

João Leonel Almeida Amaro

Synthetic Aperture beamforming processing

on GPUs using OpenCL

Coimbra, Setembro de 2013

Synthetic Aperture beamforming processing on GPUs using
OpenCL

João Leonel Almeida Amaro

Dissertação para obtenção do Grau de Mestre em
Engenharia Electrotécnica e de Computadores

Júri
Presidente: Doutor Jaime Batista dos Santos
Orientador: Doutor Gabriel Falcão Paiva Fernandes
Vogais: Doutor Vı́tor Manuel Mendes da Silva

Setembro de 2013

Agradecimentos

Gostaria de começar por agradecer ao meu orientador, o Professor Gabriel Falcão
pelo seu acompanhamento constante do meu trabalho e pelo tempo dispensado a solu-
cionar problemas e a propor ideias para melhorar o projecto. Gostaria de dar uma nota de
destaque também ao João Andrade e ao Luı́s Oliveira, colegas de laboratório que se dis-
puseram a partilhar o seu conhecimento comigo nas variadas vertentes, e assim suavizar
a minha curva de aprendizagem; e pela companhia proporcionada nas longas horas pas-
sadas no laboratório. Gostaria também de agradecer ao Professor Marco Gomes pelas
diversas ocasiões em que interrompi o seu trabalho com dúvidas, e ele se dispôs a me
auxiliar, indicando-me sempre o caminho certo a seguir. Gostaria de agradecer também a
todos os meus amigos, a alguns pelo apoio proporcionado pelo facto de estarem perto, a
outros pela paciência e compreensão pelo pouco tempo que aloquei para eles; por sempre
terem manifestado interesse no meu trabalho, e estarem dispostos a ouvir-me explicá-lo
exaustivamente. Agradeço também à minha mãe e ao meu pai, pois como famı́lia, sempre
me apoiaram e aturaram, sem nunca deixar de zelar pelo meu bem-estar. Ao Diogo e ao
Xico, pois como bons irmãos, me proporcionaram momentos de descontracção e humor
quando chegava a casa. À minha namorada, Carina, por todo o amor e apoio que me deu
durante todo este ano, muitas vezes pondo de lado os seus interesses pelos meus, e por
me encorajar e disciplinar nos momentos em que a exaustão se começava a instalar. A
todos vocês, não existem palavras grandes o suficiente para descrever o meu sentimento
de gratidão.

Abstract

Synthetic Aperture (SA) Beamforming techniques represent the future of medical ul-
trasound imaging. The image quality and low number of artifacts introduced make it
an optimal replacement for current B-scan pulse-echo imaging systems. Nonetheless,
the computational workload introduced by such techniques is very high. This work sug-
gests Graphics Processing Units (GPUs) as the solution to this problem, by implement-
ing portable parallel kernels, under the Open Computing Language (OpenCL) frame-
work, of a delay-and-sum approach of the SA beamforming technique. The GPU was
the choice given its architecture, that perfectly suits parallel tasks by dividing the labour
between several work-items, and therefore, its characteristics, advantages and disadvan-
tages are discussed. The OpenCL framework allows for the use of one code in multiple
devices, be it GPUs, Central Processing Units (CPUs) or even Field-Programmable Gate
Arrays (FPGAs), and its workings are also examined.

Keywords

SA, Ultrasound Imaging, OpenCL, GPU, multiple GPU, Parallel Programming

Resumo

As técnicas de SA Beamforming representam o futuro da ultrasonografia. A qualidade
de imagem melhorada e a baixa incidência de artefactos de imagem, fazem delas óptimas
substitutas para os sistemas actuais, baseados em técnicas B-scan por recepção de eco.
Ainda assim, a carga de computação introduzida por este tipo de técnicas é bastante el-
evada. Este trabalho surere as GPUs como uma possı́vel solução para este problema, ao
implementar kernels paralelos portáveis, sob a framework OpenCL, de uma aproximação
delay-and-sum das técnicas de SA Beamforming. A GPU é escolhida dada a natureza da
sua arquitectura, que se adequa perfeitamente a tarefas paralelas ao dividir o trabalho entre
diversos work-items, e por conseguinte, as suas caracterı́sticas, vantagens e desvantagens
são abordadas. A framework OpenCL possibilita a utilização de um código em múltiplos
dispositivos de computação manycore, tais como GPUs, CPUs ou ainda FPGAs, e a sua
operação é igualmente discutida.

Palavras Chave

SA, Ultrasonografia, OpenCL, GPU, múltiplas GPU, Programação Paralela

Contents

1 Introduction 1
1.1 Motivation . 2

1.2 Objectives . 3

1.3 Main contributions . 3

1.4 Dissertation outline . 3

2 Ultrasound Theory and Imaging Algorithms 5
2.1 Theoretical Model . 6

2.2 System Geometry and Operation Fundamentals 6

2.2.1 Probe Topology . 8

2.2.1.A Beamsteering . 10

2.2.1.B Beamforming . 11

2.3 Ultrasound Wave Generation . 12

2.3.1 Amplitude . 12

2.3.2 Frequency and Wavelength . 13

2.3.3 Waveform . 13

2.4 Beamline based Pulse-Echo Imaging (B-scan) 14

2.4.1 Data Acquisition . 14

2.4.2 Signal pre-processing . 16

2.4.2.A Filtering . 16

2.4.2.B Time-Gain Compensation (TGC) 16

2.4.2.C Analog to Digital (A/D) conversion and Envelope Ex-
traction . 16

2.5 SA Beamforming Imaging . 17

2.5.1 Data Acquisition . 18

2.5.2 Signal Processing . 18

2.5.3 LRI Formation . 19

2.5.4 HRI Compounding . 20

2.6 SA Beamforming vs. B-scan techniques 21

i

Contents

2.7 Conclusions . 21

3 Parallel Computing Frameworks and Manycore Devices 23
3.1 The OpenCL Parallel Programming Model 24

3.1.1 Platform Model . 24

3.1.2 Runtime Model . 25

3.1.2.A Command-queues . 26

3.1.2.B Memory Model and Allocation 26

3.1.2.C Kernel Work Size and Execution 28

3.1.2.D Optimization Strategies 28

3.2 The multicore CPU . 30

3.2.1 Control Unit . 31

3.2.2 Arithmetic and Logic Unit (ALU) 31

3.2.3 Memory Interface and Caches 32

3.2.3.A Dynamic Random Access Memory (DRAM) and Read
Only Memory (ROM) 32

3.2.3.B Caches . 33

3.3 The manycore GPU . 34

3.3.1 Streaming Processors (SPs) . 34

3.3.2 Memory-Hierarchy . 35

3.3.3 Mapping the GPUs Memory Regions to the OpenCL Address
Spaces . 38

3.4 Conclusion . 39

4 Parallel Synthetic Aperture Beamforming on Manycore Devices 41
4.1 Outlining . 42

4.1.1 SA Beamforming Kernels . 42

4.1.2 Simulation Apparatus . 46

4.1.3 Performance Metrics . 47

4.1.3.A Throughput and Overall processing Time 48

4.1.3.B Memory Transfer Rates (Average and Slowest) 48

4.1.3.C Kernel Occupancy . 48

4.2 Experimental Results . 48

4.2.1 Single GPU scenario . 48

4.2.1.A Advanced Micro Devices (AMD) 49

4.2.1.B NVIDIA . 49

4.2.2 Multiple GPUs scenario . 49

4.2.2.A Dual AMD . 49

ii

Contents

4.2.2.B Dual NVIDIA . 50
4.2.2.C Hybrid AMD/NVIDIA 50

4.3 Analyzing the obtained results . 50
4.4 Conclusions . 54

5 Conclusions 55
5.1 Future Work . 56

A Appendix A 59

iii

Contents

iv

List of Figures

2.1 Single transducer lying on the x-axis, and Region of Interest (ROI) in the
x-z plane. 7

2.2 Single transducer operating in active mode, with echoes occurring in the
scattering points of the medium. 7

2.3 Single transducer operating in passive mode, receiving the echoes, and
outputting an electrical signal. 8

2.4 Array of transducers operating in active mode, and arbitrary point R. . . . 9

2.5 Array of transducers performing lateral steering. 10

2.6 Array of transducers performing angular steering. 10

2.7 Example of beamforming for three different scenarios. [1, pp. 183] 11

2.8 Gaussian modulated sinusoidal pulse waveform. 14

2.9 Basic B-scan Geometry. 15

2.10 Typical wave transmission/reception in SA Beamforming. 18

2.11 Hilbert FIR filter design. 19

3.1 OpenCL Device Query. 25

3.2 OpenCL Queue Creation. 26

3.3 OpenCL Buffer Creation and Mapping/Enqueuing. 27

3.4 OpenCL Address Space. [2] . 27

3.5 OpenCL Kernel Execution/Memory Operations Overlapping. [3] 29

3.6 Intel Haswell architecture die. [4] . 30

3.7 AMD Piledriver architecture die. [5] . 31

3.8 Current generation quadcore CPU basic diagram. Intel and AMD CPUs
differences are highlighted. 32

3.9 Random Access Memory (RAM) stick from Corsair. [6] 33

3.10 GCN Compute Unit Architecture. [7] 35

3.11 GCN Basic Memory Model. [7] . 36

3.12 Kepler Stream Multiprocessor (SMX) model. [8] 37

3.13 Kepler Generic Architecture. [8] . 38

v

List of Figures

4.1 Kernel A block diagram and algorithm structure on the GPU. 43
4.2 Kernel B block diagram and algorithm structure on the GPU. 44
4.3 Structural outline of the two parallel approaches followed in this work. . . 45
4.4 Reconstructed image of an in-vivo carotid, computed in the simulations. . 47
4.5 Throughput comparison between the different scenarios and versions. . . 51
4.6 Images reconstructed with various lateral resolutions to evaluate its effect

on image quality. Highlighted in red are the regions where the differences
can be seen. In subfigures b) and c), the incidence of image artifacts is
much lower than that of subfigure a), which has lower lateral resolution. . 53

vi

List of Tables

4.1 Host Platform Specs. 47
4.2 Results for the single AMD scenario. 49
4.3 Results for the single NVIDIA scenario. 49
4.4 Results for the dual AMD scenario. 50
4.5 Results for the dual NVIDIA scenario. 50
4.6 Results for the multiple hybrid GPU scenario. 51

vii

List of Tables

viii

List of Algorithms

ix

List of Algorithms

x

List of Acronyms

A/D Analog to Digital

ALU Arithmetic and Logic Unit

AMD Advanced Micro Devices

API Application Programming Interface

BU Branch Unit

CPU Central Processing Unit

CU Compute Unit

CUDA Compute Unified Device Architecture

DRAM Dynamic Random Access Memory

DSP Digital Signal Processor

FIR Finite Impulse Response

FPGA Field-Programmable Gate Array

FPS frames-per-second

FSB Front-Side Bus

GCN Graphic Core Next

GPR General-Purpose Register

GPU Graphics Processing Unit

HRI High-Resolution Image

LDS Local Data Shared Memory

xi

LRI Low-Resolution Image

MTR Memory Transfer Rate

N/A Non-Applicable

NDE Non-Destructive Evaluation

OpenCL Open Computing Language

OS Operating System

PCIe Peripheral Component Interconnect Express

RAM Random Access Memory

ROI Region of Interest

ROM Read Only Memory

SA Synthetic Aperture

SDK Software Development Kit

SFU Special Function Unit

SMX Stream Multiprocessor

SP Streaming Processor

SIMD Single Instruction Multiple Data

SIMT Single Instruction Multiple Thread

SNR Signal-to-Noise Ratio

SRAM Static Random Access Memory

TGC Time-Gain Compensation

TP Thread Processor

VLIW Very Long Instruction Word

xii

1
Introduction

Contents
1.1 Motivation . 2

1.2 Objectives . 3

1.3 Main contributions . 3

1.4 Dissertation outline . 3

1

1. Introduction

Since the inception of the medical imaging field, the ultrasonography has been shown
to be a utmost useful tool. Its applications range from diagnosis to the control of biolog-
ical processes such as pregnancies, ovary cysts, vascular structures’ blood flow, and also
operates as a guiding system in certain types of biopsies and other surgical procedures.
Because of its application range, ultrasound systems are widely used, but they require the
use of large amounts of very complex hardware, such as Digital Signal Processors (DSPs)
and arrays of Field-Programmable Gate Arrays (FPGAs). The complexity resides not
only in its physical nature, but also in the way they are programmed to perform the de-
sired task. On top of that, if we consider, for example FPGAs, they represent significant
costs, which means that current ultrasound systems have ample space for improvement,
in every way. The maintenance of such devices is not trivial, and can represent additional
costs.

1.1 Motivation

In medical imaging, the most common ultrasound technology is the beamline based
B-scan, a technique that displays a 2-D image of the Region of Interest (ROI). To do so,
it is required to perform a full sweep of the entire array of transducers in order to be able
of generating a single image. Additionally, since the transmitted wave is a beamline, it is
very common to obtain image artefacts, a highly negative aspect, considering the sensitive
nature associated with medical imaging.

Alternatively, Synthetic Aperture (SA) Beamforming (a technique developed in the
1950s, but only in recent years being used for medical applications) emulates a spherical
wave by performing a relative delay transmission of several of the transducers, minimiz-
ing image artefacts. A given image is the compounding of a full sweep of the transducer
array. To obtain a new image, only a new firing is required, thus addressing the ultra-high
frame-rate issue. Of course, the computational workload brought on by this technique is
several times higher than that of the conventional beamline method, which represents a
significant problem. As previously stated, the computational workload is already an un-
desirable aspect of current systems because of the required hardware resources to perform
the imaging.

