fully explored. As the demand for

digital 3D video is increasing, particularly in the 3D cinema area where immersive

movies such as Avatar turned out very profitable, it is expected in a few years

a gradual replacement of 2D television broadcasts with 3D Television broadcasts

(3DTV), becoming part of our daily life. Some companies have already invested

in the broadcast of 3D television, with dedicated channels being broadcast in 2D-

frame-compatible side-by-side stereo format. Most current 3D video solutions are

based on the rendering and displaying of multiplexed left and right views with depth

perception being induced by the stereo parallax effect through special glasses that

channel each view to the corresponding human eye. As an alternative and more

comfortable solution, autostereoscopic or even holographic displays allow viewers

watch 3D videos without the need of wearing special glasses.

In terms of network requirements, the fast growth of the television broadcast (and

3DTV in the future) over the Internet (IPTV) and Video-on-Demand (VOD) services

will greatly increase the amount of data traffic exchanged in the communications

network. A recent forecast published by Cisco [1] states that ”annual global IP

traffic has increased fivefold over the past five years, and will increase threefold over

the next five years”, surpassing the zettabyte (1021 bytes) threshold by the end of

2016, and will reach 2 zettabytes per year by 2019. Figure 1.1 shows the Global

IP traffic (P2P traffic not included) divided into application categories including

Internet video traffic which will account for 80% of global traffic by 2019, an increase

of 13% compared to 2014’s 67%. If P2P video traffic is taken into account this ratio

might be close to 90%. It is clear that this traffic growth will require modifications

and upgrades in the existent network infrastructures. Transmission protocols will

be revised to support higher bandwidths, specially in real-time protocols (such as

real time protocol - RTP) where retransmission is not allowed; at an application

level, coding and compression efficiency take an important role in transmission and

therefore need to be improved. If these conditions are not met, network Quality of
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Service (QoS) will decrease due to the packet loss occurred in congested routers as

a result of increased traffic.

Figure 1.1: Global consumer IP traffic forecast by Cisco [1]

The goal of any multimedia delivery system is to make sure the content is de-

livered to the end client with the best quality possible. In [2] it is described how

a digital video, in an IPTV or VOD service, might go through different stages be-

fore reaching the end user: it can pass from content provider to service provider to

network provider. At each of these stages it is imperative to keep the video quality

as high as possible and ensure the next stage won’t degrade it significantly. By

monitoring the network in specific points (or nodes), i.e., from time to time retrieve

information about the state of the data being transmitted, it is possible to detect

network failures and errors. The monitoring system may be deployed at the set-

top boxes, or at some node in the transport network, updating the service provider

about the quality of the data being received. With this information the streaming

services can adjust dynamically some of the transmission (and perhaps coding) pa-

rameters in order to maintain a minimum quality level [3], [4]. In wireless channels

which are prone to high bit-error rates and long bursts of transmission errors, video

can be transcoded just before wireless transmission (i.e, at the end of the wired

channel) to reduce the coding bitrate. Although this would lower the video quality,

it would save more bits that could be used in better error protection schemes to

reduce the effect of packet losses and transmission errors. An alternative to this

approach would be giving priority to different types of data, with more powerful

error protection schemes applied to more important data, to reduce the impact of

bit errors and packet losses on decoded video quality [5], [6]. This principle is ap-

plicable in 3D video in the texture-plus-depth format (see figure 1.2), where packets

transporting texture information are more important than those transporting depth

information [7], because if depth is degraded or lost but texture information is re-
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ceived, at least 2D video can be reconstructed and presented to the viewer. If reliable

transmission is guaranteed it is important to consider the jitter phenomena, which

consists of temporal variations of the propagation delay of consecutive packets, and

leads to events similar to packet loss as a result of the uselessness of the video data

received outside a usability time horizon. Measuring the jitter allows the receiver to

adjust the buffer size and buffering times and to request the retransmission of the

most important lost packets.

Figure 1.2: Example of a frame extracted from a 3D video in the texture-plus-depth
format. The texture frame (left) has a correspondent per-pixel depth frame with
depth information in the form of a depth map (right).

Digital video quality monitoring is of extreme importance to multimedia service

providers, specially for those dealing with 3D delivery systems. However, due to the

subjective factor involved, creating a model that objectively predicts the perceived

quality of a visual stimulus by humans is not an easy task [2], [8]. To address

different opinions from the viewers it is important to average the mean opinion

score (MOS) of the perceived quality of a given visual stimulus from, at least, 15

human observers which are shown the stimulus and are asked to grade it on an

opinion grading scale [9], [10]. The obtained MOS must then correlate well with the

objective method outputs to prove its consistency. It is also important noticing that

the typical 2D video quality assessments are not well suited to fully assess 3D video.

Even though 3D video may present the same artifacts as a 2D video, like blurring,

ringing, blocking or freezing (see figure 1.3) which are caused by the compression

and transmission of the 3D video signal, other factors have to be considered for

3D video, particularly in the texture-plus-depth format, such as distortions induced

by the rendering of virtual views using depth-image-base rendering (DIBR). Even

if the 2D texture quality is high, a low quality depth map will increase rendering

distortions, which may affect the viewer in several different ways: fatigue, nausea,

headache and severe mental confusion that result in low 3D quality of experience

(QoE) for the viewer.
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1.1. MAIN CONTRIBUTIONS

Figure 1.3: Examples of possible artifacts present in videos: motion blur (left) and
decoded frame affected by data loss during transmission (right).

All these factors make MOS obtained from the subjective assessment an ex-

tremely useful asset because it represents the opinion of the observer already inte-

grating all aspects of the perceptual experience, like visual comfort. The viewer’s

score reflects a combination of all these factors, with different weights from subject

to subject. And these details make the problem of estimating 3D video quality a lot

more complex than the same problem for 2D video.

1.1 Main Contributions

In this thesis an objective 3D video quality method that is able to predict the

impact of packet losses on the quality of the 3D video (in the texture-plus-depth

format) is presented. The study considers a transmission scenario where packets

containing texture and depth data are lost during transmission and only these losses

are considered when estimating the final 3D video quality degradation. Therefore,

the only impairments affecting synthesized views are induced by the packet losses.

During the preparation of this thesis the following tasks were carried out:

• A bibliographic search was conducted in order to identify the most recent

models and video quality metrics published in scientific journals or confer-

ence proceedings on the topic of objective 3D video quality assessment. A

comparison and analysis of the methods found was also considered.

• Develop a new approach for objective quality assessment of synthesized 3D

video subject to texture and depth packet losses, based on no-reference low-

complexity models.

• Perform a subjective assessment study in order to measure the correlation

between the quality scores estimated by the objective metric and the MOS

values.
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1.2. THESIS OVERVIEW

During the development of the work of this thesis, one article related with crowd-

sourced methods for assessing 3D video quality [11] was published and presented in

QoMEX 2015. One other paper describing this work is currently being prepared for

submission.

1.2 Thesis Overview

In chapter 2, a detailed explanation and classification of the different multimedia

quality assessment methodologies is given. The most recent methods for video and

image quality assessment are presented, as well as an explanation of the reference

methods used in this work.

Chapter 3 provides information about the most recent video coding standard,

High Efficiency Video Coding (HEVC). The fundamentals and reference software

are described. The Gilbert-Elliot model for packet-loss event generation is also

explained in chapter 3.

The experimental procedures and results are presented in chapter 4. The pro-

posed method is described in detail, with an explanation over the choice of this

methodology.

Chapter 5 describes the procedures and results of the subjective quality grade

collection campaigns conducted.

A practical implementation of a similar model proposed in this thesis is briefly

explained in chapter 6.

Finally, chapter 7 concludes this thesis with an overview of the results obtained

and the work involved. Suggestions for future work on the topic are also given.
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Chapter 2

Objective Quality Assessment of

3D Video

The variety of available methods for assessing video or image quality makes it

necessary to classify them according to the type of application or information used

to predict the quality. This chapter provides an overview of the current standard

classification of the quality assessment methods, a study on the most recent pub-

lished methods and a detailed explanation of the methods used as a reference for

predicting video quality.

2.1 Classification

A standard classification was proposed in [12]. The proposal is oriented towards

objective quality measurement methods for multimedia transmitted over packet-

switch networks, such as the Internet, which uses the input information for quality

assessment and the primary application as distinguishing characteristics. Five dif-

ferent models/layers are then identified: packet-layer models, media-layer models,

parametric planning models, bitstream layer models and hybrid models. Table 2.1

summarizes these five models.

Media-layer Bitstream-Layer Packet-Layer Planning Hybrid

Input
information

Pixel-domain
Packet-layer
and payload
information

Packet headers
and codec
information

Quality design
parameters

Combination
of any

Primary
Application

Quality
benchmarking

In-service
nonintrusive
monitoring

In-service
nonintrusive
monitoring

(e.g. network
probe)

Network planning,
terminal/application

designing

In-service
nonintrusive
monitoring

Table 2.1: Classification of objective quality measurements methods according to
[12].
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2.1. CLASSIFICATION

Figure 2.1: The availability or lack of the reference is used to categorize media-layer
models.

Media-layer quality models utilize knowledge of the human visual system (HVS)

to estimate subjective quality of video. Depending on the degree of information

available from the original video as a reference in the quality assessment, the objec-

tive methods are further divided into three categories: full reference (FR), reduced

reference (RR) and no-reference (NR), as shown in figure 2.1. FR methods extract

information from the source video (usually high quality or non-impaired) and its

processed counterpart where the reference signal acts as a consistent baseline for

comparison. In RR methods, information is extracted from the reference signal,

packaged and transmitted alongside the processed video, assuming that a side chan-

nel will be available to send the reference signal parameter data. This immediately

poses a drawback, since the richness of information describing the properties of the

reference signal is dependent on the existence of a side channel and its capacity. NR

methods operate solely on information extracted from the processed signal. They

search for artifacts with respect to the pixel domain of a video, use information

available in the bitstream of the video, or perform quality assessment as a hybrid

model based on pixel and bitstream data.

For both FR and RR methods to operate effectively, the reference and pro-

cessed video sequences must be closely aligned. This spatio-temporal alignment (or

registration) requirement represents a major obstacle to practical and real time ap-

plications of these models. They are adequate to implement on the server/sender

side of the network, predicting the quality of encoders and transmission conditions

at an early stage. Despite struggling with obtaining high accuracy without any

content or quality benchmark, NR models do not require any kind of registration

and as such, represent the most efficient means of measuring quality in a practical

environment. They can easily be implemented on the receiver/client side (or other

network location where the reference media is not available) and are typically faster

than FR and RR methods.

An interesting approach is the combination of two different models. Through

7
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Figure 2.2: No-reference quality method that uses a FR model as a target model.

machine learning algorithms for fitting empirical parametric models such as neural

networks, support vector machines or curve fitting, packet-layer, bitstream-layer

and no-reference media-layer models can be used to estimate full-reference media

quality scores. Depending on their layer of operation, these models use some input

parameters to train a model expressing a mathematical relationship between the

inputs and estimated quality scores. Typically these models are developed to cover

a specific application or particular type of impairment. Figure 2.2 shows a no-

reference model architecture using a full-reference model as target. The need for an

effective and versatile lightweight NR method for real-time applications motivated

the choice of this methodology. Streaming and distribution services are some of the

vast business areas interested in having a similar monitoring system implemented,

which demonstrates there is a market to explore.

So far, the variety of objective quality models have been discussed. But is impor-

tant not to forget what is their goal: to estimate the opinion score a viewer would

give to a video that might have been subjected to different types of impairments.

