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Resumo

A norma de codificação de vídeo HEVC (High Efficiency Video Coding) surge como

sucessora da norma H.264/AVC, em resposta ao rápido aumento do volume de informação

em vídeo com resoluções HD e UHD. A nova norma inclui ferramentas para suportar imple-

mentações paralelas, como slices, tiles e wavefront parallel processing. Este trabalho propõe

um método que ajusta automaticamente a geometria das tiles durante o processo de codi-

ficação de vídeo, para equilibrar a distribuição de carga entre as unidades processadoras ,

num cenário em que cada tile é processada por uma unidade distinta. A solução baseia-se

em quatro métodos de estimação de complexidade e um algoritmo que ajusta dinâmicamente

as tiles de acordo com a complexidade estimada. Os resultados mostram que o método pro-

posto é capaz de aumentar a eficiência de paralelização, quando comparado com tiles com

tamanhos iguais, obtendo-se em média uma redução do tempo de processamento de 6.1%

com um aumento de BD-rate entre 0.82% e 1.67%.

Palavras-chave: Codificação de Vídeo, High-efficiency Video Coding, Ferramentas ori-

entadas a parallelismo, Tiles, Equilíbrio de Carga
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Abstract

The High-efficiency Video Coding (HEVC) standard arises as the successor to the H.264/AVC

standard, in response to the rapid increase in HD and UHD digital video information volume.

The new standard includes tools to support parallel implementations, such as slices, tiles and

wavefront parallel processing. This work proposes a method that automatically adjusts the

tile geometry during the video encoding process, to balance the workload distribution among

the processing units, assuming that each tile is processed by a different unit. The solution

comprises four complexity estimation methods and an algorithm to dynamically adjust the

tile geometry. Results show that the proposed method is able to improve the parallelization

efficiency compared to the use of same-sized tiles, saving on average 6.1% of the processing

time at the cost of an increase in BD-rate between 0.82% and 1.67%.

Keywords: Video Coding, High-efficiency Video Coding Standard, Parallel-oriented

Tools, Tiles, Load-balance

v





Contents

Acknowledgements ii

Resumo iv

Abstract v

List of Acronyms ix

List of Figures xi

List of Tables xiii

1 Introduction 1

1.1 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Text Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Introductory video coding concepts and the HEVC standard 4

2.1 Basic concepts of video coding . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2 The HEVC standard . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2.1 Coding Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2.2 Intra-frame Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.3 Inter-frame Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.4 Transform and Quantization . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.5 Entropy Coding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.6 In-Loop Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3 Parallel processing oriented tools . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3.1 Slices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3.2 Wavefront Parallel Processing (WPP) . . . . . . . . . . . . . . . . . . 13

2.3.3 Tiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

vii



3 Parallel Tools of HEVC - the load balancing problem 16

3.1 Workload Unbalance with Tiles . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4 Tile Encoding Computational Complexity Estimation 24

4.1 Spatiotemporal Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.2 Encoding Times and Bitrate . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5 Load Balancing through Tile Geometry Adjustment 30

5.1 CTU Encoding Complexity Estimation . . . . . . . . . . . . . . . . . . . . . 31

5.1.1 Total Encoding Time . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5.1.2 Linear Combination of Encoding Times . . . . . . . . . . . . . . . . . 31

5.1.3 Linear Combination of Bits . . . . . . . . . . . . . . . . . . . . . . . 32

5.1.4 Simple Linear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5.2 Tile Geometry Adjustment . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

6 Experimental Results 40

6.1 Effectiveness of the proposed Load-Balancing Algorithm . . . . . . . . . . . 41

6.2 Estimated Parallel Speed Up . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

6.3 Impact in Coding Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

6.4 Comparison with other works . . . . . . . . . . . . . . . . . . . . . . . . . . 47

7 Conclusions and Future Work 49

8 Bibliography 51

A Tested Video Sequences 54

B Graphics 56

viii



List of Acronyms

AMVP Advanced Motion Vector Prediction

ATS Average Time Saving

AVC Advanced Video Coding

CABAC Context Adaptive Binary Artithmetic Coding

CB Coding Block

CTB Coding Tree Block

CTU Coding Tree Unit

CU Coding Unit

DBF Deblocking Filter

DCT Discrete Cosine Transform

DST Discrete Sine Transform

ETZS Enhanced Test-Zone Search

FPS Frames Per Second

FS Full Search

GOP Group of Pictures

HD High-Definition

HEVC High-efficiency Video Coding

JCT-VC Joint Collaborate Team on Video Coding

ix



LCBF Linear Combination of Bits per Frame

LCBG Linear Combination of Bits per GOP

LCTF Linear Combination of encoding Times per Frame

LCTG Linear Combination of encoding Times per GOP

MADIT Mean Absolute Difference from the Ideal Time

MV Motion Vector

OWF Overlapped Wavefront

PB Prediction Block

PSU Parallel Speed Up

PU Prediction Unit

QP Quantization Parameter

SAO Sample Adaptive Offset

SI Spatial Index

SL Simple Linear

TB Transform Block

TI Temporal Index

TU Transform Unit

UHD Ultra High-Definition

WPP Wavefront Parallel Processing

x



List of Figures

2.1 Generic hybrid encoder (source: [1]) . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Typical structure of a GOP (source: [1]) . . . . . . . . . . . . . . . . . . . . 6

2.3 Block diagram of the HEVC video encoder (source: [2]) . . . . . . . . . . . . 7

2.4 CTU quadtree structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.5 PU partitioning modes (source: [3]) . . . . . . . . . . . . . . . . . . . . . . . 8

2.6 Intra-frame prediction modes (source: [2]) . . . . . . . . . . . . . . . . . . . 9

2.7 Example of the directional mode 21 (adapted from: [2]) . . . . . . . . . . . . 9

2.8 Motion Estimation (source: [4]) . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.9 Illustration of the AMVP candidates (source [5].) . . . . . . . . . . . . . . . 10

2.10 An example of a picture divided in various slices (source: [6]) . . . . . . . . . 13

2.11 Wavefront Parallel Processing (adapted from [7]) . . . . . . . . . . . . . . . . 14

2.12 Representation of OWF (adapted from [7]) . . . . . . . . . . . . . . . . . . . 14

2.13 A picture divided into tiles (source: [6]) . . . . . . . . . . . . . . . . . . . . . 15

3.1 Video frame divided into four uniformly-spaced tiles . . . . . . . . . . . . . . 17

3.2 6th frame of the sequence BasketballDrive with a uniformly-spaced tile con-

figuration (top) and the respective encoding times (in seconds) for each CTU

(bottom). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.3 Encoding times per tile for the first 100 frames . . . . . . . . . . . . . . . . . 20

3.4 Encoding complexity distribution per tile . . . . . . . . . . . . . . . . . . . . 21

4.1 Encoding times, SI and TI values for the sixth frame of BasketballDrive . . . 26

5.1 The proposed method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5.2 The tile boundaries and their intersection point. . . . . . . . . . . . . . . . . 34

5.3 Flowchart of the algorithm for adjusting the tile geometry. . . . . . . . . . . 35

5.4 Illustration of the initial point selection. . . . . . . . . . . . . . . . . . . . . 36

xi



5.5 The initial point and the resulting candidate points for the new tile boundaries 38

6.1 Encoding Times per tile for the first 100 frames of the sequence BasketballDrive. 42

6.2 Distribuition of the workload per tile for first 100 frames of the sequence

BasketballDrive. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

6.3 Adjustment of the tile boundaries for the sequence BasketballDrive for frames

4, 40 and 311. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

A.1 Name: Basketballdrive; Resolution: 1920x1080; FPS: 50; Frame Count: 500 . 54

A.2 Name: BQTerrace; Resolution: 1920x1080; FPS: 60; Frame Count: 600 . . . 54

A.3 Name: Cactus ; Resolution: 1920x1080; FPS: 50; Frame Count: 500 . . . . . 55

A.4 Name: Jockey ; Resolution: 1920x1080; FPS: 120; Frame Count: 600 . . . . . 55

A.5 Name: Kimono; Resolution: 1920x1080; FPS: 24; Frame Count: 240 . . . . . 55

A.6 Name: ParkScene; Resolution: 1920x1080; FPS: 24; Frame Count: 240 . . . 55

B.1 Encoding times per tile for the first 100 frames. . . . . . . . . . . . . . . . . 56

B.2 Encoding times per tile for the first 100 frames. . . . . . . . . . . . . . . . . 57

B.3 Encoding complexity distribution per tile . . . . . . . . . . . . . . . . . . . . 58

B.4 Encoding complexity distribution per tile . . . . . . . . . . . . . . . . . . . . 59

xii



List of Tables

3.1 Video sequences used to study the problem related to uniform tiles. . . . . . 17

3.2 Summary of the encoding complexity distribution . . . . . . . . . . . . . . . 19

3.3 Workload factors for the complexity estimation model (source [8] ). . . . . . 22

3.4 Encoding efficiency losses for various tile sizes. Values taken from [4]. . . . . 23

4.1 Correlation coefficients between encoding times and SI/TI for the test se-

quences (sixth frame) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.2 Correlation coefficients between encoding times and SI/TI for the test se-

quences (first 100 frames) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.3 Correlation coefficients between encoding times of CTUs in the 8th frame and

the co-located CTUs in the 6th and 7th frames for the test sequences . . . . 28

4.4 Correlation coefficients between bitrate and encoding times of CTUs in the

6th frame for the test sequences . . . . . . . . . . . . . . . . . . . . . . . . . 28

6.1 Used video sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

6.2 MDIT for each test sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

6.3 Estimated Speed Ups using adjusted tiles and uniformly-spaced tiles . . . . . 45

6.4 BD-rate results for the test sequences . . . . . . . . . . . . . . . . . . . . . . 46

6.5 Comparison of results with other works. Sources: [4] and [8]. . . . . . . . . . 48

xiii





1 Introduction

Digital video representation has been continuously growing in the last decades. Video

content with high resolution requires large amounts of data to be represented, making the

use of video compression unavoidable in video storage and transmission applications.

