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Resumo

A dependência da sociedade moderna dos serviços de telecomunicações tem vindo a crescer
nos últimos anos, assim como a responsabilidade de providenciar serviços com elevada quali-
dade. A garantia de fornecimento de um serviço de comunicações sem perda de conetividade é
extremamente importante, pois qualquer interrupção nas comunicações é fortemente sentida pelos
utilizadores. A proteção global de um caminho é uma forma simples de aumentar a resiliência
de uma ligação ponto-a-ponto. A sua implementação requer o cálculo de pelo menos um par de
caminhos disjuntos.

O cálculo de pares de caminhos disjuntos, com ou sem restrições, tem sido objeto de estudo
por numerosos autores. Existem algoritmos exactos para a resolução de alguns destes problemas,
contudo outros são de mais difícil resolução. A determinação de um par de caminhos disjuntos de
custo aditivo mínimo pode ser resolvido de forma eficiente utilizando o algoritmo de Suurballe.
Contudo, o problema da determinação de um par de caminhos de largura de banda total máxima é
NP-Completo.

Com isto em mente, este trabalho foca-se em três problemas de encaminhamento disjunto. O
primeiro é um problema de otimização lexicográfica para obter caminhos disjuntos de largura de
banda máxima e, depois, maximizar a largura de banda do caminho mais largo do par. O segundo
é o cálculo de um par de caminhos tal que a soma das larguras de banda é máxima para um dado
par de nós. Finalmente, o terceiro é um problema que tem como objetivo encontrar um par de
caminhos disjuntos que satisfaçam duas restrições de largura de banda diferentes.

Estes problemas de encaminhamento disjunto são formalizados como problemas de progra-
mação linear inteira (PLI) e é proposta uma heurística para cada um deles. O desempenho das
heurísticas é analisado tendo em conta o tempo de CPU das heurísticas e o requerido pelo CPLEX;
é também analisada a qualidade das soluções obtidas, utilizando como referência a solução ótima
devolvida pelo CPLEX ao resolver a formulação PLI do problema correspondente.

Palavras-Chave: caminhos disjuntos, caminho mais largo, proteção, otimização lexi-
cográfica, max-sum, encaminhamento com restrições





Abstract

Modern society’s dependency on telecommunications services has been increasing throughout
the years and so has the responsibility to provide high quality services. The guarantee that a
communications service is provided without loss of connectivity is extremely important, because
any interruption in communications is strongly felt by the users. Global path protection is a simple
way to increase resilience in an end-to-end connection. Its implementation requires the calculation
of at least a pair of disjoint paths.

The calculation of disjoint path pairs, with or without restrictions, has been the subject of study
by many authors. There are exact algorithms that solve these problems, however others are harder
to solve. The determination of a pair of disjoint paths of additive minimum cost can be solved
efficiently using Suurballe’s algorithm. However, the problem of determining a pair of paths with
maximum total bandwidth is NP-Complete.

With this in mind, this work addresses three disjoint routing problems. The first is a lexico-
graphic optimization problem for obtaining maximum bandwidth disjoint paths and, then, maxi-
mizing the widest path in the pair. The second is the calculation of a path pair such that the sum of
the bandwidths is maximum for the given pair of nodes. Finally, the third is a problem that aims to
find a pair of disjoint paths that satisfy two different bandwidth constraints.

These disjoint routing problems are formalized as integer linear programming (ILP) and an
heuristic is presented for each one. The performance of these heuristics is analyzed taking into
account the heuristic’s and CPLEX’s CPU time; it is also analyzed the quality of the obtained
solutions using as reference the optimal solutions obtained by CPLEX when it solves the ILP
formulation of the corresponding problem.

Keywords: disjoint paths, widest path, protection, lexicographic optimization, max-sum,
constrained routing





“If at first the idea is not absurd then there is no hope for it.”

Albert Einstein
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Chapter 1

Introduction

1.1 Motivation and Objectives

The set of users of telecommunication networks is expanding everyday. They range from
single individuals, small groups and associations to massive corporations, governments and armed
forces, each one with different needs and requirements. On a more local level, and just to name a
few examples, there are schools, policemen, hospitals and other smaller medical centers, firemen,
news stations, supermarkets. All of these rely on efficient communication to work properly, so a
failure in the telecommunications sector can have an effect on education, security, health and other
needs that are deemed basic nowadays. In order to satisfy this wide heterogeneous group of users,
service providers are constantly creating new services and improving existing ones. And it is not
just a matter of getting the user what he needs, users demand Quality-of-Service (QoS), which
includes adequate levels of reliability and availability.

To guarantee these qualities, path protection may be employed. This is done by automatically
switching to an operational path when the protected path has a fault. In 1+1 protection, traffic is
sent simultaneously and redundantly over both active and protection paths. In case of a fault in one
of the paths, transmission will not fail, because there is still a connection between both ends. In
1 : 1 protection, traffic is sent through the protection path only in the event of a fault in the active
path. While this method makes a more efficient use of bandwidth, as the protection path may be
used for other ends when it is not needed, there is a need for signaling overhead and restoration
may take more time.

In both protection scenarios, the active and protection paths must be as disjoint as possible
so as to minimize the risk of a fault affecting both paths and resulting in transmission failure.
Because of this, algorithms for calculating paths and path pairs are at the center of QoS routing.
This motivated the development of this work, which focus on disjoint routing as a way to increase
network resilience. Three different problems are addressed:

• The lexicographic optimization of a widest edge-disjoint path pair, so that after maximizing
the minimum bandwidth of the pair, the bandwidth of the widest path in the pair is maxi-
mized. The problem of maximizing the minimum bandwidth of disjoint paths already has
an efficient answer, but the bandwidth of the widest path is still left to chance. This can be
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of practical interest in communication networks such as for Multi-Protocol Label Switching
based virtual private network services:

– when using path protection, for ensuring the selected protection path has spare band-
width to take into account traffic fluctuations that take place in the event of faults;

– when using path protection, for ensuring the selected active path has spare bandwidth,
to guarantee the desired QoS and that there is some extra available capacity to absorb
traffic fluctuations.

• The maximization of the sum of the bandwidths of the pair. While it is not as protection
oriented as the other two (though it can be used as partial protection), it is particularly useful
for services that require large bandwidths, such as video conferencing, real-time data backup
or telemedicine.
• The search for a path pair that satisfies two bandwidth constraints: X1 and X2 (with X1 > X2).

The practical application is obvious, as there is a direct answer to the questions: Is there a
path pair that meets the requirements? If so, which is it? This can be of practical use when
there are specific requirements.

The objective is to find efficient algorithms or heuristics, that can find optimal solutions to these
problems (or feasible solutions, in the case of the last problem).

1.2 Content

This work is organized as follows. Chapter 2 presents definitions and notation, as well as
problems and algorithms relevant in the context of this thesis. In Chapter 3, the addressed problems
are explained, defined and formalized. Chapter 4 contains some auxiliary algorithms that were
important for this study. Chapter 5 shows the proposed heuristics that attempt to solve the problems
described in Chapter 3. In Chapter 6 the performance of the aforementioned heuristics is analyzed.
Chapter 7 concludes this work.
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Chapter 2

Related Work

In this chapter, some basic notation and concepts are presented as well as an overview of the
relevant algorithms that inspired and provided the foundation for this work.

Initially, the basic definitions and notation is presented, as they are going to be needed further
ahead. Then, some problems and their respective solutions are described, in order of increasing
complexity and closeness to the addressed problems.

2.1 Definitions and Notation

Networks, in their simplest form, can be seen as sets of nodes connected by links. In graph
theory, a link is defined by the pair of nodes it connects. If these pairs are ordered, it means
that links are represented as arcs and can only be used in one direction, from the tail node to
the head node, the first and second elements of the pair, respectively. If the pairs are unordered,
then the links are represented as edges and communication can be performed in both directions.
Graphically, nodes are depicted as circles and arcs are shown as arrows, pointing from the tail node
to the head node, while edges are drawn as straight lines.

A graph composed of nodes and arcs is said to be directed and a graph composed of nodes and
edges is said to be undirected. A mixed graph can have both edges and arcs. An edge can be repre-
sented by two arcs with equal characteristics, but opposing directions (a symmetrical pair of arcs).
An undirected graph can be turned into a directed graph if all edges suffer this transformation. This
work is focused on undirected graphs, but one needs to consider their directed representation.

In Figure 2.1, two equivalent graphs are shown. The first is undirected (Figure 2.1(a)), while
the second (Figure 2.1(b)) is the directed representation of the same graph, where the number
adjacent to each edge/arc represents the edge/arc weight.

No parallel edges or arcs are taken into consideration. Two edges are parallel if they are defined
by the same pair of nodes. The same applies to arcs, paying attention to the order of the nodes,
which must be the same.

