
Nuno Ricardo Regalo Vicente

RaptorQ decoder using heterogeneous computing
on a mobile multi-core platform

Dissertação de Mestrado em
Engenharia Electrotécnica e de Computadores

Setembro de 2015

RaptorQ decoder using heterogeneous computing on a mobile
multi-core platform

Nuno Ricardo Regalo Vicente

Dissertação para obtenção do Grau de Mestre em
Engenharia Electrotécnica e de Computadores

Orientador: Doutor Gabriel Falcão Paiva Fernandes
Co-Orientador: Doutor Vı́tor Manuel Mendes da Silva

Júri
Presidente: Doutor Nuno Miguel Mendonça da Silva Gonçalves
Orientador: Doutor Gabriel Falcão Paiva Fernandes
Vogal: Doutor Marco Alexandre Cravo Gomes

Setembro de 2015

Agradecimentos

Aos meus orientadores, Doutor Gabriel Falcão e Doutor Vı́tor Silva, pela inesgotável
compreensão e ajuda ao longo de todas as etapas.

Ao João Andrade, pela paciência e gosto em ajudar e ensinar.

Ao Manuel Rodrigues, pelas horas despendidas nas dificuldades do projecto.

Aos colegas do laboratório, pelo bom ambiente e a entreajuda.

Aos meus pais, pelas temporadas ausentes e por todo o esforço diário para me dar o
melhor.

À Cláudia, porque seria necessária outra tese para descrever todo o seu apoio e carinho.

Aos meus colegas e amigos, por todos os bons e maus momentos que passamos juntos.

A todos eles, um Muito Obrigado.

Abstract

The Raptor codes, since its invention by 2000/2001, are the most powerful known
fountain codes. They have fast encoding and decoding algorithms, offering high relia-
bility at low overheads (i.e. for a small amount of repair information). With the growth
of the network and the mobile platforms, these codes attain special interest, both in low
processing time and low power consumption. This work presents a study that shows how
parallel computing can improve the decoding time of the most advanced Raptor code, the
RaptorQ, and how power consumption can be lowered due to the joint CPU/GPU pro-
cessing time. Even for large block sizes, it is possible to obtain reduction time decoding,
with speedups higher than 10x in a mobile device.

Keywords
Raptor codes, mobile platforms, parallel processing, data-parallelism, heterogeneous

computing, multi-threading, OpenCL, OpenMP, low power.

Resumo

Os Raptor codes, desde a sua criação em 2000/2001, são os fountain codes conhecidos
mais poderosos. Apresentam algoritmos de codificação e descodificação rápidos, ofere-
cendo elevada confiança a um custo baixo (i.e. para um número baixo de sı́mbolos de
recuperação). Com o crescimento das redes e dos dispositivos móveis, estes códigos gan-
ham especial interesse, tanto em tempo poupado pelos processadores, como em consumos
energéticos. Este trabalho apresenta um estudo que mostra de que forma a computação
paralela permite melhorar os tempos de descodificação do mais recente Raptor code, o
RaptorQ, bem como a poupança energética face ao tempo gasto pela combinação CPU/GPU
durante o processo. Mesmo para grandes blocos, consegue-se obter uma redução do
tempo de descodificação superior a 10x num dispositivo móvel.

Palavras-Chave
Raptor codes, plataformas móveis, processamento paralelo, paralelismo de dados,

computação heterogénea, multi-threading, OpenCL, OpenMP, baixa potência.

Contents

1 Introduction 1
1.1 Motivation . 2

1.2 Goals . 2

1.3 Contributions . 2

1.4 Outline . 3

2 Principles of non-binary codes and Rapid Tornado codes 5
2.1 Finite fields . 6

2.2 Primitive polynomials . 7

2.3 Fountain codes . 8

2.4 Rapid Tornado codes . 9

2.4.1 Raptor10 encoder . 11

2.4.2 RaptorQ encoder . 12

2.5 RaptorQ decoder . 14

2.6 RaptorQ decoder using matrix dimensionality reduction 15

2.7 Summary . 16

3 Parallel programming on mobile devices 19
3.1 The Snapdragon Architecture . 20

3.1.1 Central Processing Unit . 21

3.1.2 Graphics Processing Unit . 22

3.2 Parallel programming . 23

3.2.1 OpenMP API . 23

3.2.2 OpenCL framework . 24

3.3 Summary . 27

4 RaptorQ decoder on Snapdragon CPU/GPU 29
4.1 Parallelization of matrix multiplication 30

4.2 Parallelization of matrix inversion . 31

4.2.1 OpenCL approach for matrix inversion 33

Contents

4.2.2 OpenMP approach for matrix inversion 35
4.3 Summary . 37

5 Experimental results 39
5.1 Decoding time comparison of the two decoding schemes 40
5.2 Matrix reduction decoder . 43
5.3 Matrix inversion . 45
5.4 Precode matrix . 46
5.5 Summary . 47

6 Conclusions 49
6.1 Future work . 50

List of Figures

2.1 Fountain representing the receivers asking for symbols from the encoder. 8

2.2 Bipartite graph that relates Ni encoded symbols to K j0..K jl source symbols. 9

2.3 Raptor code scheme. 9

2.4 Block diagram of Raptor10 encoder. 11

2.5 Precode matrix of Raptor10 code. 12

2.6 Block diagram of RaptorQ encoder. 13

2.7 Precode matrix of RaptorQ code. 13

2.8 RaptorQ CODEC. 14

2.9 Precode matrix A′ scheme, when one source symbol is missing and one
repair symbol is appended. 15

2.10 Block diagram of matrix reduction decoder [11]. 16

3.1 Snapdragon 800 scheme. 20

3.2 Snapdragon SoC scheme. 21

3.3 GPU thread scheme. 22

3.4 OpenMP memory scheme. 23

3.5 The fork-join programming model. 24

3.6 OpenCL platform model representing N devices orchestrated by a host. . 25

3.7 NDRange index space with work-groups and work-items scheme. 26

3.8 OpenCL memory model. 27

4.1 Matrix multiplication scheme. 30

4.2 Scheme of a 4×4 matrix inversion. 32

5.1 Symbol size T = 4bytes. 40

5.2 Symbol size T = 8bytes. 41

5.3 Symbol size T = 16bytes. 41

5.4 Symbol size T = 32bytes. 41

5.5 Symbol size T = 64bytes. 42

5.6 Symbol size T = 128bytes. 42

i

List of Figures

5.7 Symbol size T = 256bytes. 42
5.8 Symbol size T = 512bytes. 43
5.9 Symbol size T = 1024bytes. 43
5.10 Symbol size T = 512bytes. 44
5.11 Symbol size T = 1024bytes. 44
5.12 Matrix inversion time on Snapdragon. 46
5.13 Pre-code matrix contruction time. 47

ii

List of Tables

2.1 Multiplication table of nonzero elements in GF(5). 7
2.2 Construction of GF(23). 7

5.1 Test environment specs. 40
5.2 Snapdragon speedups for a block size T = 512bytes 44
5.3 Snapdragon speedups for a block size T = 1024bytes 44
5.4 Snapdragon maximum instant power consumptions for a sequential C ap-

proach of the RaptorQ decoder. 45
5.5 Snapdragon maximum instant power consumptions for an OpenCL ap-

proach of the RaptorQ decoder. 45

iii

iv

List of Algorithms

1 Matrix multiplication in sequential C . 31
2 Parallel matrix multiplication on GPU 31
3 Matrix multiplication kernel in OpenCL 31
4 Row swap in sequential C . 33
5 Row swap kernel in OpenCL . 33
6 Row division in sequential C . 33
7 Row division kernel in OpenCL . 34
8 Row sum in sequential C . 34
9 Row sum kernel in OpenCL . 34
10 Parallel Gauss-Jordan on a GPU . 35
11 Row swap with OpenMP . 36
12 Row division with OpenMP . 36
13 Row sum with OpenMP . 36

v

List of Algorithms

vi

List of Acronyms

ALU Arithmetic Logic Unit

API Application Programming Interface

ARM Acorn Risc Machine

CPU Central Processing Unit

CU Control Unit

CU Computer Unit

FEC Forward Error Correction

GPGPU General-Purpose Computing on Graphics Processing Units

GPU Graphics Processing Unit

HDPC High Density Parity Check

LDPC Low Density Parity Check

LT Luby Transform

NDRange N Dimensional Range

OpenCL Open Computing Language

OpenMP Open Multi-Processing

PE Processing Element

RAM Random Access Memory

Raptor Rapid Tornado

RISC Reduced Instruction Set Computer

SoC System on Chip

vii

List of Acronyms

viii

1
Introduction

1

1. Introduction

1.1 Motivation

Over the last years, the number of mobile users surpassed half of the world’s popula-
tion. Nowadays it is rare to see someone who is not surfing on the web or checking the
e-mail on a smartphone, or even working on his laptop. This changed the concept of how
software applications are developed because of the concern with power consumptions. A
common smartphone with an average daily use of 8 hours may run out of charge quickly
and in some heavy tasks, the CPU/GPU may overheat, which results in faster hardware
wear.