Advances in technology lead to the appearence of devices capable of recording and repro-

ducing high-resolution video content. Nowadays even mobile devices, such as smartphones

and tablets, enable the user to view high-definition (HD) videos with resolutions of 720p

and 1080p and there is a constant demand for better quality and the emergence of ultra-

high definition (UHD) video, with resolutions going up to 4K or even 8K. Some products,

such as monitors and TVs, that support UHD resultions such as 3840x2160, are already

being comercialized [9]. This makes more evident the need for more efficient video coding

techniques.

The H.264/AVC standard, which is the most used and widely distributed video codec,

can handle HD resolution video but it isn’t optimized to encode UHD video content [2]. This

limitation lead to the development of the sucessor of H.264/AVC, the High Efficiency Video

Coding (HEVC) standard.

The Joint Collaborative Team on Video Coding (JCT-VC) finished the first standardized

version of HEVC in 2013. The main goal of this new standard is to reduce the bitrate, com-

pared to the H.264/AVC standard, by half while maintaining the same visual quality. This

bitrate reduction, however, comes at a cost of about two to ten times more computational

effort, specially on the encoder side [10].

To deal with the high costs in terms of computational workload, the HEVC standard

offers novel tools to support parallel processing. In an era where multi-core devices are

becoming the norm, the use of parallelism is highly beneficial.

When using parallel processing, a key issue is the parallel efficiency. Maximum efficiency
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is achieved when all tasks take exactly the same time to complete [11] and the idle time

is reduced. This applies to HEVC encoding using the parallel processing tools supported

as well. Among the parallel tools supported, HEVC defines tiles, which divide a video

frame into various parts that can be processed independently from each other. In order to

maximize the throughput, it’s important that all parts have the same encoding complexity.

Thus, the challenge is to distribute the frame encoding workload evenly among the available

processing units. However, partioning a frame into independently encodable sections, breaks

coding dependencies and, consequently, introduces losses in coding efficiency. Therefore the

number of partitions within a picture must be minimized.

Some published works propose methods to optimize specific performance parameters of

HEVC parallel encoding. While the main focus of most of these works is on achieving better

parallel efficiency, some authors take a different approach and aim to reduce the losses in

coding efficiency introduced by the usage of the parallel tools of HEVC [4]. This work is

focused on improving the HEVC parallel efficiency through load-balancing.

1.1 Objectives

This thesis proposes a method to dynamically adjust the tile geometry during HEVC encod-

ing of a video sequence. The goal is to define the partitions in a way that ensures a balanced

encoding workload distribution among all processing units. The algorithm starts by esti-

mating the complexity of encoding basic visual data units. Various complexity estimation

methods were proposed and evaluated. Then, based on the estimated complexities, a load

distribution algorithm defines the tile geometry that achieves the most even computational

complexity distribuition among all processing units.

1.2 Text Organization

Chapter 2 will give a brief summary of video coding basics and briefly describe the HEVC

standard as well as its parallel-oriented tools. Chapter 3 describes and analyses problems

that result from the usage of those tools, as well as proposed solutions from other works

in the literature. Chapter 4 focuses on the encoding complexity estimation problem and

describes some early experiments in an attempt to develop an estimation model. Chapter

5 describes four proposed complexity estimation methods and an algorithm to dynamically

adjust the tile geometry based on the estimated encoding complexity. Chapter 6 presents

2



the experimental evaluation of the proposed solution, listing results for the load-balancing

efficiency, estimated parallelism speed-up and the impact on coding efficiency, as well as

comparing them to similar works. Chapter 7 concludes this work by summarizing the method

proposed and its results and lists some future work topics.
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2 Introductory video coding concepts and

the HEVC standard

2.1 Basic concepts of video coding

Before describing in detail the major aspects of the new HEVC standard, this section will give

a brief explanation of the basic concepts of video coding. The main purpose of video coding is

to compress video data by exploiting temporal and spatial redundancies of the video signals

[1], as well as irrelevancy of parts of the visual data. Spatial redundancy is used in intra-frame

encoding, where temporal redundancy is exploited in inter-frame encoding. Frames encoded

using exclusively intra encoding are called I-frames, while frames that include inter encoded

blocks are either called P-frames or B-frames. P-frames are encoded using references from

previous frames (in display order), while B-frames can use references from both previous

and subsequent frames. The encoding process could be performed for the entire frame at

once. However for high resolution video this would require a lot of computational power, in

addition to be less robust to errors. Therefore, the frame is partitioned into smaller blocks

which are considered the basic coding unit.

The inter-frame encoding aims to explore temporal redundancy. A video sequence can

be efficiently coded by estimating the motion between frames and compensating the effect

of that motion during prediction [1]. For each block in the frame that is being encoded, the

block-based motion estimatior searches for the best matching block in one or more reference

frames. The displacement of the best matching block is then represented by a motion

vector (MV). Afterwards, motion compensation uses those vectors to build a prediction

frame/block.
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Figure 2.1: Generic hybrid encoder (source: [1])

Intra-frame encoding exploits spatial redundancies within a frame, analyzing samples

adjacent to the block to be encoded, to be used as reference data for prediction in regions

where inter-frame prediction is not used, either because the current frame is a I-frame or

because it is more efficient than the inter-frame prediction.

After generating the prediction, using either of the previously described methods, the

encoder subtracts that prediction from the original frame. The result is called frame/block

residual. This residuals are then processed using a 2D transform. Usually encoders use an

approximation of the Discrete Cosine Transform (DCT) to transform the residuals. The

results are then quantized, where the amount of information discarded can be controlled via

a Quantization Parameter (QP). Finally the encoder applies entropy coding to the trans-

formed and quatized residuals, to further reduce the data volume. This step is based on

the probability of occurrence of the encoded symbols and uses codes such as Huffman or

arithmetic encoders.

Frames of a video sequence are usually grouped into sets usually called Groups of Pictures

(GOP). These GOPs contain, in general one intra-encoded frame while the rest is comprised

of inter-encoded frames. Figure 2.2 shows a representation of a typical GOP structure. The

arrows indicate the prediction directions for each frame. A GOP can either be an open GOP,

which allows B and P-frames to have references outside of the GOP, or a closed GOP where

all the references must be inside the same GOP.
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Figure 2.2: Typical structure of a GOP (source: [1])

This section described how a generic video encoder works. The recent video coding

standards, including HEVC, follow all these steps to compress video data. In the next

section, the tools and coding structures specific to HEVC are explained in more detail.

2.2 The HEVC standard

The Joint Collaborate Team on Video Coding (JCT-VC) proposed a new video codec, with a

goal to reduce the bitrate of the current standard by half while maintaining the same visual

quality. In 2013, the HEVC reached its first final version. Improvements and extensions are

still being prepared, for instance, to support HDR encoding.

HEVC uses the same hybrid approach as previous video coders, since H.261 [2], based on

intra- and inter-frame prediction and 2-D transforms. Figure 2.3 shows the block diagram of

a hybrid model for a video encoder according to the HEVC standard. However, in order to

obtain better results in compression rate, while keeping the same visual quality, some of the

encoding tools used in previous standard were improved and some new features were added

to the HEVC standard, as described in more detail in the next sections.

2.2.1 Coding Structures

The basic coding structure of HEVC is the Coding Tree Unit (CTU), replacing the mac-

roblock used in the previous standards. CTUs consist of luma and chroma Coding Tree

Blocks (CTBs), with each luma CTB being of size LxL and each chroma CTB of size

L/2xL/2. L can assume three values: 16, 32 and 64 samples. The selection of the CTB

sizes is highly related to the video characteristics. For example, for HD or UHD videos it’s

reasonable to use bigger CTB sizes [2].

Each CTB can be partitioned into smaller blocks, called Coding Blocks (CB) according

to a quad-tree structure (figure 2.4). The root of the quadtree is at the CTU level, meaning
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Figure 2.3: Block diagram of the HEVC video encoder (source: [2])

that the largest supported luma CB size is the size of a luma CTB. Each CB can then be

further split into smaller CBs in a similar way until the minimum allowed size for a luma CB

is reached (8x8 samples). The combination of a luma CB plus two chroma CBs and some

syntax elements form the Coding Unit (CU).

Figure 2.4: CTU quadtree structure

The prediction mode (intra or inter) used in each CU is signalled in the bitstream. If

the prediction mode is signaled as intra, the CU can assume two different configurations for

its Prediction Units (PU): either a 2Nx2N or a NxN configuration (figure 2.5, dotted line).

The former means that the whole CU defines the PU, while the latter can only be applied

7



if the CU size matches the minimum allowed size (8x8). In that case, the PUs have the size

of 4x4 samples.