There are currently two frameworks that allow the programmer to program parallel
tasks to be implemented on Graphics Processing Units (GPUs): the Compute Unified De-
vice Architecture (CUDA) and Open Computing Language (OpenCL). The former is only
compatible with NVIDIA GPUs, although it is highly optimized for these architectures.
OpenCL is an open standard, meaning all the major brands include in their GPUs support
for this Application Programming Interface (API). As an added functionality, Central

2

1.2 Objectives

Processing Units (CPUs), DSPs and other types of computing devices nowadays support
OpenCL. The downside to this interoperability is that OpenCL was not designed towards
a specific architecture, meaning a certain task in OpenCL will most likely come second to
CUDA, in terms of performance. To compensate this, the manufacturers have been devel-
oping architecture-oriented functionalities that leverage the performance to peaks similar
to those obtained with CUDA (then again, sacrificing the interoperability of OpenCL
code).

1.2 Objectives

The core of this thesis work is to take advantage of this parallel processing potential
to implement a time-domain version of the SA Beamforming imaging algorithm, using
GPUs and CPUs under the C++ OpenCL API for parallel applications. The final goal
consists of proving the feasibility of a medical ultrasound imaging system with increased
portability, achieving ultra-high frame-rates and improved image quality than current sys-
tems, while using GPUs and CPUs; ubiquitous devices one might find in its very own
computer.

1.3 Main contributions

To enhance current medical ultrasound imaging systems, massive computing power is
required. Therefore, GPUs and CPU are proposed in this work, and they show it is pos-
sible to achieve portability over different many-core systems, that are capable of running
OpenCL kernels. The system provides real-time capability, achieving near 350 frames-
per-second (FPS), and it also features adaptability to the hardware characteristics, ensur-
ing proper performance.

1.4 Dissertation outline

This thesis is structured in five chapters. Following the introduction, Chapter 2 will
focus on the basic principles of ultrasound imaging, particularly in medical applications,
as well as the signal processing involved in the SA beamforming method. In chapter 3,
GPU architecture will be discussed, followed by an explanation of the workings of the
OpenCL framework. Chapter 4 will feature the experimental results obtained along the
work developed. Finally, in Chapter 5, we will discuss the conclusions of this work, while
also providing a path for future work in this field.

3

1. Introduction

4

2
Ultrasound Theory and Imaging

Algorithms

Contents
2.1 Theoretical Model . 6

2.2 System Geometry and Operation Fundamentals 6

2.3 Ultrasound Wave Generation . 12

2.4 Beamline based Pulse-Echo Imaging (B-scan) 14

2.5 Synthetic Aperture (SA) Beamforming Imaging 17

2.6 SA Beamforming vs. B-scan techniques 21

2.7 Conclusions . 21

5

2. Ultrasound Theory and Imaging Algorithms

This chapter discusses the basic principles that serve as foundation for ultrasound
imaging in medical applications, in general. Nonetheless, the reader is expected to have
a certain knowledge of wave propagation and signal processing theory. If that’s not the
case, the reader can refer itself to [9] [1]
SA Beamforming and Beamline-based B-scan methods are exploited in more detail, the
former due to its relevance regarding this thesis, the latter as a term of comparison against
the first, and for currently being the most common choice in medical ultrasound imaging
systems.

2.1 Theoretical Model

Since ultrasound imaging is modelled by wave propagation theory, it is important
to establish the particular conditions that describe the problem. Radar and Sonar ultra-
sound imaging evaluate distant objects that lie in the Fraunhofer region, or Far-field, as
opposed to Non-Destructive Evaluation (NDE) and medical ultrasound imaging, whose
ROI mainly lie on the Fresnel Region, or Near-field [10, pp. 413].

2.2 System Geometry and Operation Fundamentals

In ultrasound imaging, transducers are used to transmit acoustic signals, and also to
receive the reflections generated by discontinuities in the medium. An acoustic wave is
called an ultrasound wave when its frequency is high enough such that the wave is above
the human audible range. Usually, this threshold varies from person to person, but it’s
located around 20kHz [1]. This chapter has the purpose of conveying the reader with a
basic knowledge of the fundamentals of ultrasound imaging, particularly beamline based
B-scan and medical SA beamforming. Let’s consider the scenario represented in Fig 2.1:

6

2.2 System Geometry and Operation Fundamentals

x

z
ROI

Figure 2.1: Single transducer lying on the x-axis, and ROI in the x-z plane.

A single circular electro-acoustic transducer, to which we can refer as aperture [AFT]
positioned along the x-axis is evaluating a ROI placed in the x-z plane. When the trans-
ducer is in active mode, it is excited by an electrical impulse, causing it to transmit an
acoustic wave into the ROI, as seen of Fig 2.2. This acoustic wave propagates through the
medium, and when a discontinuity is hit, the structures have different acoustic impedances.
This, of course, means that the discontinuity is also characterized by a reflection coeffi-
cient, and that wave reflections will occur in this point.

x

z
ROI

Figure 2.2: Single transducer operating in active mode, with echoes occurring in the
scattering points of the medium.

When operating in passive mode, the transducer can be viewed as a receiver, which
is to say, given a received echo, the transducer will generate an electrical signal, whose
amplitude will depend on the amplitude and frequency of the acoustic signal.

7

2. Ultrasound Theory and Imaging Algorithms

x

z
ROI

Figure 2.3: Single transducer operating in passive mode, receiving the echoes, and out-
putting an electrical signal.

2.2.1 Probe Topology

In medical ultrasound imaging, there are many probe topologies. On the course of this
work, the preferred topology is the linear transducer phased array. This topology allows
for a number of techniques, such as beamsteering and beamforming, that endow the sys-
tem with more powerful information [1, pp.173-181].

Still considering the scenario described by Fig. 2.1, and given the fact that the wave is
acoustic, its effect in the field manifests itself in the form of a pressure.

Using the Huygens principle, that states that every point in a wavefront is a source of
wavelets [11, pp. 412], and if the condition defined in equation 2.1 is met, we can treat the
aperture, whose diameter is represented by a, as a circular diffraction slit. In this specific
case, this aperture corresponds to the transducer surface.

a < λ , (2.1)

λ representing the wavelength of the transmitted wave.
The pressure generated due to the acoustic perturbation induced by the source (the trans-
ducer) in the arbitrary point R can therefore be calculated by:

P(x,z) =
∫∫

sur f ace

A0(x0,z0)
e j(wt−kd(x0,z0,x,z)+ϕ(x0,z0))

d(x0,z0,x,z)
ds, (2.2)

8

2.2 System Geometry and Operation Fundamentals

where A0(x0,z0) and ϕ(x0,z0) represent the reference amplitude and phase of the in-
finitesimal field source point located at coordinates (x0,z0), d(x0,z0,x,z) is the distance
between the source point and R, and k is the wave number.

To compute the pressure at an arbitrary point R due to the perturbation caused by an
array of transducers (see Fig 2.4) with length L comprised of N individual transducers,
the superposition theorem is employed [1, pp. 173], and equation 2.2 becomes:

P(x,z) =
N

∑
i

∫∫

sur f ace−i

A0i(x0,z0)
e j(wt−kd(x0,z0,x,z)+ϕi(x0,z0))

d(x0,z0,x,z)
dsi. (2.3)

x

z

L

1 2 3

NN − 1

R

Figure 2.4: Array of transducers operating in active mode, and arbitrary point R.

The position of each transducer, xi, is given by:

xi = (i−1)×∆x−
L
2
. (2.4)

The dimensions and spacing of the transducers (represented by ∆x in Eq. 2.4) are of
critical importance, as an incorrect design will give way to catastrophic results, with the
appearance of grating lobes in the radiation pattern [1, pp. 175]. The condition to prevent
this undesired phenomenon is:

∆x≤ λ . (2.5)

To conclude this section, we establish that the system will operate in strip-map mode,
as the ROI will be swept along the x-axis, and the reconstructed image will be shaped like

9

2. Ultrasound Theory and Imaging Algorithms

a ”strip”.

2.2.1.A Beamsteering

Beamsteering is the process of electronically change the radiation pattern of an an-
tenna, in this case, of the array. The simplest way of achieving this is to perform lateral
steering, where in the i-th firing, transducers i× n to i× n + m are used in the trans-
mission, whereas in the i + 1-th firing, the transmitting transducers are (i + 1)× n to
(i+1)×n+m [1, pp. 176]. This process is represented in Fig. 2.5.

z

x
Figure 2.5: Array of transducers performing lateral steering.

Another common type of beamsteering is the angular steering:

z

x

Linear Wavefront

z

x
∆t0 ∆t1 ∆t2 ∆t3 ∆t4∆t5∆t6 ∆t7 ∆t8∆t9∆t10

∆tN

Steered Wavefront

β

Figure 2.6: Array of transducers performing angular steering.

10

2.2 System Geometry and Operation Fundamentals

Until now, we have only considered beams perpendicular to the array of transducers,
but through angular steering, it is possible to tilt the transmission, even if only up to a
certain angle. This is possible by introducing relative delays to each transducer element,
so that the waves from each transducer element reach the dotted line in Fig. 2.6 at the
same time [1, pp. 178]. Taking equation 2.4, the expression for each transducers’ relative
delay is:

∆i = [(i−1)×∆x− L
2
]× sin(β)

vp
, (2.6)

where β corresponds to the angle between the z-axis and the direction of propaga-
tion of the wavefront. This angle is limited, under penalty of appearing grating lobes.
Therefore, in addition to equation 2.5, the design of the system must also obey:

βmax = sin−1(
λ

∆x
−1). (2.7)

2.2.1.B Beamforming

By combining the aforementioned methods of beamsteering and by shaping the acous-
tic beam, we arrive at a process called beamforming, whose main advantage is that of
achieving beam focusing [1, pp. 182]. Consider a new arbitrary point over the z-axis,
lying at a distance F from the axis’ origin. The pulse (traveling with a propagation speed
of vp) emitted from the central transducer will reach the focal point after:

∆t =
F
vp

. (2.8)

(a) β =−10◦;F = 80mm (b) β = 0◦;F = 50mm

(c) β = 20◦;F = 90mm

Figure 2.7: Example of beamforming for three different scenarios. [1, pp. 183]

11

2. Ultrasound Theory and Imaging Algorithms

Fig. 2.7 represents three different scenarios where the beam is angled with different
degrees β , and whose focal point lies at different distances F .

To achieve focusing, the pulses emitted by all the transducers must reach the focal
point at the same time. With xi representing the position of the i-th transducer:

√
x2

i +F2

vp
=

F
vp

, (2.9)

which yields:

∆ti =
F−

√
x2

i +F2

vp
, (2.10)

where ∆ti stands for the relative time delay of the i-th transducer. It is possible that
equation 2.10 outputs a negative time delay. In such event, the solution is to simply shift
the reference transducer to that whose distance to the focal point is shorter (alternatively,
the one with the most negative time delay).
Finally, to achieve beamforming, it is necessary to combine the focusing effect described
above with the lateral and angular steering concepts. This is achieved by combining Equa-
tions 2.10 and 2.6.

2.3 Ultrasound Wave Generation

Acoustic transducer elements are composed of a group piezoelectrical crystals, that vi-
brate when subjected to an electric current. This vibration generates an acoustic wave [1].
This wave can be characterized by its amplitude, waveform, frequency and wavelength.
To choose a pulse for transmission, it is important to first understand how each of these
characteristics affect the global performance of the system.

2.3.1 Amplitude

Depending on the characteristics of the input signal, the amplitude of the acoustic
wave can vary. The maximum achievable amplitude is limited by the piezoelectric crys-
tals. The intensity of a wave is directly proportional to the square of the amplitude. When
the intensity of a propagating wave is high, non-linear effects such as the appearance of
harmonic waves start to appear.

12

2.3 Ultrasound Wave Generation

2.3.2 Frequency and Wavelength

Frequency and wavelength are interdependent, since one can be obtained from the
other by the following relation:

λ =
vp

f
, (2.11)

where f is the frequency in Hz, λ represents the wavelength in meters and vp corre-
sponds to the propagation speed, in m/s.

The frequency of the transmitted pulse directly affects the spatial resolution of the re-
constructed image. On the other hand, when the frequency is raised, so is the attenuation,
defined by the absorption of a part of the wave’s energy by the medium, and also depen-
dent on the distance covered by the wave. The following equations give a simplified view
of the total attenuation:

αc = α0 +α1 f y, (2.12)

A(x, f) = αc(f)× r, (2.13)

with x representing the distance from the transducer, αc representing the attenuation
coefficient and α0 and α1 are constants depending on the physical parameters of the
medium. Given the fact that in medical imaging, the ROI is mainly comprised of soft
tissues, it is assumed that y = 1 and thus, the relation between the attenuation coefficient
and the frequency is linear. In different scenarios, y can assume any value between 1 and
2, depending on the nature of the tissues under evaluation.

This puts the choice of the frequency of operation into a new perspective, since higher
frequencies will yield lower distances of penetration, but better resolution, so high fre-
quencies are most suited for the evaluation of superficial tissue. On the contrary, lower
frequencies, while achieving lower spatial resolutions, can travel a greater distance, and
are best suited for the appraisal of deeper structures [12].