The Raptor codes are a recent set of codes that work on the network application layer.
They can be used in digital media broadcast, cellular networks or in satellite commu-
nications. They are the most powerful fountain codes available with fast encoding and
decoding algorithms and, for the crowded network, this may reduce substantial the bot-
tleneck improving the quality of service. There is a lot of work done to enhance Raptor
codes in traditional platforms, however, a few work was presented in the field of mobile
devices. The motivation of this work is to show how Raptor codes can be well suited for
mobile platforms, using parallel computing.

1.2 Goals

If we analyze the decoding process of a Raptor code, we can identify branches of the
algorithm that are optimal for being parallelized. Hereupon, it is inviting to exploit the
potential of heterogeneous computing over this codes. The goals of this thesis are:

• To improve RaptorQ decoding time, exploiting matrix multiplication and matrix
inversion parallelism.

• To show how a parallel version of RaptorQ may save energy consumption.

1.3 Contributions

Web applications involve encoding and decoding processes for reliable data trans-
mission. Since mobile devices are battery dependent and have low processing power
comparing with traditional computing devices, this work presents an optimized solution
for the RaptorQ decoder, with decoding speedups varying between 5.3x and 51.8x using
OpenCL, comparing with a sequential C implementation. Furthermore, it is proposed an
hybrid decoding scheme using OpenMP, when loss rates are high and the recover matrix
size is large.

2

1.4 Outline

Considering the results of this work and its improvements, an article is being prepared
for submission.

1.4 Outline

This thesis is organized in 6 chapters.
The 2nd chapter gives a brief explanation of what’s behind a Raptor code, introducing

basic concepts of linear algebra and finite fields.
The 3rd chapter introduces the hardware concepts of the heterogeneous computing

paradigm and presents the OpenMP API and the OpenCL framework, that take advantage
of hardware capabilities to exploit thread-level parallelism.

The 4th chapter explains the techniques developed to parallelize the RaptorQ decoder.
The 5th chapter presents the simulation results of the techniques explained in chapter

4.
Finally, the 6th chapter makes a conclusion of the thesis and presents the proposed

future work, based on the results.

3

1. Introduction

4

2
Principles of non-binary codes and

Rapid Tornado codes

5

2. Principles of non-binary codes and Rapid Tornado codes

Algebra has a wide range of applications, especially in coding theory. Modern codes
use complex schemes to ensure data compression and reliable error correction using low
computational time.

This chapter provides the basics of what is behind non-binary codes in Forward Error
Correction (FEC) schemes starting with a brief introduction to the theory of finite fields
and the principles of fountain codes. Thereafter, it addresses the core of this work, the
powerful Raptor codes.

2.1 Finite fields

A finite field (also called Galois Field) is a field that contains a finite number of ele-
ments [1–3]. Similarly to the set of infinite numbers, a finite field has also well defined
mathematical operations and properties:

• Addition

• Subtraction

• Multiplication

• Division (except by 0)

• Commutativity under addition

• Commutativity under multiplication when the additive identity element 0 is re-
moved

• Distributivity

• Identity

• Inverse

Finite fields are usually written as GF(q), where q is the order or cardinality. To
satisfy all properties, q must be a prime number or a power of a prime number greater
than 1. That is

q = pk, (2.1)

where p is a prime number and k is a positive integer. The field GF(q) can be represented
as {0,1, ...,q−1} and is constructed under multiplication modulo−q.

The elements of GF(q) can be represented by polynomials and their operations are
performed over modulo R where R is an irreducible polynomial of degree k.

6

2.2 Primitive polynomials

For example, GF(5) = {0,1,2,3,4} is a finite field because the elements {1,2,3,4}
are a group under modulo−q multiplication.

Table 2.1: Multiplication table of nonzero elements in GF(5).

1 2 3 4

1 1 2 3 4
2 2 4 1 3
3 3 1 4 2
4 4 3 2 1

2.2 Primitive polynomials

A primitive polynomial is the minimal degree polynomial that defines a field given by
GF(q), and generates all its elements. This polynomial is irreducible which clarifies the
explanation of section 2.1.

Let f (x) be a polynomial of degree k. Let GF(q) be a finite field where q = pk. The
polynomial f (x) is primitive if

(xq +1)mod f (x) = 0. (2.2)

Let’s examine one example (which is the field used in subsection 2.4.2). Given a finite
field GF(256) where 256 = 28, the polynomial x8 + x4 + x3 + x2 +1 is a primitive poly-
nomial because

(x256 +1)mod(x8 + x4 + x3 + x2 +1) = 0

.
The following table shows the construction of an extension field in GF(8) with p = 2,

k = 3 and using the primitive polynomial f (x) = x3 + x+1, [3].

Table 2.2: Construction of GF(23).

Elements in GF(23)
Element expressed as the sum
of lower powers of α

Element expressed as 3-tuple
vector over GF(2)

0 0 000
1 1 001
α α 010
α2 α2 100
α3 α +1 011
α4 α2 +α 110
α5 α3 +α2 = α +1+α2 111
α6 α4 +α3 = α2 +α +α +1 = α2 +1 101

7

2. Principles of non-binary codes and Rapid Tornado codes

Representing a field this way is very useful from a computational point of view.
When p = 2, addition is accomplished by adding the vector representation of the ele-
ments modulo− 2. This means that sum equals subtraction and can performed by XOR
operations. For example, α5 +α6 = (111)+(101) = (010) = α .

In the case of multiplication and division the operation is more complex and there are
several way to perform these. However, a solution that produces a feasible and simple
approach consists of creating the exponential and logarithmic tables of the corresponding
finite field and then perform sums and subtractions using those values. One practical
example is given in [4].

2.3 Fountain codes

The name fountain code [5–7] (also known as rateless erasure code) arises from its
nature.

Encoder
ReceiverReceiver

Symbols from the encoder
Source Symbols
Redundancy

Figure 2.1: Fountain representing the receivers asking for symbols from the encoder.

The encoder can be constantly sending new symbols, which are pseudo-random lin-
ear combinations of the source symbols. If the decoding process fails (e.g. because of
corrupted or lost packets) the receiver asks for more symbols until the decoding process
can be successfully completed, as shown in figure 2.1. Therefore, they don’t have a fixed
code rate.

Luby Transform (LT) codes were the first applying this concept in practice [8]. The
main idea is based on bipartite graphs where K source symbols and N encoded symbols
are related to each other [6].

8

2.4 Rapid Tornado codes

K N

K1

K2

K3

K4

K5

K0

N1

N2

N3

N4

N5

N0

N6

Figure 2.2: Bipartite graph that relates Ni encoded symbols to K j0..K jl source symbols.

2.4 Rapid Tornado codes

Rapid Tornado codes (also known as Raptor codes) are an extension of LT codes
explained in section 2.3 with linear time encoding and decoding [6, 9]. Raptor codes are
systematic codes, that is, all source symbols are included as part of the encoding symbols
of a source block. The main idea of Raptor codes is to precode the source symbols,
generating thus a set of intermediate symbols that will be encoded with an LT code.

Redundant nodes

Precoding

LT coding

Figure 2.3: Raptor code scheme [9].

The advantage of precoding resides on intermediate symbols, whose redundancy al-
lows the decoder to recover the intermediate symbols if most of them are known. Compar-
ing with LT, this is crucial because if we relate source symbols directly and set the output
symbols with a constant average degree, some of them will not contribute to the encoded

9

2. Principles of non-binary codes and Rapid Tornado codes

symbols and lead us to a situation wherein these source symbols cannot be recovered.
Before moving into the encoders description, some notation must be introduced [4,

10].

• Symbol: A unit of data whose size is measured in T bytes.

• Source symbol: The smallest unit of data used during the encoding process.

• Source block: A block of K source symbols that are considered together for en-
coding and decoding purposes. All source symbols within a source block have the
same size.

• Padding symbol: A symbol with all zero bits.

• Extended source block: A block of of K′ source symbols constructed from a
source block K plus padding symbols.

• Repair Symbols: The encoding symbols of a source block that are not source
symbols. They are generated based on the source symbols of a source block.

• Encoding symbol: A symbol that can be sent as part of the encoding of a source
block. They consist of the source symbols plus the repair symbols.

• Intermediate Symbols: Symbols generated from the source symbols using an in-
verse encoding process based on precoding relationships. The repair symbols are
then generated directly from the intermediate symbols.

• LT Symbols: Symbols used to generate part of the contribution to each generated
encoding symbol, from the portion of the intermediate symbols.

• HDPC and LDPC symbols: A set of intermediate symbols which have a precoding
relationship with a small fraction of the other intermediate symbols.

• Precode matrix: A matrix that is constituted by sub-matrices, used to generate
intermediate symbols.

• K+: Number of encoding symbols, that is, source symbols and repair symbols.

• K(R): Number of repair symbols.

• X: Value of the Encoding Symbol ID, which uniquely identifies the each encoding
symbol associated with a source block.

10

2.4 Rapid Tornado codes

• L: Number of intermediate symbols.

• S: Number of LDPC symbols.

• H: Number of HDPC symbols.