Let Gu be an undirected graph represented by (N,E), with N = {v1,v2, . . . ,vn} being the set of n

nodes and E = {e1,e2, . . . ,em} the set of m edges, where ex = (vi,v j) is an unordered pair of nodes,
with vi,v j ∈ N. Similarly, let G be a directed graph denoted by (N,A), with A = {a1,a2, . . . ,am}
being the set of m arcs, where ax = (vi,v j), vi,v j ∈N (vi is the tail node and v j is the head node). A

3



(a) Undirected graph. (b) Directed graph.

Figure 2.1: Graph examples.

path pst from a source node s to a target node t is an ordered sequence of alternated nodes and arcs
or edges, starting with s and finishing with t (s 6= t), 〈s = v′1,a

′
1,v
′
2, . . . ,a

′
r−1,v

′
r = t〉, where: a′k ∈ A

for any k = 1, . . . ,r−1; v′k ∈ N for any k = 1, . . . ,r; and a′k = (v′k,v
′
k+1) for any k = 1, . . . ,r−1.

A rooted tree is a graph composed solely by the set of arcs (or edges) that are part of the paths
that connect one node, called root, to the remaining n− 1 nodes. Citing Dijkstra in [7], a tree is

a graph with one and only one path between every two nodes. This is true for undirected graphs,
which are the type of graphs Dijkstra worked with in [7], but not for directed graphs, where a path
may exist from s to t, yet not from t to s. For every arc a′k = (v′k,v

′
k+1) that is part of a path, node

v′k is designated v′k+1’s predecessor and v′k+1 is v′k’s successor.

Let pi j be a path from node i to j; the concatenation of paths pi j and p jl is the path, pi j � p jl ,
from i to l, which coincides with pi j from i to j and with p jl from j to l. Let pi j be a path from i to
j; the concatenation of paths pi j and arc ( j,k) is the path, pi j � ( j,k), from i to k, which coincides
with pi j from i to j and ends with the arc from j to k.

In this work, only loopless paths are relevant. A path is loopless if all of its nodes are different.

In a network, the topology of which is represented by a graph, edges and nodes may have one
or more attributes, such as weights or other parameters. The calculation of a path between two
nodes in a graph starts with the choice of the metric that will define it. In this work, two types of
metrics will be considered: additive and concave. The additive weight of a path is equal to the sum
of the individual weights of its elements, while its concave weight corresponds to the minimum
weight among the weights of all elements that belong to it. For example, in telecommunications
networking, delay may be seen as an additive weight as the delay of each link will contribute to the
delay of the complete path. Throughout this study, node weights are not considered, so only link
weights will affect path calculation. In addition, network graphs will be referred to as networks or
graphs.

Telecommunication networks are the context of application of the algorithms studied in this
work, on that account additive and concave weights will be denominated as costs and bandwidths
(or capacities), respectively, for easier reference. The cost and bandwidth of an edge between
nodes i and j are given by ci j and bi j, respectively, and both are assumed to be positive (unless

4



otherwise stated). Following this, the cost of a path p (additive metric) is given by:

c(p) = ∑(i, j)∈p ci j (2.1)

And the bandwidth of path p (concave metric) is given by:

b(p) = min
(i, j)∈p

bi j (2.2)

Additionally, a path can also be evaluated in terms of hop-count, which is an additive weight
and corresponds to the number of arcs (hops) in that path.

2.2 Shortest and Widest Paths

A path between two nodes that has a cost equal to the minimum additive cost among all paths
between those two nodes is called a shortest path. Let Pst designate the set of (loopless) paths from
s to t and Ap the set of edges of path p (p ∈ Pst). In [7], Dijkstra presents an algorithm that solves
the problem of finding the shortest path between a source node s and a target node t that is given
by:

p∗ = arg min
p∈Pst

c(p) (2.3)

In [1], forward and reverse Dijkstra’s algorithms are presented. The first is the original Di-
jkstra’s algorithm presented in [7] that, in addition to solving the problem in Equation (2.3), can
also be used to calculate the shortest path from a given node to every other node in the graph.
In other words, the shortest path tree. If implemented using a binary heap, it has a running time
of O(|A| log2 |N|) [1, page 116]. The second, the reverse Dijkstra’s algorithm, does the opposite,
meaning that it obtains the shortest path from every other node to a given node. While the so-
lutions found by these algorithms may be equal in the case of undirected networks, they are not
equal in the case of directed networks. Throughout this work, “Dijkstra’s algorithm” refers to the
one presented in [7], unless otherwise stated.

Ahuja et al. also describe in [1] the bidirectional Dijkstra’s algorithm, which is an application of
the forward and reverse Dijkstra’s algorithms simultaneously. This is used to obtain a shortest path
from a source node to a target node, instead of a complete tree like the previous two algorithms.

These algorithms have a wide range of applications, since many systems can be represented by
networks. An example of a network can be a road network where nodes are cities and links are the
roads that connect them. As roads may have different characteristics depending on the direction of
travel (traffic, obstacles, speed limits, inclination, etc), this should be a directed network. In this
case, the cost of an arc could be the time that takes to travel from the tail node to the head node
and, in that case, the total cost of a path would be the sum of the arc costs that make the path.

There are many algorithms that can compute this kind of path. Among them, the most notable
for this study, for the simplicity and computational efficiency, are the Dijkstra’s algorithm and the
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Breadth-First-Search algorithm (BFS). The latter can be applied to graphs with negative costs, but
Dijkstra’s algorithm can be adapted to these graphs [3], losing efficiency in nonnegative graphs.

A path that has maximum bandwidth between two nodes is called a widest path. This problem
can be formalized as follows:

p∗ = arg max
p∈Pst

b(p) (2.4)

Everyday examples to illustrate this problem are fluids transport networks, like plumbing sys-
tems or blood vessels. In these cases, it may be more perceptible and easier to understand the
impact that a bottleneck arc has on the capacity of the whole path. In the context of telecommuni-
cations, a good example is a packet transport network.

In [17], the author makes the observation that several shortest path algorithms can be adapted
to compute widest paths. The problem of minimizing a sum is replaced by the maximization of
a minimum value. An algorithm for the calculation of paths with maximum capacity for all node
pairs was proposed in [8].

It is common to have multiple shortest or widest paths for a given pair of nodes. In those cases,
additional criteria may be contemplated. For example, in routing, it is usually a good practice to
minimize the used resources. Hence, out of all the widest paths between two nodes, the path with
less hops may be preferable. In Figure 2.2, there is an example of a shortest path and a widest path,
both with minimum hop-count as secondary criterion.

(a) Shortest path. (b) Widest path.

Figure 2.2: Graphs with additive (left) and concave (right) weights.

In Figure 2.2(a), the numbers next to the edges correspond to their cost. The edges with thicker
lines are the ones that are part of a shortest path from node A to node Z, with cost equal to 6. In
this small network, it is fairly easy to find another shortest path between those nodes. If instead of
A−B−C−Z, the path A−B−D−C−Z were to be chosen, the cost would be the same, but the
hop-count would be higher.

In Figure 2.2(b), the values represent bandwidths. In this case, there are two widest paths
between A and Z: A−D−Z and A−D−C−Z. Both have bandwidth equal to 20, but the first one
(the one in thick lines in the illustration) has fewer hops.
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Hop-count is a simple criterion that is also an additive metric. If all links of a network have
unitary costs, the shortest path between two nodes is also the path with less hops and its cost is
equal to the number of hops.

2.3 Shortest-Widest and Widest-Shortest Paths

Even though the focus of this work, in terms of metrics, falls solely on costs and bandwidths,
the calculation of an optimal path pair can be the subject of many different criteria. An algorithm
for finding the shortest path with bandwidth guarantee can be found in [13, Algorithm 17.1, page
592]; this problem is sometimes referred to as the constrained shortest path problem. Wang and
Crowcroft [22] proposed an algorithm for the calculation of the shortest path among all paths of
maximum bandwidth and designated it shortest-widest path.

The approach considered in this work when multiple criteria are relevant corresponds to the
calculation of an optimum path considering lexicographic multi-criteria. This means the shortest-
widest path problem is given, according to the lexicographic method described in [12], by the
lexicographic minimization of fi ( f1 followed by f2):

p∗ = arg min
p∈Pst

fi, i = 1,2 (2.5)

where f1 and f2 are  f1 = 1/b(p)

f2 = c(p)
, with p ∈ Pst . (2.6)

The resolution of Equation (2.5) is equivalent to selecting the path with minimum cost among
all paths with the largest bandwidth: the shortest among the widest. The widest-shortest path
problem is formalized in a similar way, but with f1 = c(p)

f2 = 1/b(p)
, with p ∈ Pst . (2.7)

In this case, the minimization occurs first for the cost and then for the inverse of the path’s
bandwidth (maximizing b(p)), resulting in the selection of one of the shortest paths: the widest
among the shortest.