Figure 2.5: PU partitioning modes (source: [3])

If the CU is signaled with inter prediction, it can use the same configurations as with

intra-frame prediction with the same rules. However there are additional PU configurations,

as shown in figure 2.5, for the intra-frame prediction. Those configurations can either be

symmetric or assymetric. The latter can only be used in CUs with size greater than 16x16

pixels.

For residual encoding, a CU can be split into Transform Units (TU), which cotains luma

and chroma Transform Blocks (TB). The luma TB, as well as the chroma TBs, can be

identical to the respective CB residual, or it can be further split into smaller TBs. The

residuals that make up each TB are transformed using integer approximations of either the

DCT or the Discrete Sine Transform (DST).

2.2.2 Intra-frame Prediction

Intra-frame prediction supports 33 directional (or angular) prediction modes, as well as

one DC and one planar mode (figure 2.6). Directional modes predict the current PU by

performing an extrapolation on samples from adjacent already encoded PUs [2]. Figure 2.7

showns an example for the directional mode 21.

Planar prediction and DC prediction can be used as an alternative. Planar prediction

generates the prediction for the current PU by a weighted average of four reference samples.

DC mode, on the other hand, performs its prediction calculating the mean of its reference

samples.
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Figure 2.6: Intra-frame prediction modes (source: [2])

Figure 2.7: Example of the directional mode 21 (adapted from: [2])

Testing all 35 available modes would find the best prediction mode for intra-prediction.

However, doing so requires a lot of computational effort which would be highly inefficient.

Instead, several algorithms have been developed to decrease the number of prediction modes

that need to be tested. For instance, the authors of [12] propose a solution in which the

prediction modes are chosen based on edge information of the current PU.

2.2.3 Inter-frame Prediction

Inter-frame prediction, as mentioned before, is based on motion compensated temporal pre-

diction, which requires a previous motion estimation step. This is one of the most important

encoding tools in any video codec as it is the one responsible for achieving high bitrate

savings. However, it requires a lot of computational effort. In HEVC, with the upgraded,

more complex coding structures, inter-frame leads to even higher computational workloads

compared to H.264/AVC [3].

Block-based motion estimation defines a search area in the reference frame, usually cen-
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tered around the same position of the unit that’s being processed in the current frame[13].

Then it searches for the block that best matches the current one, within the search area.

With the best match found, a motion vector is defined poiting from it towards the posi-

tion of the current block. Limiting the search area leads to less comparisons needed to be

performed and thus better computational efficiency. The HEVC reference software, HM,

uses two different approaches for block matching: Full Search (FS) and Enhanced Test Zone

Search (ETZS) [14].

Figure 2.8: Motion Estimation (source: [4])

Motion estimation is done at the PU level. For each PU one of three prediction modes is

selected: inter, merge or skip. For inter mode, Advanced Motion Vector Prediction is used.

This method selects the best motion vector from a candidate list to predict the motion

vector of the current PU [5]. This list contains two spatial motion candidates and one

temporal candidate (figure 2.9). This way only the difference between the current MV and

the predicted MV is encoded.

Figure 2.9: Illustration of the AMVP candidates (source [5].)
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For merge mode the MVs are directly inherited from temporally or spatially neighbouring

PUs. Skip mode is treated as a special case of the merge mode but it works in a similar way.

It is important to note that more than one reference frame can be used for inter prediction.

The reference frames are tracked using two lists, List 0 and List 1. List 0 is used for P-frames,

while B-frames use both List 0 and List 1 [15]. For each PU, one MV is defined for P-frames

and two MVs for B-frames.

2.2.4 Transform and Quantization

The result of the intra or inter-frame prediction is a residual frame. This residual will be the

input for the transform module. HEVC uses an integer approximation of the 2D Discrete

Cosine Transform to generate coefficients that will be quantized afterwards. The HEVC

standard also uses an integer approximation of the 2D Discrete Sine Transform (DST) in

4x4 intra-predicted TUs [2].

The quantization process depends on a parameter set before the encoding starts, the

Quantization Parameter (QP), which can be changed during encoding to, for example, con-

trol the bitrate [16]. Depending on its value, more or less information is discarded during

the transform coefficient quantization. The QP varies between 0 and 51 and an increase by

6 means double the quantization step size. The higher its value, the more information is lost

during the quantization step.

2.2.5 Entropy Coding

Entropy coding is a form of lossless compression used at the last stage of video encoding

after the video has been reduced to a series of syntax elements [17]. For entropy encoding,

the HEVC standard adopts the Context Adaptive Binary Arithmetic Coding (CABAC) as

its main tool. The core algorithm of CABAC, in relation to the previous standard, remains

unchanged [2]. The CABAC involves three main functions: binarization, context modeling

and arithmetic coding.

Binarization maps the syntax elements to binary symbols. Several different binarization

processes are used in HEVC, including Unary (U), Truncated Unary (TU), kth-order Exp-

Golomb (EGk), and Fixed Length (FL) [17]. The process selection is based on the type of

syntax element. Context modeling is used in terms of estimation of the probability of the

binary symbols resulting from binarization. This dynamic probability estimation is a key

factor to the efficiency of the CABAC coding [2]. The context model for each binary symbol
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can be chosen based on several properties, like type of syntax element or information on

luma/chroma. The context can be switched after each symbol. HEVC uses an improved

probability update method from H.264/AVC [17]. Arithmetic coding efficiently maps the

binary symbols to bits, according to the estimated probabilities.

2.2.6 In-Loop Filters

HEVC uses two filters: the deblocking filter (DBF) and a Sample Addaptive Offset (SAO)

filter. The DBF is applied at the block boundaries, in order to reduce visual artifacts resulting

from block-based coding. It’s similar to the DBF used in the H.264/AVC standard. The

SAO filter, however, is new to HEVC. It modifies the decoded samples by conditionally

adding an offset value based on values in look-up tables transmitted by the encoder.

2.3 Parallel processing oriented tools

Encoding HD and UHD video requires a lot of computational power and time, due to the

large amount of data to be processed. To face that problem, current multimedia processing

devices are progressively adopting architectures and algorithmic solutions that enable parallel

processing.

The HEVC standard includes tools to support parallel-oriented processing, for both en-

coding and decoding. These tools allow for different regions of a frame to be processed

independently.

Slices, Tiles and Wavefront Parallel Processing (WPP) are the parallel processing func-

tions proposed by the standard. This chapter will describe these tools and address their

advantages and problems.

2.3.1 Slices

Slices are data structures that define groups of CTUs, that can be coded and reconstructed

independently [2], thus allowing parallel simultaneous encoding and decoding. They contain

the CTUs in raster scan order. A slice can either contain a section of a picture (figure 2.10)

or the entire picture. By default, there is always one slice.

There are three types of slices: I-slices, P-slices and B-slices. I-slices are coded using

intra-prediction only. P-slices contain inter encoded CTUs with motion compensated pre-

diction from one reference frame, while B-slices contain inter encoded CTUs with motion
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compensated prediction from two reference pictures. Since a frame is formed by one or more

slices, some restrictions apply. An I-frame can only contain I-slices, while a P-frame or a

B-frame can contain combinations of all slice types.

Slices are self-contained, which means they can be parsed from the bitstream and their

samples can be decoded without needing any additional data from other slices in the same

picture. Their main purpose is allowing resynchronization in case of data loss and packeti-

zation.

Figure 2.10: An example of a picture divided in various slices (source: [6])

Because of how they are formed, slices usually form regions with a lower level of spatial

correlation within the picture, resulting in a high losses of coding efficiency. Additionally

each slice has an associated slice header which adds some overhead, reducing the encoding

efficiency.

2.3.2 Wavefront Parallel Processing (WPP)

When WPP is enabled, each slice is divided into rows of CTUs [7]. The first row is encoded

in a normal way and the next row starts as soon as at least two CTUs of the previous one

have been encoded. This repeats for all subsequent rows (figure 2.11). Also, WPP does not

change the regular raster scan order. Because dependencies are not broken the rate-distortion

loss of a WPP bitstream is small compared to a regular bitstream [7].

However, due to data dependencies, it’s not possible to start or finish processing several

CTU rows at the same time. This introduces some parallization inneficiencies.

There’s enhancement of WPP called Overlapped Wavefront (OWF) [7], which mitigates

some parallezation inefficiencies of the former. In this enhancement, when a CTU row has

finished being processed and no more unprocessed rows are available, the processing of the

next picture can start immediately instead of having to wait until the remaining rows are
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Figure 2.11: Wavefront Parallel Processing (adapted from [7])

finished (figure 2.12). For this technique to work, some constraints have to be applied to

motion vectors, such as ensuring that all reference pictures are available and limiting the

maximum vertical lenght of the MVs.

Figure 2.12: Representation of OWF (adapted from [7])

Overall WPP has the lowest amount of coding losses of all parallel-oriented tools [7].

Additionally, it doesn’t introduce visual artifacts at the boundaries. However, due to large

dependence of data between the various rows, it’s hard to expect large time savings when

using WPP [8]. WPP has low parallel efficiency, directly related to data dependencies. The

reason for that is since CTU rows have to wait for at least two CTUs from the previous rows

to finish, the processing units they are asigned to will be in idle state during that time.

2.3.3 Tiles

Tiles split the picture into rectangular regions. They form independently encodable and

decodable partitions, but require adding additional header information [2]. A slice can

contain multiple tiles (mostly when the slice represents the entire picture). Just like slices,

Tiles are independent. Thus, they don’t require any communication between the processors
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for CTU endoding and decoding. This means that all coding dependencies, such as motion

vectors, entropy coding context and intra-frame neighbouring samples are broken at the

boundaries [6]. The filtering stage, however, can be performed across the tile boundaries to

reduce visual artifacts [18]. Slices and tiles can coexist but if a frame is divided into multiple

slices, each slice must belong to a unique tile. In other words, a slice boundary cannot cross

a tile boundary [2].