2.3.3 Waveform

The nature of medical applications of ultrasound imaging dictate the requirement for
short, time-domain wise, pulses, or broadband pulses. Although there are many possibil-
ities that fulfil these needs, it is very common to use the Gaussian modulated sinusoidal
pulse [1, pp. 99] [13], as seen in Fig. 2.8, and defined by:

13

2. Ultrasound Theory and Imaging Algorithms

g(t) = e−β t2
cos2π fct, (2.14)

where fc stands for the center frequency of the pulse, and β represents its width.

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

x 10
−6

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Time (s)

A
m

p
lit

u
d
e

Figure 2.8: Gaussian modulated sinusoidal pulse waveform.

2.4 Beamline based Pulse-Echo Imaging (B-scan)

The B-scan is widely used throughout the world, gathering recognition as the most
common method of medical ultrasound imaging method.

2.4.1 Data Acquisition

Pulse-Echo Imaging systems are based on the transmission of a broadband pulse into
the medium, and the the reception of the echoes, either by the transmitting transducers or
a set of transducers exclusively dedicated to signal reception. These echoes are originated
by the transmitted signal traversing discontinuities in the medium, so that the difference
in the acoustic impedance and consequent reflection coefficient, provide that a fraction of
the signal energy is reflected. This reflection is an angle-related function, and thus, the
echo propagates in different directions. Current B-scan imaging systems already perform
transmit beamforming, so unlike primordial systems, where only echoes travelling along
the beamline were used, current systems provide much accurate information [14, pp. 93].
Each receiving transducer will sample one A-line, and the final image is reconstructed
from the A-lines from every receiving transducer of the array. After this data acquisition

14

2.4 Beamline based Pulse-Echo Imaging (B-scan)

step, the signal must endure a signal processing routine before it displays the reconstructed
image.

z

x
Data

Acquisition

BP
Filter

TGC
A/D

Converter

Median
Filter

Envelope
Extraction

Decimation

Grey Level
Conversion

Figure 2.9: Basic B-scan Geometry.

15

2. Ultrasound Theory and Imaging Algorithms

2.4.2 Signal pre-processing
2.4.2.A Filtering

The signal acquired by the receiving transducers includes not only the desired echoes,
but also undesired noise. Consequently, this signal must undergo filtering, to eliminate
as much as possible the noise (there are many sources to this noise, but in the scope of
this work, they are irrelevant). The first step is high-pass filtering, since the frequency
of operation is in the order of MHz, and lower frequencies carry no information. Before
the Analog to Digital (A/D) conversion can take place, low-pass filtering must also be
applied to the signal, mainly to limit the maximum frequency to the Nyquist frequency
(otherwise, the A/D conversion would cause aliasing of the signal). These two filtering
steps could also be grouped in one filter, a band-pass filter [1, pp. 208].

2.4.2.B Time-Gain Compensation (TGC)

Due to the effects of attenuation, the amplitude of the signal that reaches deeper struc-
tures is significantly lower when compared to more superficial tissue. The following
assumptions are made:
-The propagation speed , vp, remains constant throughout the medium.
-The reflectivity of the scatterers is relatively equal for all the ROI.
-The attenuation coefficient, αc(f), is also constant. This assumption is accepted if there
are no bones or air in the acoustic path.

Thus, a gain factor is applied to the signal to mitigate the effects of the attenuation in
the reconstructed image, and guarantee that equal structures at different depths appear the
same, in the end of the image reconstruction. This process is denominated TGC [1, pp.
205].

2.4.2.C A/D conversion and Envelope Extraction

The signal is now digitized and passes through a median filter, to smooth out any
isolated peaks. In an imaging system, only the changes in texture represent useful infor-
mation, and additional information, such as the representation of the pulse’s waveform
is dispensable, so the next step is to extract the signal’s envelope, ς(t) [1, pp. 208]. To
achieve this, the Hilbert transform, whose operator is represented by H{}. The frequency
response of the Hilbert transform is given by:

H(jω) =− j× sign(ω). (2.15)

16

2.5 SA Beamforming Imaging

As can be seen from Eq. 2.15, the Hilbert transform shifts all the negative frequencies
by 90◦, and all the positive frequencies by −90◦. The following equation is the next step
in the process. The resulting signal Ŝ(t) is known as the ”analytic representation” of the
signal S(t). Its properties are object of discussion in [15].

Ŝ(t) = S(t)+ j×H{S(t)}, (2.16)

ς(t) = |Ŝ(t)|. (2.17)

Finally, the envelope of the original signal S(t) is extracted by computing the absolute
value of Ŝ(t).

Since the acquired signal was a function of time, decimation is required to migrate
from a time scale to a distance scale. Finally, defining a vector of N grey levels, whose
minimum and maximum are Gmin and Gmax, respectively, the signal is quantized, by using
the following relation:

ς̆(t) =





Gmin , if ς(t)< Gmin
Gmax , if ς(t)> Gmax

round(N× ς(t)−Gmin
Gmax−Gmin

) , otherwise
(2.18)

2.5 SA Beamforming Imaging

SA Beamforming Imaging is a method of performing ultrasound imaging that, un-
like other methods, such as the one described in the previous section, take advantage of
the additional information provided by the echoes’ phase, being recognized as a coherent
method [14, pp. 3].

Aside from receive beamforming, this method also performs transmit beamforming.
To achieve this, during the process of constructing an image, reconstructed images of sub-
regions of the ROI, also known as a Low-Resolution Image (LRI), are also computed, and
then compounded into an High-Resolution Image (HRI) [16].

There are several imaging reconstruction algorithms, but the scope of this thesis’ work
will only broach the Delay-and-Sum procedure.

17

2. Ultrasound Theory and Imaging Algorithms

2.5.1 Data Acquisition

In SA Beamforming Imaging, the way data acquisition is performed differs from the
one discussed in Sec. 2.4.
On the m-th firing, a set of transducers ranging from m to m+M will emulate the trans-
mission of a spherical wave, as displayed in the following figure:

Figure 2.10: Typical wave transmission/reception in SA Beamforming.

When the ROI is illuminated, as discussed in the previous sections, discontinuities in
the acoustic impedance, characterized by scattering structures, such as tissues, different
cells, organs, etc., part of the wave’s energy will be reflected. The echo’s are then sampled
by the entire (or just part) of the array of transducers, and then processed.

2.5.2 Signal Processing

After the data acquisition is completed, similarly to the Pulse-Echo technique, the sig-
nal is passed through two filtering steps, to minimize noise and consequently increase the
Signal-to-Noise Ratio (SNR), then TGC is applied and the signal suffers A/D conversion.
The following step again requires the transforming of the signal using the Hilbert trans-
form. As can be seen from Eq. 2.16, the resulting signal is a complex one, and further
exploring its spectral frequency, it is obvious that the original content is preserved. Fur-
thermore, this signal includes phase information of the original data, making it a useful
tool, signal processing-wise [17] [18]. Since the main focus of this thesis focuses over
SA beamforming techniques, it is also important to shed some light over how the analytic
representation was calculated. Eq. 2.15 provides insight over the frequency response of
the Hilbert Transform. To apply this transform without crossing over to the frequency-
domain, the signal was convolved with a Finite Impulse Response (FIR) filter with L taps,
whose impulse response is given by:

18

2.5 SA Beamforming Imaging

h[l] =
{

0 , for evenl
2

π×l , for oddl
(2.19)

The FIR filter coefficients were obtained using the least-square method, that approx-
imates the frequency response of the desired filter, by minimizing the error between the
ideal response and the approximated one. This was performed in Matlab, using the fol-
lowing commands:

d = fdesign.hilbert(100,0.1); %(1st argument is the order of the filter

%2nd represents the width of the transition band)

designmethods(d);

hd = design(d, ’firls’);

hilbertCoeff = hd.Numerator;

Figure 2.11: Hilbert FIR filter design.

an,m[g] =
L

∑
l=1

h[l]× xn,m[g− l], (2.20)

In Eq. 2.20, a represents the result of the FIR filtering operation, and x the acquired
discrete signal.

2.5.3 LRI Formation

After the analytic data samples are computed, the time scale is mapped into a physical
scale.
The requirements to perform such task include computing, the following quantities are
defined [17]

τn,m[P0] =
dT (P0;m)+dR(P0;n)

vp
, (2.21)

where τn,m represents the focusing delay from the m-th firing to the n-th receiv-
ing transducer,P0 refers to the pixel for which the focusing delay is being calculated.
dT (P0;m) stands for the distance between virtual source point m and pixel P0. dR(P0;n)

represents the distance between said pixel and the n-th receiving transducer. Fig. 2.10
also illustrates this concept.

The focusing delay allows us to calculate other two quantities required to perform the
scale migration:

k = b fsτn,m[P0]c, (2.22)

19

2. Ultrasound Theory and Imaging Algorithms

χ = 1+ k− fsτn,m[P0]. (2.23)

k represents the depth sample number associated with P0, fs is the sampling frequency,
and χ is the interpolating weight between proximal depth samples.

To perform the LRI calculation, each receiving channel contribution is taken into ac-
count, but it is obvious that the receiving channels closer to the transmission channels
have more important information, and therefore an arbitrary window function ψ will be
applied:

αn,m[P0] = ψ×an,m[k]+ (ψ−1)×an,m[k+1]. (2.24)

Given an arbitrary pixel P0, its m-th LRI value is defined in the following way:

Lm[P0] =
N

∑
n=1

ψnαn,m[P0], (2.25)

where Lm[P0] is the value of pixel P0 of the m-th LRI.

2.5.4 HRI Compounding

Assuming that a full sweep of the transducer array corresponds to M firings, let’s
define the compounding of an HRI as:

H[P0] =
M

∑
m=1

Lm[P0], (2.26)

where H[P0] corresponds to the value of pixel P0. When a new LRI is computed, the
oldest LRI in the compounding frame is discarded, and the new one takes its place. Thus,
it is possible to convert Eq. 2.26 into a more efficient [17]:

Hi[P0] = Hi−1[P0]+Li[P0]−Li−M[P0]. (2.27)

The process of compounding several LRIs to form an HRI corresponds to performing
transmit beamforming, allowing for a more general focusing of the ROI, and improving
the lateral resolution of the final image.

20

2.6 SA Beamforming vs. B-scan techniques

2.6 SA Beamforming vs. B-scan techniques

After conveying the reader with the working principles of both techniques, it is now
time to discuss the advantages/disadvantages of the SA technique in comparison to the
beamline-based technique:

Advantages Disadvantages
Ultra-High Frame-Rate Capability Higher Computational Complexity
Transmit Beamforming Capability Current Hardware is not ready to implement
Improved Overall Image Quality SA beamforming techniques

Reduced Image Artefacts Appearance

It would easily come to the mind of the reader that the preferred option should be
the SA Beamforming technique, given its heightened image quality and frame-rate per-
formance, but the disadvantages should also be taken seriously, since the computational
workload required to implement the technique is significantly higher than that of typical
B-scan techniques.

2.7 Conclusions

Concluding this chapter, it is expected that the readers now understand the principles
behind beamline-based B-scan and SA Beamforming techniques, and can perform an as-
sessment of the requirements and challenges faced by ultrasound systems engineers.
It is the author’s belief that SA Beamforming represents the future of medical ultrasound
imaging systems, and that a parallel approach to the signal processing routine discussed
in 2.5.2 and the use of programmable multi-core devices are the keys to address the dis-
advantages exposed in 2.6 and therefore, to achieve a working system, that can run on
the standard personal computer or notebook, with improved image quality and real-time
capability.

21

2. Ultrasound Theory and Imaging Algorithms

22

3
Parallel Computing Frameworks and

Manycore Devices

Contents
3.1 The Open Computing Language (OpenCL) Parallel Programming

Model . 24

3.2 The multicore CPU . 30

3.3 The manycore GPU . 34

3.4 Conclusion . 39

23

3. Parallel Computing Frameworks and Manycore Devices

The rise and evolution of semiconductor technology over the last decades provided
computing devices, such as Central Processing Units (CPUs) and Graphics Processing
Units (GPUs) with growing computing capabilities. In recent years, physical limitations,
especially tied to the core clock speeds and memory wall, implied that the scale of CPU
cores could not increase, and thus the advent of multi-core CPUs became alternative.
The initial role of the GPU was to perform multimedia tasks (video playback, graphics
rendering) on the computer. The parallel nature of these devices, in conjunction with their
multiple cores, and the development of programming constructs and interfaces lead to the
rise of parallel programming, which allowed raising the throughput performance peak in
other areas of general purpose computing. Since then, scientists in many fields have been
employing the various parallel computing frameworks to implement compute-intensive
algorithms.
In this chapter, the OpenCL framework is also discussed, as well as a brief discussion of
current CPU and GPU architectures, emphasizing the latter, exposing through the section
the main differences between Advanced Micro Devices (AMD) and NVIDIA GPUs.

3.1 The OpenCL Parallel Programming Model

OpenCL birthed from the industry’s effort to design a general purpose parallel com-
puting open standard. The OpenCL Application Programming Interface (API) currently
supports both C and Fortran programming languages. This effort results in a wide range
of compatible multi-core devices available in the market. Although CPUs are able to run
OpenCL kernels, the framework is optimized for GPUs.
A single kernel code, running efficiently on several devices is one of the main goals of
OpenCL, therefore, there is a low-level of hardware abstraction.