Thus, the ground-truth score is the viewer’s opinion and it is with it objective re-

sults must be compared with. What defines a good objective quality method is its

correlation with subjective results obtained in a subjective assessment study. Pear-

son Linear Correlation Coefficient (PLCC or R) is the most used metric to evaluate

the performance of an objective video quality model. It measures the correlation

between the subjective MOS values xi and the MOS values yi predicted from the

model. For N data pairs (xi, yi), with x̄ and ȳ being the means of the respective
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datasets, the PLCC (or R) is given by:

PLCC = R =

N∑
i=1

(xi − x̄)(yi − ȳ)√
N∑
i=1

(xi − x̄)2 ·

√
N∑
i=1

(yi − ȳ)2

∈ [−1, 1]. (2.1)

To map the objective quality metric (OQM) scores and predicted MOS values

yi, ITU-R BT.500-13 [9] recommends the use of a logistic function, defined as:

y =
a1

1 + ea2(OQM+a3)
, a1, a2, a3 being fitting coefficients (2.2)

As mentioned before, each objective quality metric has its own characteristics:

type of application, type of method used and which parameters considers. Moreover,

available 2D and 3D video/images databases differ from work to work and become

unavailable after a while difficulting the comparison between metrics [13–15]. Ta-

ble 2.2 shows the discrepancy between algorithms applied to different datasets. The

authors in [16], after a comparison between some of the most recent 3D video or

image metrics, recognize that it is very difficult to compare the performance of two

different 3D quality methods due to different features evaluated, testing conditions,

hardware and datasets used. In particular, NR methods are usually tuned to a spe-

cific type of artifact, making them inaccurate to evaluate other type of degradations.

As each type of impairment usually affects the perceived quality in different ways,

it is difficult to confront MOS of different works, due to the subjectiveness of each

viewer’s score [17].

Database VQEG IRCCyN LIVE

PSNR 0.7683 0.4160 0.5621

SSIM [18] 0.8215 0.5012 0.5444

VQM [19] 0.8170 0.4850 0.7236

MOVIE [20] 0.8210 0.4850 0.8116

3D-SSIM [14] 0.8403 0.8194 0.8353

Yu et al. [21] 0.8170 0.7680 0.8450

Table 2.2: PLCC performance comparison of some of the state-of-the-art image and
2D video quality algorithms [16].

Thus, it is important to compare what is comparable and remember that ev-

ery quality metric has its advantages and disadvantages, objectives and application

scope.
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2.2 Newest 3D Video/Image Quality Metrics

In this section, some of the state-of-the-art metrics are briefly presented1. Fol-

lowing the classification suggested in section 2.1, the algorithms will be divided in

full-reference, reduced-reference and no-reference.

2.2.1 Full-Reference

Having full access to original content, FR metrics usually provide an accurate

quality estimation. Based on pixel and feature analysis, these methods often involve

complex algorithms which require a lot of time and resources to process.

In 2010, the Perceptual Quality Metric was proposed by Joveluro et al. [22]. The

authors stated that metrics with good representation of the HVS will provide a more

accurate evaluation, proposing a 2D based metric which measures distortion in the

brightness and contrast distortion using an approximation weighted by the mean of

each pixel block. Using texture-plus-depth with scalable encoding (Joint Scalable

Video Model - JSVM) at different quantization parameter (QP) and applying 2D

metrics for evaluating DIBR synthesized views, they achieved a PLCC between MOS

and PQM of 0.988 (average).

A year after, the View Synthesis Quality Assessment metric [23] is presented

and similarly to the previous method, it is considered an extension of any existent

2D image quality assessment metric. The authors consider view synthesis through

disparity estimation between left and right images and then interpolation (or extrap-

olation) of the virtual view through disparity compensation. The proposed method

aims at detecting artifacts in synthesized views and to handle areas where disparity

estimation may fail (object borders, thin objects, transparency ...). The main fea-

ture of this metric is the use of three visibility maps which characterize complexity

in terms of texture, diversity of gradient orientations and presence of high contrast.

During the same year, Solh et al. [24] introduced the 3D Video Quality Measure.

This method analyzes the quality of the depth map compared to an ideal depth map

(distortion-free image given the same reference image and some DIBR parameters).

The estimated ideal depth map is then used to derive three different distortion

measures to estimate the quality. These consist of temporal outliers (TO), temporal

inconsistencies (TI) and spatial outliers (SO) and when combined, a final quality

value is calculated. A PLCC of 0.8942 was achieved after performing subjective

tests.

Yasakehu et al. [25] proposed an adapted Video Quality Metric (VQM) [19] that

1The large number of methods reported in the scientific literature, makes it impossible to cover
them all. An effort was made to cover the most relevant ones.
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measures the impact of packet loss on 3D video. It combines 2D color and depth

information quality: VQM is used for estimating color quality whereas depth quality

measurement is based on the analysis of the depth planes distortion. Three different

values are measured and then combined: distortion of the relative distance within

each depth plane; the consistency of each depth plane; and the structural error of

the depth.

More recently, Fezza et al. [26] introduced a new method which handles effectively

asymmetric distortions of stereoscopic images by incorporating HVS characteristics

in the algorithm. Asymmetric distortions are caused by the use of different coding

settings in one (usually, the auxiliary view) - or more - of the two - or more - views

available, also known as asymmetric coding. To measure asymmetric distortion, the

authors state that 3D perception places more emphasis on the view containing more

information. They define weighting factors for the quality of each view according

to the local information content to find out which view contains more information.

Furthermore, quality score of each region is modulated based on the Binocular Just

Noticeable Difference (BJND) [27] to take into account the sensitivity of HVS.

In [28], Wang et al. presented a quality assessment index for stereoscopic images

based on 3D gradient magnitude. A 3D volume/data, constructed from stereoscopic

image pair to account for depth perception under different disparity spaces, is used

to compute the intensity differences over the spatial positions and the disparity

ranges. Using three different kernels (horizontal, vertical and viewpoint directions),

they calculate the 3D gradient magnitude of the distorted and original 3D volumes

created. Combining both gradients, they obtain the 3D gradient magnitude sim-

ilarity for each volume point, with the final quality score being an average of the

3D-GMS scores of all points in the 3D volume.

In 2015, F. Battisti et al. proposed a new metric to assess 3D video, the 3D

Synthesized View Image Quality Metric (3DSwIM) [29]. It is dedicated to arti-

fact detection in DIBR-synthesized view-points and compares statistical features of

wavelet subbands for two input images: the original image and the DIBR-synthesized

image. The authors included a registration step before the comparison so that best

matching blocks are always compared which prevents shifting blocks from degrading

the overall quality score of the image. This means that depending on the warping

strategy, objects may be shifted in the synthesized frame and still guarantee a good

visual quality. Also, considering humans are more sensitive to impairments affecting

humans in a video, a skin-detector was introduced. This step weighs the final quality

score so that distorted blocks containing “skin-samples/pixels” are penalized. This

method was compared to [14], [21] and [22] and outperformed them, achieving a

PLCC of 76.17%, compared to 0.49, 0.54 and 0.48, respectively. This method will

be reviewed in detail in section 2.3 because it was used in this work.
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2.2.2 Reduced-Reference

Reduced-reference methods often analyse features extracted from the original

media. These methods, despite not requiring the availability of the reference data,

need an auxiliary channel to transmit the extracted features/parameters.

Hewage and Martini presented in [30] and [31] similar methods. They evaluate

the quality of a 3D video using the extracted edge information of color plus depth

maps. Edges or contours of the depth can represent different depth levels and thus

can be used for measuring structural degradations. Plus, they are also coincident

with the corresponding color image object boundaries and both can be compared

to obtain a quality index (structural degradation) for the corresponding color image

sequence. The algorithm was tested on a lossy network with different packet loss

rates (PLR), with sequences encoded in the H.264/AVC texture-plus-depth format.

In 2012, Nur and Akar proposed a metric [32] which compares the bilateral-

filtered original depth map and the bilateral-filtered compressed depth map since

depth levels of the depth map sequences have great influence on the depth perception

of users. VQM [19] is used for comparing the depth maps because it correlates well

with the HVS.

In [33], Malekmohamadi et al. proposed a method that measures contrast from

gray level co-occurrence matrices (GLCM) [34, 35] for both color and depth which

correspond to the spatial information. The metric also extract information from

edge properties of the 3D reference video and send it through an auxiliary channel.

Other feature present in this algorithm is that color and depth sections have different

weights which can maximize the performance in some cases (for specific values).

RR are the least explored methods, even though they could be a good alternative

to FR methods by saving resources, and provide better results than NR methods

that usually have less information to predict a quality score.

2.2.3 No-Reference

Solh et al. proposed in [36] the NR version of [21]. Similarly to the FR method,

the authors derive a no-reference ideal depth map estimated from the available

colored images information. From this map, temporal outliers, spatial outliers and

temporal inconsistencies are calculated to be combined and provide an objective

score. The proposed algorithm achieves a PLCC of 0.916 when correlating subjective

differential mean opinion score (DMOS) with the method’s score. The algorithm is

close in performance to its FR version [21].

In [37], Mittal et al. presented an algorithm that assesses the comfort associated

with viewing stereoscopic image and video. The proposed metric extracts statistical
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features from disparity and disparity gradient maps as well as indicators of spatial

activity from images. In particular for videos, the measure utilizes these spatial

features along with motion compensated disparity differences to predict quality.

Feitor et al. proposed in [38] a packet-layer quality assessment of stereoscopic

video subject to packet loss. The presented metric estimates the size of the lost

frames, frame type (I, P or B) and PLR (based on packet headers information),

which is used as a model parameter to predict their objective quality, measured as

the Structural Similarity Index Metric (SSIM) [18].

In [39] Soares et al. proposed a no-reference based on an artificial neural networks

(ANN) approach to estimate the objective quality of video-plus-depth streams sub-

ject to packet loss in depth data. The algorithm parses the compressed bitstreams

and extracts a maximum of seven packet-layer parameters from packet headers up

to the network abstraction layer (NAL). These parameters are then processed over

a pre-defined time window to train the ANN and predict objective quality given as

a prediction of the SSIM. The authors also aimed at a low complexity model to

reduce overhead and facilitate practical implementations.

Han et al. proposed in [40] the No-reference objective Video Quality Metric.

This method was developed for real-time 3D video quality assessment since it has

no need of processing video details. The algorithm considers the correlation between

network packet loss and perceptual video quality (relying on encoding settings, if

available) for different bit-rate side-by-side stereoscopic video sequences. The results

showed increases up to 23% in terms of accuracy when compared to SSIM and Video

Quality Metric.

The work described in this thesis is limited to the study of NR quality measures.

The low complexity and good results obtained in similar works motivated this choice,

as well as the need of an adaptable and evolutionary (meaning the developed model

can be updated) metric.

This section provided a short survey of the most recent methods for video qual-

ity assessment in the literature. As demonstrated, each methodology has its own

specificity and scope of application, which makes some methods more suitable for

a particular situation. Having this in mind, the author chose two FR methods,

3DSwIM and SSIM, to serve as a reference against which the NR methods to be

developed will be compared, according to the requirements of this work. The next

section provides more information about 3DSwIM and SSIM.
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2.3 Reference Media-layer Metrics

The previous section strengthens the idea that the large number of methods

reported in the literature makes the task of comparing two different 3D quality

metrics hard. Furthermore, it is tough to identify a certain method as a main

reference due to the variety of factors involved. Still, there are some methods that

are typically used as references. One of the most well known and used method

is the Structural Similarity Index (SSIM) [18]. The HVS is capable of extracting

structural information from visual scenes. By measuring the similarity between a

reference stimulus and the stimulus which quality one wants to measure it is possible

to derive a good approximation of the perceptual image quality. The SSIM compares

the reference and distorted image to evaluate the image similarity by computing

three components: luminance l(x, y), contrast c(x, y)and structure s(x, y), defined

as:

l(x, y) =
2µxµy + C1

µ2
x + µ2

y + C1

, c(x, y) =
2σxσy + C2

σ2
x + σ2

y + C2

, s(x, y) =
σxy + C3

σxσy + C3

(2.3)

where x and y are the reference and the distorted image luminance pixel values,

respectively. µ, σ and σxy represent their mean, standard deviation and covariance

and C1, C2 and C3 are constants. Combining these three components, it is possible

to obtain an overall similarity measure:

SSIM(x, y) = [l(x, y)]α.[c(x, y)]β.[s(x, y)]γ, {α, β, γ} > 0 (2.4)

{
α = β = γ = 1

C3 = C2/2
⇒ SSIM(x, y) =

(2µxµy + C1)(2σxy + C2)

(µ2
x + µ2

y + C1)(σ2
x + σ2

y + C2)
(2.5)

The SSIM assumes values between 0 and 1 with 1 being the maximum quality

(i.e, there is a full similarity) of the distorted image. This method averages local

scores obtained from local Gaussian circular-symmetric windows that move pixel-

by-pixel over the entire image which results in an overall score. In this thesis, the

obtained SSIM score is the average score of each luminance frame of the sequence.