Figure 2.3 exemplifies both shortest-widest and widest-shortest paths in the same graph. Values
associated with the edges represent bandwidth and cost, in this order, and coincide with the values
presented in Figure 2.2. This is important, because it shows how different paths can be depending
on the chosen criteria. While there were multiple shortest paths in Figure 2.2(a) and multiple widest
paths in Figure 2.2(b) and the decisive criterion was the hop-count, in Figure 2.3 the provided
criteria leads to single solutions. In Figure 2.3(a), the widest-shortest path from A to Z is A−B−
D−C−Z, with cost 6 and bandwidth 15. In Figure 2.2(a), the shortest path was A−B−C−Z,

7



(a) Widest-shortest path. (b) Shortest-widest path.

Figure 2.3: Graphs with multiple weights (bandwidth, cost).

which in this case would be a non-optimal solution, because, despite the fact that it has cost 6,
the bandwidth is just 10. In Figure 2.3(b), the shortest-widest path is presented for the same set
of source and target nodes. Now, the path is A−D−C−Z, with bandwidth 20 and cost 7. This
contrasts with the widest path obtained in Figure 2.2(b), because even though the bandwidth of the
path A−D−Z is equal to 20, the cost is higher (8 > 7).

Dijkstra’s algorithm [7] can also be adapted to solve these problems as will be seen in Sec-
tion 4.1.

2.4 Edge-Disjoint Path Pairs

In global path protection, the working path between a source and a target nodes is protected
by a backup path, which ensures data transfer in the event of a fault resulting in the failure of the
active path.

Assuming every edge has a risk of failure, the protection and active paths should be as disjoint
as possible. A pair of disjoint paths between given source and target nodes is a set of two paths
that do not share nodes or edges (except the source and target nodes). From here on, path pairs
are assumed to be sets of two paths that have the same source and target nodes and, consequently,
share these nodes. A path pair is edge-disjoint if no edges are shared between the two paths.
Likewise, a pair is node-disjoint if the paths do not share nodes. It should also be noted that, since
an edge is essentially defined by a pair of nodes, if two paths are node-disjoint, then they are also
edge-disjoint. However, edge-disjoint paths may not be node-disjoint. Figure 2.4 shows a path
pair (A−D−Z in red and A−B−D−C−Z in blue) that is edge-disjoint, but not node-disjoint,
as they are joint at node D. This work focuses on edge-disjointness rather than node-disjointness
and edge-disjoint path pairs may be referred to simply as disjoint path pairs.

The set of edge-disjoint path pairs from s to t is designated by P̄st = {(p,q) : Ap∩Aq = /0, p 6=
q, p,q ∈ Pst}, with Ap and Aq being the set of arcs that make paths p and q, respectively.

A maximally edge-disjoint path pair (p,q) is a path pair that minimizes Ap∩Aq. If there is at
least one edge-disjoint pair between s and t, then the calculation of the maximally edge-disjoint
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Figure 2.4: Edge-disjoint path pair that is not node-disjoint.

path pair should return a pair (p,q) with Ap∩Aq = /0 and, in this case, it is an edge-disjoint path
pair. If no edge-disjoint pair exists, it might still be an option to use a maximally edge-disjoint
pair, since it minimizes the use of shared resources and, therefore, the risk of failure of the pair.

The calculation of a set k (k ≥ 2) of edge-disjoint paths with minimum additive cost (min-sum
cost) was proposed by Suurballe [20]. In [21], the calculation of edge-disjoint path pairs from a
source node to every other node, such that each pair has minimum additive cost, was proposed by
Suurballe and Tarjan. Both algorithms can be used to solve the problem in Equation (2.8).

(p∗,q∗) = arg min
(p,q)∈P̄st

[c(p)+ c(q)] (2.8)

In [2], the authors examined the complexity of different variants of the min-sum edge-disjoint
paths problem and proposed heuristics to address them. After the minimization of the total cost
of the pair, the problems Beshir and Kuipers [2] set out to answer had a secondary criteria such
as the minimization of the shorter path (min-min), the minimization of the longer path (min-max),
the limitation of the costs according to given values (bounded) and maximization of the minimum
bandwidth of both paths (widest).

Edge-disjoint path pairs based on concave metrics will require further notation. So, given a
pair (p,q), the minimum bandwidth among the pair is denoted

bm(p,q) = min[b(p),b(q)] (2.9)

the bandwidth of the widest path of the pair is

bM(p,q) = max[b(p),b(q)], with bm(p,q)> 0 (2.10)

and the sum of the bandwidths of the pair is

bS(p,q) = b(p)+b(q) = bm(p,q)+bM(p,q), with bm(p,q)> 0 (2.11)

The value of bm(p,q) is the protected path pair’s bandwidth, assuming path protection is being
used. In this context one may say bm(p,q) is the bandwidth of the path pair.
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For network protection, multi-path and disjoint routing may require the determination of a set
of edge-disjoint paths that maximize the sum of the bandwidth of a set of edge-disjoint paths.
Shen et al. [18] tackled two inter-related problems formulated as questions (not as optimization
problems):

1. Is there an edge-disjoint path pair (p,q) with bandwidth sum large enough to satisfy a band-
width guarantee?

2. Is there an edge-disjoint path pair (p,q) such that each of the paths in the pair satisfies a
(different) specific bandwidth guarantee?

The first problem was designated Widest Pair of Disjoint Paths Coupled (WPDPC) and the second
Widest Pair of Disjoint Paths Decoupled (WPDPD) in [18].

The authors proved that the two problems are NP-Complete and proposed integer linear pro-
gramming (ILP) formulations for solving them; additionally, they also proposed two heuristics.

The ILP formulation of the first problem maximizes bS(p,q) and its solution allows to answer
the first question. The second ILP formulation seeks to maximize the bandwidth of both paths
with the constraint that each satisfies a (different) specific bandwidth guarantee. The solution to
this ILP allows to solve the second problem.

The authors evaluate the performance of their proposed heuristics with the optimal solution of
the ILP formulations. In the case of the maximization of bS(p,q), they conclude that the proposed
heuristic presents about 1/3 optimal solutions. In the case of the second ILP formulation, the result
analysis in [18] is inaccurate, because the underlying optimization corresponding to the second
problem is a bicriteria optimization problem with constraints. In fact, in table II of [18], the
heuristic presents solutions which weakly dominate the optimal solutions of the ILP formulation.
This is because, for one path, the heuristic and the ILP formulation obtain the same bandwidth,
but, for the other, the heuristic finds a larger bandwidth than the ILP solution (while both satisfy
the constraints of WPDPD).

An heuristic algorithm for finding a path pair that maximizes the sum of the bandwidths of a
node-disjoint pair is also presented in [6]. An interesting related problem is considered in [10]:
how to find a pair of disjoint paths between a source and a target node such that the sum of the
bandwidth in the path pair is larger than a given bandwidth guaranteed value, while minimizing
the total additive cost of the path pair. They designated this problem as finding the shortest pair of
disjoint paths with bandwidth guarantee (SPDP-BG). This problem was shown to be NP-Complete
and an heuristic for solving it was also proposed in [10].

Bhandari [3] discussed possible implementations of Suurballe’s algorithm [21] for calculat-
ing an edge-disjoint path pair of min-sum cost. The underlying algorithm in this approach was
based on Dijkstra’s or BFS. Moreover, the author proposed an alternative algorithm (Bhandari’s
algorithm), which can be more efficient than Suurballe’s algorithm for calculating an edge-disjoint
path pair. This problem can be solved in polynomial time; however, if additional restrictions are
added, the problem may become NP-Complete [2].
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Since Bhandari’s algorithm is essentially the calculation of the best path in the original and
transformed graphs (see Section 2.4.3), it can be adapted to calculate widest edge-disjoint path
pairs. The widest edge-disjoint path pair problem consists in obtaining a path pair that maximizes
the bandwidth of the narrowest path of the pair. The adaptation of Bhandari’s algorithm to this
problem maximizes the minimum bandwidth of the pair, bm:

(p∗,q∗) = arg max
(p,q)∈P̄st

bm(p,q) (2.12)

Solving the problem given in Equation (2.12) does not ensure the maximization of bM(p,q)

nor bS(p,q).

2.4.1 Suurballe’s Algorithm

Suurballe and Tarjan’s algorithm, presented in [21], starts by using Dijkstra’s algorithm to
obtain the shortest path tree with the root being the provided source node s. Then, G suffers a
transformation. Let G′ be the modified graph in which every arc ai j has the reduced cost

c′i j = ci j +π(i)−π( j) (2.13)

where π(x) is the cost of the computed path from source node s to node x.