In this section, for illustrative purposes the figures will be related to a sample program
whose objective is to perform the parallel summation of two single floating-point matrices
(A and B) and store the result in matrix C. The computing workload associated with this
algorithm is not very high, but it works perfectly as a demonstrative program.

3.1.1 Platform Model

In an OpenCL program, there must be distinction between the host code and the device
code. The first will query the available parallel platforms and respective devices, allocate
device memory, and overall perform flow control. The latter is the parallel section of the
code, the kernel itself, and runs on the queried devices.
The mere presence of an OpenCL supported device in the machine is not sufficient to
guarantee that the device is able to run OpenCL kernels. In order to achieve that, the

24

3.1 The OpenCL Parallel Programming Model

vendor’s OpenCL Software Development Kit (SDK) must be installed in the machine.
Fig. 3.1 illustrates the process of querying the machine for OpenCL supported devices:

//OpenCL Device Query Code

char pbuff[100]; //Char Buffer to hold the name of the devices

cl_int err; //Error Controlling Variable

cl_uint numPlatforms;

cl_uint numDevices;

//First call to get the number of available platforms

err = clGetPlatformIDs(0,NULL,&numPlatforms);

//Allocate space for all the available platforms

cl_platform_id* platforms = (cl_platform_id *)malloc(numPlatforms*sizeof(cl_platform_id));

//Query the platforms

err = clGetPlatformIDs(numPlatforms,platforms,NULL);

//Choose the first (Assuming error-free execution, for space constraint reasons)

cl_platform_id cPlatform = platforms[0];

//For the chosen platform, query the number of available devices

err = clGetDeviceIDs(cPlatform,CL_DEVICE_TYPE_ALL,0,NULL,&numDevices);

//Allocate space for all the available devices

cl_device_id *devices = (cl_device_id *)malloc(numDevices*sizeof(cl_device_id));

//Query the devices

err = clGetDeviceIDs(cPlatform,CL_DEVICE_TYPE_ALL,numDevices, devices, NULL);

for(int i=0; i<numDevices; i++)

{

//Get the info of each device, and print it iteratively

err = clGetDeviceInfo(devices[i], CL_DEVICE_NAME, sizeof(pbuff), pbuff, NULL);

printf("\%s\setminus n",pbuff);

}

cl_device cDevice = devices[0];

cl_context cContext = clCreateContext(0, 1, &cDevice, NULL, NULL, &err);

/*...*/

//Free the allocated memory

free(platforms);

free(devices);

Figure 3.1: OpenCL Device Query.

3.1.2 Runtime Model

The fact that OpenCL can be run in different types of devices, adds a new layer of
complexity to the programming process. While NVIDIA only provides OpenCL support
for their GPUs, Intel provides support for proprietary devices (CPUs and GPUs), AMD
provides support for all devices except NVIDIA and Intel integrated GPUs. To generate a
kernel executable, each device may require different binaries. For that reason, and because

25

3. Parallel Computing Frameworks and Manycore Devices

the device query and selection is only performed at runtime, the building, compiling,
linkage and executable generation of the kernel can only occur during runtime.
Generally OpenCL kernels are either stored in a separate file (the common extension is
.cl) or directly stored in a string in the main C/C++ file. [19] [20]

3.1.2.A Command-queues

All OpenCL objects, either being devices, platforms, queues, or programs share the
fact that all operations performed on them must be enqueued in a command-queue. This
command-queue is bound to a specific device, and by default the operations are per-
formed in-order, and synchronization is implicitly guaranteed. It is possible to alter this
behaviour, allowing for out-of-order queue execution. However, the synchronization be-
tween commands must be ensured by using events. This is required, for example, when
implementing overlapping the memory transfers and kernel executions (see Sec. 3.1.2.D).
Fig. 3.2 illustrates the creation of a command-queue with default options (the third argu-
ment is empty).

/* ... */

cl_command_queue cQueue = clCreateCommandQueue(cContext, cDevice, NULL, &err);

/* ... */

Figure 3.2: OpenCL Queue Creation.

3.1.2.B Memory Model and Allocation

Given the interoperability between different devices, even when running the OpenCL
kernels on CPUs, there must be separation between host memory and device memory.
To run an OpenCL kernel, the programmer must ensure that the required input and output
device buffers are allocated, and properly data-filled before the kernel execution can occur.
The fact that OpenCL is supposed to run on a multitude of devices, introduces a new level
of complexity, since different devices have different memory regions (more on this on
Sec. 3.3.2) and sizes, and thus, the programmer must also imbue the program with the
necessary conditions to attain resource adaptability.

There are two ways to perform memory transfers: either synchronously by queueing
the transfer, or asynchronously by mapping the buffer with pointers in the device/host.
Fig. 3.3 shows the creation of the synchronous and asynchronous buffers.

26

3.1 The OpenCL Parallel Programming Model

/* ... */

float array[5] = {1.0,2.1,3.2,4.3,5.4} //input data to be transferred to the buffers

cl_mem cBuffer_1, cBuffer_2;

//cBuffer_1 will be created with queueable data transfers

cBuffer_1 = clCreateBuffer(cContext,CL_MEM_READ_ONLY,sizeof(cl_float)*5,NULL,&err);

err = clEnqueueWriteBuffer(cQueue,cBuffer_1,CL_FALSE,0,sizeof(cl_float)*5,array,NULL, ...

... NULL,NULL);

//cBuffer_2 will be created for mapping in the device

cBuffer_2 = clCreateBuffer(cContext,CL_MEM_READ_ONLY | CL_USE_HOST_PTR, ...

... sizeof(cl_float)*5, NULL,&err);

clEnqueueMapBuffer(cQueue,cBuffer_2,CL_FALSE,CL_MAP_READ,0,sizeof(float)*5,NULL,NULL, ...

... NULL,&err);

/* ... */

Figure 3.3: OpenCL Buffer Creation and Mapping/Enqueuing.

After execution, the output buffer is read from the device.
OpenCL defines several address spaces, where the buffers can be allocated or mapped,

according to the desired usage and requirements. These are global, local, private

and constant. The global is accessible to all work-items in the context, and it is also
the largest (and slowest) address space. local is specific to each work-group, and thus
only the work-items of a given work-group can read/write from/to this memory region.

constant is a read-only memory region, accessible by every work-item, faster than global
memory, and ideal for variables initialized in the host, that won’t suffer changes through-
out the kernel execution. Finally, private is specific to each work-item. It is excellent to
store temporary data, as it is the fastest type of memory.

Figure 3.4: OpenCL Address Space. [2]

27

3. Parallel Computing Frameworks and Manycore Devices

3.1.2.C Kernel Work Size and Execution

A parallel implementation of a serial algorithm consists of the division of the work
into small work units. For the example summation program considered, each work unit
corresponds to an element of the buffer. In OpenCL, each of these small units is called
work-item. A work-group is a group of work-items. Depending on the nature of the algo-
rithm and the device capabilities, the work-group might have 1, 2 or even 3 dimensions.
The optimal solution regarding the number of work-items per work-group must be de-
termined by experiment (although OpenCL profilers use a few metrics to determine the
point of ”optimal” performance, the proposed solutions often return non-optimal results).
The size of a work-group is called the local work size. The total number of work-items

required by the algorithm determines the global work size, whose value must always be
a multiple of the local work size (if more than one dimension is used, all the dimensions
must be multiples).

After the input buffers are filled, and the work dimensions are set, the kernel is en-
queued and executed.

3.1.2.D Optimization Strategies

The main goal of parallel computing consists of using the resources in an efficient way.
Therefore, when designing an OpenCL kernel, there are a few rules that can significantly
improve the program’s performance:

- Thread Divergence: A wavefront is the execution of N OpenCL work-items in par-
allel, on AMD GPUs. On NVIDIA GPUs, while the exact concept is not replicated,
because of the different nature of the architecture, the basic principle applies, but it is
called a warp. When the kernel is being executed, consecutive work-items are grouped
for execution. When a divergent condition is present (such as an i f statement), the wave-
front/warp will have to check both paths of execution, resulting in an additional cycle.
In the limit all threads/work-items can follow a different path and execution serializes.
Therefore, whenever possible, divergent branches should be eliminated.

- Coalesced Memory Accesses: Most current computers are equipped with dual chan-
nel Random Access Memory (RAM), that ensure that the width of the memory bus to the
CPU is 128-bit. Similarly, the Peripheral Component Interconnect Express (PCIe) 3.0 cur-
rently used by most mid-level GPUs also feature a bus width of 128-bit. When the kernel

is running, and the work-items in a warp/wavefront perform a memory load, the device is
smart enough to detect if the addresses being read by consecutive work-items are consec-
utive or separated by a constant stride multiple of 16 or 32. When such event occurs, such
as in the matrix summation sample, the program coalesces multiple memory accesses into

28

3.1 The OpenCL Parallel Programming Model

a single access, thus largely reducing the number of memory operations/transactions.
- Use of registers: The number of private registers (See 3.3.2) depends on the device,

but they can be used to store temporary data, or to reduce the number of accesses to the
global memory.

- Asynchronous Memory Transfers: Frequently, the main performance bottleneck
in OpenCL applications are the memory transfers. By using two queues bound to the
same device, additional buffers and events to guarantee synchronization between queues,
it is possible to overlap memory transfers with kernel execution, increasing the overall
throughput of the program.

Figure 3.5: OpenCL Kernel Execution/Memory Operations Overlapping. [3]

With this exposition, the reader is expected to better understand the advantages and
potential behind the use of parallel programming, particularly with the OpenCL frame-
work, allowing for one code to run on multiple devices, crossing different architectures,
different vendors and even different types of devices.

29

3. Parallel Computing Frameworks and Manycore Devices

3.2 The multicore CPU

In 1965, Gordon Moore predicted that, until 1975, every two years the number of
transistors per integrated circuit would double [21]. Little did he know back then, that his
predictions were not only spot-on for that span of time, but it also set objectives for the
computing hardware and semiconductor industry, and these goals are still being sought as
of today.
CPUs are just ”victim” of this growth, and if in 1980, the Intel 80186 featured 29000
transistors, in 1993 the original Pentium processor already had more than 3 million tran-
sistors. To further increase the performance of CPUs to meet the ever-increasing industry
needs, the clock speed of the transistors also increased. But physical limitations regard-
ing heat dissipation, and the fact that the growth in clock speed had stalled, led to the
pursuit of new ways to increase the performance. Thus, the rise of the multicore CPU
era. Multicore CPUs provide parallel resources, and the power constraints are not so con-
strictive, making these the viable solution, to keep supplying the users with performance
increments. Fig. 3.6 and Fig. 3.7 show the die of the Haswell and Piledriver architectures
from Intel and AMD, respectively.

Let us now discuss the general architecture of multicore CPUs, starting with the Con-
trol Unit:

Figure 3.6: Intel Haswell architecture die. [4]

30

3.2 The multicore CPU

3.2.1 Control Unit

The control unit of a core, as its name says, corresponds to the group of circuits in the
chip that is responsible for controlling the fetching of instructions from memory, decoding
the instruction and memory addresses of the operands for the operation, redirects the data
to the arithmetic and logic units, so that the desired operation may be performed. It also
controls the flow of data between all the devices in the computer. The instruction set of
the CPU is also implemented in the control unit.

3.2.2 Arithmetic and Logic Unit (ALU)

The ALU is the group of logic circuitry present in each core that is responsible for
performing every arithmetic operations like additions, subtractions, multiplications, bit
shifting, logic operations such as AND, OR, NOT and boolean comparisons. Operations
performed by ALUs are the basis for more complex instructions. Current CPUs’ ALUs
provide support for floating-point operations, which leads to the understandable conclu-

Figure 3.7: AMD Piledriver architecture die. [5]

31

3. Parallel Computing Frameworks and Manycore Devices

sion that, nowadays, ALUs are components of very complex design, and this design is
different between different CPUs models.

3.2.3 Memory Interface and Caches

The system memory is basically comprised of three types of memory: Dynamic Ran-
dom Access Memory (DRAM), Read Only Memory (ROM) and cache memory. While
the caches are a feature of the CPU, DRAM and ROM are not located in the chip itself,
as they are placed on the motherboard. Here, an appointment must be made regarding
a major difference between the two main CPU vendors, Intel and AMD. Until recent
years, Intel CPUs communicated with the DRAM and ROM through the motherboard
memory controller, the Front-Side Bus (FSB). But recently, Intel improved its system,
implementing the QuickPath InterConnection technology. This technology, as all AMD
CPUs, features native memory controllers. For the sake of retro compatibility, since there
are still many computers using FSB, its principles are briefly discussed below.

Core 0

ALU CU

MU

L1 Cache

L2 Cache

Core 1

ALU CU

MU

L1 Cache

L2 Cache

Core 2

ALU CU

MU

L1 Cache

L2 Cache

Core 3

ALU CU

MU

L1 Cache

L2 Cache

L3 Cache

System Request Interface & Crossbar Switch(1)

Memory Controller
Hypertransport links(1)/

QuickPath InterConnect(2)

(1) - Applicable only to AMD CPU's
(2) - Applicable only to Intel CPU's

Figure 3.8: Current generation quadcore CPU basic diagram. Intel and AMD CPUs dif-
ferences are highlighted.

3.2.3.A DRAM and ROM

DRAM memory is generally the main region of the system. When running a pro-
gram, the program’s instructions and data are loaded into the DRAM, and then loaded
as they are needed by the CPU. Afterwards, if needs be, the CPU can also store data in
DRAM. ROM, on the contrary, is read-only, so the CPU can only fetch data from the

32

3.2 The multicore CPU

memory. Another interesting difference between the two memory regions is that ROM is
not volatile.