• B: Number of intermediate symbols that are LT symbols, excluding LDPC symbols.

2.4.1 Raptor10 encoder

This encoder is built over GF(2), so its precode matrix is binary as well as the encoded
data, and allows to encode between 4 and 8192 source symbols, with symbol size T

between 1 and 216−1 bytes.

The encoding process consists in generating repair symbols from a source block with
K source symbols. First of all, the intermediate symbols are generated. Secondly, the re-
pair symbols are generated from the intermediate symbols. Finally, the encoding symbols
are constructed, appending the repair symbols to the source symbols (systematic code).

A block diagram to illustrate the encoder may be as follows:

K Padding Intermediate
Symbols Encoding E

Triple
Generator

D C

K

X

(d, a, b)

Figure 2.4: Block diagram of Raptor10 encoder [4].

Assuming we want to encode a source block Q with K source symbols of T bytes, the
precode matrix AL×L is generated and is as follows:

11

2. Principles of non-binary codes and Rapid Tornado codes

LDPC code ZerosIdentity

IdentityBinary reflected gray code

K S

S

K

H

H

LT code

Figure 2.5: Precode matrix of Raptor10 code.

The intermediate symbols C are obtained multiplying the inverse of the precode ma-
trix, A−1, by a matrix D. Matrix D is obtained from the source block Q by adding zeros:

D(L×T) =

[
0((S+H)×T)

Q(K×T)

]
, (2.3)

and then

C(L×T) = A−1
(L×L)×D(L×T). (2.4)

The encoding symbols E are finally obtained by multiplying an LT code matrix by the
intermediate symbols C:

E(K+×T) = (GLT)(K+×L)×C(L×T). (2.5)

The encoding symbols E are constituted by the source symbols plus the repair sym-
bols. Since the top of GLT is the same as the bottom of the precode matrix A, the repair
symbols are generated as much as more rows are added to GLT , in a pseudo-random man-
ner, using the Triple Generator. The Triple generator uses the encoding symbol ID X to
generate the corresponding LT row.

Raptor10 is fully described in [10].

2.4.2 RaptorQ encoder

This encoder is built over GF(256), so the values of its precode matrix are between 0
and 255 as well as the encoded data, and allows to encode between 10 and 56403 source
symbols with symbol size T between 1 and 216−1. This is an huge upgrade concerning

12

2.4 Rapid Tornado codes

Raptor10 encoder because it allows a bigger source block. It also supports 16777216
encoded symbols, which admits more repair symbols. In fact, these limitations were
imposed due to practical considerations and not due to limitations of the code design [6].

Despite the differences, the encoding process is similar to the Raptor10 encoder. In-
stead of using a Triple Generator, it uses a Tuple Generator with a different pseudo-
random process [4].

A block diagram to illustrate the encoder may be as follows:

K' Padding Intermediate
Symbols Encoding E

Tuple
Generator

D C

K'

X

(d, a, b,
d1, a1, b1)

Figure 2.6: Block diagram of RaptorQ encoder [4].

The precode matrix A shows some differences on the sub-matrices. Assuming we
want to encode a source block Q with K source symbols of T bytes, the precode matrix A

is generated as follows:

LDPC code 1 LDPC code 2Identity

IdentityHDPC code

B S

S

K'

H

H

LT code

U

Figure 2.7: Precode matrix of RaptorQ code.

13

2. Principles of non-binary codes and Rapid Tornado codes

Unlike Raptor10, RaptorQ encoder has fixed values for each source block size. Here
K′ is the extended source block for which precode A is ready to perform, that is, if K <K′,
K is padded with padding symbols until it equals K′. RaptorQ is fully described in [4]
and these values are defined in table 2 of the standard.

For all these reasons RaptorQ decoder is the case study of this work and two decoding
schemes are presented in the following sections.

2.5 RaptorQ decoder

A trivial scheme of the RaptorQ decoder is presented in figure 2.8. It is the inverse
operation of the encoder presented in subsection 2.4.2:

RaptorQ Encoder RaptorQ Decoder

Erasure
Channel

E E'
PaddingK Padding GLT

K' D C

A−1 Remove
Padding K

C D
GLTA

′−1

Figure 2.8: RaptorQ CODEC.

The idea of the decoder is to calculate the intermediate symbols C from the received
symbols E ′. The decoder is able to reconstruct the intermediate symbols when E ′ ≥ K′,
which means that the decoder must receive enough symbols (source symbols plus repair
symbols). If not so, the decoder must ask for more repair symbols to the encoder.

The ideal case occurs when all source symbols are received. Since the code is sys-
tematic, the repair symbols are discarded from E and the K original source symbols are
correctly delivered. However, if one or more source symbols are lost, some changes in
the precode matrix A must be performed. Each row of the sub-matrix LT of A is associ-
ated with one encoding symbol. This means that for each missing encoding symbol, the
corresponding row of the LT sub-matrix must be discarded. This may lead to a situation
where the new precode matrix A′ (used for decoding purposes) is rank deficient, that is,
it is not invertible. If so, the decoder must ask for more repair symbols until the new
precode matrix reaches full rank.

14

2.6 RaptorQ decoder using matrix dimensionality reduction

XX

S1 S2 S3 S4 S5 S6 S7 S8 S9S0R0 R1

Source symbolsRepair symbols

Constraints

X

LT
 M

a
trix

Precode matrix

Figure 2.9: Precode matrix A′ scheme, when one source symbol is missing and one repair
symbol is appended.

This process involves a matrix inversion in GF(256) for each decoding attempt. From
a computational point of view, this is not efficient since even when only one source sym-
bol is missing, the entire matrix must be inverted. An alternative decoding scheme is
presented in the next section.

2.6 RaptorQ decoder using matrix dimensionality reduc-
tion

An alternative decoding scheme is proposed in [11] and reduces substantially the di-
mensions of the recover matrix. The inverse of the precode A−1 is stored once and remains
unchanged during the process. Only the repair symbols and the corresponding LT rows
are used, which reduces drastically the size of the recover matrix to calculate. In practice,
the size of the matrix to invert equals the number of the repair symbols used to recover
the source symbols.

15

2. Principles of non-binary codes and Rapid Tornado codes

+ A′′−1

A′′

E ′ Ê(R)

D(O)

Ē(R) D(X)

D+

Figure 2.10: Block diagram of matrix reduction decoder [11].

Let D be the matrix obtained from (2.3). If we split D in two matrices,

D(L×T) = D(O)
(L×T)+D(X)

(L×T), (2.6)

where D(O) is the matrix of known source symbols and D(X) the matrix of desired source
symbols. Recalling subsections 2.4.1 and 2.4.2 we have:

E(K+×T) = (GLT)(K+×L)×C(L×T) = (GLT)(K+×L)×A−1
(L×L)×D(L×T). (2.7)

Replacing D by (2.6) we have:

E(K+×T) = A′′(K+×L)×D(O)
(L×T)+A′′(K+×L)×D(X)

(L×T), (2.8)

where A′′(K+×L)=(GLT)(K+×L)×A−1
(L×L). As we are only interested in missing source sym-

bols, we will only choose the rows of GLT corresponding to the repair symbols resulting
in the following equation (recalling the arithmetic of section 2.2):

Ē(R)
(K(R)×T)

= Ê(R)
(K(R)×T)

+A′′
(K(R)×L)×D(O)

(L×T), (2.9)

where Ê(R)
(K(R)×T)

is the matrix with the repair symbols and Ē(R)
(K(R)×T)

are the desired source
symbols.

For instance, if we want to send 60 source symbols and receiver only receives 80% of
them, we just need to invert a 12×12 matrix and perform the corresponding multiplica-
tions instead of invert a 73×73 precode matrix (see table 2 from [4]).

2.7 Summary

This chapter presented the differences between the two Raptor codes available and
two decoding schemes, supported by their mathematical concepts. Raptor10 was the first
Raptor code available and is constructed over GF(2). RaptorQ was later developed and

16

2.7 Summary

is constructed over GF(256). It allows to encode bigger source blocks with more repair
symbols. Regarding the decoding schemes, two methodologies were presented. The first
one was the inverse operation of the encoder. Given the received symbols and perform-
ing the corresponding substitutions in the precode matrix, the intermediate symbols are
calculated inverting the precode and multiplying by the received symbols. The second
scheme proposes a matrix dimensionality reduction, which not uses the precode matrix
directly. Instead, it uses only the repair symbols and the corresponding LT rows, resulting
in a smaller matrix to invert.

The next chapter presents the hardware and software concepts on which RaptorQ de-
coders will run and introduces the parallel computing paradigm that takes advantage of
the threads of CPU and GPU to exploit data parallelism.

17

2. Principles of non-binary codes and Rapid Tornado codes

18

3
Parallel programming on mobile devices

19

3. Parallel programming on mobile devices

3.1 The Snapdragon Architecture

Over the past years, mobile devices have become alternative computing devices. By
2015, the number of mobile devices surpasses the 3.6 billion users, which corresponds to
about half of the world’s population [12].