More recently, F. Battisti et al. proposed the 3DSwIM [29]. Despite being a

new method and not truly yet tested and compared with other quality metrics,

it showed promising results. 3DSwIM algorithm compares statistical features of

wavelet subbands of the original and the synthesized image/sequence. Firstly, the

image of size m x n pixels is divided into B = BnxBm non-overlapping blocks,
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with Bm and Bn being set as metric parameters. To account for the often disparity

errors during synthesis process, a registration step is performed to guarantee the best

block matching between the two images. An Exhaustive-Search-like algorithm [41]

(in the horizontal direction only) is used with a search window of size W pixels.

This parameter is changeable and has a great impact on computational cost: larger

windows lead to an increased computational cost. Furthermore, the authors believe

human beings are more sensitive to artifacts affecting areas with human skin (i.e.,

face, hands, legs,..) [42] and assume these affected areas have a higher impact on

the perceived quality. For that reason, they include a skin-detection feature, which

lowers the score in case artifacts affect skin-pixels. 3DSwIM begins with block

distortion db calculation:

db = max(|FOb
− FSb

|) (2.6)

where FOb
and FSb

represent the distribution function of original and synthesized

view, respectively. The overall normalized image distortion is then obtained:

d =
1

D0

B∑
b=1

wskin · db (2.7)

whereDo is a normalization constant and wskin is the weight of distortions present

in skin-pixels. Finally, the image quality score s is computed:

s =
1

1 + d
(2.8)

Like SSIM, 3DSwIM metric score s ranges from 0 to 1 with 1 meaning no distor-

tions (s = 1 and distortion d = 0) and 0 the minimum quality (s = 0 and distortion

d → ∞). This method obtained very good results when comparing to some of the

available image quality metrics, according to the study in [29].

The referred metrics above were used in this thesis as targets for predicting 3D

video quality. SSIM is simple, fast, with wide range of applications and it is still

very used among the scientific community, which makes it a good choice to compare

results with other works. 3DSwIM is a recent method dedicated to 3D synthesized

video and, just as SSIM, it is a FR method but with higher computational cost.
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Chapter 3

H.265/HEVC standard and

Gilbert-Elliot model

The new coding standard High Efficiency Video Coding (HEVC) was chosen

as it is the most recent and best performing encoder available, with very high en-

coding efficiency, doubling the compression efficiency compared to its predecessor

H.264/AVC [43] at the same level of video quality. The first version was released

in January 2013, being standardized in April 2013. The obtained compression effi-

ciency was seen by experts as a great opportunity for 3D video, with new possibilities

for 3D video transmission. This chapter provides information on general HEVC con-

cepts about the reference software. An explanation of the Gilbert-Elliot model is

also given in this chapter.

3.1 Frame Types and GOP Structure

A sequence of images (frames) processed electronically into an analog or digital

format and displayed on a screen with sufficient rapidity (frame-rate) creates the

illusion of motion and continuity, i.e., video. Typical frame-rates are 25 frames-per-

second (fps) and 30fps. Encoders like HEVC explore the spatial redundancy of a

frame or temporal redundancy of consecutive frames as well as the visual irrelevancy

of large amounts of the original video data to compress the video in order to obtain

an equivalent reconstructed video quality but with smaller size. Spatial redundancy

is the repetition of information which exists within the same frame, i.e., a frame

contains pixels which have near similar values to their adjacent neighbors. In the

literature, it is called intra-frame redundancy. The DCT-based plus quantization

scheme used in JPEG encoder [44] is an intra-frame compression technique that

reduces redundancy and discards visually irrelevant data to achieve large compres-

sion ratios. Moreover, contiguous frames often have information in common that
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Figure 3.1: Example of a GOP with GOP size 8 and intra-period 16.

can be used to predict parts of frames. When consecutive frames are correlated,

a reference frame is signaled and motion vectors (which indicate the displacement

of a pixel-block between frames) are computed. Depending on a frame’s reference

to other frames, they can be classified into 3 types: I-frames when they are coded

without reference to other frames and can be decoded without decoding any previ-

ous pictures; P-frames are coded with at least one reference to a preceding reference

frame; and finally B-frames when a frame is coded using information from past and

future reference frames. I-frames are typically the least compressed frames and the

reference frames to most of the future frames. P-frames combine information of a

reference frame and independent coding of prediction residues. B-frames are typi-

cally the most compressed ones and the most dependent on information from other

reference frames.

A set of specific consecutive frames is called group of pictures (GOP). The

typical definition of GOP consists on the distance between two I-frames. However,

HEVC defines GOP as the number of B frames plus one: GOP = Bframes + 1 and

the period of I-frames is defined as the intra-period. As an example, consider a

GOP size of 8 and intra-period length 16, illustrated in figure 3.1. The encoder

begins with the coding of the first frame, with picture order count (POC) 0 - which

is the order of appearance in the video - and jumps to frame with POC 8, being

this a P-frame with reference to the I-frame previously coded. The between frames

(B-frames) are then coded until the frame with POC 7 is reached. The next frame

to encode is the one with POC 16, which is the next I-frame according to the intra-

period parameter. B-frames with POC 9-15 are coded with reference to frame with

POC 16, followed by the coding of B-frames with POC 17-24 and jumping again to

the I-frame with POC 32.

HEVC allows for two types of GOP structure depending on the type of I-frame: if

the I-frames are set to Instantaneous Decoder Refresh (IDR), no subsequent picture

in the bitstream will require reference to pictures prior to the picture that it contains

in order to be decoded, i.e., it is strictly confined inside the GOP; if the I-frames are

set to Clean Random Access (CRA), the GOP structure is classified as open GOP,

where the I-frame can be a reference for the last B-frames of the previous GOP.

The structure and length of a GOP plays an important role in balancing error
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propagation/prevention and compression. At the cost of compression efficiency,

which can be softened by fixing a lower quantization parameter (QP) or bitrate,

the closed GOP offers a better resilience to error propagation. On the other hand,

an open GOP improves the compression ratio but it is more vulnerable to error

propagation. In this thesis, closed GOP structure was chosen to prevent inter-GOP

error propagation.

3.2 Slices and Coding Tree Blocks

In the previous standard H.264/AVC, macroblocks of fixed size 16x16 were the

elementary image division unit. In HEVC the coding tree unit (CTU), which can be

larger than a traditional macroblock, replaces the macroblocks. The CTU consists of

a luma coding tree block (CTB) of size LxL samples and the corresponding chroma

CTBs, with L/2xL/2 samples of each of the two chroma components. The value of

L may be equal to 16, 32, or 64 samples. Each CTB can be split recursively in a

quad-tree structure, down to 8x8, as illustrated in figure 3.2. The ”end” (or leaf )

of each CTB is called coding unit (CU) and is the basic unit of coding in HEVC.

Figure 3.2: Example of a quad-tree coding structure in HEVC [45]. (a) The quad-
tree based coding structure of a large coding unit (LCU) of size 64x64 (CU0). The
black 8x8 CU is encoded as four 4x4 prediction units (PU) type. (b) The corre-
sponding quad-tree representation of the LCU. A gray square indicates when a CU
is split into smaller CUs whether a white square indicates the CU is not further
divided.

CTBs are then arranged into groups forming a slice. A picture can be split

up into any number of slices, or the whole picture can be just one slice. Slices

play an important role in error resilience since they are data structures that can be
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Figure 3.3: Two frames divided into slices (red lines). On the left, not only the
the slices are highlighted, but also the CU division is also represented. The Elecard
HEVC Analyzer free software was used to extract the images.

decoded independently from other slices of the same picture, in terms of entropy

coding, signal prediction, and residual signal reconstruction meaning the effects

of an error are restricted to that slice area. Moreover, slices have the purpose

of resynchronization and concealment in the event of information loss. The more

slices an image is split, the more resilient to error prone channels that frame is

improving the overall quality of the video at the cost of compression efficiency (inter-

frame prediction is now mostly limited to the slice area) and more overhead during

packetization. Figure 3.3 shows an example of two frames divided into equally sized

slices. In the case of packetized transmission, which is the scope of this thesis,

it is important to set these parameters according to the network characteristics

in order to minimize the loss of information. Each slice is then packetized into a

network abstraction layer (NAL) unit. For further information, [46–49] provide more

information of the H.265/HEVC syntax and available tools.

3.3 HM Software and Packet Scheme

The reference software for HEVC - called HM (HEVC Test Model)-, from Joint

Collaborative Team on Video Coding (JCT-VC) of ITU-T Video Coding Experts

Group (ITU-T Q.6/SG 16) and ISO/IEC Moving Picture Experts Group (ISO/IEC

JTC 1/SC 29/WG 11), was used in this thesis as the H.265/HEVC codec. It is

very popular among the scientific multimedia community and was designed mainly

for research purposes. Despite the existence of an HEVC reference software for 3D

Video (Multiview (MV)- and 3D-HEVC), the aim of this thesis is to analyze the

effects of packet loss in the texture and depth bitstreams, leading to the encoding

of texture and depth streams separately, i.e., as two independent 2D video streams.

Similarly to H.264/AVC, HEVC uses a NAL unit based bitstream. The NAL was

designed to address the need for flexibility and customizability to handle efficiently
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Figure 3.4: Single NAL unit structure of HEVC, according to draft in the footnote
and [49]. The region in yellow represents the NAL unit header and the green region
is the NAL unit payload.

the variety of existent (and future) applications and networks. The NAL facilitates

the ability to map HEVC video coding layer (VCL) data, i.e., the video payload like

coded slices, to transport layers formats by providing header information appropriate

for communications by these transport layers such as RTP (for any kind of real-

time wire-line and wireless Internet services) or MPEG-2 systems for broadcasting

services. A coded bitstream is partitioned into NAL units that consist of a NAL

unit header followed by the NAL unit payload. Figure 3.4 shows the format of a

HEVC NAL unit.

The NAL unit header was extended to 2 bytes instead of 1 byte used in H.264,

with the anticipation that this design is sufficient to support the HEVC scalable

and 3D video coding extensions. The NAL unit header was designed to co-serve

as part of the packet header in RTP based packet networks, such as the one used

in this work. The first bit of the NAL unit header is the forbiddenzero and must

always be zero. The following six bits determine the NAL unit type (there are 64

types of NAL units [49], divided into VCL and non-VCL, which carry metadata

typically belonging to more than one coded picture), followed by 6 bits (R6bits)

for the element reservedzero6bits (it is expected this element carries some form of

layer identification information in future extensions) and 3 bits for temporalidplus1

(TIDP), which allows temporal scalability. In the interleaved packetization mode,

the transmission order of NAL units is allowed to differ from the decoding order

of the NAL units. Decoding order number (DON) is a field, that may be present

or not, in the payload structure or a derived variable that indicates the NAL unit

decoding order.

The encoder was set so that each VCL NAL unit contains all the information of

just one slice. In order to simulate realistic transmission schemes over IP-networks,

each NAL unit is packetized into a variable-length RTP packet with a maximum-

transmission-unit (MTU) size of 1500 bytes (the current draft1 defines the RTP

payload format as the packetizing format to use with this video codec). If a NAL

1https://tools.ietf.org/pdf/draft-ietf-payload-rtp-h265-13.pdf
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unit has over 1500 bytes in payload, it is segmented into IP-datagrams and losing

at least one of them results in the loss of the entire slice.

3.4 Error Concealment in the HM decoder

The purpose of a decoder is to translate information present in a stream into

its original signal. When a decoder starts decoding a stream, it expects the data

to be arranged in a pre-determined way, established by protocols or norms. In the

case of errors in the bitstream during transmission, the decoder might not be able to

correctly decode the stream. To minimize the risk of failing while decoding a stream,

the decoder must be robust, with the ability to recover some bitstream errors, and

be able to hide effects from these errors, i.e. be provided with error concealment

functions. The most common and simple error concealment technique is copying

the slice from the previously corrected received and decoded frame. This technique

is called frame-copy, but more complex and robust algorithms can be found in the

literature [50–54]. The implementation of these algorithms increases the complexity

of the decoder and a trade-off between the algorithm complexity and concealment

quality needs to be considered. Moreover, error concealment techniques are not

standardized, which means different decoders may adopt its own error concealment

method. This means that the effect of a packet loss or error during transmission in

video quality depends on the concealment algorithm present in the decoder. The

author of this thesis, due to the lack of reference decoders with error concealment

techniques adequate to the context of this work, worked on an error concealment

technique in the reference software HTM for multiview 3D video (3D-HEVC). The

algorithm was based on the frame copy with some modifications: after detecting the

area affected by the error, temporal information from previous and leading frames of

the same view as well as spatial information from other views were used to estimate

an average pixel value for the affected area. During this work, a full-operational and

robust decoder for HM was released [55] and was adopted for the rest of this work.