This way, the cost of every arc that belongs to the tree is 0, because ci j = π( j)−π(i). Note that
it is important to represent edges as pairs of symmetrical arcs as they will have different modified
costs. If an arc is not part of the tree, then c′i j ≥ 0. If an arc that was not part of the tree has c′i j = 0,
it means there might be more than one possible shortest path tree.

Next, arcs in G′ that are part of the shortest path from the source node s to the target node t

should be replaced by arcs with zero cost and pointing from t to s.

Dijkstra’s algorithm is now used to calculate the shortest path between s and t, p′, this time
in the modified graph G′. If p′ does not contain any reversed arc from p, the solution is p∗ = p

and q∗ = p′. Otherwise, paths p and p′ are interlaced by the reversed arcs of p present in p′.
The removal of the interlacing part of both paths (the shortest paths from s to t in G and G′) will
result in two paths that compose the min-sum path pair. From here on, this process will be called
deinterlacing.

According to [21], the running time is O(|A| log(1+|A|/|N|) |N|).

2.4.2 Deinterlacing

Let C be a set that contains the reversed arcs from path p′ and the corresponding symmetrical
arcs from path p. Deinterlacing can be summarized as removing the arcs that are part of C from
both paths and exchanging the remaining arcs to form the edge-disjoint path pair.
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Let (p∗,q∗) be the shortest path pair solution that results from deinterlacing p and p′. Path p∗

can be obtained through Algorithm 1. The procedure to get q∗ is very similar and can be found
in Appendix A. The deinterlacing process can be performed in both directions, but, in this case, it
will be done from source to target node to simplify the explanation. This means that p∗ and q∗ will
be defined by the first arc of p and p′, respectively, otherwise they would be defined by the last arc.

Algorithm 1 Deinterlacing p∗

Require: Paths p and p′ from s to t (described by the successive successors of s).
Ensure: Calculates path p∗ of path pair (p∗,q∗).

1: k← 1 . Starts from the first element of p
2: p∗← s . s is the first node of p∗

3: repeat . p∗ gets arcs and nodes from p
4: if a′k /∈C then . If arc from p is not reversed in p′

5: p∗ � (v′k,v
′
k+1) . Arc a′k = (v′k,v

′
k+1) and next node v′k+1 are added to p∗

6: k← k+1 . Increment k
7: else
8: k← k′, with v′′k′ = v′k . k gets p′’s index of the last node in p∗

9: repeat . p∗ gets arcs and nodes from p′

10: if a′′k /∈C then . If arc from p′ is not reversed in p
11: p∗ � (v′′k ,v

′′
k+1) . Arc a′′k = (v′′k ,v

′′
k+1) and next node v′′k+1 are added to p∗

12: k← k+1 . Increment k
13: else
14: k← k′, with v′k′ = v′′k . k gets p’s index of the last node in p∗

15: break Line 9 cycle
16: end if
17: until v′′k′ = t . Algorithm terminates when t is reached
18: end if
19: until v′k = t . Algorithm terminates when t is reached
20: return p∗ (as a set of alternating nodes and arcs)

The deinterlacing process delineated in Algorithm 1 can be applied to path pairs obtained
through any metric, so it is also used in Bhandari’s algorithm and the algorithm proposed in [14],
but the individual costs and/or bandwidths of the paths p∗ and q∗ need to be recalculated. Never-
theless, two things are guaranteed:

c(p∗)+ c(q∗) = c(p)+ c(p′) (2.14)

and
bm(p, p′) = bm(p∗,q∗) (2.15)

In Figure 2.5 there is a simple example of deinterlacing. For this purpose and for a simpler
description, let edge weights be ignored. Let the set of edges (and arc) in thick lines in Figure 2.5(a)
and Figure 2.5(b) be the optimal paths p found in G and p′ found in G′.
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(a) Path p in G. (b) Path p′ in G′. (c) Path pair.

Figure 2.5: Deinterlacing example.

Reversed arcs that are part of p′ are in dashed thick lines. In this case, it is only one, arc (C,B).

Let p∗’s first arc (the one whose tail node is s) be the first arc of p. Starting from s, p∗ will be
equal to p until an arc that is reversed in path p′ is found (arc B−C). So far, p∗ = 〈A,(A,B),B〉.
From this point, p∗ is concatenated with a section of p′ that goes from the last node in p∗ to t or until
another reversed arc is found. In this example, there is only one set of consecutive reversed arcs in
p′, so p∗ alternates between p and p′ only once. In the end, p∗ = 〈A,(A,B),B,(B,E),E,(E,Z),Z〉
(in red in Figure 2.5(c)).

The same logic applies to q∗, except its first arc is the first arc of p′. Hence, q∗ = 〈A,(A,D),D,

(D,C),C〉 when the first reversed arc is found and q∗ = 〈A,(A,D),D,(D,C),C,(C,Z),Z〉 (in blue
in Figure 2.5(c)) when Z is reached.

2.4.3 Bhandari’s Algorithm

Bhandari’s algorithm, presented in [3], is somewhat similar to Suurballe’s and can be summed
up as: calculating the shortest path between s and t using Dijkstra’s algorithm, transforming the
graph G into G′, recalculating the shortest path in G′ using the modified version of Dijkstra or BFS
and deinterlacing the two paths.

The main difference is the transformation of the graph. Instead of calculating the reduced cost
of every arc in G, only the links that are part of the first shortest path (let it be p) are substituted by
reversed arcs with symmetrical costs. This, in turn, forces the use of a shortest path algorithm that
can be ran on graphs with negative costs. The fact that this transformation makes common arcs
have negative cost in p′ means that the sum of the costs of p and p′ is equal to the sum of the costs
of the resulting path pair.

Another difference is the fact that there is no need to calculate the complete shortest path tree
in the first step, as the shortest path from s to t is sufficient.

Because of its graph transformation and in contrast with Suurballe’s algorithm, Bhandari’s
needs to deal with negative cost arcs. This takes more time than running the standard version of
Dijkstra on G′. However, Bhandari’s algorithm may have an advantage in the first steps, especially
for larger and denser (high arc-to-node ratio) networks, as it does not need to calculate the entire
tree nor to change the cost of every arc. According to author, in [3, page 92], his algorithm and
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Suurballe’s have similar efficiency and the advantage of his is that it is straightforward, direct and

convenient for a practicing engineer.
The maximization of the bandwidth of the narrowest path, i.e., the one with minimum band-

width in the pair, is an important problem in QoS routing, because this bandwidth is the one that
is actually protected and can be guaranteed in case of failure of the active path.

This problem was formulated in Equation (2.12) and can be solved by an adaptation of Bhan-
dari’s algorithm, which makes use of the widest path variant of Dijkstra’s algorithm and a graph
transformation that includes concave metrics.

When it comes to the graph transformation, bandwidth values are altered differently. While
costs of reversed arcs take (negative) symmetrical values, the bandwidths of the reversed arcs of
the widest path must take very large values to mimic the effect of the cost modification. These
altered values should be larger than the bandwidth of the widest path in the original network for a
given source-target node pair. As no path can be composed solely by reversed arcs after the graph
transformation into G′, no path will have bandwidth larger than the widest path in the original
graph G. This value can be used as a threshold so that any higher value is considered to be a
practical representation of infinity.

2.4.4 Maximally Edge-Disjoint Path Pairs

The difference between edge-disjoint and maximally edge-disjoint path pairs is somewhat sub-
tle and so is the difference between the methods used to obtain them. In fact, it all lies in the graph
transformation. The calculation of a maximally edge-disjoint path pair implies less strictness when
it comes to paths sharing resources.

The first step is (as in Bhandari’s algorithm) the calculation of the shortest (widest) path: p.
Then the network is transformed into G′, reversing the arcs of p with negative cost (infinite band-
width), but without removing the directed arcs from s to t in p. The cost (bandwidth) of the arcs in
p must now take values should be sufficiently large (sufficiently small) [3, 14]. In practical terms,
this means the cost should be higher than the sum of the costs of all arcs in the original graph, as
no path can possibly have a worse cost; the bandwidth must be take a value less than the lowest
bandwidth in the original graph.

For maximally edge-disjoint path pairs, an arc of p in the s-to-t direction will have its cost/band-
width changed according to: c′i j = ci j +∑ak∈A c(ak)

b′i j = minak∈A b(ak)/2
(2.16)

This has the effect that the directed arcs in p (from s to t) will only be used if no other option
is left. In this modified graph (G′), the shortest (widest) path p′ is calculated. If p′ contains no
reversed arcs from p, p and p′ are the solution: (p∗ = p,q∗ = p′). Otherwise the p and p′ must be
deinterlaced to obtain the solution path pair: (p∗,q∗). If Ap∗∩Aq∗ 6= /0, the pair is not edge-disjoint,
and it only shares unavoidable edges.
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Chapter 3

Addressed Problems

In this chapter, the problems addressed in this work are explained and formalized. They are, in
the order they are presented, Widest Edge-disjoint Path Pair Lexicographic Optimization problem,
the maximization of the sum of the bandwidths of the pair and the Widest Pair of Disjoint Paths
Decoupled problem.