Hence, while traditional processing systems are reaching a plateau, not being able to
respond to the ever increasing demands of today’s developments, engineers tend to search
new ways of data processing. Power and energy consumptions have become a significant
problem since mobile devices are limited by battery supplies when compared against
desktops. Hereupon, a family of instruction set architectures has been developed, called
Acorn Risc Machine (ARM) [13,14]. It uses a Reduced Instruction Set Computer (RISC)
architecture whose goal is to keep the design simple to reduce costs, power consumption
and heat levels, while keeping programmability.

A powerful processor that meets the requirements is available on market, called Snap-
dragon [15, 16]. This device is a System on Chip (SoC) product that contains, among
other chips, an ARM based processor and a graphics processing unit (GPU), that supports
high-levels of data parallelism.

Figure 3.1: Snapdragon 800 scheme.

This chapter shows how parallel programming can be used to take advantage of a
Snapdragon processor to deal with the processing of complex algorithms.

20

3.1 The Snapdragon Architecture

3.1.1 Central Processing Unit

Central Processing Unit (CPU) is where computers perform arithmetic and logical
operations. This set of operations such as adding, subtracting or comparing numbers
is called an instruction set. The instruction set is then processed by Arithmetic Logic
Unit (ALU) which is directed by Control Unit (CU) that makes the bridge between all
processor’s sub-units.

CPUs manufacturers are constantly being challenged as software requires more pro-
cessing power. As the CPU processing speed is reaching a plateau, mostly by heating,
manufacturer’s solution was to add more cores to the chip, creating thus a cluster. Current
CPUs have more than one core but they are optimized for single thread execution, em-
phasizing instruction-level parallelism. They are boosted with cache levels to reduce the
memory access time and share data among cores. Cache is an hierarchical memory that
lies between CPU and Random Access Memory (RAM), with the top level cache being
faster (closer to the CPU) and the bottom level slower (closer to the RAM). Figure 3.2
shows a scheme with two cores and two cache levels. L1 cache is private for each core
and L2 cache is shared between cores.

Figure 3.2: Snapdragon SoC scheme showing different cores and cache levels of CPU
[17].

Due to these properties, CPU is better suited for serial tasks. In heterogeneous com-
puting [18] CPU is assigned as host and controls the data flow (see 3.2.2).

21

3. Parallel programming on mobile devices

3.1.2 Graphics Processing Unit

Graphics Processing Unit (GPU) is a device originally designed to render graphics.
Hence its memory accesses are optimized to process images quickly, which means it
also suits the computation of large matrices. The main stimulus of the GPU market was
the games industry. This led to an huge development of the GPUs capabilities, to bring
realistic graphics to the users, which means that over the past years the gap between CPUs
and GPUs has increased tremendously. GPU now supports large number of threads, which
allows exploiting thread-level parallelism and thus accelerating compute-intensive tasks
like image processing, among others.

Block 1 Block 2

Block 3 Block 4

Thread
1

Thread
2

Thread
3

Thread
4

Thread
5

Thread
6

Thread
7

Thread
8

Thread
9

Thread
10

Thread
11

Thread
12

Figure 3.3: GPU thread scheme.

More recently, mobile GPUs have become an important hardware piece, since mobile
devices like laptops or smartphones overcame the market. Nowadays, it is possible to
obtain powerful graphics with relatively low energy consumption. This also gives the
opportunity to exploit thread-level parallelism in mobile devices, just like the dedicated
machines.

General-Purpose computation on Graphics Processing Units (GPGPU) [19] is a more
recent software concept that takes advantage of these threads to compute traditional CPU
tasks on GPUs. A common example is the computation of matrix operations with mini-
mal dependency between data elements, where distinct threads are associated to the pro-
cessing of different rows and columns. The Open Computing Language (OpenCL) [20]
framework exploits this duality and is covered in 3.2.2.

22

3.2 Parallel programming

3.2 Parallel programming

As the modern CPUs and GPUs are designed be multi-core devices, software devel-
opers start to exploit this feature to compute intensive tasks, distributing the workload
among the available threads. Here are presented two approaches that exploit thread-level
parallelism.

3.2.1 OpenMP API

Open Multi-Processing (OpenMP) is an Application Programming Interface (API) to
create shared-memory parallel programs [21,22]. It adds notation to sequential C/C++ or
Fortran code to specify how some code blocks are shared among processors and/or cores.
Recalling subsection 3.1.1, it takes advantage of the CPU shared memory to distribute the
workload. The success of this API is its simplicity, attaching #pragma directives to the
desired code block, letting the compiler handle the details. This gives to the OpenMP the
portability to several platforms.

. . .

Core #1 Core #2 Core #N

Private
Memory

Private
Memory

Private
Memory

Shared Memory

Figure 3.4: OpenMP memory scheme.

The idea of OpenMP is to break a piece of code into multiple instances, and assign
a thread to each instance. Each thread runs independently and when the work is done,
they assemble data and proceed to sequential code. This is a fork-join programming
model [23], as illustrated in figure 3.5.

23

3. Parallel programming on mobile devices

Master thread

Fork

...

Join

Master thread

Team of threads

Figure 3.5: The fork-join programming model [22].

The program is running in a single thread fashion, afterwards splitted into a team of
threads (fork), depending on how many cores are available and how many threads are
explicitly created. After the work is done, the original thread (which is the master of the
team) continues its way and all others terminate (join). Each portion of the code between
fork and join is called a parallel region.

The OpenMP memory model

Although OpenMP works under shared memory, each thread may need private mem-
ory. By default data is shared and visible among threads, but the programmer may declare
a variable as private so each thread has a copy of that variable on its own memory re-
gion called thread stack. The use of private variables in some contexts may accelerate the
parallel region because it saves shared memory accesses which are slower than private
memory accesses. The programmer does not need to to concern about architecture details
since OpenMP has its own rules and mechanism to rule shared and private objects. To en-
sure that the thread calling has the same values for shared data objects, OpenMP provides
an operation called flush. This guarantees that thread updates are written back to shared
memory, providing the updated values to the other threads.

3.2.2 OpenCL framework

OpenCL is a framework managed by the Khronos Group [18, 20, 24] that executes
across heterogeneous platforms like CPUs, GPUs and other type of devices supported by
computer manufacturers. The computing system consists of an host processor (typically
a CPU) that is responsible for logical operations and data flow, and a device (e.g. a GPU)
that maps data to its memory system and performs the massive processing of data using
high-levels of data parallelism.

24

3.2 Parallel programming

The OpenCL programming model can be described in a hierarchy of 3 models [25]:

• Platform Model

• Memory Model

• Execution Model

Platform model

The platform model is where the software is linked to the hardware. It consists of a
host connected to one or more OpenCL devices, that are divided into one or more compute
units (CU), which are further divided into processing elements (PE). PEs execute kernels,
which are the device programs that may be compiled before or during program execution.

Device #1
Compute Unit

P
E

P
E

P
E

. . .
Compute Unit

P
E

P
E

P
E

. . .
Compute Unit

P
E

P
E

P
E

. . .

Host

 Device #N
Compute Unit

P
E

P
E

P
E

. . .
Compute Unit

P
E

P
E

P
E

. . .
Compute Unit

P
E

P
E

P
E

. . .

. . .

. . .

Figure 3.6: OpenCL platform model representing N devices orchestrated by a host.

Execution model

Before the device is able to run OpenCL kernels, a set of instructions must be per-
formed so that data is properly enqueued. First of all a context must be created to coordi-
nate the host-device interaction and memory objects. Basically it keeps track of programs
and kernels created for each device. Communication between host and device occurs us-
ing a command queue (as the name implies, commands are sent over this queue). The
data mapping is done using buffers that are then enqueued to the device. Write operations
represent the most significant overhead of an OpenCL execution context, and thus the

25

3. Parallel programming on mobile devices

programmer must be careful to ensure minimal number of transactions between host and
device.

Finally an N-dimensional index space, called NDRange, must be enqueued to inform
the device how to partition data over thread blocks called work-groups. A work-group
defines a number of work-items that run an instance of the desired kernel.

Work
Group

Work
Group

Work
Group

. . .

Work
Group

Work
Group

. . . Work
Group

.
.

.

.
.

.

. .
 .

Work
Group

Work
Group

Work
Group

. . .

.
.

.

N
D

R
a
n
g

e
 y

NDRange x

Device
Work
Item

Work Group

Work
Item

Work
Item

Work
Item

. .
 .

. . .

. . .

. . .

. . .

_kernel void foo(...)
 {
 ...
 }

Figure 3.7: NDRange index space with work-groups and work-items scheme.

Memory model

Since OpenCL is a portable framework, memory architecture may vary between com-
puter manufacturers. Due to this fact, the memory model defines an abstraction that pro-
grammers can target and manufacturers can map to the real memory system.

Memory model is hierarchically divided in 4 layers:

• Global memory: It is the top level memory. It is visible to all work-groups.

• Constant memory: Only allows read operations. It is also visible to all work-
groups.

• Local memory: It is the memory region of work-groups. It can be accessed by all
work-items inside a work-group.

• Private memory: It is the memory region of work-items. It is private for each
work-item.

26

3.3 Summary

An accurate memory management performed by the programmer may increase kernel
performance since private and local memory are tightly closer to the core and thus faster
than global memory.