The error concealment technique applied in this decoder adopts intra-spatial

concealment for IDR-frames, whereas B- and P-frames are concealed with temporal

concealment and motion compensation. Figure 3.5 shows an example of a correctly

decoded frame and the correspondent concealed frame using the mentioned decoder,

with 20% packet loss rate in both texture and depth streams.

IDR-frames lost slices are extrapolated from neighbour received and correctly

decoded slices. This method fails when frames are coded with large slices or several

slices of the same frame are lost. If the entire frame is lost, a copy of the previously

corrected frame is used before the decoder buffer is refreshed. For P- and B-frames,

temporal information is extracted and used to conceal the lost slices. The method
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Figure 3.5: Example of a frame concealed by the decoder. On the top, the original
frame. The second frame shows the lost slices (black blocks limited by the red lines)
and the slices affected by error propagation (region 1, in yellow). The last picture
is the concealed frame.
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evaluates the overall temporal activity of the corrected received slices. If the activity

is below a threshold, then a direct copy of a co-located slice from the closest reference

frame is used. Otherwise a motion vector of the missing CUs is estimated from

available motion information (either spatial or temporal neighbors) to find out the

corresponding CUs in the nearest reference frame, concealing the missing slice. Once

again, when frames are split into higher numbers of slices, the better the performance

of the concealment technique is. It is worth to mention this method does not prevent

error propagation in GOPs: when reference frames are affected, the blockiness effect

becomes more and more visible.

Since this work is oriented towards the analyzes of packet loss, a Matlab script

described in Annex A associates each NAL unit with a RTP packet so that a ratio

of packet loss is computed. Another feature present in this decoder, is the option of

considering losses in the first frame by flagging −− firstIsLost variable. This is a

useful tool to define if the first frame to be decoded (an I-frame) is lossless or not.

For simplicity reasons, this option was ignored and the first frame is always error

free.

3.5 Gilbert-Elliot Model

This section describes the model used to simulate losses in the bitstreams. The

impact of packet loss on real-time video streaming services can be modeled mathe-

matically, using real measurements and traces of traffic and loss patterns. Stochastic

models such as discrete-time Markov chain models can be used to generate error pat-

terns similar to those measured previously in real time scenarios, resulting in a good

approximation for offline simulations.

This work adopted the Gilbert-Elliot model [56] to generate packet loss events.

It is a stochastic packet loss model based on a two-state Markov process (figure

3.6). It is a simple model, characterized by a good state (X = 0) and a bad state

(X = 1), with transition probabilities p and q between the two states as a response

to one of two possible events: (a) a successful arrival of a packet, making the system

change to or remain in the good state; and (b) where a packet loss is detected and

the system responds moving to bad state, if it was in the good state, or remaining

in bad state.

By saving only the previous state, the probability that the next expected packet

will be lost (P (Xi+1 = 1)) depends only on the current state of the system, Xi.

The Gilbert-Elliot model has an interesting feature that is the ability to verify

the dependence between consecutive losses, making it a suitable model for network

transmission scenarios where errors usually occur in bursts. This model is only

dependent on two variables to characterize the transmission network: Packet Loss
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Figure 3.6: Two-state Markov process for the Gilbert-Elliot model.

Rate (PLR) and Mean Burst Length (MBL). From them and [57], it is possible to

derive the conditional transition probabilities:

p = P (Xi+1 = 1|Xi = 0) =

[
MBL ·

(
1

PLR
− 1

)]−1
(3.1)

q = P (Xi+1 = 0|Xi = 1) =
1

MBL
(3.2)

knowing that:

1

PLR
> 1 +

1

MBL
, 0 < PLR < 1 , MBL ≥ 1 (3.3)

This model is implemented as a Matlab script listed in annex B. Several trace

files were generated, with different combinations of PLR and MBL. Typical values of

PLR range from 1% to 20% in non-linear steps [in this work, 1%, 5%, 10%, 15% and

20%]: if provided error concealment is used, losses under 1% are almost undetectable

and 20% loss leads to severe degradation affecting video quality in a way it is difficult

to distinguish anything. For this reason and the rarity of PLR above 20% our study

considered only PLR values below or equal to 20%. MBL depends on the type of

network considered: for wired connections usually MBL is lower than a wireless

network. As mentioned before, to prevent the task of concealing an entire frame if

all slices are lost, a maximum burst length of 7 or 9, depending if it is a low resolution

sequence or HD, was set. Thus, MBL values range from 3 to 5 for low resolution

sequences and 3 to 6 for HD sequences.
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Chapter 4

Packet-layer models for

synthesized view quality

assessment and Results

This chapter describes the proposed method for assessing 3D video quality, in

the texture-plus-depth format, based on neural networks (NN) and statistical packet

transmission network parameters, with the respective obtained results. Two differ-

ent methodologies were adopted considering the type of validation used in the NN.

4.1 Objectives and Procedures

The objective of the proposed method is to estimate the overall quality of a syn-

thesized view averaged over a temporal window using an objective quality metric

as a reference (e.g. SSIM, 3DSwIM, PSNR...). The quality estimation is computed

according to a set of parameters extracted from packet headers. The learning pro-

cess is relatively fast, which allows the re-training of the model with new samples,

increasing the amount of information used to estimate video quality. And in this

type of algorithms, the more valid 1 input samples are available, the better results

will be. As soon as this model is obtained, it is ready to be deployed somewhere

in the network channel. Network probes with the task of packet sniffing provide a

good option for such methods. Figure 4.1 describes an example of probes deployed

in three different nodes: in a switch, between the service provider and the client,

and in two routers at client’s home. Once the service or network providers obtain

the estimated quality of the video being delivered to the client, they are capable

of detecting failures, vulnerabilities or congested network which degrade the users’

1The word valid is stressed here to highlight the importance of using trustworthy samples:
having huge amounts of samples does not imply having better results if the samples are not
coherent.
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Figure 4.1: Example of a monitoring system with 3 probes sniffing packets to report
to the service provider.

QoE. To prevent this from happening, they are now in a position where they can

act according to circumstances: either by changing video encoding configuration or

adjusting network and transport conditions. A well known example is YouTube way

of preventing their videos from stopping during loading: if the connection is slow or

facing any type of issue that causes the loading to slow down, YouTube streaming

service automatically lowers the videos’ resolution in order to download it with-

out interruptions. This is only possible because the company providing the service

(YouTube in this case) know their client is facing a problem that can be attenuated

without costs and worries for the client. Furthermore, with these packet-layer indi-

cators stored and compiled, it is possible to have a record on that specific point of the

network, allowing the network engineers to compare results and identify abnormal

activities in the transport network.

For 3D video, when texture and depth are encoded separately and packed into

different NAL units, it is desirable to transmit them in different channels. This way,

if a packet is lost, only one of the video components, i.e. texture or depth, is af-

fected. Although, there are other possible network configurations: (a) both streams

can be transmitted through the same network with different degree of importance;

26



4.1. OBJECTIVES AND PROCEDURES

Figure 4.2: Experimental setup for texture and depth loss approach.

(b) one stream (e.g. texture) might have a higher priority network than an auxiliary

channel that transmits the depth data to avoid losing 2D color video. In reality,

both streams are subject to packet and data loss, despite their importance or con-

figuration, which highlights the importance of monitoring both streams - to increase

as much as possible the model’s accuracy.

The experiment setup is shown in figure 4.2. It assumes an independent encoding

and transmission of texture and depth maps where both streams are subject to

packet loss using error events generated by the Gilbert Elliot model. The bitstreams

are then decoded with the error concealment and used to synthesize a view with an

appropriate baseline. In order to understand the impact of different packet loss rates

in texture and depth, multiple combinations were considered. Finally, the SSIM and

3DSwIM scores of the distorted synthesized view are computed with respect to the

reference view. These objective FR metrics are then used as ground-truth (target)

values for the training and validation of the proposed model. The inputs are a set

of parameters extracted from packet headers. The use of NN requires hundreds of

simulations in order to obtain an accurate and generalized model.

Most of the mentioned tasks are very time-consuming and require substantial

processing resources. To accelerate the decoding and synthesis process, a clustered

computer was necessary. To synthesize views, the reference software VSRS 3.5 [58]

was used. All videos were encoded with HM version 16.0 and decoded with an

altered version of HM v.12.1, described in section 3.4.
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4.2 Video Dataset and Encoding parameters

The 3D video sequences used in this experiment setup are entitled: Balloons,

Kendo, Newspaper, PoznanCarPark and Champagne Tower. Each video has dif-

ferent characteristics which influence the choice of encoding parameters. Even the

texture and depth map of a sequence should be encoded with different setting pa-

rameters, either to meet network or quality requirements. For the three videos

with resolution of 1024x768: texture was encoded with fixed GOP size of 8 frames,

intra-period of size 16 frames with 8 slices per frame with fixed number of CTBs

and a maximum CU size of 32x32 with a maximum limit of three levels of partition;

depth is coded with fixed GOP size of 8 frames and intra-period of length 32 frames.

Champagne and PoznanCarPark have higher resolution leading to small changes in

the configuration file: number of slices per frame was set to 10, maximum CU size

was increased to 64x64 and maximum partition depth was also increased to 4 for

both texture and depth. The rest of the parameters is the same depending if its

depth or texture. Adding to these, QP was set to 28 and 30 for texture and depth,

respectively, a Z-search mode with 64 pixels of range was used and sample adaptive

offset (SAO) was activated for all videos. Table 4.1 summarizes the most relevant

settings applied.

3D Video
GOP
Size

GOP
structure

Intra
Period

LCU
size

QP
Slices
per

frame

V+D Bitrate
(% Depth)

Balloons
(1024x768)

Texture
8

B-B-B-B-
-B-B-B-P-B- ...

16
32

28 8
1.1 Mb/s(26%)

Depth 32 30 8
Kendo

(1024x768)
Texture

8
B-B-B-B-

-B-B-B-P-B-...
16

32
28 8

1.1 Mb/s(19%)
Depth 32 30 8

Newspaper
(1024x768)

Texture
8

B-B-B-B-
-B-B-B-P-B- ...

16
32

28 8
1.1 Mb/s(18%)

Depth 32 30 8
Champagne
(1280x960)

Texture
8

B-B-B-B-
-B-B-B-P-B- ...

16
64

28 10
1.1 Mb/s(13%)

Depth 32 30 10
PoznanCarPark
(1920x1088)

Texture
8

B-B-B-B-
-B-B-B-P-B- ...

16
64

28 10
3.2 Mb/s(29%)

Depth 32 30 10

Table 4.1: Encoder setting parameters of the 5 videos used.

4.3 Neural Network based models

Neural Networks appear as a first candidate to address engineering tasks such as

the one discussed in this thesis. A NN is a model that, according to a mathematical

function, computes an output provided a set of inputs. The advantage of this model

is that it is trainable, i.e., the more it is trained, the better the model will fit the

problem. [39, 59–64] adopted similar approaches with the goal of predicting video

quality scores.
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The proposed model is based on a two-layer feedforward network with sig-

moid hidden neurons and linear output neurons. This methodology can fit multi-

dimensional mapping problems with good performance indicators, as long as the

data provided is consistent and the number of hidden neurons is sufficient. Fig-

ure 4.3 shows an example of this type of NN with 3 input parameters, 2 hidden

nodes and a single output.

Figure 4.3: Two-layer ANN with N=3 inputs and H=2 hidden nodes.

The activation functions of the first (hidden) layer and the second (output) layer

are respectively the hyperbolic-tangent (sigmoid function) and the identity function.

The output of the model is described by equation 4.1 and equation 4.2:

y(x) =
H∑
j=1

(woutj · zj) + bout (4.1)

with

zj = tanh

(
N∑
i=1

(winji · xi) + binj

)
(4.2)

where N is the number of input parameters, H is the number of hidden neurons and

w and b are the weights and biases tuned during training session, with win and bin

being the weights and bias of the first layer and wout and bout the weight and bias

of the second layer.