The problems are organized this way because the first one is a development from the problem
solved by Bhandari, discussed in the last chapter, and the second one is also an optimization
problem. In contrast with these two, the last one is not an optimization problem, but, instead, is
a search for any edge-disjoint path pair that respects the given restrictions. Each problem is also
presented in an integer linear programming (ILP) formulation.

In directed graphs, symmetrical arcs are considered different. However, for the purpose of
calculating edge-disjoint paths for protection in communication networks, using arc (vi,v j) in one
path should prevent the use of arc (v j,vi) in the corresponding protection path. The ILP formula-
tions presented here avoid this type of solution, which may arise when considering concave met-
rics. Hence, if applied to directed graphs all arcs are required to have a topologically symmetrical
arc (which may be enforced by adding arcs of sufficiently high cost and zero bandwidth).

3.1 Widest Edge-disjoint Path Pair Lexicographic Optimiza-
tion

The problem presented in this section spawns from the widest edge-disjoint path pair problem,
which optimizes solely the bandwidth of the minimum bandwidth path of the pair.

The widest edge-disjoint path pair lexicographic optimization problem designates the maxi-
mization of the capacity of the minimum bandwidth path, bm(p,q), followed by the maximization
of the capacity of the maximum bandwidth path, bM(p,q), where (p,q) ∈ P̄st .

Finding this edge-disjoint path pair can be achieved by solving the problem that will be for-
malized next [12]: Let  f1 = 1/bm(p,q)

f2 = 1/bM(p,q)
, with (p,q) ∈ P̄st . (3.1)
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The problem addressed in this work is the lexicographic optimization of fi, i = 1,2:

(p∗,q∗) = arg min
(p,q)∈P̄st

fi, i = 1,2 (3.2)

The minimization of f1 and f2 corresponds to the maximization of bm(p,q) and bM(p,q), respec-
tively.

This optimization problem Widest Edge-disjoint Path Pair Lexicographic Optimization will
be denoted as WEDLO. Let us assume, without loss of generality, that bm(p,q) = b(p) and that
b(q) ≥ b(p). If more than one edge-disjoint path with p exists or if more than one path with
bandwidth equal to b(p) exists, the minimization of f1 problem has multiple optimal solutions
(multiple path pairs that maximize bm(p,q)). Solving the problem in Equation (3.2) allows to
obtain the widest possible path q for the pair of widest bandwidth.

In [15], a sequential lexicographic optimization procedure is formulated. This approach is not
required for solving WEDLO, because a simple algorithm is used to obtain the minimum value of
the first objective function, and a single ILP formulation for the second (and last) objective function
can be written. In [4], a hierarchical multi-criteria routing model associated with a two-path traffic
splitting routing method is proposed. This type of approach could also be used to solve WEDLO,
considering bm(p,q) as the first level objective function and bM(p,q) as the second level objective
function.

For the ILP formulation, some additional notation is necessary:

Parameters:

s source node; s ∈ N

t target node; t ∈ N

Bm is max(p,q)∈P̄st
bm(p,q), with Bm > 0

M a sufficiently large constant, in this case, maxp∈Pst b(p)

Variables:

xk
i j 1 if path k is using arc (i, j) ∈ A, 0 otherwise, with k = 1,2

yk bandwidth of path k

The ILP formulation is as follows:

max y1
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Subject to:

yk ≥ Bm, k ∈ {1,2} (3.3a)

∑
(i, j)∈A

xk
i j− ∑

( j,i)∈A
xk

ji =


1 if i = s

−1 if i = t

0 otherwise

, ∀i ∈ N, k ∈ {1,2} (3.3b)

x1
i j + x1

ji + x2
i j + x2

ji ≤ 1, ∀(i, j) ∈ A (3.3c)

yk ≤ bi jxk
i j +M(1− xk

i j), ∀(i, j) ∈ A, k ∈ {1,2} (3.3d)

xk
i j ∈ {0,1}, ∀(i, j) ∈ A, k ∈ {1,2} (3.3e)

This ILP formulation (Equation (3.3)) is modified from [18, Fig. 5] to suit our needs for
WEDLO. Note that this formulation does not prevent the resulting paths from having cycles.
In Equation (3.3) we maximize the bandwidth of path k = 1, while inequality (3.3a) ensures both
paths must have at least a bandwidth equal to Bm. Equation (3.3b) expresses the standard flow con-
servation law for variables xk

i j. Variables xk
i j are additionally bounded by inequality (3.3c), which

ensures no edge (represented by a pair of symmetrical arcs) can be shared by the paths and no two
arcs representing the same edge can be part of the same path. Inequality (3.3d) identifies the capac-
ity of a bottleneck arc for each path, thus defining the corresponding bandwidth. Equation (3.3e)
defines the bounds for decision variables.

3.2 Maximum Sum Optimization

The path pair which maximizes bS(p,q) is given by:

(p∗,q∗) = arg max
(p,q)∈P̄st

bS(p,q) (3.4)

This a well-known problem and more common than WEDLO. The aim is to supply the maximum
possible bandwidth with two edge-disjoint paths.

Shen et al. proved in [18] that the problem addressed in this section is a NP-Complete problem,
proposed an heuristic to tackle it, and gave an ILP formulation for this problem, which is next
adapted to fit the directed representation of undirected networks:

max y1 + y2
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Subject to:

yk ≥ 0, k ∈ {1,2} (3.5a)

∑
(i, j)∈A

xk
i j− ∑

( j,i)∈A
xk

ji =


1 if i = s

−1 if i = t

0 otherwise

, ∀i ∈ N, k ∈ {1,2} (3.5b)

x1
i j + x1

ji + x2
i j + x2

ji ≤ 1, ∀(i, j) ∈ A (3.5c)

yk ≤ bi jxk
i j +M(1− xk

i j), ∀(i, j) ∈ A, k ∈ {1,2} (3.5d)

xk
i j ∈ {0,1}, ∀(i, j) ∈ A, k ∈ {1,2} (3.5e)

The formulation in Equation (3.5) and Equation (3.3) differ on the constraint of yk (see (3.5a)
and (3.3a)). While in WEDLO’s formulation the Bm limit imposed that the minimum bandwidth
of the pair, bm(p,q), should be maximum and only bM(p,q) was maximized, in this problem no
positive limit is set and the sum is maximized. Restrictions related to the disjointness of the pair
and edge utilization are maintained.

3.3 Widest Pair of Disjoint Paths Decoupled

This problem is the search for an edge-disjoint path pair between nodes s and t that comply
with minimum limits. These limits are denoted X1 and X2, with X1 > X2. Note that if X1 = X2, the
problem is solved by Bhandari’s algorithm for widest edge-disjoint path pairs, because it is known
that this algorithm maximizes the minimum bandwidth of the pair, bm(p,q), so, if this bandwidth
is inferior to the set limits, then there is no path pair (for the given pair of nodes) that can satisfy
the restrictions,

The objective is to find a pair (p,q) that has:bM(p,q)≥ X1

bm(p,q)≥ X2

(3.6)

In contrast with the two problems presented before, there may be more than one solution to
this problem and these solutions may not be comparable. In other words, instead of being a search
for the best possible path pair according to some criterion, it can be solved by finding a path pair
that satisfies the constraints. If such a path exists, the problem is solved. In [18], the authors prove
this problem is NP-Complete.

This is of great practical interest, because, even though the solutions may not be optimal,
solving this problem allows to find paths that meet specific requirements that may be needed to
guarantee QoS.

The ILP formulation is the following:
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max ρ

Subject to:

ρ ≥ 0 (3.7a)

∑
(i, j)∈A

xk
i j− ∑

( j,i)∈A
xk

ji =


1 if i = s

−1 if i = t

0 otherwise

, ∀i ∈ N, k ∈ {1,2} (3.7b)

x1
i j + x1

ji + x2
i j + x2

ji ≤ 1, ∀(i, j) ∈ A (3.7c)

ρXk ≤ bi jxk
i j +M(1− xk

i j), ∀(i, j) ∈ A, k ∈ {1,2} (3.7d)

xk
i j ∈ {0,1}, ∀(i, j) ∈ A, k ∈ {1,2} (3.7e)

The value of ρ resulting from the execution of the ILP can be used to measure the difference
between the solution and the target values. If ρ < 1, the constraints are not satisfied. If ρ > 1, then
the solution has surpassed the limits. If ρ = 1, then the path pair has bandwidths that are equal to
the limits. However, during experiences using CPLEX, there were some cases in which ρ = 1−

(ρ < 1 and 1−ρ ≈ 0) and, upon verification, it was clear that the pair did meet the criteria.
It is important to note that the maximization of ρ transforms this into an optimization problem.