ROM memory is filled by default with special instruction sets that are important to
load the Operating System (OS) when booting the machine.

Figure 3.9: RAM stick from Corsair. [6]

Regarding the FSB referenced above, its most important characteristic is its speed, as
it determines the maximum bandwidth that memory transfers between the motherboard
and the Intel CPU occur. Meanwhile, in recent years, some Intel CPUs have already
dropped the FSB, in favour of the QuickPath InterConnect technology, providing these
CPUs with a memory interface very similar to that of AMD’s. In these systems, the max-
imum achievable bandwidth is limited only by the specifications of the RAM modules.

3.2.3.B Caches

The cache is a hardware block of fast memory placed in the CPU chip, whose main
objective (as with all other caches) is to mask the memory latency induced by accesses
to the main memory. To achieve that, the cache stores accessed data and instructions,
based on the premise that it is likely that this set of data will be used again. Therefore,
instead of loading it again from RAM, the CPU simply fetches it from the cache, whose
latency is significantly lower than that of RAM memory accesses. There are currently
three levels of cache: L1, L2 and L3. The L1 cache is the fastest cache. It resides on-chip,
and consists on a large group of flip-flops etched into the die. It is classified as an Static
Random Access Memory (SRAM) memory. Due to space limitations, the size of the L1
cache is small. Current systems only have 64kB. This limited space led to the use of
another cache level, specifically L2. In earlier systems, the L2 cache was placed directly
in the motherboard or as ”cache sticks”, but recent advances have seen the L2 placed in
the CPU. In current multicore processors, one of two choices is possible: either the L2
cache is shared between cores (with one for all, or one for a pair of cores), or each core

33

3. Parallel Computing Frameworks and Manycore Devices

has its own L2 cache. Again, L2 is also considered SRAM, but its slower than L1. Typical
L2 caches have 256kB. Finally, the L3 cache is bigger than the L2, but also slower and
resides in the motherboard. Current CPUs feature L3 caches sized 6MB.

3.3 The manycore GPU

In the first years of the 21st century, when the CPU processing power improvement
started to saturate, GPU appeared as a good alternative to provide additional processing
power, by way of new programming models and parallel implementations of algorithms
whose nature allowed such approach. Image processing algorithms in particular, can
be highly parallelizable. In the following section, the basic architecture of the GPU is
discussed, and the differences between the two main vendors - NVIDIA and AMD are
highlighted. The GPU improvement between generations is commandeered by the com-
puter gaming industry. The competition between different companies to fulfil the client’s
wish for realistic games, has pushed GPUs even further.

3.3.1 Streaming Processors (SPs)

The basic processing unit in a GPU is a SP. A few years ago, NVIDIA created the
designation CUDA core. AMD created its own designation: the Thread Processor (TP).
Both can be regarded as single processing units. While the CUDA core is comprised of
a single SP, the TP features five SP (four capable of performing simple operations, one
Special Function Unit (SFU) and one Branch Unit (BU). Of course, they operate in dif-
ferent ways. When performing scalar operations, only one SP in the TP is being used,
while the other four are idle. The only exception to this behaviour, is when four SP can
be used at the same time, as long as the instruction is issued in a Very Long Instruction
Word (VLIW) format. When this happens, the TP performs simple arithmetic operations
over scalar types (such as int4, f loat4), and thus features a better performance than its
NVIDIA counterpart. In the CUDA core, the only SP is obviously used.

In the latest AMD architecture, a group of 16 TP is called a Single Instruction Mul-
tiple Data (SIMD) engine. When 4 SIMD engines are grouped, a Compute Unit (CU)
is obtained. Its NVIDIA equivalent (a group of CUDA cores) is regarded as a Stream
Multiprocessor (SMX). A Kepler GPU’s SMX packs 192 CUDA cores.

Regarding OpenCL kernel execution, both vendors follow a Single Instruction Mul-
tiple Thread (SIMT) policy. NVIDIA introduced the warp, where a single instruction is
executed in 32 threads in parallel. AMD GPUs consider wavefronts, which are groups of

34

3.3 The manycore GPU

64 parallel threads.

Figure 3.10: GCN Compute Unit Architecture. [7]

3.3.2 Memory-Hierarchy

The memory architecture differs greatly for AMD and NVIDIA GPUs, and also be-
tween different device generations.

In the new AMD generation of GPUs, the Graphic Core Next (GCN) architecture,
each SIMD engine is endowed with 64kB of private registers. In a given CU, the 4 SIMD
engines share an L1 data cache, of size 16kB. Also present is the Local Data Shared
Memory (LDS), which can either be accessed directly by the SIMD engines, or load data
into the L1 cache, when this is deemed advantageous. The LDS block is usually 64kB

long. Additionally, the CU has two auxiliary shared L1 caches: the scalar read-only and
the instruction, with sizes 16kB and 32kB, respectively. These are also shared between
the 4 SIMD engines [7]. Since scalar operations are commonly used for flow control pur-
poses, there is little need to write the results back into the cache, therefore the decision for
a read-only cache. Regarding the instruction cache, there is little more to say about it, as
it stores frequently used instructions to mask global memory latency. Fig. 3.10 illustrates
this architecture.

Shared by all the CUs are multiple instances of L2 cache (one for each memory chan-
nel), each of them sized between 64kB and 128kB. The role of the L2 cache is to keep the
coherency of the application, by grouping the data from every CU. The fact that it is lo-

35

3. Parallel Computing Frameworks and Manycore Devices

Figure 3.11: GCN Basic Memory Model. [7]

cated on-chip is a great advantage, since it is significantly faster than the previously used
off-chip memory. As evidenced in Fig. 3.11, the CU and respective caches communicate
with the L2 slices through a switching ”cross-bar” fabric.

The current generation of NVIDIA GPUs are based on a refresh of the Kepler architec-
ture. In this architecture, each SMX has 64kB of on-chip memory, that can be configured
as 48kB of shared memory and 16kB of L1 cache, or the other way around, to best suit
the applications’ needs. Similar to AMD, NVIDIA GPUs also feature a read-only L1 data
cache, but unlike its competitor, NVIDIA’s cache is 48kB long [8]. The L2 cache again
acts as a coherency point, and the big difference to AMD is the fact that here, this cache
is a single 1536kB block.

36

3.3 The manycore GPU

Figure 3.12: Kepler SMX model. [8]

37

3. Parallel Computing Frameworks and Manycore Devices

Figure 3.13: Kepler Generic Architecture. [8]

3.3.3 Mapping the GPUs Memory Regions to the OpenCL Address
Spaces

As discussed in 3.1.2.B, OpenCL defines four address spaces, each of which has its
own advantages and disadvantages. Considering their characteristics, it is easy to map
these address spaces to specific memory regions in the current generation of GPUs from
AMD (GCN) and NVIDIA (Kepler), as exposed in the following table:

AMD NVIDIA
global L2 Cache L2 Cache
local LDS Shared Memory

constant Read-Only Data L1 Cache Read-Only Data L1 Cache
private General-Purpose Registers (GPRs) (256kB/CU) GPRs (256kB/SMX)

38

3.4 Conclusion

3.4 Conclusion

This chapter conveys the reader with a basic knowledge of OpenCL’s inner workings
and principles, and the main families of multicore and manycore devices, namely CPUs
and GPUs, upon which the framework can be used. The reader is now able to assess the
advantages and disadvantages of the powerful programming model that OpenCL repre-
sents, as well as to identify some of its potential applications.Under the context of this
work, the next chapters show how Synthetic Aperture (SA) Beamforming Imaging ker-
nels can be developed in order to conveniently exploit the computational power that such
parallel architectures can offer.

39

3. Parallel Computing Frameworks and Manycore Devices

40

4
Parallel Synthetic Aperture

Beamforming on Manycore Devices

Contents
4.1 Outlining . 42

4.2 Experimental Results . 48

4.3 Analyzing the obtained results . 50

4.4 Conclusions . 54

41

4. Parallel Synthetic Aperture Beamforming on Manycore Devices

During the course of the following chapter, the simulation scenario and performance
metrics are outlined, followed by the description and analysis of the results obtained.

4.1 Outlining

This section describes how the delay-and-sum approach of the Synthetic Aperture
(SA) beamforming technique will be implemented in the Graphics Processing Unit (GPU).
This is followed up by a discussion of the platform used for the simulations and all the
metrics used for performance evaluation purposes.

4.1.1 SA Beamforming Kernels

To design an Open Computing Language (OpenCL) application, it is necessary to first
discuss which steps to parallelize. Reaching back to Chapter 2, it is clear that before
performing the image reconstruction step, the signal must undergo an additional filtering
step (Hilbert transform FIR filter), so as to compute the analytic representation. This is
illustrated in the Fig. 4.1.

After computing the analytic representation of the acquired signal, the image recon-
struction algorithm is now performed. This algorithm is the main focus of this work, since
it features the biggest computing complexity in the whole process. Fig. 4.2 shows how
the algorithm is mapped in the GPU.

During the course of this project, two parallel approaches to the imaging algorithm
were followed. They are both illustrated in Fig. 4.3. In the 1st approach, the kernels are
launched independently, meaning that when operating with multiple GPUs, each will be
assigned one of the kernels, and their execution is sequential. With the use of pthreads,
the 2nd approach introduces a new level of parallelism, and each GPU will execute the two
kernels sequentially, while the other is concurrently performing the same tasks on another
set of data. A direct consequence of this, is that there is need for strict synchronization
between threads to prevent calculations on already processed data, and wrong increments
on shared variables.

The experimental results were obtained for four versions of the application, based
on the approaches outlined in Fig. 4.3. Both v1.0 and v1.1 are based on Approach 1.
Similarly, v2.0 and v2.1 are based on Approach 2.

v1.0

• Full C console. Kernel A and B are both executed on GPUs.

42

4.1 Outlining

Kernel A

Filter Coefficients

Input
Signal

j

Analytic
Signal

∑

FIR Filtering
Hilbert Transform

(a)

T
e

x
tu

re

... Channel
array

Work-group n

Work-group (n-1)

...
...

...

__kernel void analytic(image2d_t in, image2d_t out,
__constant float *coeff, ...)
{
 int gID0 = get_global_id(0);
 int gID1 = get_global_id(1);

 if(outOfRange(tIDx,tIDy)) return;
 float aux=0,aux2;

 #pragma unroll FILTER_LEN
 for(int j=0; j< FILTER_LEN; j++)
 {
 //Apply filter to input signal

aux += coeff[j] * read_imagef(in[idx-j]).x;Y
 }
 aux2 = read_imagef(in[idx]).x;

 //Use input signal and filtered signal to generate
 //output signal
 write_imagef (out[idx], (float4) (aux2,aux,0,0));
}

(b)

Figure 4.1: Kernel A block diagram and algorithm structure on the GPU.

43

4. Parallel Synthetic Aperture Beamforming on Manycore Devices

Kernel B

Input
Signal

Pixel
Position

Virtual Point
Source Position

Degree <

α

Distance

Receiving Transducer
Position

Degree

A
N

D

Distance

∑

Apodization
Weight

Sampling
Frequency

Propagation
Speed

/

x

n

x[n] y[P0]

<

(a)

virtual

source

d
T

d
R

1

d
R

2

d
R

1
2

8

...

T
e
x
tu

re

(i,j)

k(a,b)

k(c,d)

Channel
array

Work-group 1Work-group 0

...
...

__kernel void beamforming(__global float2 *d_image, ...)
{
 int tIDx = get_global_id(0);
 int tIDy = get_global_id(1);
 int storeIdx = tIDx + stride * tIDy;

 if(outOfRange(tIDx,tIDy)) return;
 else if (insideTransmitAperture(tIDx,tIDy)){

 float transmit_distance = computeDistance(tIDx,tIDy);

 #pragma unroll CHANNEL
 for (int i = 1;i<CHANNEL+1;i++){
 //Compute receiving element contribution
 if (insideReceiveAperture(tIDx,tIDy)){
 path = computeTotalPath(tIDx,tIDy);

 if (pathBelowThreshold(path,Threshold)){
X X X X X X //Load apodization weight
X X X X X X X wt_fetch = read_imagef(…);
 //Load signal
 rf_fetch = read_imagef(…);

 //Compute final result
 dataOut = mergeData(wt_fetch,rf_fetch,path);
 }}}
 //Write image to memory
 d_image[storeIdx] = dataOut;
}}}

(b)

Figure 4.2: Kernel B block diagram and algorithm structure on the GPU.

44

4.1 Outlining

1st LRI
2nd LRI

n-th LRI

Linear phased array
probe Pre-beamforming

CPU

Matlab
Pre-processing

CPU

C/OpenCL
Host Code

GPU 1

Kernel A

GPU 2

Kernel B

(a) Approach 1: Both GPUs compute the LRI cooperatively. The
LRI computation is sequential.

1st LRI
3rd LRI

n-th LRI

Linear phased array
probe Pre-beamforming

CPU

C/OpenCL
Host Code

2nd LRI
4rd LRI

(n-1)-th LRI

GPU1

Kernel A+B

GPU2

Kernel A+B

pthread 0 pthread 1

(b) Approach 2: LRIs are computed in parallel, with the use of
pthreads. Each GPU is assigned an LRI for computation

Figure 4.3: Structural outline of the two parallel approaches followed in this work.