Figure 2.13: A picture divided into tiles (source: [6])

Unlike slices, boundaries of tiles alter the encoding order of CTUs which gives a bit more

felixibility in terms of partitioning, particulary since it allows defining regions of interest

[19]. As a result, the correlation between pixels in a tile can be higher when compared to

slices. In addition, there’s no need to encode header information for each individual tile,

because this information is already contained within the slice header. [6]. For example, for

the case of one slice (the entire frame) divided into four tiles, only one header is encoded

that contains all information on the four tiles.

The usage of tiles does not cause a big loss of coding efficiency compared to, for example,

slices [20]. Additionally having no dependencies between tiles allows them to be processed

independently. Therefore, tiles present characteristics to be an effective tool to explore

parallel solutions and, for this reason, will be the focus of this work.
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3 Parallel Tools of HEVC - the load bal-

ancing problem

With the increasing availability of multi-core devices and the widespread adoption of

high and ultra-high resolution video, not to mention 3D/multiview video, the potential of

parallel video encoding should be considered.

As seen in chapter 2, HEVC includes tools to actively support the use of parallel pro-

cessing: slices, tiles and WPP. By distributing the workload of the HEVC encoder among

the various available processing units, the total encoding time can be greatly reduced which

overall can improve the power efficiency [21]. On the other hand, parallezation comes with

some constraints, namely the risks of video quality losses and larger energy consumption if

the parallelization of the encoding is not properly designed.

One important issue when using the parallel tools of HEVC is the distribution of the

workload in a selective manner among multiple processing cores. If all cores are balanced in

terms of workload, all of them take a similar amount of time to complete their tasks which is

crucial to fulfil the imposed deadlines and avoid problems such as chip failure due to uneven

heat dissipation.

3.1 Workload Unbalance with Tiles

Although HEVC supports other parallel encoding tools, this work will focus on the use of

tiles, as they provide more flexibility in adjusting the load among processing units. Tiles

divide a frame into rectangular partitions that can be encoded independently. It is possible

to vary the number of tiles as well as the position of their boundaries.

The simpler tile configuration uses tiles of the same size, i.e., a configuration in which
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all tiles contain the same number of CTUs. Theoretically, this would lead to a balance in

encoding complexity as all tiles would have the same number of blocks to be processed.

However, most of the time, that does not happen as it is common for a video sequence to

experience a lot of intra-frame variation in its content, causing some areas of the frame to be

more complex to encode than others. For example, a certain part of a video frame contains

an action scene with more movement. This results in the frame encoding complexity not

being uniformly distributed.

For a better illustration of the problem, three HD video sequences, shown in table 3.1,

were encoded using the HM 16.0 reference software, with a QP of 32 and the Low Delay P

configuration. Four uniformly spaced tiles were defined. Note that due to the resulution of

the videos used, the tile configuration is not exactly uniform. For each frame, there are 30

CTUs per row and 17 CTUs per column. Since 17 is an odd number, it is not possible for

all tiles to have the same number of CTUs. Therefore, the uniform tile configuration used in

this case places the boundaries on position 15,8 (figure 3.1). The images of the video frames,

with the respective tile configuration, were obtained using the software Gitl HEVC Analyser

[22].

Sequence Resolution Frame count FPS

BasketballDrive 1920x1080 500 50

Jockey 1920x1080 600 120

ParkScene 1920x1080 240 24

Table 3.1: Video sequences used to study the problem related to uniform tiles.

Figure 3.1: Video frame divided into four uniformly-spaced tiles
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It’s important to note that the HEVC reference software, unlike the actual HEVC en-

coder, is not optimized for real-time applications. That is the reason why the resulting

encoding times in all simulations are given in seconds. However, it reflects the encoder’s

behavior if it was applied in an optimized implementation.

As stated before, frames of a video sequence can experience an uneven encoding com-

plexity distribution. To illustrate this problem, figure 3.2 shows a video frame from the

sequence BasketballDrive, divided into four uniformly-spaced tiles, and the encoding times

of its CTUs.

Figure 3.2: 6th frame of the sequence BasketballDrive with a uniformly-spaced tile configu-

ration (top) and the respective encoding times (in seconds) for each CTU (bottom).

By analyzing the figure, it is evident that the left area of the frame contains more CTUs

with higher encoding times, whereas the right side has low encoding times on the majority

of its CTUs. From this analyis it is safe to assume that tiles 1 and 3 (top left and bottom

left, respectively) will take longer to encode compared to tiles 2 and 3 (top right and bottom

right, respectively). Table 3.2 summarizes the distribution of encoding complexities for the
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three considered video sequences. The total encoding time for a tile is calculated by the sum

of the encoding times of each CTU contained in it.

Sequence Tile Encoding Time Total (seconds) Complexity %

1 23.26 25.4

BasketballDrive 2 18.09 19.7

(6th frame) 3 30.00 32.7

4 20.36 22.2

1 16.27 22.8

Jockey 2 18.80 26.4

(6th frame) 3 16.99 23.8

4 19.27 27.0

1 18.53 26.1

ParkScene 2 16.41 23.1

(6th frame) 3 19.64 27.6

4 16.44 23.2

Table 3.2: Summary of the encoding complexity distribution

From the observation of the presented values, it is evident that the encoding complexity

is not uniformly distributed. In the first sequence, tile 3 represents approximately 33 % of

the total encoding complexity of the frame, while tile 2 only represents about 20 %. For the

second sequence, tiles 2 and 4. For the third sequence, tiles 1 and 3.

The analysis above refers to only one frame. For a better overview of the described

problem, the analysis will be expanded. The graphics in figure 3.3 represent the encoding

times of each tile, for the first 100 frames of each considered sequence. The theoretical ideal

time for each tile is represented too, which is calculated by dividing the total time of the

respective frame by four.
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Figure 3.3: Encoding times per tile for the first 100 frames

The graphics show that in all three sequences, the encoding times deviate from the

theoretical ideal time. This deviation is significant for the sequence BasketballDrive, with

tile 3 having a difference of approximately 10 seconds from the ideal time on frame 40,

25.83 seconds. For the sequences Jockey and ParkScene the deviation from the ideal time

is noticeable too. To complement this data, figure 3.4 shows the encoding time distribution

per tile, in terms of percentage, for the first 100 frames of each sequence.
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Figure 3.4: Encoding complexity distribution per tile

If we assume that each tile is assigned to a single processing unit, the load distribution

using a tile configuration with same-sized tiles is not optimal. For instance, for the sequence

BasketballDrive, the processing units assigned to tiles 2 and 4 would experience a lot of idle

time, which equals wasted resources and longer processing times.

The experimental results presented in this section show that uniformly spaced tiles would

lead to less than optimal results for certain video sequences. Therefore it’s important to use

an adaptive tile size adjustment method that ensures an even computational load distribution

among the processing units.
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3.2 Related Work

Researchers have been studying alternatives to better use parallel tools, such as tiles, to

obtain a better workload balance. Several solutions have been proposed by various authors.

In [8], the authors propose a load-balancing method, that adjusts the number of CTUs

per slice or tile, based on estimates of the complexity of prediction modes. The model used

considers the normalized computational complexities, listed in table 3.3 based on the CU

sizes and prediction modes used.

CU size Merge Inter Intra

64x64 109 760 52

32x32 42 280 16

16x16 9 71 3

8x8 2 19 1

Table 3.3: Workload factors for the complexity estimation model (source [8] ).

The complexities listed are used to estimated the CTU complexities according to equation

3.1.
CCi(l) =

∑
S

∑
M CEM(s,m)× CHK(s,m|l)

S = {s|64× 64, 32× 32, 16× 16, 8× 8}

M = {m|MERGE, INTER, INTRA}

CHK(s,m|l) =

1 if for l, the selected s and m apply

0 otherwise

(3.1)

CC(l) represents the predicted complexity of the l-th CTU. CEM(s,m) is the workload

factor of the CTU based on its size, s, and the prediction mode, m. The number of CTUs

assigned to each slice or tile is then adjusted to evenly distribute the total encoding com-

plexity. This algorithm obtained an average speed-up, in relation to a uniform partition,

of 3.81% (maximum 11.48% and minimum of -0.67%) for tiles and an average of 12.05%

(maximum 19.70% and minimum 1.33%) for slices.

The work described in [21] proposes a novel software architecture with a different ap-

proach. Instead of adjusting the tile sizes, it controls the workload of each one. Given some

definitions by the user, the software automatically alters some parameters of the encoder in

order to balance each tile’s workload. Their goal, however, is in terms of power savings and

not specifically optimizing the parallelization speed-up.
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In [4] an Adaptive Tiling Algorithm for the HEVC standard is proposed. The main goal

here is to reduce the encoding losses due to the use of tiles. The work automatically adjusts

the tiles’ boundaries to break context as little as possible. This proposed solution tries to

minimize quality loss at the cost of a smaller speed-up gain. For a 2x2 tile partition scheme

and four processing units, the algorithm only managed to get speed-ups of roughly 2, which

is very low, well below the theoretical maximum of 4.