As two conflicting objective functions are being optimized simultaneously, the problem is bicriteria
and may not have optimal solutions, but Equation (3.7d) constraints the result and allows to verify
if the limits X1 and X2 are respected. The fact that there may be no optimal solution, but only
non-dominated solutions, should be kept in mind during the performance analysis of the proposed
heuristics in Chapter 6. A non-dominated solution is a feasible solution such that no improvement
in any criterion may be achieved without sacrificing at least one of the other criteria [19].
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Chapter 4

Auxiliary Implemented Algorithms

This section enumerates various algorithms that are of great importance, either as inspiration
or as a term of comparison. First, Dijkstra’s algorithm for shortest, widest, shortest-widest and
widest-shortest paths. Second, the modified version of Dijkstra’s algorithm for shortest path cal-
culation in graphs with negative costs (but no negative cycles), which is used by the last auxiliary
algorithm, Bhandari’s edge-disjoint (and maximally edge-disjoint) path pair algorithm.

4.1 The Dijkstra’s Algorithm

Although Dijkstra’s algorithm [7] is well known, it is reviewed here in detail, because it is the
foundation of the proposed and implemented algorithms in this dissertation. Dijkstra’s algorithm
can very efficiently obtain the shortest path tree or just the shortest path between two nodes (source
node s and target node t), depending on the condition used to terminate it. It assumes all costs are
positive, ci j ≥ 0, for all (i, j) ∈ A.

Algorithm 2 (Dijkstra’s algorithm) requires some additional notation:

k Present node.
u Candidate successor of the present node.
S Set of non-permanent nodes.
ψ( j) Node preceding node j.
π( j) Cost of the computed path from s to j.
β ( j) Bandwidth of the computed path from s to j.
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Algorithm 2 Dijkstra’s Algorithm for the Calculation of a Chosen Variant Path

Require: G = (N,A), B matrix with arcs’ bandwidth (bi j,(i, j) ∈ A), C matrix with arcs’ costs
(ci j,(i, j) ∈ A), nodes source s and target t.

Ensure: Calculates pst depending on the chosen variant and its cost π(t) and/or bandwidth β (t).
If it exists, then π(t) 6= ∞ and/or β (t) 6= 0.

1: for all i ∈ N do
2: ψ(i)← s . s is the predecessor of all nodes
3: π(i)← ∞ . No path has been found from s to i
4: β (i)← 0 . No path has been found from s to i
5: end for
6: π(s)← 0 . The cost of reaching s, starting from s is 0
7: β (s)← ∞ . The bandwidth to s from s is ∞

8: k← s . First node is s
9: S← N−{s} . s is permanently labeled

10: repeat
11: for every arc (k,u),u ∈ S do . For every non-permanent neighbor node of k
12: if “condition” then . If the path to u can be improved ( Table 4.1)
13: ψ(u)← k . k becomes the predecessor of u
14: π(u)← π(k)+ cku . π(u) is updated
15: β (u)←min[β (k),bku] . β (u) is updated
16: end if
17: end for
18: k← “best candidate“ . Another node is chosen ( Table 4.1)
19: S← S−{k} . Node is permanently labeled
20: until k = t
21: return pst (described by the successive predecessors of t if π(t) 6= ∞ or β (t) 6= 0) and π(t)

and/or β (t)

Variant ”condition“ ”best candidate“

shortest path π(u)> π(k)+ cku argmin j∈S π( j)

widest path β (u)< min[β (k),bku] argmax j∈S β ( j)

widest-shortest path
π(u)> π(k)+ cku ∨
(π(u) = π(k)+ cku ∧
β (u)< min[β (k),bku])

argmax j′∈S′ β ( j′)
S′ = { j : j = i∗ ∧ π(i∗) = mini∈S π(i)}

shortest-widest path
β (u)< min[β (k),bku] ∨
(β (u) = min[β (k),bku] ∧

π(u)> π(k)+ cku)

argmin j′∈S′ π( j′)
S′ = { j : j = i∗ ∧ β (i∗) = maxi∈S β (i)}

Table 4.1: Variants of the implemented Dijkstra’s algorithm

This is a slightly altered version of Dijkstra’s algorithm. While it is very similar to the one pre-
sented in [7], this one is designed to calculate shortest, widest, shortest-widest or widest-shortest
paths, depending on the chosen variant. To perform the last two variants, shortest-widest and
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widest-shortest, nodes have both cost and bandwidth labels. The algorithm needs to adjust to ev-
ery type of path, but the differences are set solely on Line 12 and Line 18. These differences are
displayed in Table 4.1.

Note that the shortest path variant corresponds to the Dijkstra’s algorithm proposed in [7],
which will be exemplified next, followed by a short explanation regarding the differences between
this and the other variants.

For the sake of simplicity, this example will ignore the bandwidth labels. The algorithm starts
by attributing a path cost equal to infinity to every node except for s. In practical terms, infinity is
represented by a large number, larger than the sum of the costs of all arcs in the network. This is
to make sure these paths can be improved, because a path can’t have more arcs than the graph.

Then, starting from s, it scans the arcs that spawn from this node and labels the head nodes
according to the cost of the path to them. Out of all labeled nodes (nodes with path cost that is not
infinity), the one with the least path cost is marked as permanent and becomes k. The procedure is
repeated until the condition in Line 20 is met.

If the algorithm was set to stop when all nodes have been marked as permanent, then the
product would be a complete shortest path tree. However, if there is no interest in computing the
entire tree, which is the case in this work, the algorithm can be terminated once t is marked as
permanent. Due to this premature termination, the tree may be incomplete, but some time might
be saved.

Figure 4.1 and Figure 4.2 show, as an example, how the shortest path from the source node
A to the target node Z depicted in Figure 2.2(a) was obtained. Every node label is initialized in
Figure 4.1(a). The cost to every node starts by being equal to infinity except to the source node,
which is 0. In this first step, every node is considered to be preceded by the source node A.
Figure 4.1(b) shows the result of the first iteration of the Line 10 cycle. B and D are labeled with
finite costs equal to the path that leads to them and B is picked as the best candidate and is marked
as permanent.

(a) Initialization. (b) Labeling A’s neighbor nodes.

Figure 4.1: First steps of Dijkstra’s algorithm.

The same happens to B’s neighbors in Figure 4.2(a) with the exception of the already perma-
nent node A. D’s path is improved and its cost decreases from 4 to 3 when B becomes its new
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predecessor. After comparing the possible candidates, C and D, k = D and D is marked as perma-
nent. In Figure 4.2(b), the labeling of D’s neighbor nodes includes the target node Z. However,
C is a better candidate, because its cost is lower, so C becomes a permanent node. Z is relabeled
through C and, since it’s the last non-permanent node, is finally labeled permanent in Figure 4.2(c).

(a) Labeling B’s neighbor nodes. (b) Labeling D’s neighbor nodes.

(c) Complete tree.

Figure 4.2: Middle and final steps of Dijkstra’s algorithm.

In this case, even though the condition defined in Line 20 was to stop once the target node was
reached, the tree was completely calculated.

If there are multiple optimal solutions, a different optimal path might be found, depending on
the order of selection of node k (of identical cost) in Line 18.

The adaptation of the Dijkstra’s algorithm to the concave metric requires the few changes that
are enunciated in Table 4.1. Paying attention to the bandwidth labels, the first important detail to
note is the result of the metric change. Labels are now updated if the condition

β (u)< min[β (k),bku] (4.1)

is met, because the arc from node k to node u may limit the bandwidth that was already guaranteed
up to node k. Thanks to this condition, the bandwidth b(pst) (given by β (t)) is equal to the
minimum bandwidth among all arcs that are part of pst .

The second and last major change happens when choosing the new best candidate, k, in Line 18.
It is now equal to

argmax
j∈S

β ( j) (4.2)
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because the widest path problem is a maximization problem.

In the widest-shortest and shortest-widest path variants, the condition to label (or relabel) a
node is based on a combination of the shortest and widest path variants, as is the choice of the next
node k.

For the widest-shortest path variant, the node is labeled if the cost can be reduced or, if the
cost is maintained, the bandwidth can be increased. The best candidate, k, is chosen as the node
that has maximum β ( j′), where j′ ∈ S′ and S′ is the set of nodes that have minimum cost label
among all non-permanent nodes. Similarly, for the shortest-widest variant, labeling happens if the
bandwidth can be improved or, if bandwidth is maintained, the cost can be decreased. k is a node
that has minimum cost among all non-permanent nodes with maximum bandwidth label.