45

4. Parallel Synthetic Aperture Beamforming on Manycore Devices

v1.1

• Optimized host code.

v2.0

• Memory transfers are blocking, meaning that when enqueued, the host code is
blocked until execution is completed.

v2.1

• Vector types (cl float2, cl float4) used both for memory transfer and for vectorial
arithmetic operations.

• Two command queues for the same device: one for memory transfers, the other for
kernel calls.

• Memory API calls are non-blocking (the host does not wait for the enqueued com-
mand to be completed before it advances).

Due to the fact that the different GPUs have different resources and capabilities, some
scenarios can not handle the resource requirements introduced by all the versions. When
this occurs, the corresponding cells in the tables are filled with Non-Applicable (N/A).

4.1.2 Simulation Apparatus

The experimental apparatus used in this work consists on a Asus P6X58D Premium.
It features an Intel Core i7 950 Central Processing Unit (CPU), with 8MB of L3 cache,
and clocked at 3.07GHz. The machine is also equiped with 2x3GB of DDR3 Random
Access Memory (RAM), clocked at 1600MHz. During the course of the simulations,
several GPUs are used, namely two Advanced Micro Devices (AMD) Radeon HD6970
(24 Compute Unit (CU) and 2GB GDDR5 memory), an NVIDIA Tesla C1060 (30 Stream
Multiprocessor (SMX) and 4GB GDDR3 memory) and one NVIDIA GTX680 (8 SMX
and 2GB GDDR5 memory). The machine runs on Windows 7 Ultimate x64, and the
project was created under Microsoft Visual Studio 2010 Ultimate. OpenCL support was
added with the installation of the AMD and NVIDIA SDK’s for OpenCL. Also, in order
to perform application profiling, AMD CodeXL and NVIDIA Visual Profiler were used,
providing valuable information regarding kernel and memory metrics. The simulation
consists on a set of bundles of raw data, acquired using a Sonix-RP research scanner
equipped with a pre-beamformer data acquisition tool [17]. The 2-cycle 10MHz sinusoid
pulse is repeated with frequency 5kHz. There are 97 transmit positions, each comprised
of a 64 transducer aperture, with the virtual point sources apart by 0.3mm. On receiving,

46

4.1 Outlining

each of the 128 transducers are operating in passive mode, with a sampling frequency of
40MHz. Each of the 97 data bundles will be processed into an LRI. The group of LRIs
will be compounded into an High-Resolution Image (HRI). The Region of Interest (ROI)
is comprised of . The reconstructed image is 512x255pixels, and can be seen in Fig. 4.4.

Host Platform
CPU Intel Core i7 950

Motherboard Asus PX58D Premium
Memory 3×2GB DDR3

GPUs

Multiple GPUs setup
2× AMD Radeon HD6970

NVIDIA GTX680 NVIDIA Tesla C1060
AMD Radeon HD6970 NVIDIA GTX680

Single GPU setup
AMD Radeon HD6970

NVIDIA GTX680

Table 4.1: Host Platform Specs.

50 100 150 200 250

50

100

150

200

250

300

350

400

450

500

Figure 4.4: Reconstructed image of an in-vivo carotid, computed in the simulations.

4.1.3 Performance Metrics

To evaluate correctly each scenario, they need to be evaluated using different metrics.
Let us then define these metrics.

47

4. Parallel Synthetic Aperture Beamforming on Manycore Devices

4.1.3.A Throughput and Overall processing Time

Throughput is defined as the relation between the output of a given system and the
time it takes for it to be computed. In the context of this work, throughput shall be defined
as the number of frames-per-second (FPS) computed under each scenario. Obviously, the
throughput is directly related to the overall processing time of the simulation.

4.1.3.B Memory Transfer Rates (Average and Slowest)

Given the considerable amount of data transfers involved in such application, it is
only natural that the memory performance of the devices is evaluated. This is achieved
by assessing the average read/write transfer rate of the computing devices. The slowest
memory transfer is also inspected, since it provides useful information regarding hanging
points in the simulation.

4.1.3.C Kernel Occupancy

In parallel computing frameworks such as Compute Unified Device Architecture (CUDA)
and OpenCL, kernel occupancy is a very important performance metric. Given the dif-
ferences between vendors, there are some differences between kernel occupancy in an
NVIDIA GPU and an AMD GPU. For NVIDIA devices, kernel occupancy is the ratio
between the number of warps each multiprocessor is using concurrently and the maximum
number of warps the device is able to handle. In AMD devices, which use wavefronts in-
stead of warps, the ratio is between the number of in-flight wavefronts per CU and the
maximum number of wavefronts [22] [23].

The kernel occupancy can be affected by several factors. Either the work group size,
the number of registers being used per warp/wavefront, and the amount of local memory
used by each workgroup can be limiting factors. With the help of CodeXL and NVIDIA
Visual Profiler, the limiting factor(s) can be identified and tweaked to ensure optimal
kernel occupancy. Depending on the nature of the algorithm being used, it is possible
that the maximum achievable kernel occupancy is below 100%. Nonetheless, although
the kernel occupancy ensures optimal utilization of the GPU resources, a higher kernel
occupancy does not always ensure higher throughput [24].

4.2 Experimental Results

4.2.1 Single GPU scenario

In this section, the results from the scenarios featuring a single GPU acting as a com-
puting device are explored.

48

4.2 Experimental Results

4.2.1.A AMD

In this scenario, a single AMD Radeon HD6970 is used to run the simulation described
in Sec.4.1.2.

Source Code Version Throughput (FPS) Average Memory Transfer Rate (MTR) (GB/s)
v1.0 0.5532 0.45
v1.1 16.93 0.441
v2.0 98.7 3.03
v2.1 209.5 4.69

Source Code Version Kernel A Occupancy (%) Kernel B Occupancy (%)
v1.0 100% 100%
v1.1 100% 100%
v2.0 100% 100%
v2.1 100% 100%

Table 4.2: Results for the single AMD scenario.

4.2.1.B NVIDIA

The computing device now being used is the NVIDIA GTX680:

Source Code Version Throughput (FPS) Average MTR (GB/s)
v1.0 7.5397 4.5
v1.1 17.71 N/A
v2.0 106.9 10.52
v2.1 119.4 10.46

Source Code Version Kernel A Occupancy (%) Kernel B Occupancy (%)
v1.0 100% 94%
v1.1 100% 94%
v2.0 94% 100%
v2.1 94% 100%

Table 4.3: Results for the single NVIDIA scenario.

4.2.2 Multiple GPUs scenario

In this subsection, different combinations of multiple GPUs scenarios are tested: Two
AMD Radeon HD 6970, an NVIDIA GTX680 with an NVIDIA Tesla C1060, and finally,
an AMD Radeon HD6970 with an NVIDIA GTX680.

4.2.2.A Dual AMD

The first scenario is comprised of the two AMD Radeon HD6970.

49

4. Parallel Synthetic Aperture Beamforming on Manycore Devices

Source Code Version Throughput (FPS) Average MTR (GB/s)
v1.0 0.5415 0.385
v1.1 13.87 0.384
v2.0 171.96 2.867
v2.1 350.82 3.04

Source Code Version Kernel A Occupancy(%) Kernel B Occupancy(%)
v1.0 100% 100%
v1.1 100% 100%
v2.0 100% 100%
v2.1 100% 100%

Table 4.4: Results for the dual AMD scenario.

4.2.2.B Dual NVIDIA

The current scenario features the NVIDIA GTX680 and the NVIDIA Tesla C1060.

Source Code Version Throughput (FPS) Average MTR (GB/s)
v1.0 14.10 2.82
v1.1 21.16 N/A
v2.0 166.4 10.22
v2.1 186.9 10.04
Source Code Version Kernel A Occupancy (%) Kernel B Occupancy (%)
v1.0 50%(1) 100%(2)

v1.1 50%(1) 100%(2)

v2.0 94%(2)/75%(1) 100%(2) /100%(1)

v2.1 94%(2)/75%(1) 100%(2) /100%(1)

(1) - Tesla C1060;(2) - NVIDIA GTX680

Table 4.5: Results for the dual NVIDIA scenario.

4.2.2.C Hybrid AMD/NVIDIA

This final scenario features one GPU from each vendor: the AMD Radeon HD6970
and the NVIDIA GTX680.

4.3 Analyzing the obtained results

When inspecting the output of the profiling tools used in the various version/scenario
combination, and whose results are displayed in the previous sections’ tables, several facts
become clear.

First, a note must be made regarding the NVIDIA profiling tool. Due to the fact that
NVIDIA has its own parallel computing framework, CUDA, there is not great interest by
NVIDIA to facilitate the usage of OpenCL. For example, NVIDIA Nsight, the profiling

50

4.3 Analyzing the obtained results

Source Code Version Throughput (FPS) Average MTR (GB/s)
v1.0 3.119 5.44(2)/0.222(3)

v1.1 16.99 N/A
v2.0 194.1 N/A(2)/3.28(3)

v2.1 291.4 N/A(2)/4.181(3)

Source Code Version Kernel A Occupancy (%) Kernel B Occupancy (%)
v1.0 94%(2) 100%(3)

v1.1 94%(2) 100%(3)

v2.0 100%(3)/94%(2) 95.2%(3)/100%(2)

v2.1 100%(3)/94%(2) 100%(3)/94%(2)

(2) - NVIDIA GTX680;(3) - AMD Radeon HD6970

Table 4.6: Results for the multiple hybrid GPU scenario.

2.0 2.5 3.0 3.1
0

50

100

150

200

250

300

350

400

Version

F
ra

m
e
s
−

p
e
r

s
e
c
o
n
d
 (

F
P

S
)

Single AMD

Single NVIDIA

Dual AMD

Dual NVIDIA

Dual Hybrid

Figure 4.5: Throughput comparison between the different scenarios and versions.

51

4. Parallel Synthetic Aperture Beamforming on Manycore Devices

tool used in this work, only provides basic OpenCL profiling capabilities. Also, the latest
graphic drivers have been reported to halve the OpenCL performance of retail GPUs,
such as the GTX680. Nonetheless, NVIDIA has a few perks. Starting with v1.0 of the
source code, when comparing the performance of the NVIDIA GTX680 with the AMD
Radeon HD6970 (single GPU scenario), the difference regarding throughput is very large.
When comparing the timelines of both cases, it is clear that the reason for such result,
resides in the fact that NVIDIA caches the kernels’ binaries. Thus, when a new frame
is being processed, the application simply fetches the kernel binary from the cache. On
the contrary, AMD devices do not have any kind of binary caching, resulting in a much
greater processing time. Secondly, when inspecting all the scenarios, NVIDIA GPUs
tended to perform better memory transfer-wise.

When comparing both the AMD and NVIDIA single and multiple GPU scenarios
(Tables 4.2,4.3,4.4,4.5 and 4.6), in versions 1.0, 1.1 and 3.0 NVIDIA fares better in terms
of throughput, but the same can not be said regarding version 3.1. The reason for such
event resides in the fact that this version uses vectorial data types and operations. As
introduced previously in Chapter 3, AMD Thread Processors (TPs) feature four basic op-
erations Streaming Processor (SP), but they are only used simultaneously when vectorial
operations are used.

In version 3.1, although the overlapping of memory transfers and kernel executions is
implemented, current AMD and NVIDIA OpenCL drivers enforce kernel execution calls
to be blocking. This means that until the kernel returns, the host code does not advance.
Of course, with the use of explicit synchronization, the improvement in performance is
low. The immediate solution is to use two host threads to control the execution, but this
would require very rigorous synchronization. By alternative, when the memory transfers
and kernel executions are blocking, the need for explicit synchronization between threads
disappears, and the overlap occurs. Compared to the implementation of version 3.1, the
performance improvement is considerably larger. To illustrate these claims, a special
scenario is used, adapted from version 3.0. Thus, two AMD GPUs are used, and for each
one, two pthreads are launched.

Finally, given the throughputs achieved, the lateral resolution of the image was changed,
to provide proof of its influence on the overall image quality, particularly on the field of
image artefacts. Fig. 4.6 shows the same image with three different lateral resolutions,
and highlights the regions where the differences are more visible.

52

4.3 Analyzing the obtained results

(a) Simulation with 256x255 pixels.

(b) Simulation with 512x255 pixels.

(c) Simulation with 1024x255 pixels.

Figure 4.6: Images reconstructed with various lateral resolutions to evaluate its effect on
image quality. Highlighted in red are the regions where the differences can be seen. In
subfigures b) and c), the incidence of image artifacts is much lower than that of subfigure
a), which has lower lateral resolution.

53

4. Parallel Synthetic Aperture Beamforming on Manycore Devices

4.4 Conclusions

The results obtained in the current chapter, show promising signs that GPUs pro-
grammed under the OpenCL framework can deliver a real-time medical ultrasound imag-
ing system. Nonetheless, there is still work being done, specifically by addressing some
of the problems encountered during the course of this thesis’ work, namely the current
implementation of the OpenCL drivers by the vendors, that make it impossible for the
clear implementation of the memory transfers and kernel execution overlaps. These re-
sults also make it clear that the portability provided by OpenCL sacrifices performance,
and the only way to address this, is to adapt the code to the specific architecture of the
computing device.