Matlab R© nftool provides an intuitive tool that helps implementing the desired

method. It uses the Levenberg-Marquardt [65] back-propagation algorithm for train-

ing the neural network. Despite nftool is a good auxiliary tool to make some exper-

iments, it is somehow limited when choosing some configuration parameters which
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play an important role in the models’ performance. In order to tune the NN with

the desired settings, nftool allows the user to generate a script after performing a

full simulation. Thus, nftool was used only as an initial experiment and to generate

the scripts used in this work.

One more aspect worth to mention is the process of training, validation and

testing. nftool randomly divides the set of inputs into three groups: the training

set, validation set and testing set. Training set uses input samples to iteratively

train the network, the validation set is used to measure network generalization and

to signal the network when generalization stops improving and testing set takes

samples to independently test the performance and accuracy of the model. In this

thesis, two different scripts with different validation and testing methods, explained

in detail in 4.3.1 and 4.3.2, were generated.

To train the NN a maximum of twelve parameters are extracted from the parsing

of texture and depth bitstreams. Not only the packet loss rate is considered but also

the type of slice and data size of the lost packet which lead to the following processed

packet layer parameters (PLPs):

Packet Loss Rate (PLR): Ratio of texture and depth slices lost during a

time interval (10 seconds in this work) of the transmission. As mentioned before,

encoding configuration was set specifically so that each NAL unit contained only one

slice (each frame was divided into equal number of slices). The RTP payload format

allows for packetization of one or more NAL units in each RTP packet payload,

which means each RTP packet contained one slice, i.e if a packet was lost, the

correspondent slice was lost. In the scenario of an IP wired network, maximum

transfer unit (MTU) sizes are set to roughly 1500 bytes, value considered in this

work.

Size of Lost Packet (SLP): The size of the lost packet plays an important

role on the video quality. If a packet with 1000 bytes of video data is lost it will

have a higher impact in the video quality’s degradation than a packet containing

500 bytes.

As not all packets are of equal importance, it is important to know the slice

type of the lost packet. Even if the size of the packet is known, which is somehow

related with the slice type of the packet, the effect of error propagation is different

depending on the type of slice. Thus, each PLP is derived for each slice type, I, P

or B and for texture and depth, totalling the 12 possible inputs of the NN: PLRt
I ,

PLRt
P , PLRt

B, SLPt
I , SLPt

P , SLPt
B, PLRd

I , PLRd
P , PLRd

B, SLPd
I , SLPd

P , SLPd
B,

To find the NN configuration that offers the best trade off between performance

and computational cost, it is necessary to understand the impact of the number

of hidden neurons H and inputs N on the NN results. Table 4.2 lists the packet

parameters used for each group of inputs considered. To limit the influence of
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the random initial values for each training session in the final results, a set of 100

iterations with H hidden nodes varying from 1 to 10, were performed for both

topologies with different number of inputs. The average PLCC of each number

of hidden nodes is computed as it is a good indicator of the networks’ accuracy.

Figure 4.4 shows the relation between the two mentioned variables: the number of

inputs considered and the number of hidden neurons. For a better analysis, a close

up of the results with 12 inputs and 6 texture inputs is also provided.

N Packet Layer Parameters (PLPs)
3 PLRt

I · PLRt
P · PLRt

B

6 PLRd
I · PLRd

P · PLRd
B · SLP d

I · SLP d
P · SLP d

B

6 PLRt
I · PLRt

P · PLRt
B · SLP d

I · SLP t
P · SLP t

B

12
PLRt

I · PLRt
P · PLRt

B · SLP t
I · SLP t

P · SLP t
B

PLRd
I · PLRd

P · PLRd
B · SLP d

I · SLP d
P · SLP d

B

Table 4.2: PLPs used for ANN training

(a) (b)

(c) (d)

Figure 4.4: PLCC between estimated scores and real scores. 3DSwIM: all inputs in
Figure 4.4a and close-up in Figure 4.4c; SSIM: all inputs in Figure 4.4b and close-up
in Figure 4.4d.
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For both metrics, the plots show an increase in the PLCC with the number of

hidden nodes up to 6, where it stabilizes, particularly for the 3DSwIM algorithm. It

is also clear the impact the type and number of inputs have in the NN performance.

When the input set is only three indicators of the packet loss rate of the texture

component, the algorithm has a poor performance, with a PLCC ∼ 0.24 . Even

though they carry texture information, which contributes significantly to the quality

degradation and might present good data to the NN, the lack of information about

the size of the packet lost is enough to justify the low correlation values. With only

these three inputs, it is as if the network considers every packet loss has the same

impact on the video’s quality, which is not true. The difference between the curve

of ”6 inputs texture” and ”3 inputs texture” supports this idea, being, however, this

difference larger than expected. Furthermore, the performance with 3 texture inputs

is almost the same as the performance with 6 depth inputs. As expected, the NN

accuracy is low when using only depth related inputs when assessing texture-loss

videos. 3D video, in the texture-plus-depth format, quality is mostly dependent on

texture, which leads to a higher impact on the overall quality if texture is affected

by any kind of impairment than if the same impairment occurred on the depth

component. Finally, the best performance is achieved with the use of all 12 inputs,

followed relatively close by the 6 texture inputs.

The plots in figure 4.4 also give information about the number of hidden nodes

needed to achieve good performance results. To avoid wasting time and processing

resources, H needs to be chosen carefully. The close up plots (figure 4.4c and 4.4d)

show that the more hidden nodes are used, the better the performance usually is,

but the gains in performance tend to stabilize as the hidden nodes increase. To

the author of this work, 6 hidden neurons and 12 input parameters should be used

since it proved to be accurate enough without being too much computational costly.

Although, for a complete study, for the first methodology, all the simulations were

performed using all the different combinations of PLPs, whereas in the second, only

the set of 6 texture and 12 inputs were used.

4.3.1 First Methodology

The first approach considers a nftool configuration of the neural network, with

all the data samples available being provided to the network and dividing them

according to the following proportions: 50% of the input samples were used to train

the network; 20% of the samples were used to validate the model and the other 30%

were used for testing the network’s performance. This configuration is expected to

be quite accurate given sufficient hidden neurons and inputs, with high PLCC values

as the samples used to train and validate the NN might be similar to those used in

32



4.3. NEURAL NETWORK BASED MODELS

the testing phase.

(a) (b)

(c) (d)

Figure 4.5: 3DSwIMp vs 3DSwIM : Figure 4.5a - 12 inputs; Figure 4.5b - 6 texture
inputs; Figure 4.5c - 6 depth inputs; Figure 4.5d - 3 texture inputs.

All results in the plots are extracted from simulations using 6 hidden nodes.

According to figure 4.5 and figure 4.6, the use of only 3 texture inputs proved once

again its extremely low accuracy. With a correlation coefficient R of only 0.2, the

number of inputs is not enough to estimate accurately the quality. An analysis of

figure 4.5c shows that in addition to the lack of input parameters, the inputs only

provide depth information, which is not sufficient for this model, where videos are

impaired in texture and depth. The correlation obtained using six texture inputs

might be accurate enough for some cases. In scenarios where the depth stream is

not available for parsing or a technical issue prevents the server receiving the depth

33



4.3. NEURAL NETWORK BASED MODELS

inputs, this model can be an alternative to the twelve input model, which has the

best accuracy achieving a correlation of 0.98. Table 4.3 shows the difference in terms

of PLCC between methods and the number of inputs used.

(a) (b)

(c) (d)

Figure 4.6: SSIMp vs SSIM : Figure 4.6a - 12 inputs; Figure 4.6b - 6 texture
inputs; Figure 4.6c - 6 depth inputs; Figure 4.6d - 3 texture inputs.

Number of Inputs 3DSwIM SSIM
12 Inputs 0.97558 0.96834
6 Texture Inputs 0.90081 0.90975
6 Depth Inputs 0.25798 0.24311
3 Inputs 0.20718 0.19546

Table 4.3: PLCC of the simulated models for the two reference metrics.
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Comparing both figure 4.5 and figure 4.6, which use different objective met-

rics but have the same range ([0,1]), it is obvious 3DSwIM has a wider range of

scores. Even though the correlation coefficients are very similar, the most degraded

sequences are given a quality indicator under 0.3 when using 3DSwIM, whereas

the SSIM algorithm scores are still on the 0.85-0.0.88 interval, which is very high

considering the final quality of the sequences.

4.3.2 Second Approach

The second methodology has a different and more aggressive validation philoso-

phy. The objective of this approach is to infer the performance of the neural network

using different sequences input samples to test the NN performance. Therefore, a

leave-one-out scheme is implemented. Figure 4.7 shows an example of the men-

tioned scheme with 4 sequences. The diagram shows that for simulation 1 (where

simulation means the full training and testing of the NN), after the training stage

with three different sequences, the left-out sequence (#4) samples are used to test

the model. Simulation 2 is then performed with sequence #4 trading place with

sequence #1, being this one the left-out sequence. With this approach, the model is

being tested with samples of a sequence that were not present in the training stage,

which means the model might perform differently due to unknown characteristics

of the sequence used for testing. If the characteristics of the sequence being tested

are similar to the ones used for training, then a high correlation value is obtained.

On the other hand, if the testing sequence is very different from the ones used in

training, then the correlation values won’t be as good. Thus, with this approach, it

is expected to improve generalizability at the cost of the models’ accuracy. For the

sake of simplicity, and considering what has been said about the use of 3 texture

and 6 depth inputs, only the results for 6 texture and 12 inputs are presented.

Plots in figures 4.8, 4.9, 4.10 and 4.11 show the obtained results and confirm the

predictions made before. Despite the high correlation values obtained, the second

approach does not achieve the values obtained in the first method, particularly for

the PoznanCarPark and Champagne sequence. This is explained by the fact both

sequences have different resolutions from the other three (the first is an HD sequence

and the second has an intermediate resolution) used for training. In addition, the

different coding parameters used may also influence the results. As previously said

in chapter 3.4, the number of slices that a frame is divided has high impact on

error resilience. Since both Champagne and PoznanCarPark have 10 slices/frame

instead of the 8 slices/frame of the Balloons, Kendo and Newspaper sequences, the

effects of packet loss in the first two sequences are different. Finally, the use of LCU

of different sizes also affects the concealment process, which might have different
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Figure 4.7: Example of the leave-one-out scheme. First simulation uses samples
from sequences #1, #2 and #3 to train the model whereas sequence #4 (left-out)
is only used for testing the NN. In the second simulation, sequence #4 (as well as
sequences #2 and #3) is now used for training and sequence #1 is now the left-out,
i.e., is used only for testing.

performances depending on the size of the LCU. In order to increase the PLCC and

consequently, the model’s performance, in identical situations, the training process

should be updated with a larger set of inputs, with different characteristics and

different coding parameters.