An additional study was presented in the same work, which related the number of tiles

used with the impact on coding efficiency. The conclusion was that the higher the number of

tiles, the more the loss in coding efficiency (see Table 3.4). This is due to the larger number

of broken dependencies that happen when using more tiles. Results showed losses in coding

efficiency up to 5.45% for Class A videos and up to 6.12% for Class B videos. Therefore it’s

important to keep the number of tiles to a minimum in order to preserve coding efficiency.

Class Nr. of Tiles (rows x cols) Efficiency Loss (%)

A 2x2 0.5

2x4 0.8

4x4 1.3

B 2x2 0.5

2x4 1.0

4x4 1.9

Table 3.4: Encoding efficiency losses for various tile sizes. Values taken from [4].

Considering the results of these previous state-of-the-art works, the work described in

this thesis if focused on the use of tiles with the 2x2 configuration (4 tiles). This choice

minimizes the coding efficiency losses and is the most simple tile partition to optimize. The

next two chapters will describe in detail a proposed solution for this problem.

23



4 Tile Encoding Computational Complex-

ity Estimation

When using tiles, they have to be defined prior to encoding a frame. However, since the

encoding complexities of the CTUs in a frame are unknown before the actual encoding, it

wouldn’t be possible to correctly define the tile boundaries to fulfil the goal of balancing the

workload among each tile.

To solve this problem, the encoding complexity has to be estimated. Some visual infor-

mation dependent variables were studied, to understand if they could be used to estimate

the encoding complexity of the CTUs. In this section, we use the Pearson’s linear correlation

coefficient, defined in equation 4.1, to calculate the correlation between the studied variables.

rxy =

∑n
i=1(xi − x̄)(yi − ȳ)√∑n

i=1(xi − x̄)2
√∑n

i=1(yi − ȳ)2
(4.1)

4.1 Spatiotemporal Index

The Spatiotemporal Index is comprised of two factors: the Spatial Index (SI) and the Tem-

poral Index (TI) [23]. The SI measures the amount of spatial detail of a picture, while the

TI measures the amount of temporal changes in a sequence of pictures. The Spatial Index is

computed using the Sobel Filter. Each frame (luma plane) is filtered with the Sobel Filter

and, afterwards, the standard deviation is calculated over the pixels of the filtered frame.

The maximum value of this standard deviation measures the spatial detail of the scene.

Refer to equation 4.2

SI = max(stdspace[Sobel(Fn)]) (4.2)

where Fn represents the nth frame of the sequence.
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The Temporal Index is based on the inter-frame difference, which is basically the dif-

ference between pixel values with the same spatial location but in sucessive frames. TI is

calculated by computing the standard deviation of the inter-frame differences, as shown in

equations 4.3 and 4.4

TI = max(stdspace[Mn(i, j)]) (4.3)

where

Mn(i, j) = Fn(i, j)− Fn−1(i, j) (4.4)

Fn(i, j) represents the pixel located on the coordinates i, j of frame n.

An existing script [24] was modified in order to calculate the values for SI and TI at CTU

level. SICTU represents the SI value of a CTU and is computed using an equation adapted

from 4.2:

SICTU = max(stdCTU [Sobel(Fn)]) (4.5)

The sobel filter is still applied to the whole frame, but the standard deviation is calculated

individually for each CTU. This is similar for the TI, as the pixel differences are calculated

for the whole frame but the standard deviation is done for each CTU. TICTU represents the

TI of a CTU and its equation, adapted from 4.3, is the following:

TICTU = max(stdCTU [Mn(i, j)]) (4.6)

where

Mn(i, j) = Fn(i, j)− Fn−1(i, j) (4.7)

In order to evaluate the viability of the SI and TI in estimating the encoding complexity,

some studies had to be carried out. On a software-level, the best indicator of the encoding

complexity is the elapsed encoding time. Therefore, if the SI and TI are correlated to

the encoding times, this means that they can be used for the estimation of the encoding

complexities.

For the following experiments, the same video sequences used in chapter 3, presented in

table 3.1 were used, under the same encoding conditions as described in that chapter. The

first experiment consisted of studying the relationship between SI and TI and the encoding

times of a single frame. Figure 4.1 shows the encoding times, as well as the SI and TI values

per CTU of the sixth frame of the sequence BasketballDrive. At first sight it is evident that

both SI and TI aren’t directly related to the encoding times. CTUs of the frame with higher

values of SI/TI don’t match the CTUs with higher encoding times.
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Figure 4.1: Encoding times, SI and TI values for the sixth frame of BasketballDrive

Table 4.1 shows the correlation coefficients between encoding times and the SI/TI values

for the sixth frame of each used test sequence. It confirms the low correlation between

encoding times and SI/TI, with values not higher than 0.3.
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Sequence Correlation

(Sixth frame) SI TI

BasketballDrive 0.041 0.124

Jockey 0.240 0.290

ParkScene -0.122 -0.025

Table 4.1: Correlation coefficients between encoding times and SI/TI for the test sequences

(sixth frame)

For a more extended analysis, the second experiment consisted in repeating the previous

experiment for the first 100 frames of each sequence. The correlation coefficients between

encoding times and the SI/TI values are presented in table 4.2.

Sequence Correlation

100 frames SI TI

BasketballDrive 0.2135 0.419

Jockey 0.318 0.355

ParkScene 0.047 0.17

Table 4.2: Correlation coefficients between encoding times and SI/TI for the test sequences

(first 100 frames)

In this case the correlation is higher. However the correlation coefficients are below 0.5,

which means the correlation between encoding times and SI/TI is stil low. From these

experiments we can conclude that the Spatiotemporal Index is a poor factor to estimate the

encoding complexity.

4.2 Encoding Times and Bitrate

As mentioned before, at software-level, the elapsed time is a good indicator of the encoding

complexity. Encoding times of already encoded frames are accessible. Therefore, the encod-

ing times of previous encoded frames can possibly be used to estimate the encoding times

of the current frame.

To evaluate the potential of using encoding times of previous frames as a way to estimate

the encoding complexity, the correlation between encoding times of successive frames was
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studied. The same test sequences as in the previous section, under the same encoding

conditions, were used. Table shows the correlation between encoding times of the CTUs

in the 8th frame of each sequence and the co-located CTUs in the respective 6th and 7th

frames.

Sequence Correlation

(8th Frame) 6th Frame 7th Frame

BasketballDrive 0.89 0.94

Jockey 0.89 0.94

ParkScene 0.83 0.90

Table 4.3: Correlation coefficients between encoding times of CTUs in the 8th frame and

the co-located CTUs in the 6th and 7th frames for the test sequences

.

The results presented show that the correlation between encoding times of co-located

CTUs in successive frames is very high. Between the 7th and 8th frame the correlation

coefficient is above 0.9, while between the 6th and 8th frame it is slightly below 0.9. It is

safe to say that the encoding times from previously encoded frames can be used for estimating

the encoding complexity.

The bitrate is another potential indicator for estimating the CTU complexities. Each

CTU of a frame requires a certain amount of bits to be encoded. Table 4.4 shows, for each

sequence, the correlation coefficient between the amount of bits required to encode each

CTU of the 6th frame and their respective encoding times.

Sequence Correlation

(6th frame)

BasketballDrive 0.771

Jockey 0.84

ParkScene 0.77

Table 4.4: Correlation coefficients between bitrate and encoding times of CTUs in the 6th

frame for the test sequences

The results show that the correlation between encoding times and the amount of bits

used to encode a CTU is high. Since the encoding times, as seen by the previous results,
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can be used to estimate the encoding complexity and the bitrate is highly correlated to the

encoding times, then both can be used for the same complexity estimation purpose.

The results presented in this chapter show that the encoding times and the bitrate from

already encoded frames can be used to estimate the encoding complexity, while the Spa-

tiotemporal Index (SI and TI) is not a good way to do so. The next chapter will describe

in detail the various methods used for complexity estimation as well as the proposed load-

balancing method using tiles.
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5 Load Balancing through Tile Geome-

try Adjustment

When distributing the processing of tiles among processors, to be encoded in parallel,

the workload is an important factor to consider. If it’s well distributed among the processing

units used, this will translate into better efficiency in terms of speed-up.

To solve the problem of load balance when using parallelism tools in HEVC, such as

Tiles, a method is proposed that dynamically adjusts the geometry of the tiles. The goal is

to change the tile boundaries in order to obtain a better load distribution per tile during the

encoding process. In case of each tile being assigned to a different processor to be encoded,

this prevents some processors from being overloaded.

The method presented in this work comprises two steps: Complexity Estimation and Tile

Geometry Adjustment. The first step estimates the encoding complexities of the frame to

be encoded. Then the tile geometry is adjusted according to the estimated values. Figure

5.1 presents a simple diagram of our proposed method.

Complexity 
Estimation

Tile Geometry 
Adjustment

HEVC Encoder
Video Bitstream

Figure 5.1: The proposed method.
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5.1 CTU Encoding Complexity Estimation

As seen in the previous chapter, the encoding times and bitrate of previously encoded frames

can be used to estimate the encoding complexity of the current frame CTUs. In this section

four methods are presented, based these variables, to estimate the encoding complexities of

each CTU in a frame. They are described in more detail below.

5.1.1 Total Encoding Time

In this method each CTU’s complexity is estimated directly from the sum of the encoding

times of co-located CTUs in all frames of the previously encoded GOP, as shown in equation

5.1.