54

5
Conclusions

Contents
5.1 Future Work . 56

55

5. Conclusions

While the Synthetic Aperture (SA) Beamforming kernels developed during the course
of this work did achieve the proposed mark of 350 frames-per-second (FPS), there is
still potential for major improvements, whose result will yield much better results, poten-
tially over 1000 FPS. By comparing the various scenarios: single Graphics Processing
Unit (GPU), multiple GPUs and multiple Central Processing Unit (CPU) cores, several
facts arise. The use of texture images yields major speed-ups in GPUs, but current CPU
architecture is not optimized for such structures, thus making the CPU a poor candi-
date in the pool of many-core computing devices. When using two different GPUs, the
performance is only slightly better than that of the single-GPU scenario (in some cases,
performing even worse). The reason for this is the introduced overhead in synchronizing
data and sharing the Peripheral Component Interconnect Express (PCIe) bus. The main
bottleneck of the implementation is still fairly obvious to pinpoint: memory transfers. The
solution to minimize this bottleneck is not obvious: the bandwidth attributed the device
allocates to perform a given memory transfer is a log-like function of the size of the data
to be transferred. While the parallel processing of Low-Resolution Images (LRIs) would
increase the volume of data to be transferred, and maximize the allocated bandwidth, its
effect on kernel execution would be nefarious, with additional execution branches. On the
other hand, converting the data from float to half would decrease the allocated bandwidth.

5.1 Future Work

As stated above, the results of this work are not final, as there is still ample space for
improvement. There are many challenges in the design of portable parallel kernels, the
biggest being how to properly address the differences of the architectures of the many-
core devices. Additionally, only now are SA beamforming techniques blooming in the
ultrasound imaging field. The delay-and-sum approach exploited in this thesis is still a
work in progress, but there is already work in progress regarding the design of frequency-
domain imaging reconstruction algorithms that can benefit from a parallel approach using
Open Computing Language (OpenCL) on many-core devices.

56

Bibliography

[1] H. Azhari, Basics of biomedical ultrasound for engineers, 2010.

[2] R. Farber, “Part 2: Opencl - memory spaces,” 2010. [Online]. Available:
http://www.codeproject.com/Articles/122405/Part-2-OpenCL-Memory-Spaces

[3] O. Rosenberg, “Opencl do’s and dont’s,” 2011.

[4] [Online]. Available: http://techreport.com/r.x/core-i7-4770k/haswell-die.jpg

[5] [Online]. Available: http://www.hardwarebenchnews.com/wp-content/uploads/
2012/11/FX 8350 Review Piledriver die.jpg

[6] [Online]. Available: http://www.corsair.com/us/memory-by-product-family/
value-select-memory-upgrades/vs8gsdskit800d2.html

[7] AMD, “White Paper — AMD GRAPHICS CORES NEXT (GCN) ARCHITEC-
TURE,” 2012.

[8] NVIDIA, “Whitepaper - NVIDIA’s Next Generation CUDA Compute Architecture:
Kepler GK110,” 2012.

[9] S. Haykin and B. Van Veen, Signals and systems Second Edition, 2003.

[10] L. J. Ziomek, Acoustic Field Theory and Space-Time Signal Processing, 1995.

[11] M. Bom and E. Wolf, “Principles of optics,” Pergamon Oxford (Ed.), 1980.

[12] L. J. Cutrona, “Comparison of sonar system performance achievable using synthetic-
aperture techniques with the performance achievable by more conventional means,”
The Journal of the Acoustical Society of America, vol. 58, no. 2, p. 336, 1975.
[Online]. Available: http://link.aip.org/link/JASMAN/v58/i2/p336/s1&Agg=doi

[13] T. Stepinski, “An Implementation of Synthetic Aperture Focusing Technique
in Frequency Domain,” IEEE Transactions on Ultrasonics Ferroelectrics and

Frequency Control, vol. 54, no. 7, pp. 1399–1408, 2007. [Online]. Available:
http://www.ncbi.nlm.nih.gov/pubmed/17718329

57

http://www.codeproject.com/Articles/122405/Part-2-OpenCL-Memory-Spaces
http://techreport.com/r.x/core-i7-4770k/haswell-die.jpg
http://www.hardwarebenchnews.com/wp-content/uploads/2012/11/FX_8350_Review_Piledriver_die.jpg
http://www.hardwarebenchnews.com/wp-content/uploads/2012/11/FX_8350_Review_Piledriver_die.jpg
http://www.corsair.com/us/memory-by-product-family/value-select-memory-upgrades/vs8gsdskit800d2.html
http://www.corsair.com/us/memory-by-product-family/value-select-memory-upgrades/vs8gsdskit800d2.html
http://link.aip.org/link/JASMAN/v58/i2/p336/s1&Agg=doi
http://www.ncbi.nlm.nih.gov/pubmed/17718329

Bibliography

[14] D. Hawkins, “Synthetic Aperture Imaging Algorithms: with application
to wide bandwidth sonar,” no. October, 1996. [Online]. Available: http:
//ir.canterbury.ac.nz/handle/10092/1082

[15] M. Feldman, Hilbert Transform Applications in Mechanical Vibration. Chichester,
UK: John Wiley & Sons, Ltd, Mar. 2011.

[16] A. J. Hunter, B. W. Drinkwater, and P. D. Wilcox, “The wavenumber algorithm for
full-matrix imaging using an ultrasonic array.” IEEE transactions on ultrasonics,

ferroelectrics, and frequency control, vol. 55, no. 11, pp. 2450–62, Nov. 2008.
[Online]. Available: http://www.ncbi.nlm.nih.gov/pubmed/19942535

[17] J. Amaro, G. Falcao, B. Y. S. Yiu, and A. C. H. Yu, “Portable Parallel Kernels For
High-Speed Beamforming In Synthetic Aperture Ultrasound Imaging,” 2013.

[18] B. S Yiu, I. H Tsang, and A. H Yu, “GPU-based beamformer: Fast realization of
plane wave compounding and synthetic aperture imaging.” IEEE Transactions on

Ultrasonics Ferroelectrics and Frequency Control, vol. 58, no. 8, pp. 1698–1705,
2011. [Online]. Available: http://www.ncbi.nlm.nih.gov/pubmed/21859591

[19] NVIDIA, “OpenCL Programming Guide for the CUDA Architecture,” 2009.

[20] AMD, “OpenCL Programming Guide AMD Accelerated Parallel Processing,” no.
December, 2012.

[21] G. E. Moore, “Readings in computer architecture,” M. D. Hill, N. P. Jouppi, and
G. S. Sohi, Eds. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc.,
2000, ch. Cramming more components onto integrated circuits, pp. 56–59.

[22] [Online]. Available: http://developer.amd.com/tools-and-sdks/
heterogeneous-computing/archived-tools/amd-app-profiler/user-guide/
app-profiler-kernel-occupancy/

[23] [Online]. Available: parallel.vub.ac.be/∼jgcornel/Occupancy.html

[24] V. Volkov, “Better performance at lower occupancy,” Proceedings of the GPU

Technology Conference, . . . , 2010. [Online]. Available: http://people.sc.fsu.edu/
∼gerlebacher/gpus/better performance at lower occupancy gtc2010 volkov.pdf

58

http://ir.canterbury.ac.nz/handle/10092/1082
http://ir.canterbury.ac.nz/handle/10092/1082
http://www.ncbi.nlm.nih.gov/pubmed/19942535
http://www.ncbi.nlm.nih.gov/pubmed/21859591
http://developer.amd.com/tools-and-sdks/heterogeneous-computing/archived-tools/amd-app-profiler/user-guide/app-profiler-kernel-occupancy/
http://developer.amd.com/tools-and-sdks/heterogeneous-computing/archived-tools/amd-app-profiler/user-guide/app-profiler-kernel-occupancy/
http://developer.amd.com/tools-and-sdks/heterogeneous-computing/archived-tools/amd-app-profiler/user-guide/app-profiler-kernel-occupancy/
parallel.vub.ac.be/~jgcornel/Occupancy.html
http://people.sc.fsu.edu/~gerlebacher/gpus/better_performance_at_lower_occupancy_gtc2010_volkov.pdf
http://people.sc.fsu.edu/~gerlebacher/gpus/better_performance_at_lower_occupancy_gtc2010_volkov.pdf

A
Appendix A

59

PORTABLE PARALLEL KERNELS FOR HIGH-SPEED BEAMFORMING
IN SYNTHETIC APERTURE ULTRASOUND IMAGING

Joao Amaro∗, Gabriel Falcao∗, Billy Y. S. Yiu‡, and Alfred C. H. Yu‡

∗Instituto de Telecomunicações, University of Coimbra, Portugal
‡Medical Engineering Program, University of Hong Kong, HongKong SAR

ABSTRACT

In medical ultrasound, synthetic aperture (SA) imaging is
well-considered as a novel image formation technique for
achieving superior resolution than that offered by existing
scanners. However, its intensive processing load is known
to be a challenging factor. To address such a computational
demand, this paper proposes a new parallel approach based
on the design of OpenCL signal processing kernels that can
compute SA image formation in real-time. We demonstrate
how these kernels can be ported onto different classes of par-
allel processors, namely multi-core CPUs and GPUs, whose
multi-thread computing resources are able to process more
than 250 fps. Moreover, they have strong potential to support
the development of more complex algorithms, thus increasing
the depth range of the inspected human volume and the final
image resolution observed by the medical practitioner.

Index Terms— Synthetic aperture, Ultrasound medical
imaging, Beamformer, OpenCL, GPU

1. INTRODUCTION

Ultrasound medical imaging systems are nowadays a funda-
mental tool for helping medical practitioners performing are-
liable non-invasive diagnosis procedure. Based on the pro-
cessing and analysis of pulse-echo signals, current ultrasound
imaging systems are complex from a hardware perspective
due to the use of array transducers that inherently involve
multi-channel processing. They are supported by extensive
microelectronics systems such as filed-programmable gate ar-
rays (FPGA) and digital signal processors (DSP) [1].

As the theoretical principles of advanced ultrasound im-
age formation paradigms have become more mature in recent
years, there is a growing level of interest in realizing themin
practice. Of particular interest is the real-time execution of
those algorithms, which represents a key factor in ultrasound
imaging regarding its bedside clinical role.

One such advanced ultrasound technique is synthetic
aperture beamforming, which transmits unfocused pulses

This work is funded in part by the Portuguese Foundation for Science
and Technology (FCT) project PEst-OE/EEI/LA0008/2011, aswell as the
Hong Kong Innovation and Technology Fund (ITS/292/11).

form distinct lateral positions [2]. Each pulse generates
echoes that are received by all channels in the sensor to form
a low-resolution image (LRI) per each instance of pulse-echo
sensing, which is accomplished by performing delay-and-
sum beamforming at each pixel position. Then the sum of a
predefined set of LRIs can be used to form high-resolution
images (HRI) [3]. Naturally, these operations are computa-
tionally demanding. Additionally, unlike previous ultrasound
techniques that use the same set of focusing delays, synthetic
aperture beamforms each pixel based on different sets of
varying focus delays [2], which is more complex to do and
demands higher processing capabilities.

Although originally dedicated to image rendering, graph-
ics processing units (GPU) have been recently introduced as
powerful parallel accelerators for general-purpose comput-
ing [4, 5]. They have been shown to be well-suited to the real-
time realization of synthetic aperture imaging algorithms[6].
Unlike conventional approaches that exploit the compute uni-
fied device architecture (CUDA) interface [7] which is limited
to execute only in NVIDIA GPUs, in this article we propose
using OpenCL [8, 9], a more generic programming model,
and show that it supports the execution of these parallel ker-
nels on a wide variety of multi- and many-core systems [10].
Depending on the specificities of the system (e.g., number of
array transducers, image resolution, etc.), OpenCL allowstar-
geting synthetic aperture kernels to the most appropriate het-
erogeneous computational environment [11] that is capableof
supplying the necessary processing power. In this article we
report experimental results obtained by running the same ker-
nel on Intel CPUs and ATI or NVIDIA GPUs. We also show
how these OpenCL-based signal processing kernels were de-
veloped in order to extract parallelism from the architecture.

2. SYNTHETIC APERTURE IMAGING

We first discuss the theory associated with synthetic aperture
imaging. We start by identifying and elaborating on the dif-
ferent phases of the algorithm.

60

2.1. Signal transmission characteristics

The transmitting elements used in current transducers emita
linear signal. The synthetic aperture algorithm is based onthe
emission of a spherical wave from each transmission source.
To minimize changes in the hardware, we can use the current
transducers, but the signal is emitted as in figure 1 to emulate a
spherical wave. The point behind the element array represents
the epicenter of the spherical wave, or the virtual source point.

2.2. Signal reception

As previously mentioned, the signal propagates in the form
of a spherical wave both in transmission and in reception (af-
ter reflection in the scattering medium). So, we must take
into account the relative delay of the signal received from a
reflection in a pixel in relation to the neighboring receiving
elements.

2.3. LRI calculation

To compute each pixel of a LRI, we now have to account for
the contribution of each receiving element, with a delay-and-
sum procedure. This is basically a linear interpolation of the
pixels’ position neighboring analytic data samplesαn,m:

αn,m(P0) = λan,m(k) + [1− λ]an,m(k + 1), (1)

wheren corresponds to then− th receive channel andm rep-
resents them− th transmitting virtual source point. Each of
the receiving elements contribution is passed through a win-
dow functionωn. To find the depth sample numberk, we
must first consider the focusing delayτn,m(P0) and the inter-
polation weightλ:

k = ⌊fsτn,m(P0)⌋, (2)

λ = 1 + k − fsτn,m(P0). (3)

The focusing delay in SA imaging is calculated in the fol-
lowing way:

τn,m(P0) =
dT (P0;m) + dR(P0;n)

c0
, (4)

wheredT (P0;m) represents the distance between the trans-
mitting position and the position of pixelP0, anddR(P0;n)
the distance between this position and thenth receiving ele-
ment, whilec0 is the speed in the scattering medium.