To conclude this chapter, a brief comparison between the two approaches is

given. Even though the testing conditions were different in both simulated method-

ologies, results showed good correlation values. The obtained results confirmed the

predictions made. Methodology 1 is more accurate, achieving higher PLCCs when

using 6 texture inputs and 12 inputs. The distribution of samples between the three

stages was balanced, which contributed to good results. As a drawback, this method

might fail when assessing video or sequences with characteristics different from those

used in training and testing stages. Methodology 2 proved to be more general, for

situations where each video has its own properties. Testing a NN with samples

containing different features from the ones used in training, enables the model to

handle more efficiently with unknown inputs, giving this model the advantage of

being more adaptable. All in all, it is difficult to decide which has the better perfor-

mance because they depend on where and what they are going to be used for. Once

again, each metric/method has its own singularities and utilities, being the choice

of the method dependent on the answer of the question ”What is the application

scope of the desired method?”.
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4.3. NEURAL NETWORK BASED MODELS

(a) (b)

(c) (d)

(e)

Figure 4.8: 12 inputs with 3DSwIMp vs 3DSwIM : 4.8a - Kendo; 4.8b - Balloons;
4.8c - Newspaper; 4.8d - Champagne 4.8e - PoznanCarPark

37



4.3. NEURAL NETWORK BASED MODELS

(a) (b)

(c) (d)

(e)

Figure 4.9: 6 texture inputs with 3DSwIMp vs 3DSwIM : 4.9a - Kendo; 4.9b -
Balloons; 4.9c - Newspaper; 4.9d - Champagne 4.9e - PoznanCarPark
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4.3. NEURAL NETWORK BASED MODELS

(a) (b)

(c) (d)

(e)

Figure 4.10: 12 inputs with SSIMp vs SSIM : 4.10a - Balloons; 4.10b - Kendo;
4.10c - Newspaper; 4.10d - Champagne 4.10e - PoznanCarPark
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4.3. NEURAL NETWORK BASED MODELS

(a) (b)

(c) (d)

(e)

Figure 4.11: 6 texture inputs with SSIMp vs SSIM : 4.11a - Kendo; 4.11b - Bal-
loons; 4.11c - Newspaper; 4.11d - Champagne 4.11e - PoznanCarPark
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Chapter 5

Subjective Quality Assessment of

3D Video

As mentioned earlier, assessing 3D video quality poses some challenges to engi-

neers and researchers. Quantifying the quality of 3D video is extremely subjective

due to the dependence on each viewer’s opinion. The true indicator of a quality as-

sessment model’s performance is the correlation between the objective metric quality

scores obtained and the perceived quality in terms of mean opinion score (MOS),

which is the real QoE indicator. It is important to mention that subjective ses-

sions are used in almost every study that involves assessing quality, which includes

impairments originated by coding, decoding with concealment, random events dur-

ing transmission or view synthesis algorithms, due to the relevance of a subject’s

opinion. Thus, it is necessary to conduct a subjective assessment session to collect

scores indicating the quality perceived by the subjects. In fact, the main goal of

the quality assessment methods is to develop an objective method capable of out-

putting a score as close as possible to the subjective scores assigned by a group

of observers. A computable model is desirable since conducting test sessions as

the one performed in this work, are costly, time consuming and require a consider-

ing number of resources. This led the scientific community to look for alternatives

for subjective studies that are costly. Moreover, some of these subjective sessions

are uncomfortable for viewers, which can be reduced if the test is performed in a

more friendly, but still controlled, environment. One alternative approach is using

a crowd-sourced [66–69] based platform where the subjective video quality assess-

ment is conducted over the Internet, allowing for faster and cheaper evaluations,

and reaching a larger number of evaluators. The author of this thesis contributed

to the construction of a crowd-sourced quality evaluation platform which was used

in a group study conducted by the Instituto de Telecomunicações - Coimbra, the

Hellenic Open University at Patras and the Department of Wireless Communica-

tions of the University of Zagreb, which resulted in the publication of a scientific
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5.1. TEST CONDITIONS AND SUBJECTS

paper [11]. Its purpose was to collect a large number of subjective scores from three

different research centers in different countries using a self-developed crowd-source

platform and make it public for scientific purposes. In order to perform the tests

correctly in the laboratory where the study was conducted, several changes had to

be made to the platform due to compatibility problems with the existent hardware.

Several setups were experimented, using different browsers and software versions.

After a period of experiments, a functional setup was chosen and the subjective

sessions were ready to begin. With great success, around 40 volunteers participated

in this experiment. But despite the effort of crowd-source methods, several issues

arise from it: the reliability of user ratings, the influence of incentives, payment

schemes and the unknown environmental context of the tests are among the main

concerns. Still, it is a valid alternative with a lot of potential to ease the task of

conducting subjective tests. In this work, due to the specificity of the impairments,

a local subjective study was conducted.

There is no optimal methodology to evaluate the quality perceived by humans of

3D video subjected to impairments with unpredictable effects, such as bit errors or

packet loss. However, it is convenient to follow the rules specified in the recommen-

dations [9,10] for the environment and test conditions, in order to have results that

can be compared with other experiments. In this work, the Single Stimulus (SS),

particularly the Absolute Category Rating with Hidden Reference (ACR-HR) [70],

methodology was used, whose procedures and results are presented in section 5.2.

5.1 Test Conditions and Subjects

When conducting a subjective study of this type, certain conditions should be

met in order to reduce the influence of surrounding elements in the subject’s evalu-

ation session. The tests were conducted in a quiet and daylight-illuminated room.

The platform used was designed in HTML and PHP, with highly intuitive graph-

ical interfaces for grading and voting on a tablet-PC, as shown in figure 5.1. The

viewers started the test by introducing their age and gender in a tablet for poste-

rior statistical analysis, with the sequences being played after the Play button was

pressed. A server workstation was used to reproduce all the test sequences in a ran-

dom order and register in a file the grading votes. A 20-inch Philips WOWvx 9-view

autostereoscopic display was used to display the 3D sequences. During the test, the

viewer was comfortably seated in front of it at an optimal distance of 80cm. The

overall time duration of the evaluation session was about 27 minutes. A total of 6

female and 28 male voluntary viewers, aged from 21 to 48 with average of 25 years,

participated in the subjective assessment experiments. Most of the participants were

students and only a few were familiar with this kind of procedure. The so-called
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5.2. ACR-HR SESSION

Figure 5.1: Graphic interface used during tests. On the left, the picture shows the
instructions before the start of the test. The picture on the right shows the intuitive
grading bar.

”fly” depth acuity test was performed to every participant to check if they had good

vision acuity and stereo vision. A detailed explanation was given to the subjects

before each test session, in order to clarify the objectives, grading procedures and

answer possible questions the participants might have had.

5.2 ACR-HR Session

The adopted ACR-HR methodology conforms with the ITU-T P.913 [69] and

ITU-R BT.500-13 [9] as a Single Stimulus (SS) method. ACR-HR is based on the

ACR method, which is a category judgment where the test stimuli are presented one

at a time and are rated independently on a category scale. The subject observes one

stimulus of 10 seconds and then has time to rate that stimulus. ACR method uses

a five-level rating scale from 1 to 5, with 1 being very bad and 5 excellent. With

ACR-HR, the experiment includes a reference version of each video segment, not as

part of a pair, but as a freestanding stimulus for rating like any other. The viewers

did not know that there was a reference sequence and the sequences were displayed

randomly, changing from test to test.

The video presentation scheme is shown in figure 5.2. 92 impaired versions of

each 3D sequence simulated in the previous chapter, with PLR ranging from 1% to

20%, plus the 5 original sequences totals 97 videos to evaluate. Each sequence was

only showed once, in order to reduce the test time and avoid fatigue on the subjects.

Thus, each test session results in 97 scores, one for each sequence, leading to 34

scores for each sequence. Before each test session, the viewer was presented with a

reference demo sequence to familiarize the observer with setup and typical quality

of the display device.

During the data analysis the ACR-HR scores are subtracted from the corre-

sponding reference scores to obtain a DMOS, with this procedure being known as

”hidden reference removal” [70]. Differential viewer scores (∆DV) are calculated for

each video j. The appropriate hidden reference score (Vref ), which is the score of
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5.2. ACR-HR SESSION

Figure 5.2: Presentation structure.

the reference video j, is used to calculate ∆DV using the following formula:

∆MOSj = MOSj −MOSref + 5 (5.1)

where Vj is the viewer’s ACR-HR score for sequence j. In using this formula, a

DV of five indicates ”Excellent” quality and a DV of one indicates ”Bad” quality.

Any DV values greater than five (i.e., where the impaired sequence is rated better

quality than its associated hidden reference sequence) is considered valid. Letting

N be the number of viewers, the DMOS for each video j is then obtained:

DMOSj =
1

N

N∑
i=1

(∆MOSj)i (5.2)

Figure 5.3 and figure 5.4 show the results of the DMOS vs. SSIM and DMOS vs.

3DSwIM. Two different regression methods were considered: a logistic function in

Equation 2.2 (repeated in equation 5.3 and recommended in [9] for mapping objective

quality metric (OQM) scores and predicted MOS y); and using a polynomial fit of

second order defined in equation 5.4. As mentioned earlier, a higher value of DMOS

means excellent quality, which is contradictory with the recommended logistic fit

defined in equation 5.3, reason for the use of a second approach. DMOS values are

obtained from equation 5.2 and mapped with the correspondent sequence objective

quality metric, either 3DSwIM or SSIM. The regression plots are also represented.

The dispersed data, which means the DMOS do not correlate very well with the

estimated quality score, contribute to the reduction of the PLCC.

y =
a1

1 + ea2(OQM+a3)
, a1, a2, a3 being fitting coefficients (5.3)

y = a1.OQM
2 + a2.OQM + a3 , a1, a2, a3 being fitting coefficients (5.4)

The results obtained in terms of PLCC are lower than expected, particularly for
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5.2. ACR-HR SESSION

(a) (b)

Figure 5.3: DMOS vs. 3DSwIM (left) and DMOS vs. SSIM (right) for the 92
evaluated videos using the logistic fit in Equation 5.3.

(a) (b)

Figure 5.4: DMOS vs. 3DSwIM (left) and DMOS vs. SSIM (right) for the 92
evaluated videos using a polynomial fit.
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5.2. ACR-HR SESSION

a1 a2 a3
PLCC between DMOS

and DMOSpredicted
3DSwIM 10.4916 -1.8528 -1.0969 0.8139

SSIM 349.4390 -2.1410 -3.1931 0.8004

Table 5.1: Fitting coefficients and PLCC of the plots of Figure 5.3 - logistic fit
results.

a1 a2 a3
PLCC between DMOS

and DMOSpredicted
3DSwIM 1.8678 1.6636 1.2999 0.8137

SSIM 316.1511 -573.3892 261.7094 0.8624

Table 5.2: Fitting coefficients and PLCC of the plots of Figure 5.4 - polynomial
results.

3DSwIM PLCC values. It was expected that SSIM would be more inaccurate when

correlating with DMOS values, since despite the severity of the degradations, it still

provided high SSIM values, on the opposite of the MOS values obtained, which were

very low. The polynomial fit for the SSIM method is the one with better correlation

coefficients, thus being a good predictor for video quality. The obtained fitting

coefficients for both methods and the PLCC between DMOS and DMOSpredicted are

shown in table 5.1 and table 5.2.

46



Chapter 6

3DVQM: a practical

implementation

The author of this thesis also had a participation in a project called 3D Video

Quality Monitor (3DVQM), supported by the Instituto de Telecomunicações. The

developed model was a complete monitoring system that predicted the perceived

quality of video streams subject to packet loss in real time. The proposed model

adopts the same structure as the one presented in this thesis: using parameters

extracted from packets, a simple mathematical model outputted a quality score

which was shown in a real time chart. Using the H.264/AVC encoder in the stereo

format (left+right view), the streams were transmitted through a lossy channel,

with the packet losses being simulated by the Gilbert-Elliot model. Two clients were

receiving and decoding two different sequences in real time, using the VLC player as

a decoder and player. Between the server/sender and receiver/client, probes could

be assigned from a web application to sniff packets and find any discontinuity in the

stream. The probes could be assigned to specific nodes, identified by an IP address.

If a probe was configured to inspect a certain node of the network, the graphic with

the quality estimation would pop up, with 5 to 10 seconds of update interval. In

order to constantly update the chart, the web application retrieved the quality scores

from a database, in which the scores estimated by the objective metric were sent

by the active probes. Figure 6.1 shows the setup working in a telecommunications

meeting, in Aveiro, with the authors of the proposal. The model was developed in

Python by the main author of the project, Nuno Martins, with the author of this

thesis developing the web application, using HTML, PHP and JavaScript, as well

as the database in MySQL.
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Figure 6.1: Setup experiment of 3DVQM.

This project showed it is possible, with few resources, to build a monitoring

system such as the one proposed in this thesis. Furthermore, during the project

presentation at the meeting, several people wanted to know more about the idea

and what was the purpose of such project. The response was more positive than

expected, with this experience being considered a success.
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Chapter 7

Conclusion

This thesis aimed to address the problem of assessing 3D video quality transmit-

ted over packet-loss-prone channels. The main objectives proposed in section 1.1

have all been successfully achieved. The quality models discussed and developed in

this work yield very good results, regarding the assumptions made and the method-

ologies followed - the encoding and transmission setup and the definition of the used

input parameters and targets. As discussed in chapter 2, it is very difficult to com-

pare different quality assessment methods developed and published in the scientific

literature, because almost all of them have different kinds of applications, differ-

ent goals and even different assumptions regarding, for instance, the encoding and

transmission setup. Nevertheless, before closing this essay, a further explanation is

provided on this issue.