Ĉm,n,t = Tm,n,t−1 + Tm,n,t−2 + ...+ Tm,n,t−G (5.1)

Ĉm,n,t represents the estimated complexity of the CTU on position m,n, Tm,n,t is the com-

plexity of the CTU located in the same position on frame in the instant t and G is the GOP

size.

The purpose of this method is to estimate the complexity based on an entire GOP, as this

takes in consideration the evolution of the encoding complexity. Therefore, the adjustment

of the tile geometry is performed at the start of each new GOP, except for the first one since

there are no previously encoded frames. For a more simple presentation, the name of this

method is shortened as TET.

5.1.2 Linear Combination of Encoding Times

This method estimates the complexity of each CTU by performing a weighted linear combi-

nation of the encoding times of the co-located CTUs in the two previously encoded frames

(5.2).

Ĉm,n,t = β1Tm,n,t−1 + β2Tm,n,t−2 (5.2)

β1 and β2 are calculated according to equation 5.3.

β1 =
|∆Tm,n,t−1|

|∆Tm,n,t−1|+ |∆Tm,n,t−2|
; β2 = 1− β1 (5.3)

where

∆Tm,n,t−1 = Tm,n,t−1 − Tm,n,t−2
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∆Tm,n,t−2 = Tm,n,t−2 − Tm,n,t−3

β1 and β2 determine which of the previous two frames has more weight in the estimation.

For example, if ∆Tm,n,t−1 < ∆Tm,n,t−2 then β1 < β2, meaning the frame on t − 1 will have

a greater weight on the complexity estimation that the frame on t− 2. Only B or P frames

can be used for the estimation process, I-frames are ignored due to the complexities being

significantly different.

This method can be applied either at the start of each GOP (except the first one) or

for each frame, except the first three B or P frames since this estimation process requires

three previously encoded frames to work. This mmethod is named Linear Combination

of Encoding Times per GOP (LCTG) if applied at the start of each GOP, and Linear

Combination of Encoding Times per Frame (LCTF) if applied after each frame.

5.1.3 Linear Combination of Bits

This approach is similar to the previous one, except that it performs the estimation based on

the amount of bits used to encode each CTU instead of the encoding times. While encoding

times can vary slightly, depending on the machine the software runs on, the number of bits

used to encode a CTU does not depend on that. The equations are shown below (5.4 and

5.5)

Ĉm,n,t = β1Bm,n,t−1 + β2Bm,n,t−2 (5.4)

β1 =
|∆Bm,n,t−1|

|∆Bm,n,t−1|+ |∆Bm,n,t−2|
; β2 = 1− β1 (5.5)

where

∆Bm,n,t−1 = Bm,n,t−1 −Bm,n,t−2

∆Bm,n,t−2 = Bm,n,t−2 −Bm,n,t−3

Bm,n,t is the amount of bits used to encode the CTU located at coordinates m,n on a

frame at instant t. The formula was adapted from the previous method because, as seen

before, the correlation between the bits used to encode a CTU and their respective encoding

time is high.

Simiar to the Linear Combination of Encoding Times, only B or P-frames can be used

for the estimation process. This method can be applied either at the start of each GOP

(except the first one) or for each frame, except the first three B or P frames. This method

is named Linear Combination of Bits per GOP (LCBG) if applied at the start of each
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GOP, and Linear Combination of Bits per Frame (LCBF) if applied at the start of

each frame.

5.1.4 Simple Linear

The extrapolation approach assumes a linear evolution of the CTU complexities. Having the

data from the co-located CTUs from the previous two frames, the estimation is performed

applying a linear extrapolation as seen in equation 5.6.

Ĉm,n,t = Tm,n,t−1 + (Tm,n,t−1 − Tm,n,t−2) = 2.Tm,n,t−1 − Tm,n,t−2 (5.6)

This method is always applied for each frame, except the first two P or B frames since

this method requires at least two encoded frames. Once again, I frames cannot be used for

the estimation. For a more simple presentation, the name is shortened as SL.

In the next section, the actual tile adjustment algorithm will be described in detail.

5.2 Tile Geometry Adjustment

This section proposes an algorithm to automatically ajust the tile boundaries to balance

the encoding complexity among the four tiles. Being a 2x2 tile configuration, there are two

boundaries, one horizontal and one vertical, and their intersection forms a point (figure 5.2).

W and H represent the width and height, respectively, in CTUs of the video frame.
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Figure 5.2: The tile boundaries and their intersection point.

The algorithm comprises these four steps:

- selection of a starting point for the tile configuration;

- define an additional set of points. These points are called candidate points;

- test all tile configurations that are defined with the starting point and the candidate

points;

- select the point that guarantees the optimal tile configuration.

Figure 5.3 shows the flowchart for the algorithm, that will be described in more detail

afterwards.
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Select Initial Point
Define candidate 

points

Define a temporary 
tile configuration

All candidate points 
tested?
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Apply Tile 

Configuration

Evaluate temporary 
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Figure 5.3: Flowchart of the algorithm for adjusting the tile geometry.

Following the complexity estimation step, the goal is to adjust the tile configuration so

that the total encoding complexity of all CTUs within a tile is approximately equal to 25%

of the encoding complexity of the whole frame

To find the optimal positions for the new tile boundaries, the most accurate method

would do an exaustive search of all possible interception points. However, in order to limit

the number of points to check, an alternate method is proposed. For the first step, an

initial point for the tile boundaries is selected. The selection is done so that the sum of all

estimated CTU complexities of all columns on the left of the point is similar to the sum of

the columns on the right. In a similar way, the sum of all rows above the point has to be

similar to the sum of all rows below it. Considering colSm to be the sum of the estimated

CTU complexities of column m and rowSn to be the sum of the estimated CTU complexities

of row n, the goal is to select a point located on column i and row j, so that the conditions

in equation 5.7 occur.

∑i
m=1 colSm ≈

∑W
m=i+1 colSm

∑j
n=1 rowSn ≈

∑H
m=j+1 rowSn

(5.7)
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For a more simple presentation, consider

i∑
m=1

colSm = LeftSumi

W∑
m=i+1

colSm = RighSumi

j∑
n=1

rowSn = TopSumj

H∑
m=j+1

rowSn = BottomSumj

Starting with i = 1 and j = 1, in each iteration the algorithm calculates the difference

between LeftSumi and RightSumi, as well as the difference between TopSum BottomSum.

Refer to figure 5.4 and equation 5.8.

Figure 5.4: Illustration of the initial point selection.

Dc(i) = |LeftSumi −RightSumi|

Dr(j) = |TopSumj −BottomSumj|
(5.8)

The algorithm stops when Dc(i + 1) ≥ Dc(i) and Dr(j + 1) ≥ Dr(j). The values of i

and j that ensure this, form the initial point. This process is described in the pseudo-code

shown in Algorithm 1.

From the initial point, a set of candidate points is defined. Those candidate points

are neighbouring points located around the initial point (figure 5.5). The algorithm then

proceeds to evaluate the candidate points as well as the initial point itself.
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Algorithm 1 Initial Point Selection

Input: Width W , Height H, estimated CTU complexities Ĉm,n

for each column m and row n ∈ Ĉm,n do

colSm ← sum of CTU complexities of column m

rowSn ← sum of CTU complexities of row n

end for

i← 1

j ← 1

colDiff ← |
∑
colSi −

∑W
m=i+1 colSm|

rowDiff ← |
∑
rowSj −

∑H
n=j+1 rowSn|

minDiff ← false

while i < W and minDiff == false do

i← i+ 1

Dc ← |
∑i

m=1 colSm −
∑W

m=i+1 colSm|

if Dc ≥ colDiff then

minDiff ← true

else

colDiff ← Dc

end if

end whileminDiff ← false

while j < H and minDiff == false do

j ← j + 1

Dr ← |
∑j

n=1 rowSn −
∑W

n=j+1 rowSn|

if Dr ≥ rowDiff then

minDiff ← true

else

rowDiff ← Dr

end if

end while

return i, j
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Each point (initial and candidates) represent one possibility for the interception of the

new tile boundaries. The goal is to choose the optimal point among them, which is the one

that grants the better distribution of the encoding complexity among all tiles. In an ideal

situation, each tile would have 25% of the frame’s total encoding complexity. Therefore, the

algorithm creates, for each point, a temporary tile division and evaluates how far from the

ideal value the total encoding times for each tile are (equations 5.9, 5.10 and 5.11).

Figure 5.5: The initial point and the resulting candidate points for the new tile boundaries

DN(P ) = |TLN −
Ĉtot

4
|, N = 1, 2, 3, 4 (5.9)

TLN =
∑

c∈T ileN

Ĉ(c) (5.10)

DTot(P ) =
4∑

N=1

DN(P ) (5.11)

TLN represents the encoding complexity of the tile N , Ĉ(c) represents the estimated en-

coding complexity of the CTU c, Ĉtot is the sum of all estimated CTU complexities and P

represents the point that is used for the temporary tile division. This step is repeated for

each point described above. The optimal point is the one with the lowest value for DTot, or

as shown in equation 5.12.