Finally, the value for pixelP0 of themth LRI can be ob-
tained by:

Lm(P0) =

N∑

n=1

ωnαn,m(P0), (5)

...

...

LRI 1 LRI 2 LRI N

HRI 1

1st virtual source point

1st ... n-th ... receiver

m-th virtual source point

Fig. 1. Pulse-echo system based on synthetic aperture and the
multi-channel generation of LRI and HRI.

2.4. HRI compounding

After computing a new LRI, we replace the oldest LRI in the
compounding frame, and after recursive summation of the en-
tire frame (with sizeN), we are able to form a new HRI. This
can be modeled as a relation between the new HRI and the
previous one:

Hi(P0) = Hi−1(P0) + Li(P0)− Li−M (P0). (6)

3. PARALLEL PORTABLE KERNELS FOR SA

Historically, developing an algorithm for running on a mul-
ticore system was considered nontrivial. Recently, parallel
programming models were developed to allow programming
some specific architectures in particular [7]. Later, the in-
troduction of a broadly accepted programming model com-
patible with different multi- and many-core architectureswas
made possible with the arrival of OpenCL [8]. OpenCL pro-
vides a framework that allows signal processing programmers
to develop code once and execute it on a variety of multicore
systems such as CPUs or GPUs. Using a C/C++ environment,
the programmer instructs the compiler how a code section
should be parallelized. Parallelization is organized by the pro-
grammer in work-groups, where each work-group dispatches
a certain predefined number of work-items. At runtime, the
program inspects the compute resources available on the plat-
form, compiles the source code according to it and launches
execution. At the end, processed data is sent back to the host
system that orchestrates execution [9].

The parallel algorithm developed exploits thread-level
parallelism to perform the calculation of new LRIs. Process-
ing is performed on a pixel-per-pixel basis for all channelsof
the system. The processing unity with smaller granularity-
level is the work-item.

61

virtual

source

d
T

d
R
1

d
R
2

d
R
1
2
8

...

T
e
x
tu
re

(i,j)

k(a,b)

k(c,d)

Channel
array

Work-group 1Work-group 0

...
...

Fig. 2. Calculation of pixel(i, j) for thenth LRI. Illustration
of the influence of a virtual source point in the calculation of
the pixels of an LRI. Pixel with index(i, j) is processed by
a work-item in parallel with the processing of other pixels in
the same work-group.

3.1. Parallel calculation of LRIs

Figure 2 describes how pixels are influenced by each virtual
source. The processing is performed in parallel by all work-
items and one of two situations occur: either the pixel is under
the influence of a virtual source or it isn’t. This verification
implies the use of divergent (conditional) instructions, which
penalizes performance. However, parallelization is achieved
since each work-item processes in parallel one of the pixels
that are under the influence of a same virtual point (for those
who are outside, the work-item returns execution). Every two
work-groups are able to perform the parallel processing of a
complete LRI.

Pulse-echo distances are represented bydT anddR, which
are used to calculate the delayτn,m as shown in (4) and finally
obtain the depth sample numberk indicated in (2).

The level of parallelism achieved increases (until a certain
limit) with the number of compute resources available. In the
case of a GPU, the processing of hundreds of pixels in parallel
is possible.

3.2. Using texture memory to accelerate computation

On the GPU, texture memory has latency times similar to
those of global memory. The main advantage of using this
type of memory lies on the level 1 cache capabilities associ-

ated with textures. Not only data used is maintained for reuse,
but also do its immediate neighboring elements, which is use-
ful in this particular algorithm. Therefore, analytical data is
loaded into textures before the kernel is launched. Then, data
is accessed by each work-item at element in the position given
by depth samplek previously calculated, in order to produce
αn,m [6]. This procedure basically consists of a weighted
summation of interpolated channel-domain samples for allN
array channels as described in (1).

In the case the OpenCL kernel is running on a CPU, where
texture memory does not exist, this functionality is obtained
using software emulation. However, it is worth noting that the
use of textures in this scenario is not recommended mainly
due to efficiency reasons.

4. EXPERIMENTAL RESULTS

4.1. Apparatus

The experimental results were obtained using the OpenCL C
API, interfaced with Matlab’s MEX-function, and the C con-
sole compiled with Visual Studio 2010. The computer has a
quad-core Intel Core i7 950 @3.07 GHz, 3GB of RAM mem-
ory, running Windows 7 Ultimate x86. The OpenCL devices
are an ATI Radeon HD6970 (Cayman) with 1536 shaders, a
NVIDIA Tesla C1060 with 240 cores. We must note that the
relation between performance vs. number of compute units
is not the same for both vendors, as NVIDIA indicates fewer
units. As an additional test, the algorithm was also run on the
CPU, to further demonstrate the computing potential of the
GPUs.

A Sonix-RP research scanner equipped with a pre-beamfo-
rmed data acquisition tool was used to collect the dataset
processed in the host. Ultrasound parameters are: frequency
– 10 MHz; transmit pulse shape – 2-cycle sinusoid; pulse rep-
etition frequency – 5 kHz. The synthetic aperture implemen-
tation is based on a scanner front-end that was reprogrammed
to fire according to a virtual point source configuration. It
uses 97 point sources in total (0.3 mm laterally spaced apart,
20 mm axially behind field of view), each formed from a
64-channel aperture. It performs one firing from each virtual
point source, swept from left to right side. The data acquisi-
tion is based on 128 channels received in parallel using the
pre-beamformed data acquisition tool, with 40 MHz sampling
and 12-bit resolution.

4.2. High frame-per-second LRI throughput calculation

To perform the experimental results we have run the same
OpenCL kernel on3 different platforms: one multi-core CPU
and two many-core GPUs. We used2 datasets which were ob-
tained using synthetic aperture beamforming: dataset 1 (DS1)
consists of a Perforated Plate, while dataset 2 (DS2) shows
random Dots. The selected aperture is256 for all experi-
ments. Table 1 indicates the total computation times for gen-

62

Table 1. Computation times for two datasets: Perforated Plate (DS1) and Dots (DS2) generating images with resolution
512×255 pixels.

Platform Radeon HD6970 GPU Tesla C1060 GPU Intel i7 950 CPU

Dataset 512×255 pixels DS1 DS2 DS1 DS2 DS1 DS2
Total memory operations time 695 ms 695 ms 1.068 s 1.058 s 187 ms 182 ms

Total kernel execution time 403 ms 382 ms 1.067 s 670 ms 24.349 s 20.221 s

50 100 150 200 250

100

200

300

400

500

600

700

800

900

1000

50 100 150 200 250

100

200

300

400

500

600

700

800

900

1000

(a) 1024×255 pxl. images gen. on ATI Radeon HD 6970

50 100 150 200 250

50

100

150

200

250

300

350

400

450

500

50 100 150 200 250

50

100

150

200

250

300

350

400

450

500

(b) 512×255 pxl. images gen. on Intel i7 950

50 100 150 200 250

50

100

150

200

250

50 100 150 200 250

50

100

150

200

250

(c) 256×255 pxl. images gen. on NVIDIA Tesla C1060

Fig. 3. Perforated Plate (left) and Dots (right) images gen-
erated from datasets obtained using synthetic aperture beam-
forming. The images were generated by running the same
OpenCL kernel on three different multi-core platforms.

erating97 LRIs. They include data transfers between host and
device, and kernel execution times on device. It can be seen
that the CPU platform presents lower transfer times, which
is natural since it is not limited by the PCIe bus, but it also
shows considerably higher kernel processing times due to a
lower number of processing cores available. The speedup ob-
tained from CPU to ATI GPU execution ranges from22 to
30, while against the NVIDIA GPU it approximates52 ∼ 60
times. The Radeon GPU is capable of processing more than
253 frames per second (fps), as the inspection of table 1 indi-
cates, achieving1.35 GFLOPS for DS1 with 512×255 pixels.

Figure 3 demonstrates the code portability concept by

showing that all generated images are equivalent and that
the main difference is computation time. Many-core sys-
tems with superior capabilities, such as number of cores,
higher clock frequencies or memory bandwidth would run
the OpenCL kernel even faster, thus processing more fps.

5. RELATION TO PRIOR WORK

To our knowledge, this work is perhaps the first attempt to
investigate the feasibility of adopting a hardware-flexible par-
allel processing approach to execute synthetic aperture beam-
forming operations at real-time throughput. Based on devis-
ing portable software kernels using the OpenCL framework,
our approach inherently differs from previous CUDA-based
synthetic aperture beamformers that can only work on vendor-
specific hardware (NVIDIA) [6]. Also, it is not the same
as other solutions that attempt to use FPGAs [12], computer
clusters [13], and DSP platforms [14] for synthetic aperture
image computing purposes. From an ultrasound system de-
sign standpoint, our OpenCL-based solution should be more
favorable than others as its code portability allows the beam-
forming kernel to be hosted on a wide variety of comput-
ing hardware, from multi-core CPUs to many-core GPUs and
even FPGAs. This would provide ultrasound system design-
ers with more flexibility in designing novel hardware archi-
tecture for synthetic aperture ultrasound imaging.

6. CONCLUDING REMARKS

With the availability of code-portable parallel processing ker-
nels to handle beamforming operations, it becomes more fea-
sible to pursue practical realization of synthetic aperture ultra-
sound imaging whose image formation principles are known
to be computationally demanding. This work is therefore ex-
pected to contribute to the latest developments in advanced
ultrasound system design. It is worth noting that, besides
synthetic aperture beamforming, our OpenCL-based paral-
lel processing approach may be extended to other comput-
ing operations in synthetic aperture imaging. For instance, in
the delay-and-sum process, it may be of interest to include
an adaptive apodization module that applies signal-dependent
channel weighting. Such an adaptive beamforming strategy
is well considered to be computationally demanding as well.
Parallel processing, especially portable ones that can be ex-
ecuted on a variety of computing hardware, may provide an
answer to this technical hurdle.

63

7. REFERENCES

[1] G. York and Y. Kim, “Ultrasound processing and com-
puting: Review and future directions,” Annu. Rev.
Biomed. Eng., vol. 1, pp. 559–588, 1999.

[2] J. A. Jensen, S. I. Nikolov, K. L. Gammelmark, and
M. H. Pedersen, “Synthetic aperture ultrasound imag-
ing,” Ultrasonics, vol. 44, Supplement, pp. e5–e15,
2006.

[3] S. I. Nikolov, K. L. Gammelmark, and J. A. Jensen, “Re-
cursive ultrasound imaging,” inProc. IEEE Ultrasonics
Symp. IEEE, 1999, pp. 1621–1625.

[4] T. P. Chen and Yen-Kuang Chen, “Challenges and op-
portunities of obtaining performance from multi-core
CPUs and many-core GPUs,” inProc. of the IEEE In-
ternational Conference on Acoustics, Speech and Signal
Processing (ICASSP’09), April 2009, pp. 613–616.

[5] H.K.-H. So, Junying Chen, B.Y.S. Yiu, and A.C.H. Yu,
“Medical ultrasound imaging: To GPU or not to GPU?,”
IEEE Micro, vol. 31, no. 5, pp. 54–65, 2011.

[6] B.Y.S. Yiu, I.K.H. Tsang, and A.C.H. Yu, “GPU-based
beamformer: Fast realization of plane wave compound-
ing and synthetic aperture imaging,”Ultrasonics, Fer-
roelectrics and Frequency Control, IEEE Transactions
on, vol. 58, no. 8, pp. 1698–17052, August 2011.

[7] CUDA Developer NVIDIA, “CUDA 5.0,” Nov. 2012.

[8] Khronos Group, “OpenCL 1.2,” Nov. 2011.

[9] B. R. Gaster, H. Lee, D. R. Kaeli, P. Mistry, and
D. Schaa, Heterogeneous Computing with OpenCL,
Morgan Kaufmann, 2012.

[10] G. Falcao, V. Silva, L. Sousa, and J. Andrade, “Portable
LDPC Decoding on Multicores Using OpenCL,”IEEE
Signal Processing Magazine, vol. 29, no. 4, pp. 81–109,
July 2012.

[11] S. Singh, “Computing without processors,”Communi-
cations of the ACM, vol. 54, no. 8, pp. 46–54, August
2011.

[12] J. A. Jensen, M. Hansen, B. G. Tomov, S. I. Nikolov,
and H. Holten-Lund, “System architecture of an exper-
imental synthetic aperture real-time ultrasound system,”
in Proc. IEEE Ultrason. Symp., 2007, pp. 636–640.

[13] F. Zhang, A. Bilas, A. Dhanantwari, K. N. Plataniotis,
R. Abiprojo, and S. Steriopoulos, “Parallelization and
performance of 3D ultrasound imaging beamforming al-
gorithms on modern clusters,” inProc. ACM Int. Conf.
Supercomput., 2002, pp. 294–304.

[14] C. R. Hazard and G. R. Lockwood, “Theoretical assess-
ment of a synthetic aperture beamformer for real-time 3-
d imaging,” Ultrasonics, Ferroelectrics and Frequency
Control, IEEE Transactions on, vol. 46, pp. 972–980,
1999.

64

65