The first approach to address this work’s subject was to try to assemble a large

number of recent quality assessment models for 3D video quality available in the

scientific literature. The type of impairment applied to test sequences was early

defined and restricted to packet losses, since this work also aimed at developing and

improve the method proposed in [37]. The use of HEVC as codec and a different

set of sequences required a new setup for simulation environment. To accomplish

this task, new raw texture-plus-depth sequences were encoded with their bitstreams

being packetized, followed by the packet loss simulation generated by the Gilbert-

Eliot model. These impaired bitstreams were decoded with a error concealment

decoder for quality evaluation, using the chosen reference metrics.

The first task faced some unexpected issues. HEVC offered a wide variety of

coding configurations, with new parameters to adjust, and above all, to understand

what was their role. In order to discover what configuration should be used, the

author read several possible combinations in the literature and experimented them

using the reference software. After the choice of the parameters to use and recalling

the available models in the literature, the author began to realize methods based only

on pixel information lacked something to be even more accurate. If the following
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question is asked: is it possible to objectively evaluate 3D video or image - and

even 2D video or image - without any reference model, just simply by analyzing the

pixel-domain information? To understand better this question, in the perspective of

a viewer, how easy would it be to subjectively evaluate a 3D video or image without

any common-sense reference regarding how a poor and excellent quality should look

like? In the thesis’s author opinion, the answer is no: the errors associated would be

enough to label it as unreliable. Notice that the mentioned poor and excellent quality

are tremendously subjective and keeps changing all the time: advances in technology

together with new and more efficient coding tools turn an excellent quality video

with low resolution displayed in normal display two years ago into a not so good

quality if the same video is displayed in a HD or even UHD display. This explains

why during the subjective assessment, despite the subjects who participated in the

test session in chapter 5 did not know that five of the sequences were the original,

a pre-test demo sequence was shown so the viewers could observe the effects of the

autostereoscopic display. In fact, this was one of the issues that viewers complained

about: the quality of the general 3D provided by the autostereoscopic display was

far from ideal.

Having this in mind, it is clear methods based on only pixel-domain informa-

tion might be highly susceptible to inaccurate prediction of QoE simply because the

original content might be already of poor quality, even if the transmission occurs

without any problem. These type of methods could benefit from other layers’ infor-

mation, if available, such as coding parameters or the type of display used, which are

available at the bitstream or packet-level for coding parameters, whereas the type of

display could be inferred at the application layer. It is the author’s belief that these

extra pieces of information might add value and increase robustness to the quality

models, giving them enough arguments to distinguish original bad videos from good

videos that were impaired by a random event. This led to the choice of develop-

ing a no-reference model, based on NN with reference to media-layer models. In a

way, the developed model might be considered hybrid, as it uses different sources of

information.

The combination of the media-layer and packet-layer models opened a window of

possibilities in encoding configurations. The ones used in this thesis are not the only

ones possible and were based on what a ”typical” configuration should be. If the

proposed method was adopted by the industry, each company would have to adjust

and tune the model to the encoding settings of the content provider, adopt new

packetization schemes according to the network service provider and perform new

training sessions with the new data. And even though this might seem a big concern,

in fact it is limited to the number of encoding configurations (GOP, bit-rate, size,

depth-level, and so on) that is usually reduced, as some of them are imposed by the
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codec manufacturer. And even if a specific set of encoding parameters is required,

the use of such models allows a fast and reliable adjustment to the industry needs.

To conclude this thesis, the developed model proved to be accurate enough for

solving quality assessment problems in error-prone channels. It is an automatic

system and highly adaptable which are two components really appreciated in the

video or image quality assessment market. As part of a monitoring system, the

model predicts the QoE at the client side, identifying any event that is degrading

the video’s quality. chapter 6 described a model with these characteristics and it

worked very well. The author of this thesis hopes in the next few years that an

experimental setup of the proposed method may become real, with the expectation

of one day having one system like this installed in our homes.
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Appendix A

NAL splitting into RTP packets -

Matlab script

1

2 %NALU Losspattern genera to r us ing a t r a c e f i l e from G.−E. Model f o r HM 12.1

EM JEG v1 . 2 . 1

3 %By Pedro Rocha

4

5 %The s c r i p t l oads a data f i l e generated by the decoder conta in ing a l l

6 %the NALU’ s idx and s i z e . For each NALU i t i s v e r i f i e d i f there ’ s the

7 %need o f segmentat ion assuming a MTU of 1500 bytes . After c a l c u l a t i n g the

8 %number o f RTP packets needed , t r a c e f i l e with a c e r t a i n PLR and MBL i s

9 %loaded to compare with the r e s u l t s and generate a NALU LossPattern

10 %accord ing to the t r a c e f i l e .

11

12 %% data . txt Loading

13 %Generates a t ab l e with the number o f RTP nece s sa ry f o r the b i t s t ream transmi s s i on .

14 %This t ab l e w i l l be compared to the t r a c e f i l e and c r e a t e a NALU

15 %lo s s p a t t e r n f i l e f o r HM−12.1 EM JEG v1 . 2 . 1 decoder .

16

17 c l c

18 c l e a r a l l

19

20 n sequences = 10 ; %1 ,2 − Bal loons ( texture , depth )

21 %3 ,4 − Champagne

22 %5 ,6 − Kendo

23 %7 ,8 − Newspaper

24 %9 ,10 − PoznanCarPark

25

26 RTP packet = [ ] ;

27 %simulate a l l Videos

28 f o r k = 1 : n sequences

29 switch k

30 case 1

31 sequence = ’ Bal loons ’ ;

32 n a l u f i l e = ’ b a l l o o n s c o l o r n a l u . txt ’ ;

33 t r a c e pa th = ’MaxBL7 ’ ;

34 case 2

35 n a l u f i l e = ’ ba l l oon s dep th na lu . txt ’ ;

36 t r a c e pa th = ’MaxBL7 ’ ;

37 case 3

38 sequence = ’Champagne ’ ;

39 n a l u f i l e = ’ champagne color nalu . txt ’ ;

40 t r a c e pa th = ’MaxBL9 ’ ;

41 case 4

42 n a l u f i l e = ’ champagne depth nalu . txt ’ ;
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43 t r a c e pa th = ’MaxBL9 ’ ;

44 case 5

45 sequence = ’Kendo ’ ;

46 n a l u f i l e = ’ kendo co l o r na lu . txt ’ ;

47 t r a c e pa th = ’MaxBL7 ’ ;

48 case 6

49 n a l u f i l e = ’ kendo depth nalu . txt ’ ;

50 t r a c e pa th = ’MaxBL7 ’ ;

51 case 7

52 sequence = ’Newspaper ’ ;

53 n a l u f i l e = ’ newspaper co lo r na lu . txt ’ ;

54 t r a c e pa th = ’MaxBL7 ’ ;

55 case 8

56 n a l u f i l e = ’ newspaper depth nalu . txt ’ ;

57 t r a c e pa th = ’MaxBL7 ’ ;

58 case 9

59 sequence = ’PoznanCP ’ ;

60 n a l u f i l e = ’ poznancp co lo r na lu . txt ’ ;

61 t r a c e pa th = ’MaxBL9 ’ ;

62 case 10

63 n a l u f i l e = ’ poznancp depth nalu . txt ’ ;

64 t r a c e pa th = ’MaxBL9 ’ ;

65 end

66

67 %NALU in format ion load ing

68

69 data = dlmread ( [ ’C:\VIDEODATABASE\PRocha 3D−HEVC\Lossy Videos \Concealed Videos \
’ sequence ’ \NALU\ ’ n a l u f i l e ] ) ;

70

71 N = length ( data ) ; %Total number o f NALU’ s

72 n RTP packets = 0 ; %Total number o f RTP packets needed

73 %RTP packet index

74 %co l . 1 −> RTP packet index

75 %co l . 2 −> NALU index

76 %co l . 3 −> Payload s i z e

77 %co l . 4 −> Loss Flag ( packet l o s s or not )

78 %co l . 5 −> S l i c e Type

79 %co l . 6 −> POC

80 i n d i c a t o r = 1 ;

81 f o r n = 1 :N

82 %Number o f RTP packets f o r each NALU

83 r t pp pe r na l = c e i l ( data (n , 2 ) /1500) ;

84 %Total number o f RTP packets

85 n RTP packets = n RTP packets + r tpp pe r na l ;

86

87 n a l u s i z e = data (n , 2 ) ;

88 %In case NALU i s segmented in more than one RTP packet

89 i f ( r t pp pe r na l > 1)

90 f o r m=1: r t pp pe r na l

91 %Update RTP packet ID

92 RTP packet{k}{ i n d i c a t o r } . t ab l e ( ( n RTP packets−r t pp pe r na l )+m, 1 ) =

n RTP packets − ( r tpp pe r na l−m) ;

93 %Update RTP packet NALU idx

94 RTP packet{k}{ i n d i c a t o r } . t ab l e ( ( n RTP packets−r t pp pe r na l )+m, 2 ) =

data (n , 1 ) ;

95

96 %Attr ibute RTP packet s i z e accord ing to NALU s i z e

97 i f ( n a l u s i z e >1500)

98 RTP packet{k}{ i n d i c a t o r } . t ab l e ( ( n RTP packets−r t pp pe r na l )+m,
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3) = 1500 ;

99 n a l u s i z e = na l u s i z e − 1500 ;

100 e l s e

101 RTP packet{k}{ i n d i c a t o r } . t ab l e ( ( n RTP packets−r t pp pe r na l )+m

, 3 ) = na l u s i z e ;

102 end

103 end

104 e l s e %1 NALU per RTP packet

105 RTP packet{k}{ i n d i c a t o r } . t ab l e ( n RTP packets , 1 ) = n RTP packets − (

r tpp pe r na l−m) ;

106 RTP packet{k}{ i n d i c a t o r } . t ab l e ( n RTP packets , 2 ) = data (n , 1 ) ;

107 RTP packet{k}{ i n d i c a t o r } . t ab l e ( n RTP packets , 3 ) = na l u s i z e ;

108 end

109 end

110

111 i n d i c a t o r = 1 ;

112 % Loading and comparison with t r a c e f i l e generated by the Gi lbert−E l l i o t Model

113

114 i f ( strcmp ( ’MaxBL9 ’ , t r a c e pa th ) )

115 bl = 6 ;

116 e l s e

117 bl = 5 ;

118 end

119

120 f o r b = 3 : b l

121 %Packet Loss Ratio

122 p l r = 1 ;

123 whi le p l r < 21

124 i f i n d i c a t o r ˜= 1

125 RTP packet{k}{ i n d i c a t o r } . t ab l e = RTP packet{k }{1} . t ab l e ;

126 end

127 f i d = fopen ( [ ’C:\VIDEODATABASE\PRocha 3D−HEVC\Lossy Videos \
Concealed Videos \ t r a c e f i l e s \new\ ’ t r a c e pa th ’ \b ’ num2str (b) ’ p l r

’ num2str ( p l r ) ] ) ;

128 t r a c e f i l e = text scan ( f i d , ’%c ’ ) ;

129 % Convert i n to an i n t e g e r to compare

130 t r a c e f i l e = str2num ( t r a c e f i l e {1 ,1}) ;
131 f c l o s e ( f i d ) ;

132 RTP packet{k}{ i n d i c a t o r } . name = [ ’b ’ num2str (b) ’ p l r ’ num2str ( p l r ) ] ;

133

134 l o s s p a t t e r n = ze ro s (1 ,N) ; % Losspattern to save

135 packet cor rupted = 0 ; % I f packet i s corrupted

136 l a s t n a l i d = RTP packet{k}{ i n d i c a t o r } . t ab l e ( 1 , 2 ) ; % Aux i l i a r v a r i a b l e

to save prev ious NALU index

137 saved = f a l s e ;

138 a l r eady co r rupted =f a l s e ; % Aux i l i a r v a r i ab l e to prevent

redundancy

139 new packet = f a l s e ; % Ind i c a t e s i f a new packet w i l l be

analyzed

140 aux = 1 ; % Aux i l i a r v a r i ab l e to keep ’ j ’ updated

141

142 f o r i =1:N

143 f o r j=aux : l ength (RTP packet{k}{ i n d i c a t o r } . t ab l e ) ;
144 % Updates cur rent packet id with cor re spond ing NALU idx

145 c u r r n a l i d = RTP packet{k}{ i n d i c a t o r } . t ab l e ( j , 2 ) ;

146 %Condit ion to check i f NALU has changed

147 i f c u r r n a l i d ˜= l a s t n a l i d

148 %wr i t e to l o s s p a t t e r n

149 l o s s p a t t e r n ( i ) = packet cor rupted ;
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150 new packet = true ;