This algorithm can be implemented using language C++. To determine k in Line 18, i.e., the
node that leads to the path with larger bandwidth and/or minimum among all non-permanent nodes
(depending on the variant), a multi-map from the C++ Standard Library can be used. A multi-map
is a container whose elements are the association of keys and values. The key is used to order the
elements according to an order relation. In Dijkstra’s algorithm (as well as in Algorithm 3 and
the proposed algorithms), the elements are ordered by bandwidth in a decreasing fashion and/or
by cost in an increasing fashion, depending on the chosen variant. Given two candidate nodes, a

and b, being evaluated based on bandwidth, if β (a) > β (b), then a takes the top position in the
multi-map. If the values are equal, the element that was first introduced remains on top. Likewise,
if the candidate nodes are evaluated based on cost, then a takes the top if π(a) < π(b). The
shortest-widest and widest-shortest variants make use of both parameters in different order.

Removal of the top element of the multi-map has a constant cost. Insertions, removals and
searches on the multi-map have logarithmic complexity on the number of elements, so the com-
plexity of this algorithm is O(|A| log2 |N|), which is identical to the complexity of Dijkstra’s algo-
rithm using a binary heap [1].

4.2 The Modified Dijkstra’s Algorithm

Dijkstra’s algorithm, in its simplest form, fails when facing graphs with negative arc costs.
However, if no negative loops exist, this problem can be solved by a modified version of the same
algorithm. A negative loop (or cycle) is a set of arcs that form a path from a node to itself with
negative additive cost. Since it is a minimization problem, the algorithm would not terminate after
passing through that loop, because the cost of the path to said node will be reduced every time the
cycle is traversed.

In this work, the calculation of shortest paths in graphs with negative cost arcs (and no negative
cycles) is very useful to find disjoint path pairs using Bhandari’s algorithm. A modified version of
Dijkstra’s algorithm that solves this problem can be found in [3].
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Algorithm 3 Modified Dijkstra’s Algorithm for the Calculation of the Shortest Path

Require: G = (N,A), C matrix with arcs’ costs (ci j,(i, j) ∈ A), nodes source s and target t.
Ensure: Calculates pst and its cost π(t). If it exists, then π(t) 6= ∞.

1: for all i ∈ N do
2: ψ(i)← s . s is the predecessor of all nodes
3: c(i)← ∞ . No path has been found from s to i
4: end for
5: c(s)← 0 . The cost of reaching s, starting from s is 0
6: k← s . First node is s
7: S← N−{s} . s is permanently labeled
8: repeat
9: for every arc (k,u),u ∈ N do . For every neighbor node of k

10: if π(u)> π(k)+ cku then . If the path to u can be improved
11: ψ(u)← k . k becomes the predecessor of u
12: c(u)← c(k)+ cku . c(u) is updated
13: S← S+{u} . u becomes non-permanent
14: end if
15: end for
16: k← argmin j∈S π( j) . Another node is chosen
17: S← S−{k} . Node is permanently labeled
18: until k = t
19: return pst (described by the successive predecessors of t if π(t) 6= ∞

It contrasts with the original version of the Dijkstra’s algorithm in the fact that it scans all
neighbor nodes, including previously marked permanent nodes. The main difference between Al-
gorithm 2 and Algorithm 3 can be found in the for cycle in Line 9. First, all arcs are scanned, not
just for non-permanent nodes. And second, if a better path is found, the node is reinserted in S

(becomes non-permanent again) in Line 13.

Because bandwidths values are considered to be nonnegative and the widest path problem
does not include additive metrics, the modified Dijkstra’s algorithm is used just for shortest path
calculation.

4.3 Bhandari’s Edge-Disjoint Path Pair Algorithm

This algorithm makes use of the two previously presented algorithms to calculate paths, that,
through deinterlacing, result in edge-disjoint path pairs of min-sum cost or maximum bandwidth,
depending on the considered optimization problem. So, if, for example, the paths calculated in G

and then in G′ were the shortest paths in these graphs, the resulting path pair would be the shortest
edge-disjoint path pair and the sum of the costs of both pairs would be minimum among all path
pairs between the two given nodes. On the other hand, if the paths obtained from G and G′ were
to be the widest paths, then the resulting path pair would be an widest edge-disjoint path pair and
bm(p∗,q∗) would be maximized.
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Algorithm 4 Bhandari’s Edge-Disjoint Path Pair Algorithm

Require: G = (N,A), B matrix with arcs’ bandwidth (bi j,(i, j) ∈ A), C matrix with arcs’ costs
(ci j,(i, j) ∈ A), nodes source s and target t, and selected variant ”widest“ or ”shortest“.

Ensure: Calculates edge-disjoint (or maximally edge-disjoint) path pair (p∗,q∗) (if it exits), such
that the sum c(p∗)+c(q∗) is minimized or bm(p∗,q∗) is maximized, depending on the chosen
”variant“

1: (p∗,q∗)← ( /0, /0) . No solution
2: Application of the ”variant“ Dijkstra’s algorithm, calculating path p
3: if p exists then
4: Network is transformed in G′, so that every (edge) directed arc ai j ∈ p is replaced by an

arc a ji in the t-to-s direction with altered weights:{
c′ji =−ci j , for min cost path pair
b′ji = b(p)+1 , for widest path pair (4.3)

5: if maximally disjoint pairs are admissible then
6: Keep p and change the cost/bandwidth of ai j ∈ p according to Equation (2.16).
7: end if
8: if ”variant“ = widest then
9: Application of the widest path Dijkstra’s algorithm, calculating path p′

10: else
11: Application of the modified Dijkstra’s algorithm, calculating path p′

12: end if
13: Restores G . Undoes all changes required to obtain the transformed network (G′).
14: if p′ 6= /0 then
15: (p∗,q∗)← path pair resulting from the deinterlacing of p and p′.
16: end if
17: end if
18: return (p∗,q∗) . Either an optimal solution or ( /0, /0)

In [3, pages 65 and 88] and [14, page 10], it is said that the arcs that are not removed during
the deinterlacing process are part of the path pair solution. While this is true when the metric is
additive, it is not always true when the criterion is based on a concave metric. Next there is an
example that proves that, when calculating an widest edge-disjoint path pair, some arcs may not
be removed and yet not be part of the solution. It is important to note that a widest edge-disjoint
path pair is still found and the only thing being pointed here is the curious fact that not all arcs are
part of the solution.

Figure 4.3 depicts the calculation of a widest edge-disjoint path pair that does not contain
all non-reversed arcs from the two paths obtained with the Dijkstra’s and the modified Dijkstra’s
algorithms. The widest path p in Figure 4.3(a) is A−B−C−D−E−F−Z. After modifying G

into G′, the widest path is A−F−E−C−B−Z (Figure 4.3(b)). After deinterlacing, the resulting
path pair (p∗,q∗) is A−F−Z and A−B−Z (see Figure 4.3(c)), of which the non-reversed edge
between E and C is not a part of.
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(a) Example graph G.

(b) Modified graph G′ and widest path p′.

(c) Deinterlacing and resulting path pair.

Figure 4.3: Example of widest edge-disjoint path pair that does not contain all non-reversed arcs
from p′.

Note that this can only happen if bEC does not limit b(p′), so ignoring this arc does not affect
the bandwidth of path p′ or the resulting path pair.
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Chapter 5

Proposed Heuristics

Here are described the proposed and implemented heuristic algorithms. An heuristic algorithm
based on Bhandari’s is presented for addressing the WEDLO problem, formalized in Section 3.1.
This heuristic algorithm will make use of the Dual Path Label Dijkstra’s heuristic (DPLD). It
will also serve as a mold for two similar path pair heuristics that are used to solve the problems
in Section 3.3 and Section 3.2, by using the Dual Path Label Dijkstra’s heuristic with Minimum
Limits (DPLD-ML) and the Dual Path Label Dijkstra’s heuristic for Maximum Sum (DPLD-MS),
respectively.

The proposed heuristics are exposed in this order, which differs from the order the correspond-
ing problems were presented, because each of these heuristics is based on the previous one.

The relative performances of the proposed heuristics will be presented in Chapter 6.

5.1 Heuristic for Widest Edge-disjoint Path Pair Lexicogra-
phic Optimization

In this section is presented an heuristic for the Widest Edge-disjoint Path Pair Lexicographic
Optimization problem [5]. As such, it is denominated HLO.

The main idea behind the resolution approach to the problem in Section 3.1 is the use of dual
bandwidth labels at the nodes: each node will have primary and secondary node labels1.

The heuristic algorithm first calculates the widest path p from node s to node t. Then it changes
the network into G′ in a way similar to the procedure in [3]: the directed arcs in the path from s to t

are removed and the reversed (symmetrical) arcs are altered to have infinite bandwidth (in practical
terms, a value larger than the bandwidth of the widest edge in the network).

To obtain the path pair that solves Equation (2.12), all that is required is to calculate p′, the
widest path in the transformed network G′. The interlacing arcs, i.e., the reversed arcs of p which
appear in p′, are removed and the remaining arcs define the widest edge-disjoint path pair (p∗,q∗).