Host
Global Memory

Device
Global / Constant Memory

Work-group

Work-group

Work-group Local Memory

Work-item

Private
Memory

Work-item

Private
Memory

Work-item

Private
Memory

Figure 3.8: OpenCL memory model.

3.3 Summary

This chapter reviews some hardware concepts and introduces the parallel comput-
ing paradigm. The OpenMP is an API that supports shared memory parallel programs.
It takes advantage of a multi-core platform to share the workload among cores, adding
#pragma directives on the desired portions of the code. It has a very simple and clean syn-
tax and is supported by many multi-core platforms, which makes the OpenMP a portable
API. The OpenCL framework is designed to take advantage of massive thread-level par-
allelism. Its platform model is composed by a host that perform the logical operations
and data flow, and a device that is where the workload is distributed.

Now that all theoretical concepts were introduced, the next chapter explains the tech-
niques used to parallelize the RaptorQ decoder schemes.

27

3. Parallel programming on mobile devices

28

4
RaptorQ decoder on Snapdragon

CPU/GPU

29

4. RaptorQ decoder on Snapdragon CPU/GPU

Recalling sections 2.5 and 2.6, both decoding schemes of RaptorQ have common
mathematical operations which are suitable for parallelization. Those are matrix inver-
sions and matrix multiplications and, in a practical manner, they require big loops to be
performed. However, these two operations are significantly different in terms of data de-
pendency. While in multiplication each resulting matrix position is totally independent of
the others, in inversion they are dependent of each iteration of the Gauss-Jordan elimina-
tion method. This means that in heterogeneous computing, inversion inserts much more
overhead than multiplication because of the memory operations needed between host and
device to perform data flow and keep data coherence. Due to this fact, three paralleliza-
tion schemes are proposed. For the multiplication we use OpenCL framework to exploit
massive thread-level parallelism and for the inversion we use an OpenCL and an OpenMP
approach, to exploit parallel regions, since OpenMP introduces low overhead launching
threads and works at CPU level.

4.1 Parallelization of matrix multiplication

Given two matrices A and B, the product C = A×B is given by multiplying A rows by
B columns, i.e:

Ci j =
m

∑
k=1

AikBk j. (4.1)

This operation implies three nested loops since we need to associate all A rows to all
B columns (two loops), and for each one we need to perform the sum of the product (4.1)
(one loop). Since the two outer loops are independent, the strategy of parallelization is to
assign one thread to each (i, j) pair and each thread perform the inner loop, as exemplified
in figure 4.1.

A

B

C

Figure 4.1: Matrix multiplication scheme. Each pair of colors represents one thread.

30

4.2 Parallelization of matrix inversion

Algorithm 1 Matrix multiplication in sequential C
for(i = 0; i < cols_b; i++)

{

for(j = 0; j < rows_A; j++)

{

C[j][i] = 0;

for(k = 0; k < cols_A; k++)

C[j][i] = C[j][i] + (A[j][k] * B[k][i]);

}

}

Algorithm 2 Parallel matrix multiplication on GPU
Require: Matrix Am×n and matrix Bn×p
1: procedure gfMatrixMul(A, B, m, n, p)
2: (Host→ Device) Copy matrix A, matrix B and matrix C from host to device.
3: (Kernel) Perform matrix multiplication A×B and stores the result on matrix C.
4: (Device→ Host) Copy matrix C from device to host
5: end procedure

Algorithm 3 Matrix multiplication kernel in OpenCL
__kernel void matrixMul(__global unsigned char *a, __global unsigned char *b,

__global unsigned char *c, int rows_a , int cols_a , int rows_b , int cols_b)

{

int row = get_global_id (1);

int col = get_global_id (0);

unsigned char sum = 0;

for(int counter = 0; counter < cols_a; counter ++)

sum = sum + (a[row * cols_a + counter] * b[counter * cols_b + col]);

c[row * cols_b + col] = sum;

}

4.2 Parallelization of matrix inversion

Assuming that the matrix to invert is full rank (i.e. is invertible) [26], we will use
Gauss-Jordan method to perform the inversion. Gauss-Jordan method is suitable for par-
allelization comparing with other methods of matrix inversion [27, 28] because each it-
eration has parallel regions that are only dependent of the values of that iteration. This
method consists in a sequence of elementary row operations to nullify the values of the
left side, giving rise to the inverse matrix on the right side, as shown in figure 4.2. The
diagonal elements are called pivots.

31

4. RaptorQ decoder on Snapdragon CPU/GPU

x11 x12 . . . x1 j 1 0 . . . 0
x21 x22 . . . x2 j 0 1 . . . 0
...

...
...

...
xi1 xi2 ... xi j 0 0 ... 1

→

1 0 . . . 0 y11 y12 . . . y1 j
0 1 . . . 0 y21 y22 . . . y2 j
...

...
...

...
0 0 . . . 1 yi1 yi2 ... yi j

 (4.2)

There are 3 elementary row operations performed in the algorithm:

• Row swapping: Swap rows when pivot is zero to keep diagonal without null values.

• Row division: Division of row i by its pivot.

• Row sum: Sum one row to another to nullify column j .

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

x
(1)
1 x

(1)
2 x

(1)
3 x

(1)
4

x
(1)
5 x

(1)
6 x

(1)
7 x

(1)
8

x
(1)
9 x

(1)
10 x

(1)
11 x

(1)
12

x
(1)
13 x

(1)
14 x

(1)
15 x

(1)
16

0

0

0

0 0 0

1 0 0

0 1 0

0 0 1

1 x
(2)
2 x

(2)
3 x

(2)
4

x
(2)
6 x

(2)
7 x

(2)
8

x
(2)
10 x

(2)
11 x

(2)
12

x
(2)
14 x

(2)
15 x

(2)
16

y
(2)
1

y
(2)
5

y
(2)
9

y
(2)
13

0 1 0 0

0 0 1 0

0 0 0 1

1 0 0 0 y
(5)
1 y

(5)
2 y

(5)
3 y

(5)
4

y
(5)
5 y

(5)
6 y

(5)
7 y

(5)
8

y
(5)
9 y

(5)
10 y

(5)
11 y

(5)
12

y
(5)
13 y

(5)
14 y

(5)
15 y

(5)
16

Figure 4.2: Scheme of a 4×4 matrix inversion. Each red row represents one iteration of
the algorithm. Row is divided by its pivot, so its value is set to one. Then, that row is
summed to the others to nullify the column values.

32

4.2 Parallelization of matrix inversion

Since in each iteration of the algorithm, both left and right side of the matrix are
updated and in each one of them the pivot position and value must be checked, this cannot
be parallelized due to data dependencies. Hence, we exploit parallelism over the three
elementary row operations.

4.2.1 OpenCL approach for matrix inversion

The first and second elementary operations are performed by a loop that goes through
the row. The strategy of parallelization is to launch one thread for each iteration of the
loop.

Algorithm 4 Row swap in sequential C
// i -> pivot position / row position

for(k = 0; k < cols; k++)

{

temp = matrix[j][k];

matrix[j][k] = matrix[i][k];

matrix[i][k] = temp;

temp = inverse[j][k];

inverse[j][k] = inverse[i][k];

inverse[i][k] = temp;

}

Algorithm 5 Row swap kernel in OpenCL
__kernel void rowSwap(__global unsigned char *matrix , int j, int max_cols , int i)

{

int col_pos = get_global_id (0);

unsigned char aux;

aux = matrix[j * max_cols + col_pos];

matrix[j * max_cols + col_pos] = matrix[i * max_cols + col_pos];

matrix[i * max_cols + col_pos] = aux;

}

Algorithm 6 Row division in sequential C
// i -> pivot position / row position

for(k = 0; k < cols; k++)

{

matrix[i][k] = matrix[i][k] / aux;

inverse[i][k] = inverse[i][k] / aux;

}

33

4. RaptorQ decoder on Snapdragon CPU/GPU

Algorithm 7 Row division kernel in OpenCL
__kernel void pivotDivision(__global unsigned char *matrix , int i, int cols ,

unsigned char pivot)

{

int col_pos = get_global_id (0);

matrix[i * cols + col_pos] = matrix[i * cols + col_pos] / pivot);

}

The third operation consists of two nested loops. The outer loop goes through all rows
and the inner loop goes though all columns. The strategy is to assign one thread for each
sum operation between columns, that is, for each red cell of figure 4.1 pairing with the
corresponding black cells.

Algorithm 8 Row sum in sequential C
// i -> pivot position / row position

for(k = 0; k < rows; k++)

{

if (matrix[k][i] != 0 && k != i)

{

aux = matrix[k][i];

for(m = 0; m < cols; m++)

{

matrix[k][m] = (aux * matrix[i][m]) - matrix[k][m];

inverse[k][m] = (aux * inverse[i][m]) - inverse[k][m];

}

}

}

Algorithm 9 Row sum kernel in OpenCL
__kernel void linearOperation(__global unsigned char *matrix , int pos , int max_cols

, __global unsigned char *matrix_aux)

{

int row_pos = get_global_id (1);

int col_pos = get_global_id (0);

if(matrix_aux[row_pos * max_cols + pos] != 0 && row_pos != pos)

{

matrix[row_pos * max_cols + col_pos] = (matrix_aux[row_pos * max_cols + pos]

* matrix[pos * max_cols + col_pos]) - matrix[row_pos * max_cols + col_pos

];

}

}

The threads associated to the row of the pivot do not perform any task, since that row
does not have any column nullified in that iteration. The full algorithm is shown bellow.