Popt = argmin
P
DTot(P ) (5.12)

Popt defines the point where the new tile boundaries will intercept. This will be the

configuration for the next frame or GOP. This process is described in Algorithm 2.
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Algorithm 2 Optimal Point selection

Input: Estimated CTUs Ĉi,j, Complexity total Ĉtot0, Candidate Points P

for each candidate point, P do

TLN ← define tiles TL1...4 with boundaries passing through P

DN ← calculate |TLN − Ĉtot

4
|, N = 1, 2, 3, 4

if sum(DN) < prevSum then

Popt = P

prevSum = sum(DN)

end if

end for

return Popt

The optimizing partitioning is then used by the encoder to define the new tile configura-

tion. If the new optimal partitioning is the same as the previous one, in other words, if the

tile configuration remains the same, no values are transmitted to the encoder. This prevents

an unecessary addition of header information. The next chapter will present the results and

analysis of this algorithm.
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6 Experimental Results

All experiments described next were conducted on a clustered computer based on Intel

XeonE5520 (2.27 GHz) processors running on Windows Server 2008 HPC operating system.

For the experimental setup, the algorithm described in chapter 5 was implemented in the HM

16.0 reference software. Then, for each proposed complexity estimation method, a modified

version of the software was created in order to test the method. All video sequences used are

class B (1920x1080), since the use of parallelism is only beneficial on high definition videos

as those usually require a lot of processing time and power. The Low Delay P encoding

configuration was chosen, as it guarantees that the encoding order of the frames is the same

as the playback order. No Class A videos (2560x1600) were used because the Low-Delay

configuration does not support it [25].

Sequence Name Frame Count FPS

BasketballDrive 500 50

BQTerrace 600 60

Cactus 500 50

Jockey 600 120

Kimono 240 24

ParkScene 240 24

Table 6.1: Used video sequences

Each video sequence was encoded using four tiles in a 2x2 arrangement. For the initial

configuration we use equally-sized tiles. All videos were then encoded, using the configura-

tion suggested by the Common Test Conditions [3]. For parallelism-evaluation purposes, it

is assumed that each tile is assigned to a single processing unit. To evaluate how well the

algorithm proposed in the previous chapter performs, we will analyse it from three different
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perspectives: effectiveness in load-balancing, the estimated parallel speed up and the im-

pact in coding efficiency. The results are then compared to existing works described in the

literature.

6.1 Effectiveness of the proposed Load-Balancing Algo-

rithm

The proposed algorithm automatically adjust tiles to aim for a better workload distribution.

For an efficient distribuition of workload, as stated before, the main goal is for tiles to

have similar encoding complexities to maximize the parallel efficiency. The ideal value would

be 25% of the total frame time per tile. To evaluate how distant each tile is from that value,

when adjusted using the proposed algorithm, we use theMean Absolute Difference from

the Ideal Time (MADIT), which is defined in equation 6.1.

MADIT =
1

NF

NF∑
f=1

4∑
N=1

|TN,f −
FTf

4
| (6.1)

NF is the number of frames of the video sequence, TN,F the time used to encode tile N of

frame f and FTf is the total time used to encode frame f . In short, higher values of MADIT

mean worse distribution of the encoding complexity among the tiles and, therefore, less load-

balancing efficiency. Table 6.2 shows the values for the MADIT for various test sequences

(QP=32), using the various methods for complexity estimation described in chapter 5. The

results are compared with the uniform tile partition.

Sequence MADIT (seconds)

LCTG LCTF LCBG LCBF TET SL Uniform

BasketballDrive 6.4057 6.0814 6.4490 6.0545 6.5464 8.6056 17.6234

BQTerrace 4.48 4.39 4.53 4.36 3.76 7.88 3.90

Cactus 8.53 7.69 8.69 7.82 7.95 11.07 13.81

Jockey 5.3088 4.7605 5.3046 4.9764 5.2205 6.8844 9.5922

Kimono 4.4570 4.6235 4.5239 4.7062 4.4245 6.4850 6.1146

ParkScene 6.5515 6.5060 6.9133 6.4969 5.9686 9.4553 7.0617

Table 6.2: MDIT for each test sequence
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From the obtained results we can see that by performing an adjustment of the tile ge-

ometry is, most of the time, more efficient than the uniform tile configuration. The worst

complexity estimation method is clearly the SL method, which has worse results than the

uniform for the BQTerrace, Kimono and the ParkScene sequences and has worse results

than every other complexity estimation method for all sequences.

To better compare with the experiments done in chapter 3 regarding the use of same-sized

tiles, figure 6.1 presents the encoding times per tile, adjusted with the proposed algorithm,

for the test sequences, BasketballDrive.

Figure 6.1: Encoding Times per tile for the first 100 frames of the sequence BasketballDrive.

By observing the graphics, we can conclude that the encoding times for each tile are

close to the ideal value (black line), meaning that the tile geometry adjustment achieves a

better workload balance. Note that the encoding time peaks correspond to frames at the

start of each GOP, as they are encoded with more information than the rest of the frames in

the GOP. Note that only the first frame of the whole sequence is an I-frame, which explains

the low encoding times at the beginning. Figure 6.2 gives additional proof of the better

workload balance for the same sequence. For the graphics of the other test sequences, refer

to Appendix B.
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Figure 6.2: Distribuition of the workload per tile for first 100 frames of the sequence Bas-

ketballDrive.

For a better illustration of the tile adjustment, figure 6.3 represents 3 frames with the

respective adjusted tile boundaries from the sequence BasketballDrive.

Figure 6.3: Adjustment of the tile boundaries for the sequence BasketballDrive for frames 4,

40 and 311.

The first picture, corresponding to frame 4, the boundaries are uniform. This is because

it’s still the beginning of the sequence and thus the configuration is still the initial one.

In the second picture, however, the vertical boundary has shifted towards the left side of

the picture while the horizontal one went slighly down. This is due to the center of the

action being focused more on the left side, making it more complex in terms of encoding. In

the third picture that action scene is more concentrated in the right section, therefore the

boundaries shifted to the right side.

The results obtained show that the proposed algorithm is able to effectively adjust the

tile boundaries to get a better workload balance. However, the effetiveness can be better or

worse depending on the video sequence. Overall, the adjustment of the tile geometry with

the proposed algorithm obtains better results in terms of load-balancing compared to the

use of same-sized tiles.
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6.2 Estimated Parallel Speed Up

As it was shown in the previous section, the proposed algorithm is able to achieve improve-

ments over the uniform tile partition in terms of workload distribution, by dynamically

adjusting the tile geometry. Consequently this will lead to better parallelism results. How-

ever, the HM reference software does not support tools such as multithreading to directly

test and measure the parallel speed-up. Therefore, this has to be done via an estimation.

The Parallel Speed-up, PSU, can be calculated by diving the elapsed time of the encoding

process when run on a single processor, sequentially, by the elapsed time when run on various

processors (equation 6.2)

PSU =
Tsequential
Tparallel

(6.2)

During the video encoding process, only the frame encoding can be done in parallel.

Thus, Tparallel can be divided into ParallelT ime and ExtraT ime as seen in equation 6.3.

PSU =
Tsequential

(ParallelT ime) + (ExtraT ime)
(6.3)

TotalT ime is the elapsed time used to encode the whole video sequentially. ParallelT ime

is the time needed to encode all frames if their processing was done in parallel. Assuming

that all four tiles of a frame begin their encoding at the same time and the next frame

cannot start processing until the whole current frame is encoded, ParallelTime corresponds

to the elapsed time of the frame encoding when done in parallel. This is calculated by only

considering, for each frame, the encoding time of the tile with the largest value for that

frame and then adding them(equation 6.4).

ParallelT ime =
NF∑
f=1

max
N

(TLN,f ), N = 1, 2, 3, 4 (6.4)

NF means Number of Frames and TLN,f is the encoding time of tile N of frame f . Note

that only the frame encoding is done in parallel, the rest of the video encoding process is

always done sequentially. This part is represented by ExtraT ime and is calculated as shown

in equation 6.5.

ExtraT ime = Tsequential −
NF∑
f=1

4∑
N=1

TLN,f (6.5)

Note that for four tiles and four processors, PSU ≤ 4. This limit represents the perfect

result for this case, which in reality is never achieved. The goal is to make the speed up as

close as possible to it.
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Another term used in this section, to show and compare results, is the Average Time

Saving (ATS) [20]. It is calculated using the following equation:

ATS(%) =
Tuni − T
Tuni

× 100 (6.6)

Tuni represents the elapsed time of encoding a video sequence, in parallel, using same-sized

tiles. T is the elapsed time of the same procedure, but with the tile boundaries adjusted

using the proposed method. This value can, alternatively be calculated using equation 6.7.

ATS(%) =
PSU − PSUuni

PSU
× 100 (6.7)

PSU is the parallel speed-up obtained using the proposed method and PSUuni is the

speed-up obtained using uniformly-spaced tiles. To prove that both equations are equal,

replacing PSU by the definition in equation 6.2, we get equation 6.8.

PSU − PSUuni

PSU
=
T

T
− T

Tuni
(6.8)

The expression on the right can be written as shown below, obtaining equation 6.9.

T.Tuni − T 2

T.Tuni
=
Tuni − T
Tuni

(6.9)

Therefore, it is proven that the ATS value can be calculated using the PSU values, according

to equation 6.7.

The results for the tested video sequences are summarized on Table 6.3, showing the PSU

values obtained for each estimation method and for using same-sized tiles. For the ATS, we

show the best value (corresponding to the best PSU) for each sequence.