151 a l r eady co r rupted = f a l s e ;

152 saved = true ;

153 end

154

155 %Save i f packet i s l o s s or not

156 RTP packet{k}{ i n d i c a t o r } . t ab l e ( j , 4 ) = t r a c e f i l e ( j ) ;

157

158 i f ( a l r eady co r rupted == f a l s e | | new packet == true )

159 i f ( t r a c e f i l e ( j ) == 0)

160 packet cor rupted = 0 ;

161 e l s e i f t r a c e f i l e ( j ) == 1

162 packet cor rupted = 1 ;

163 a l r eady co r rupted = 1 ;

164 end

165 new packet = f a l s e ;

166 end

167

168 l a s t n a l i d = cu r r n a l i d ;

169

170 i f ( saved )

171 %S l i c e type o f packet i nd i c a t o r

172 %SLICE TYPE: 0 −> B ; 1 −> P ; 2 −> I

173 RTP packet{k}{ i n d i c a t o r } . t ab l e ( j , 5 ) = data ( i +1, 4) ;

174

175 %S l i c e POC

176 RTP packet{k}{ i n d i c a t o r } . t ab l e ( j , 6 ) = data ( i +1, 3) ;

177 saved = f a l s e ;

178 %Leave the inner f o r loop

179 break ;

180 e l s e

181 %S l i c e type o f packet i nd i c a t o r

182 %SLICE TYPE: 0 −> B ; 1 −> P ; 2 −> I

183 RTP packet{k}{ i n d i c a t o r } . t ab l e ( j , 5 ) = data ( i , 4) ;

184

185 %S l i c e POC

186 RTP packet{k}{ i n d i c a t o r } . t ab l e ( j , 6 ) = data ( i , 3) ;

187 end

188 end

189 aux=j +1;

190 end

191

192 %Save l o s s p a t t e r n

193 i f ( rem(k , 2 ) == 0)

194 f i d 1 = fopen ( [ ’C:\VIDEODATABASE\PRocha 3D−HEVC\Lossy Videos \
Concealed Videos \ ’ sequence ’ \ l o s s p a t t e r n \ l o s s p a t t e r n b ’

num2str (b) ’ p l r ’ num2str ( p l r ) ’ depth . txt ’ ] , ’w ’ ) ;

195 f p r i n t f ( f i d 1 , ’%d\n ’ , l o s s p a t t e r n ) ;

196 f c l o s e ( f i d 1 ) ;

197 e l s e

198 f i d 2 = fopen ( [ ’C:\VIDEODATABASE\PRocha 3D−HEVC\Lossy Videos \
Concealed Videos \ ’ sequence ’ \ l o s s p a t t e r n \ l o s s p a t t e r n b ’

num2str (b) ’ p l r ’ num2str ( p l r ) ’ c o l o r . txt ’ ] , ’w ’ ) ;

199 f p r i n t f ( f i d 2 , ’%d\n ’ , l o s s p a t t e r n ) ;

200 f c l o s e ( f i d 2 ) ;

201 end

202

203 % PLR and s i z e o f l o s t s l i c e s /NALU I ,P an B.

204 f o r k = 1 : l ength (RTP packet )
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205 f o r j = 1 : l ength (RTP packet{k})
206

207 %PLR B

208 RTP packet{k}{ j } .PLR B = sum (RTP packet{k}{ j } . t ab l e ( : , 4 ) == 1

& RTP packet{k}{ j } . t ab l e ( : , 5 ) == 0 ) / sum(RTP packet{k}{ j
} . t ab l e ( : , 5 ) == 0 ) ;

209 %PLR I

210 RTP packet{k}{ j } . PLR I = sum (RTP packet{k}{ j } . t ab l e ( : , 4 ) == 1

& RTP packet{k}{ j } . t ab l e ( : , 5 ) == 2 ) / sum(RTP packet{k}{ j
} . t ab l e ( : , 5 ) == 2 ) ;

211 %PLR P

212 RTP packet{k}{ j } .PLR P = sum (RTP packet{k}{ j } . t ab l e ( : , 4 ) == 1

& RTP packet{k}{ j } . t ab l e ( : , 5 ) == 1 ) / sum(RTP packet{k}{ j
} . t ab l e ( : , 5 ) == 1 ) ;

213 %PLR

214 RTP packet{k}{ j } .PLR = sum (RTP packet{k}{ j } . t ab l e ( : , 4 ) == 1) /

l ength (RTP packet{k}{ j } . t ab l e ( : , 5 ) ) ;

215

216 %Size o f packets l o s t

217 %B packets l o s t

218 f i l t e r B = RTP packet{k}{ j } . t ab l e ( : , 4 ) & RTP packet{k}{ j } .
t ab l e ( : , 5 ) == 0 ;

219 [ a u x i l i a r t a b l e B idx ] = so r t ( f i l t e r B , ’ descend ’ ) ;

220 B a f f e c t ed = accumarray ( a u x i l i a r t a b l e B +1, 1) ;

221 i f ( l ength ( B a f f e c t ed ) == 2)

222 B a f f e c t ed = B a f f e c t ed (2 ) ;

223 RTP packet{k}{ j } . num lost B = B a f f e c t ed ;

224 RTP packet{k}{ j } . s i z e l o s t B = sum(RTP packet{k}{ j } . t ab l e (
idx ( 1 : B a f f e c t ed ) ,3 ) ) ;

225 e l s e

226 RTP packet{k}{ j } . s i z e l o s t B = 0 ;

227 RTP packet{k}{ j } . num lost B = 0 ;

228 end

229

230 %P packets l o s t

231 f i l t e r P = RTP packet{k}{ j } . t ab l e ( : , 4 ) & RTP packet{k}{ j } .
t ab l e ( : , 5 ) == 1 ;

232 [ a u x i l i a r t a b l e P idx ] = so r t ( f i l t e r P , ’ descend ’ ) ;

233 P a f f e c t ed = accumarray ( a u x i l i a r t a b l e P +1, 1) ;

234 i f ( l ength ( P a f f e c t ed ) == 2)

235 P a f f e c t ed = P a f f e c t ed (2 ) ;

236 RTP packet{k}{ j } . num lost P = P a f f e c t ed ;

237 RTP packet{k}{ j } . s i z e l o s t P = sum(RTP packet{k}{ j } . t ab l e (
idx ( 1 : P a f f e c t ed ) ,3 ) ) ;

238 e l s e

239 RTP packet{k}{ j } . num lost P = 0 ;

240 RTP packet{k}{ j } . s i z e l o s t P = 0 ;

241 end

242

243 %I packets l o s t

244 f i l t e r I = RTP packet{k}{ j } . t ab l e ( : , 4 ) & RTP packet{k}{ j } .
t ab l e ( : , 5 ) == 2 ;

245 [ a u x i l i a r t a b l e I idx ] = so r t ( f i l t e r I , ’ descend ’ ) ;

246 I a f f e c t e d = accumarray ( a u x i l i a r t a b l e I +1, 1) ;

247 i f ( l ength ( I a f f e c t e d ) == 2)

248 I a f f e c t e d = I a f f e c t e d (2 ) ;

249 RTP packet{k}{ j } . num los t I = I a f f e c t e d ;

250 RTP packet{k}{ j } . s i z e l o s t I = sum(RTP packet{k}{ j } . t ab l e (
idx ( 1 : I a f f e c t e d ) ,3 ) ) ;
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251 e l s e

252 RTP packet{k}{ j } . num los t I = 0 ;

253 RTP packet{k}{ j } . s i z e l o s t I = 0 ;

254 end

255

256 %Al l packets

257 f i l t e r a l l = RTP packet{k}{ j } . t ab l e ( : , 4 ) ;

258 [ a u x i l i a r t a b l e a l l idx ] = so r t ( f i l t e r a l l , ’ descend ’ ) ;

259 a l l a f f e c t e d = accumarray ( a u x i l i a r t a b l e a l l +1, 1) ;

260

261 a l l a f f e c t e d = a l l a f f e c t e d (2 ) ;

262 RTP packet{k}{ j } . n um l o s t a l l = a l l a f f e c t e d ;

263 RTP packet{k}{ j } . s i z e l o s t a l l = sum(RTP packet{k}{ j } . t ab l e ( idx
( 1 : a l l a f f e c t e d ) ,3 ) ) ;

264 end

265 end

266

267 i f ( p l r == 1)

268 p l r = 5 ;

269 e l s e

270 p l r=p l r +5;

271 end

272 i n d i c a t o r = i nd i c a t o r + 1 ;

273 end

274 end

275 end
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Appendix B

Trace-file Generator - Matlab Script

1 % Trace− f i l e generato r

2 % by Chamitha de Alwis , adapted by Pedro Rocha

3

4 %I f p i s the p r obab i l i t y o f t r a n s f e r r i n g from Good State to the bad s t a t e

5 %and i f r i s the p r obab i l i t y o f t r a n s f e r r i n g from the bad s t a t e to the Good

6 %state , g iven the p and r values , t h i s code w i l l generate a packet l o s s

7 %pattern ( with burst l o s s e s ) and save i t to a f i l e named Loss Pattern . txt .

8

9 % p = P(X=1/X=0)

10 % r = 1 − q = 1 − P(X=1/X=1) = P(X=0/X=1)

11

12 %MEAN BURST LENGTH

13 MBL = [4 6 ] ;

14 %Packet Loss Rate

15 % 1% 5% 10% 15% 20%

16 PLR = [ 0 . 0 1 0 .05 0 .1 0 .15 0 . 2 ] ;

17

18 %For 8 s l i c e / frame

19 %maxBL = 7 ; % maximum burst l ength

20

21 %For 10 s l i c e / frame

22 maxBL = 9 ;

23

24 f o r g = 1 : l ength (MBL)

25 f o r h = 1 : l ength (PLR)

26

27 p = 1/(MBL( g ) ∗(1/PLR(h) − 1) ) ;

28 r = 1/MBL( g ) ;

29 t o t a l p a ck s = 10000 ;

30

31 check = 100 ; % check the con s i s t ency o f the trace− f i l e

32

33 whi le check >= 10

34

35 l o s s = 0 ;

36 packets = ze ro s (1 , t o t a l p a ck s ) ;

37

38 f o r i =1: t o t a l p a ck s

39 i f l o s s == 0

40 burst = 0 ;

41 packets ( i ) = l o s s ;

42 l o s s = ( rand (1 ) < p) ; % P(X=1/X=0) , i f 1 , moves to bad s t a t e

43 e l s e i f l o s s == 1

44 burst = burst +1;

45 i f burst <= maxBL

46 packets ( i ) = l o s s ;

47 l o s s = ( rand (1 ) < (1− r ) ) ; % P(X=1/X=1)
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48 e l s e

49 packets ( i ) = 0 ;

50 l o s s = 0 ; % f o r c e s to get back to the good s t a t e i s maxBL

i s reached

51 end

52 e l s e

53 f p r i n t f ( ’ e r r o r \n ’ ) ;

54 break ;

55 end

56 end

57

58 r e c e i v ed pack s = to t a l p a ck s − nnz ( packets ) ;

59 t h e o p a c k l o s s r a t e = 1 − r / (p+r ) ;

60 a c t p a c k l o s s r a t e = 1 − r e c e i v ed pack s / t o t a l p a ck s ;

61

62 % check the r e a l PLR of the trace− f i l e

63 check = abs ( t h e o p a c k l o s s r a t e − a c t p a c k l o s s r a t e ) /

t h e o p a c k l o s s r a t e ∗ 100 ;

64

65 end

66

67 f i d = fopen ( [ ’C:\ Users \PRocha\Dropbox\Tese\HM−12.1 EM JEG v1 . 2 . 1 − Editado

\bin \vc9\x64\Release \ t r a c e f i l e s \new\MBL9\b ’ num2str (MBL( g ) ) ’ p l r ’

num2str (PLR(h) ∗100) ] , ’w ’ ) ;

68 f p r i n t f ( f i d , ’%d ’ , packets ) ;

69 f c l o s e ( f i d ) ;

70

71 %packets ;

72 %th e o p a c k l o s s r a t e = p / (p+r ) ;

73 a c t p a c k l o s s r a t e = 1 − r e c e i v ed pack s / t o t a l p a ck s ;

74

75 end

76 end
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