34

4.2 Parallelization of matrix inversion

Algorithm 10 Parallel Gauss-Jordan on a GPU
Require: Matrix Am×n, with m≥ n
1: procedure gfInv(A, m, n)
2: (Host compute) Create an extended matrix B with matrix A on the left side and the

identity I on the right side;
3: (Host→ Device) Write the extended matrix;
4: for i← 0, (n−1) do
5: j← i;
6: (Host compute) Check if pivot is different from zero, j← pivot position;
7: if j 6= i
8: (Kernel 1) Swap row i with row j;
9: (Device→ Host) Read extended matrix;
10: end if
11: if E[i][i] 6= 1 and E[i][i] 6= 0
12: (Host compute) Saves the pivot value;
13: (Kernel 2) Divide row by the pivot;
14: end if
15: (Device compute) Stores a copy of the extended matrix;
16: (Kernel 3) Perform the sum operations;
17: (Device→ Host) Read extended matrix;
19: (end for)
19: (Host compute) Splits the extended matrix
20: end procedure

In each iteration, the host must access the values of the extended matrix. This implies
one or two read operations from the device to host. To keep data coherence, a copy of
the extended matrix is done every iteration, because when kernel 3 is launched it is not
guaranteed any thread order execution and that may lead to an access of updated values
by later threads.

Since this approach implies multiple communications between host and device during
each iteration, a lighter approach is presented bellow.

4.2.2 OpenMP approach for matrix inversion

Recalling section 3.2.1, a parallel region is created by adding #pragma directives.
Thus, the only overhead introduced by OpenMP is to copy the registers to the shared
memory, and when the parallel region terminates, data remains on the CPU. However,
OpenMP is limited by the number of cores of the CPU, which are fewer than the GPU.

The strategy of parallelization is similar to the previous subsection, but what OpenMP
does in practice is slightly different. It breaks the loop and each thread executes a portion
of that loop. So for the first and second elementary operation, a simple #pragma directive
is added before the loop, and the workload is distributed among the available threads.

35

4. RaptorQ decoder on Snapdragon CPU/GPU

Algorithm 11 Row swap with OpenMP
// i -> pivot position / row position

#pragma omp parallel for

for(k = 0; k < cols; k++)

{

temp = matrix[j][k];

matrix[j][k] = matrix[i][k];

matrix[i][k] = temp;

temp = inverse[j][k];

inverse[j][k] = inverse[i][k];

inverse[i][k] = temp;

}

Algorithm 12 Row division with OpenMP
// i -> pivot position / row position

#pragma omp parallel for

for(k = 0; k < cols; k++)

{

matrix[i][k] = matrix[i][k] / pivot);

inverse[i][k] = matrix[i][k] / pivot);

}

Similarly to the problem of data coherence in the previous section, some variables
must be kept private for each thread to ensure that there isn’t any read operation from an
updated value by later threads. Thus, the indexes and the values of the row of the pivot
(red row of figure 4.1) are private for each thread. The outer loop is broken and each
portion is assigned to one thread. The (k− 1) times that the inner loop executes is thus
distributed among threads.

Algorithm 13 Row sum with OpenMP
// i -> pivot position / row position

#pragma omp parallel for private(m, aux)

for(k = 0; k < rows; k++)

{

if (matrix[k][i] != 0 && k != i)

{

aux = matrix[k][i];

for(m = 0; m < cols; m++)

{

matrix[k][m] = (aux * matrix[i][m]) - matrix[k][m];

inverse[k][m] = (aux * inverse[i][m]) - inverse[k][m];

}

}

}

36

4.3 Summary

4.3 Summary

This chapter presented the techniques developed to exploit data parallelism on the
RaptorQ decoder. Two operations were identified to be well suited for parallelization:
matrix multiplication and matrix inversion. Although both exhibit parallel characteristics,
their algorithms are very different due to data dependency. Matrix multiplication is per-
formed with three nested loops and each iteration of the two outer loop does not depend
on the others. So the outer loops are fully parallelized, leaving the inner loop for each
thread to perform. Regarding matrix inversion, each iteration depends on the previous.
Hence, three portions of the code were identified to be parallelized: row swapping, row
division and row sum. The three operations are performed by loops, so the strategy is to
launch one thread for each iteration of the loops, taking into account data coherency.

Although the matrix multiplication can fully take advantage of the OpenCL capabil-
ities, the matrix inversion introduces significant overhead. For that reason, two parallel
approaches were introduced to understand which one suits better to the problem. The next
chapter shows the results of these techniques on the Snapdragon SoC.

37

4. RaptorQ decoder on Snapdragon CPU/GPU

38

5
Experimental results

39

5. Experimental results

This chapter shows the results of the techniques presented on the previous chapter.
First, both decoding schemes of sections 2.5 and 2.6 are compared in terms of decoding
time. It is shown the speedup for the best decoding scheme concerning a parallel approach
for higher loss rates. Regarding the matrix inversion, a comparison between OpenCL and
OpenMP computing time is made. Finally, it is shown the enhancement of the precode
matrix of RaptorQ construction time between a sequential C and a OpenCL approach.

Two platforms were used to set up and test the proposed schemes:

MacBook Air (13-inch, Early
2014)

DragonBoard Development Kit
with a Snapdragon 800

CPU 1,4 GHz Intel Core i5 Quad-core Qualcomm R© KraitTM

400 CPU at up to 2.3 GHz per core
RAM 4 GB 1600 MHz DDR3 2GB LPDDR3 memory
GPU Intel HD Graphics 5000 1536 MB Qualcomm R© AdrenoTM 330 GPU
OS Yosemite version 10.10.3 Android 4.3 with kernel version

3.4.0-g0b717d1-00010-gbe2b492
OpenCL Version 1.2 1.1
Compiler Apple LLVM version 6.1.0 Android NDK, GNU Make 3.81

Table 5.1: Test environment specs.

5.1 Decoding time comparison of the two decoding schemes

First of all, the two decoding schemes are compared to understand which one has
better decoding time. It is assumed that 1 source symbol is missing. The source block
size K is between 10 and 2005, with symbol size T between 4 and 1024.

Block size (K)
0 500 1000 1500 2000 2500

T
im

e
 (

s
)

10
-6

10
-4

10
-2

10
0

10
2

MacBook Air

Decoder
Decoder w/ OpenCL
Matrix Reduction Decoder
Matrix Reduction Decoder w/ OpenCL

Block size (K)
0 500 1000 1500 2000 2500

T
im

e
 (

s
)

10
-6

10
-4

10
-2

10
0

10
2

Snapdragon

Decoder
Decoder w/ OpenCL
Matrix Reduction Decoder
Matrix Reduction Decoder w/ OpenCL

Figure 5.1: Symbol size T = 4bytes.

40

5.1 Decoding time comparison of the two decoding schemes

Block size (K)
0 500 1000 1500 2000 2500

T
im

e
 (

s
)

10
-6

10
-4

10
-2

10
0

10
2

MacBook Air

Decoder
Decoder w/ OpenCL
Matrix Reduction Decoder
Matrix Reduction Decoder w/ OpenCL

Block size (K)
0 500 1000 1500 2000 2500

T
im

e
 (

s
)

10
-6

10
-4

10
-2

10
0

10
2

Snapdragon

Decoder
Decoder w/ OpenCL
Matrix Reduction Decoder
Matrix Reduction Decoder w/ OpenCL

Figure 5.2: Symbol size T = 8bytes.

Block size (K)
0 500 1000 1500 2000 2500

T
im

e
 (

s
)

10
-6

10
-4

10
-2

10
0

10
2

MacBook Air

Decoder
Decoder w/ OpenCL
Matrix Reduction Decoder
Matrix Reduction Decoder w/ OpenCL

Block size (K)
0 500 1000 1500 2000 2500

T
im

e
 (

s
)

10
-6

10
-4

10
-2

10
0

10
2

Snapdragon

Decoder
Decoder w/ OpenCL
Matrix Reduction Decoder
Matrix Reduction Decoder w/ OpenCL

Figure 5.3: Symbol size T = 16bytes.

Block size (K)
0 500 1000 1500 2000 2500

T
im

e
 (

s
)

10
-6

10
-4

10
-2

10
0

10
2

MacBook Air

Decoder
Decoder w/ OpenCL
Matrix Reduction Decoder
Matrix Reduction Decoder w/ OpenCL

Block size (K)
0 500 1000 1500 2000 2500

T
im

e
 (

s
)

10
-6

10
-4

10
-2

10
0

10
2

Snapdragon

Decoder
Decoder w/ OpenCL
Matrix Reduction Decoder
Matrix Reduction Decoder w/ OpenCL

Figure 5.4: Symbol size T = 32bytes.