Sequence PSU PSU (Uni) ATS (%)

LCTG LCTF LCBG LCBF TET SL

BasketballDrive 3.56 3.56 3.57 3.58 3.55 3.46 3.07 14.25

BQTerrace 3.56 3.57 3.56 3.56 3.60 3.37 3.57 0.84

Cactus 3.34 3.41 3.34 3.39 3.40 3.25 3.23 5.28

Jockey 3.55 3.59 3.56 3.58 3.57 3.48 3.34 6.96

Kimono 3.63 3.62 3.61 3.61 3.62 3.52 3.46 4.68

ParkScene 3.46 3.45 3.44 3.46 3.50 3.31 3.34 4.57

Average 3.52 3.53 3.51 3.53 3.54 3.40 3.33 6.1

Table 6.3: Estimated Speed Ups using adjusted tiles and uniformly-spaced tiles
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Results show that by adjusting the tile boundaries, with the proposed method, we can

obtain an improvement over the usage of same-sized tiles. The TET estimation method

has the best average PSU, with 3.54, while the SL method has the lowest, 3.40. It is still

an improvement over the average PSU value obtained when using same-sized tiles (3.33).

Considering the best estimation method for each sequence, it is possible to obtain an average

ATS value of 6.1%. BasketballDrive has the highest ATS value (14.25%) while BQTerrace

has the lowest (0.84%). The reasons for the low value is the fact that using same-sized tiles

guarantees an already large PSU value (3.57), making further improvements difficult.

Adjusting the tile boundaries seems to have a good impact in load-balancing, capable of

speeding up the encoding process if used in a parallel environment. However, as stated before,

the usage of tiles breaks coding dependencies on their boundaries. This leads inevitably to

a loss in coding efficiency.

6.3 Impact in Coding Efficiency

Tiles have an impact in the coding efficiency of HEVC, due to boundaries breaking coding

dependencies. That impact needs to be analyzed to evaluate if it’s viable to use tiles with

the proposed method.

The results regarding coding efficiency are measured in terms of BD-rate increase [26],

compared to the reference with no tile partitions (less is better). Table 6.4 summarizes

the results for the used test sequences for each estimation method. The underlined values

correspond to the estimation method that obtained the best PSU value (table 6.3).

Sequence BD-rate (%) BD-rate (uniform)(%)

LCTG LCTF LCBG LCBF TET SL

BasketballDrive 1,0 1,1 1,0 1,1 1,0 1,4 0,8

BQTerrace 0,4 0,5 0,3 0,6 0,4 1,2 0,3

Cactus 0,2 0,7 0,3 0,7 0,3 1,1 0,3

Jockey 1,8 2,4 1,8 2,4 1,9 3.4 1,5

Kimono 1,1 1,4 1,1 1,4 1,1 1,7 1,0

ParkScene 0,5 0,9 0,4 0.9 0,4 1,2 0,3

Average 0.83 1.17 0.82 1.18 0.83 1.67 0.7

Table 6.4: BD-rate results for the test sequences
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Results show that dynamically adjusting the tile boundaries causes a larger impact in

coding efficiency compared to the use of same-sized tiles. The LCBG estimation method

has the lowest increase in BD-rate, with 0.82%) while the SL has the highest, 1.67%. In

comparison, using same-sized tiles causes an average increase in BD-rate of 0.7%. This

means that the difference, in terms of BD-rate increase, between our proposed method and

using same-sized tiles is not higher than 0.97%. Considering the improvement in the ATS,

this difference is not very significant. It is interesting to note that for the Kimono and the

ParkScene sequences, the methods that achieve the best result in terms of ATS have the

lowest increase in BD-rate as well.

6.4 Comparison with other works

In this section the obtained results are compared with other existing solutions, for a better

evaluation of their performance. Both the ATS and BD-rate results are compared with the

correspondent values from [8] (labeled as A) and [4] (labeled as B). The solution proposed

in A focuses in the improvement of parallel efficiency, that is, improving the ATS. On the

other hand, the solution propposed in B aims to minimize the BD-rate increase.

In Table 6.5 the results for each work are summarized for a better comparison. The

column Our contains the lowest BD-rate values for each sequence (bold values in table 6.4),

while the column Our(best PSU) contains the BD-rate obtained when using the estimation

method that guarantees the best PSU value (italic values in table 6.4).

The values between square brackets represent the difference between the BD-rate of

using same-sized tiles and the listed value. This is used to compare with A, as their authors

presented the BD-rate values this way. A positive value means a lower BD-rate increase

compared to the same-sized tile configuration. Additionally, B only presents the average

PSU values. Therefore only the average ATS value is compared.

Note that the sequence Jockey is not listed, as it was not tested by any of the referenced

works and, therefore, cannot be used for comparison.
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Sequence BD-rate (%) ATS (%)

Our Our (best PSU) A[8] B[4] Our A B

BasketballDrive 1.0[-0.2] 1.1[-0.3] [-0.01] 0.6 14.25 9.82 -

BQTerrace 0.3[0.0] 0.4[-0.1] [-0.13] 0.2 0.84 9.12 -

Cactus 0.2[0.1] 0.7[-0.4] [-0.09] 0.25 5.28 -0.48 -

Kimono 1.1[-0.1] 1.1[-0.1] [-0.03] 0.7 4.68 9.89 -

ParkScene 0.4[-0.1] 0.4[-0.1] [0.02] 0.25 4.57 2.16 -

Average 0.6[-0.1] 0.7[-0.2] [-0.05] 0.4 5.9 6.1 -80.0

Table 6.5: Comparison of results with other works. Sources: [4] and [8].

Even though the goal of this work is not minimizing the impact in coding efficiency,

comparing our results with the results of B the differences are small. The highest values of

BD-rate increase from our work and work A is 1.1% and 0.7%, respectively, which represents

a difference of 0.4%. The average results show an even smaller difference. From this we

can conclude that even by aiming for the optimal tiling partition, to maximize the parallel

speed-up, the high impact on the coding efficiency is not large. Comparing the values in

square brackets with A, our results are slightly worse, with an average difference of 0.5%.

In terms of ATS, results show that, on average, the solution proposed in A is slightly more

efficient (considering the given five sequences), obtaining an ATS of 6.1%. While our average

ATS value is inferior (5.9%), the difference is small. Additionally, our solution obtains better

ATS results for three sequences (BasketballDrive, Cactus and ParkScene). Therefore, we can

conclude that our results are acceptable. On the other hand, the average ATS value of B is

very low.
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7 Conclusions and Future Work

This work proposed an approach to solve the load-balancing problem, that is caused by

the usage of parallel tools of HEVC such as tiles. The encoding complexity is not uniform

within a video frame, as it depends on its content. Because of that, some regions of the

video frame take longer to process. Therefore, to reduce the impact of the load unbalancing

problem, the geometry of the tiles can be dynamically adjusted.

The proposed solution is based on two steps: encoding complexity estimation and tile

geometry adjustment. As an initial attempt to design an estimation model, the Spatial

Index and Temporal Index (SI and TI) were studied, with unsatisfatory results. The final

estimation model defined four different methods to estimate the complexities of the CTUs

within a video frame, based on previously encoded frames. The proposed methods use, as

base, encoding times or the amount of bits used to encode co-located CTUs from previous

frames.

The tile boundaries are then automatically adjusted based on the estimated complexities.

The adjustment is done by testing various candidate tile partitions and choosing the one that

leads to the best estimated workload distribution.

The proposed method achieved improvements over the same-sized tiles. Results have

shown that dynamicaly adjusting the tile geometry, using the best estimation method for a

given sequence, it is possible to achieve an average ATS of 6.1% when compared to the usage

of same-sized tiles. This comes at a cost of an average BD-rate increases between 0.82% and

1.67%, compared to the 0.7% increase when using uniform tiles, which is perfectly acceptable.

Comparisons with other similar works show that the obtained results are viable. Our

proposed method managed to obtain better values in parallel efficiency in the majority of

the tested video sequences, while not having a significant impact on the coding efficiency.

While it is effective for load balancing, the method proposed in this work only works
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for a 2x2 tile configuration (4 tiles). For future work, it could be adapted to work with a

variable tile configuration, such as 2x3 (6 tiles) or 3x3 (9 tiles) configurations.

As the results have shown, the most efficient complexity estimation method varies for

each sequence. Therefore, as future work, finding a way to select the best estimation method

for a given video file.

Another improvement would be either develop new complexity estimation methods, or

adapt the ones proposed in this work, to support other HEVC encoding configurations such

as Random Access.

To conclude this work, it is important to mention that performing the experiments on

an actual parallel evironment would lead to more accurate results. However, the estimated

parallel results presented in this work provide a close representation of reality.
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Appendix A

Tested Video Sequences

Video sequences used for experiments in this work.

Figure A.1: Name: Basketballdrive; Resolution: 1920x1080; FPS: 50; Frame Count: 500

Figure A.2: Name: BQTerrace; Resolution: 1920x1080; FPS: 60; Frame Count: 600
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Figure A.3: Name: Cactus ; Resolution: 1920x1080; FPS: 50; Frame Count: 500

Figure A.4: Name: Jockey ; Resolution: 1920x1080; FPS: 120; Frame Count: 600

Figure A.5: Name: Kimono; Resolution: 1920x1080; FPS: 24; Frame Count: 240

Figure A.6: Name: ParkScene; Resolution: 1920x1080; FPS: 24; Frame Count: 240
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Appendix B

Graphics

Graphics to complement the results of chapter 6.

Figure B.1: Encoding times per tile for the first 100 frames.
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Figure B.2: Encoding times per tile for the first 100 frames.
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Figure B.3: Encoding complexity distribution per tile
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Figure B.4: Encoding complexity distribution per tile
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