41

5. Experimental results

Block size (K)
0 500 1000 1500 2000 2500

T
im

e
 (

s
)

10
-6

10
-4

10
-2

10
0

10
2

MacBook Air

Decoder
Decoder w/ OpenCL
Matrix Reduction Decoder
Matrix Reduction Decoder w/ OpenCL

Block size (K)
0 500 1000 1500 2000 2500

T
im

e
 (

s
)

10
-6

10
-4

10
-2

10
0

10
2

10
4

Snapdragon

Decoder
Decoder w/ OpenCL
Matrix Reduction Decoder
Matrix Reduction Decoder w/ OpenCL

Figure 5.5: Symbol size T = 64bytes.

Block size (K)
0 500 1000 1500 2000 2500

T
im

e
 (

s
)

10
-6

10
-4

10
-2

10
0

10
2

MacBook Air

Decoder
Decoder w/ OpenCL
Matrix Reduction Decoder
Matrix Reduction Decoder w/ OpenCL

Block size (K)
0 500 1000 1500 2000 2500

T
im

e
 (

s
)

10
-6

10
-4

10
-2

10
0

10
2

10
4

Snapdragon

Decoder
Decoder w/ OpenCL
Matrix Reduction Decoder
Matrix Reduction Decoder w/ OpenCL

Figure 5.6: Symbol size T = 128bytes.

Block size (K)
0 500 1000 1500 2000 2500

T
im

e
 (

s
)

10
-6

10
-4

10
-2

10
0

10
2

MacBook Air

Decoder
Decoder w/ OpenCL
Matrix Reduction Decoder
Matrix Reduction Decoder w/ OpenCL

Block size (K)
0 500 1000 1500 2000 2500

T
im

e
 (

s
)

10
-6

10
-4

10
-2

10
0

10
2

10
4

Snapdragon

Decoder
Decoder w/ OpenCL
Matrix Reduction Decoder
Matrix Reduction Decoder w/ OpenCL

Figure 5.7: Symbol size T = 256bytes.

42

5.2 Matrix reduction decoder

Block size (K)
0 500 1000 1500 2000 2500

T
im

e
 (

s
)

10
-6

10
-4

10
-2

10
0

10
2

MacBook Air

Decoder
Decoder w/ OpenCL
Matrix Reduction Decoder
Matrix Reduction Decoder w/ OpenCL

Block size (K)
0 500 1000 1500 2000 2500

T
im

e
 (

s
)

10
-4

10
-2

10
0

10
2

10
4

Snapdragon

Decoder
Decoder w/ OpenCL
Matrix Reduction Decoder
Matrix Reduction Decoder w/ OpenCL

Figure 5.8: Symbol size T = 512bytes.

Block size (K)
0 500 1000 1500 2000 2500

T
im

e
 (

s
)

10
-6

10
-4

10
-2

10
0

10
2

MacBook Air

Decoder
Decoder w/ OpenCL
Matrix Reduction Decoder
Matrix Reduction Decoder w/ OpenCL

Block size (K)
0 500 1000 1500 2000 2500

T
im

e
 (

s
)

10
-4

10
-2

10
0

10
2

10
4

Snapdragon

Decoder
Decoder w/ OpenCL
Matrix Reduction Decoder
Matrix Reduction Decoder w/ OpenCL

Figure 5.9: Symbol size T = 1024bytes.

The matrix reduction decoder has better decoding time, even without OpenCL. The
peaks on the blue curves represent the matrices whose sizes do not fit well on the OpenCL
execution model (by default). That is, the NDRangeY and NDRangeX are such that
the number of work-groups and their size induces a bad thread scheduling. However,
choosing proper values, OpenCL exhibits a speedup concerning the sequential approach.

Hereupon, the matrix reduction decoder is the chosen scheme to be tested for higher
loss rates.

5.2 Matrix reduction decoder

To set up an approach closer to reality, these simulations measure the decoding time
of a corrupted source block under a erasure channel with three loss rates: 1%, 10% and
20% of missing source symbols. The scheme compares a sequential C approach of the
decoder with an OpenCL optimized scheme, and is tested for a block size T = 512bytes

and T = 1024bytes.

43

5. Experimental results

Block size (K)
0 500 1000 1500 2000

T
im

e
 (

s
)

10
-6

10
-4

10
-2

10
0

10
2

MacBook Air

p = 1% (Sequential)
p = 10% (Sequential)
p = 20% (Sequential)
p = 1% (Parallel)
p = 10% (Parallel)
p = 20% (Parallel)

Block size (K)
0 500 1000 1500 2000

T
im

e
 (

s
)

10
-6

10
-4

10
-2

10
0

10
2

Snapdragon

p = 1% (Sequential)
p = 10% (Sequential)
p = 20% (Sequential)
p = 1% (Parallel)
p = 10% (Parallel)
p = 20% (Parallel)

Figure 5.10: Symbol size T = 512bytes.

Block size (K)
0 500 1000 1500 2000

T
im

e
 (

s
)

10
-6

10
-4

10
-2

10
0

10
2

MacBook Air

p = 1% (Sequential)
p = 10% (Sequential)
p = 20% (Sequential)
p = 1% (Parallel)
p = 10% (Parallel)
p = 20% (Parallel)

Block size (K)
0 500 1000 1500 2000

T
im

e
 (

s
)

10
-6

10
-4

10
-2

10
0

10
2

Snapdragon

p = 1% (Sequential)
p = 10% (Sequential)
p = 20% (Sequential)
p = 1% (Parallel)
p = 10% (Parallel)
p = 20% (Parallel)

Figure 5.11: Symbol size T = 1024bytes.

OpenCL exhibits an huge improvement on the decoding time for each case, even
for small source blocks. The following tables summarize the speedup of the OpenCL
approach relatively to the sequential C, on the Snapdragon 800 platform.

Table 5.2: Snapdragon speedups for a block size T = 512bytes

Loss rate (%)
Block size (K) 10 101 511 802 1002 1502 1979

1 - 5.3x 5.9x 5.6x 6.1x 7.3x 7.3x
10 14.2x 11.4x 5.8x 7.7x 8.3x 8.0x 8.9x
20 32.3x 14.6x 7.0x 8.0x 8.2x 8.1x 8.6x

Table 5.3: Snapdragon speedups for a block size T = 1024bytes

Loss rate (%)
Block size (K) 10 101 511 802 1002 1502 1979

1 - 10.0x 11.9x 10.0x 9.1x 9.5x 9.5x
10 24.1x 22.8x 12.3x 14.4x 12.8x 11.4x 11.4x
20 51.8x 34.0x 17.2x 15.4x 13.3x 12.1x 11.8x

44

5.3 Matrix inversion

Concerning power consumptions, OpenCL exhibits similar maximum instant con-
sumptions, with a slight power decrease.

Table 5.4: Snapdragon maximum instant power consumptions for a sequential C approach
of the RaptorQ decoder.

Loss rate (%)
Block size (K) 10 101 511 802 1002 1502 1979

1 - 0.5 W 1.4 W 1.5 W 1.5 W 1.5 W 1.5 W
10 - 0.8 W 1.5 W 1.5 W 1.5 W 1.5 W 1.5 W
20 - 0.8 W 1.5 W 1.5 W 1.5 W 1.5 W 1.5 W

Table 5.5: Snapdragon maximum instant power consumptions for an OpenCL approach
of the RaptorQ decoder.

Loss rate (%)
Block size (K) 10 101 511 802 1002 1502 1979

1 - 0.4 W 1.4 W 1.4 W 1.3 W 1.3 W 1.3 W
10 - 0.2 W 1.4 W 1.4 W 1.3 W 1.3 W 1.3 W
20 - 0.2 W 1.4 W 1.3 W 1.3 W 1.2 W 1.3 W

Despite of they exhibit similar instant power consumptions, the OpenCL approach
uses less energy, since the decoder uses less processing time.

5.3 Matrix inversion

Although the matrix A′′
K(R)×K(R) is usually small, when the loss rate increases, more re-

pair symbols are needed to recover the source symbols. This corresponds on a increasing
of the matrix A′′

K(R)×K(R) . In such cases, the parallel approach of the matrix inversion may
increase even more the speedup shown in the previous section.

Recalling subsections 4.2.1 and 4.2.2, two parallel approaches were presented. The
next figure shows the inversion time of a sequential C, an OpenCL and an OpenMP ap-
proach.

45

5. Experimental results

Matrix size (NxN)
0 500 1000 1500 2000

T
im

e
 (

s
)

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

Sequential
OpenMP
OpenCL

Figure 5.12: Matrix inversion time on Snapdragon.

Figure 5.12 shows that OpenMP exhibits faster inversion time from N = 100. Since
we are dealing with small matrices, the overhead introduced by OpenCL is hardly recov-
ered by the distributed workload among threads for each iteration. In practice, we are
spending more time under memory operations comparing with the speedup of the ele-
mentary operations. Instead, OpenMP maps the parallel regions to the shared memory of
the CPU and keeps private variables in the private memory, so there is no need of an entire
copy between two distant memory regions in each iteration. Thereby, it is possible to im-
prove the speedup of the decoding process using OpenCL for matrix multiplications and
triggering OpenMP for matrix inversions when the matrix A′′

K(R)×K(R) reaches a predefined
threshold.

5.4 Precode matrix

At the beginning of each encoding and decoding process, the precode matrix A must
be constructed. Since the algorithm performs a matrix multiplication, it is of interest to
see the improvements of the construction time.

46

5.5 Summary

Block size (K)
0 500 1000 1500 2000 2500

T
im

e
 (

s
)

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

MacBook Air

Sequencial
OpenCL

Block size (K)
0 500 1000 1500 2000 2500

T
im

e
 (

s
)

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

Snapdragon

Sequencial
OpenCL

Figure 5.13: Pre-code matrix contruction time.

As expected, an OpenCL approach improves the construction time of the precode.
Even without any direct impact on the decoding speedup, since OpenCL runs faster, it has
a direct impact on the energy spent by the encoder and the decoder.

5.5 Summary

This chapter presented the results of the techniques proposed on chapter 4. The matrix
dimensionality reduction decoder proved to be the best decoding scheme. On all simu-
lations, the parallel approach exhibits significant speedups. However, OpenMP proved
to be better than OpenCL for the inversion of small matrices, thus leading to an hybrid
parallel approach under a threshold. In terms of energy, the parallel approach allows to
lower the consumptions, since the decoder uses less processing time.

47

5. Experimental results

48

6
Conclusions

49

6. Conclusions

The goal of this thesis was to accelerate the decoding process of the RaptorQ code.
First of all, two decoding schemes were presented. It was shown that the matrix reduction
scheme has better decoding time, even without OpenCL. Furthermore, the speedup that is
obtained when a matrix multiplication is parallelized can be higher that 10x in a mobile
device with similar instant power consumptions. For small matrices, OpenMP shows bet-
ter inversion time results than the sequential C and OpenCL approaches, which may be
used as an hybrid scheme with OpenCL. The precode matrix also shows better construc-
tion time when OpenCL is applied, thus accelerating the initiation of both encoding and
decoding processes with low power consumptions.

6.1 Future work

Although these techniques exhibit good results, they were not set up to their full ca-
pabilities. One barrier of this algorithm is that the size of the matrices are not fixed, and
are constantly dependent of the missing symbols. This implies that when OpenCL defines
the work-groups for a given NDRange, they may not fit well on the problem. Hereupon,
it is proposed to investigate and develop an algorithm to calculate the optimal NDRange
and work-group size, based on the source block and the missing symbols, before sharing
the workload among threads. Thus, the peaks observed on the figures of the section 5.1
may be smoothed and the speedups may be improved.

It is also proposed to explore loop-unroll techniques with OpenMP, in order to improve
the inversion time.

Since all simulations were performed in one development board, it is also recom-
mended to set up these simulations on different mobile architectures to compare the im-
provements on multiple devices.

50

Bibliography

[1] N. Jacobson, Basic algebra I. Courier Corporation, 2012.

[2] R. Lidl and H. Niederreiter, Finite fields. Cambridge university press, 1997, vol. 20.

[3] R. A. Carrasco and M. Johnston, Non-binary error control coding for wireless com-

munication and data storage. John Wiley & Sons, 2008.

[4] M. Luby, A. Shokrollahi, M. Watson, T. Stockhammer, and L. Minder, “RaptorQ
forward error correction scheme for object delivery (rfc 6330),” IETF Request For

Comments, 2011.

[5] D. J. MacKay, Information theory, inference and learning algorithms. Cambridge
university press, 2003.

[6] A. Shokrollahi and M. Muby, Raptor Codes. Foundations and Trends in Commu-
nications and Information Theory, 2011, vol. 6, no. 3-4.

[7] J. Lopes and N. Neves, “Stopping a rapid tornado with a puff,” in Security and

Privacy (SP), 2014 IEEE Symposium on. IEEE, 2014, pp. 509–523.

[8] M. Luby, “Lt codes,” in null. IEEE, 2002, p. 271.

[9] A. Shokrollahi, “Raptor codes,” Information Theory, IEEE Transactions on, vol. 52,
no. 6, pp. 2551–2567, 2006.

[10] M. Luby, A. Shokrollahi, M. Watson, and T. Stockhammer, “Raptor forward error
correction scheme for object delivery,” Tech. Rep., 2007.

[11] X. Guo, G.-X. Zhang, C. Tian, L. Zhang, and W.-D. Zhao, “Fast decoding for
raptorQ codes using matrix dimensionality reduction,” Electronics Letters, vol. 50,
no. 16, pp. 1139–1141, 2014.

[12] (2015, August). [Online]. Available: http://wearesocial.net/blog/2015/01/
digital-social-mobile-worldwide-2015/

51

http://wearesocial.net/blog/2015/01/digital-social-mobile-worldwide-2015/
http://wearesocial.net/blog/2015/01/digital-social-mobile-worldwide-2015/

Bibliography

[13] [Online]. Available: http://www.arm.com/

[14] S. B. Furber, ARM system-on-chip architecture. pearson Education, 2000.

[15] (2015, August). [Online]. Available: https://www.qualcomm.com/products/
snapdragon

[16] Q. Technologies, SnapdragonTM OpenCL General Programming and Optimization,
Qualcomm Technologies, 5775 Morehouse Drive San Diego, CA 92121 U.S.A.,
August 2014.

[17] (2015, August). [Online]. Available: http://www.bdti.com/InsideDSP/2012/06/21/
Qualcomm

[18] “Heterogeneous computing with OpenCL, author=Gaster, B and Kaeli, DR and
Howes, L and Mistry, P, year=2011, publisher=Morgan Kaufmann Pub.”

[19] (2015, August). [Online]. Available: http://gpgpu.org/

[20] (2015, August). [Online]. Available: https://www.khronos.org/

[21] (2015, August). [Online]. Available: http://openmp.org

[22] B. Chapman, G. Jost, and R. Van Der Pas, Using OpenMP: portable shared memory

parallel programming. MIT press, 2008, vol. 10.

[23] J. B. Dennis and E. C. Van Horn, “Programming semantics for multiprogrammed
computations,” Communications of the ACM, vol. 9, no. 3, pp. 143–155, 1966.

[24] G. Falcao, V. Silva, L. Sousa, and J. Andrade, “Portable LDPC Decoding on Mul-
ticores Using OpenCL,” IEEE Signal Processing Magazine, vol. 29, no. 4, pp. 81–
109, July 2012.

[25] K. O. W. Group et al., “The OpenCL specification, version: 2.0 document revision:
22,” URL http://www. khronos. org/registry/cl/specs/opencl-1.0, vol. 29, 2014.

[26] D. Lay, Linear Algebra and Its Applications. Addison-Wesley, 2012. [Online].
Available: https://books.google.pt/books?id= 4bjtgAACAAJ

[27] G. W. Stewart, Matrix algorithms volume 2: eigensystems. Siam, 2001, vol. 2.

[28] D. S. Bernstein, Matrix mathematics: theory, facts, and formulas. Princeton Uni-
versity Press, 2009.

52

http://www.arm.com/
https://www.qualcomm.com/products/snapdragon
https://www.qualcomm.com/products/snapdragon
http://www.bdti.com/InsideDSP/2012/06/21/Qualcomm
http://www.bdti.com/InsideDSP/2012/06/21/Qualcomm
http://gpgpu.org/
https://www.khronos.org/
http://openmp.org
https://books.google.pt/books?id=_4bjtgAACAAJ

	Titlepage
	Agradecimentos
	Abstract
	Resumo
	Index
	Contents
	List of Figures
	List of Tables
	List of Algorithms
	List of Acronyms

	1 Introduction
	1.1 Motivation
	1.2 Goals
	1.3 Contributions
	1.4 Outline

	2 Principles of non-binary codes and Rapid Tornado codes
	2.1 Finite fields
	2.2 Primitive polynomials
	2.3 Fountain codes
	2.4 Rapid Tornado codes
	2.4.1 Raptor10 encoder
	2.4.2 RaptorQ encoder

	2.5 RaptorQ decoder
	2.6 RaptorQ decoder using matrix dimensionality reduction
	2.7 Summary

	3 Parallel programming on mobile devices
	3.1 The Snapdragon Architecture
	3.1.1 Central Processing Unit
	3.1.2 Graphics Processing Unit

	3.2 Parallel programming
	3.2.1 OpenMP API
	3.2.2 OpenCL framework

	3.3 Summary

	4 RaptorQ decoder on Snapdragon CPU/GPU
	4.1 Parallelization of matrix multiplication
	4.2 Parallelization of matrix inversion
	4.2.1 OpenCL approach for matrix inversion
	4.2.2 OpenMP approach for matrix inversion

	4.3 Summary

	5 Experimental results
	5.1 Decoding time comparison of the two decoding schemes
	5.2 Matrix reduction decoder
	5.3 Matrix inversion
	5.4 Precode matrix
	5.5 Summary

	6 Conclusions
	6.1 Future work

	Bibliography