The heuristic used to obtain the path pair is described in pseudocode in Algorithm 5. It makes
use of the Dual Path Label Dijkstra’s heuristic (DPLD) to calculate p′ in Line 5. DPLD will be
explained and detailed in pseudocode (Line 5) in the next section.

1This approach was inspired in [11], where the authors employed dual labels to finding link-disjoint paths for α +1
path protection.
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Algorithm 5 Heuristic for Widest Edge-disjoint Path Pair Lexicographic Optimization (HLO):
heuristic for the problem described in Section 3.1

Require: G = (N,A), B matrix with arcs’ bandwidth (bi j,(i, j) ∈ A), nodes source s and target t.
Ensure: Returns a path pair (p∗,q∗) to problem in Equation (3.2), (possibly sub-optimal) or ( /0, /0)

if no solution was found.
1: (p∗,q∗)← ( /0, /0) . No solution
2: Application of the widest path Dijkstra’s algorithm, calculating path p, such that p =

argmaxp+∈Pst b(p+)
3: if p exists then
4: Network is transformed in G′ as described in Section 4.3.
5: p′← DPLD(G′,B′,s, t) . Algorithm 6
6: Restores G . Undoes all changes required to obtain the transformed network (G′).
7: if p′ 6= /0 then
8: (p∗,q∗)← path pair resulting from the removal of the interlacing edges of p and p′.
9: end if

10: end if
11: return (p∗,q∗) . Solution (possibly sub-optimal) to Equation (3.2) or ( /0, /0)

5.1.1 The Dual Path Label Dijkstra’s Heuristic

When the calculation of the widest path in the transformed network G′ begins, the source
node has its labels equal to the bandwidth of the path p. In the modified graph, the widest path
is determined using the primary node labels. If interlacing arcs exist in p′, it is known that the
interlacing arcs will be removed and the resulting sub-paths between interlacing chains will belong
alternately to the resulting path pair p and q.

During the calculation of p′, whenever the non-permanently labeled node presently with the
largest bandwidth label (in G′) is selected, let it be node vk, then node vk becomes a permanently
labeled node. Let the predecessor of vk be vk−1. The secondary label of vk takes the value of the
secondary label of its predecessor, vk−1.

Let the new permanently labeled node be vk1 , such that the arc (vk1−1,vk1) belongs to the re-
versed p path (see Figure 5.1). If the predecessor of vk1−1, let it be vk1−2, is such that (vk1−2,vk1−1)

does not belong to the reversed p path, then the primary and secondary labels of node vk1 swap,
because arc (vk1−1,vk1) is the first reversed arc permanently added to the tree of widest paths and
is a candidate to be part of p′.

If this is the first time a reversed arc has appeared as possible candidate to be on p′, then the
sub-path of p′ from s to vk1−1, p′svk1−1

, is the candidate sub-path of one of the paths of the final path
pair (say p∗) and the sub-path of p from s to the exit node (vx1) of the chain of reversed arcs (in p′)
starting in node vk1−1, psvx1

, will belong to the other path of the path pair (say q∗). Note that vx1

may coincide with vk1 if the chain of reversed arcs is made of a single arc.

The label swapping ensures that, from this point onwards, the bandwidth of the sub-path start-
ing in vk1 will be calculated independently from the sub-path that ended in the predecessor of vk1 .
If vx1 is the tail node of the sub-path of q∗, its bandwidth will initially be the bandwidth of p,
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because the first sub-path of q∗ will be psvx1
and b(psvx1

) ≥ b(p). Hence the first label swapping
ensures vx1 has now as primary label b(p). The bandwidth of q∗ will be at most b(p), regardless of
the bandwidth of the sub-path psvx1

. Hence, this is the correct label for calculating q∗’s bandwidth
if the chain from vk1−1 to vx1−1 does in fact belong to p′ – which implies q∗svx1

= psvx1
. If the chain

from vk1−1 to vx1 is not part of p′, then the fact that we have modified the label of node vk1 in that
chain is irrelevant for the calculation of p′. As the tree of widest paths calculation progresses, the
sub-paths with tail node vx1 and vk1−1 will be calculated as widest as possible, taking into account
the bandwidth of psvx1

and p′svk1−1
.

If, after exiting the first chain of reversed arcs (from vk1−1 to vx1), a new reversed arc appears in
p′, that is, if the selected node vk2 (and arc (vk2,vk2−1)) is permanently added to the tree of widest
paths and it is the first reversed arc of the second chain of reversed arcs, the primary and secondary
labels of vk2 swap. Let vx2 be the exit node of the chain of reversed arcs (in p′) starting in node
vk2−1. The candidate path p∗ will be p′svk1−1

� pvk1−1vx2
, and the candidate sub-path of q∗ path will

be psvx1
� p′vx1vk2−1

. Due to the label swapping, the calculation of the widest sub-paths with tail
nodes vx2 and vk2−1 will be made taking into account the bandwidth of p′svk1−1

� pvk1−1vx2
and of

psvx1
� p′vx1vk2−1

, respectively.

Figure 5.1: Illustration of the label swapping procedure.

The procedure that has been described and illustrated in Figure 5.1 can be generalized. Let
the first reversed arc of the i-th (i > 2) chain of reversed arcs in p′ be (vki−1,vki). This arc is
permanently added to the tree of widest paths (in construction) when vki is permanently labeled.
Because vki is the head of the first reversed arc of the i-th chain of reversed arcs in p′, the primary
and secondary labels of vki swap. Let vxi be the exit node of the i-th chain of reversed arcs in p′

starting in node vki−1. If i is even, the candidate sub-path of p∗ will be:

p′svk1−1
� pvk1−1vx2

� · · · � pvki−1−1vxi
(5.1)

and candidate sub-path of q∗ will be:

psvx1
� p′vx1vk2−1

� · · · � p′vxi−1vki−1
(5.2)
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If i is odd, the candidate sub-path of p∗ will be:

p′svk1−1
� pvk1−1vx2

� · · · � p′vxi−1vki−1
(5.3)

and the candidate sub-path of q∗ will be:

psvx1
� p′vx1vk2−1

� · · · � pvki−1−1vxi
(5.4)

Due to the label swap, the calculation of the widest sub-paths with tails vxi and vki−1 will be made
taking into account the bandwidth of the candidate paths which end in vxi and vki−1 (according to
Equations (5.1) to (5.4)), thus ensuring that when node t is reached, the primary and secondary
labels of t will contain the bandwidth of p∗ and q∗.

If the number of interlacing chains is even (odd), the primary label of t will be equal to b(p∗)

(b(q∗)) and the secondary label of t will be equal to b(q∗) (b(p∗)). If no interlacing between p and
p′ takes place, the primary label will be the bandwidth of p′ and the secondary label of t will be
the bandwidth of p. In this resolution approach, the paths p∗ and q∗ result from the union of the
arcs in p and p′, discarding every arc whose reversal appears on the other.

The Dual Path Label Dijkstra’s heuristic, which is similar to Dijkstra’s algorithm, will be de-
scribed next in pseudocode and requires the notation used in Section 4.1 plus the following:

• L1( j) Label 1 of node j – primary label.

• L2( j) Label 2 of node j – secondary label.

This heuristic algorithm (DPLD) has the same complexity as the implemented version of Di-
jkstra’s algorithm (see the end of Section 4.1). Next is an illustrated example of how it works.

5.1.2 Illustrative Example of the Dual Path Label Dijkstra’s Heuristic

Consider the example network represented by the graph in Figure 5.2(a). The first step is
to calculate the widest path p between the source node A and the target node Z, which is path
A−B−C− Z (thicker lines in Figure 5.2(a)) with bandwidth b(p) = 100. The next step is to
transform the network and assign labels to each node, as pictured in Figure 5.2(b). The nodes
belonging to the widest path, A− B−C− Z, will require two labels in order to perform label
swapping, while the rest of the nodes use the second label just to carry its value across the tree. In
the figures, the top label represents the primary label, L1, and bottom label represents the secondary
label, L2.

Also, since L2 will be passed on from node to node as the tree is calculated, the only labels
that need to be initialized are the ones related to the source node, A. L1(A) and L2(A) receive the
bandwidth value of the previously computed widest path, b(p) = 100. The remaining nodes start
with both their labels set as 0.
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Algorithm 6 Dual Path Label Dijkstra’s Heuristic (DPLD)

Require: G′ = (N,A′), modified graph as described in step 4 of Algorithm 5, B′ matrix with arcs’
bandwidth (bi j,(i, j) ∈ A′), nodes source s and target t.

Ensure: Calculates p′ (if it exits), the widest path in G′, ensuring that p′ and p contain the arcs
solving Equation (3.2)

1: for all i ∈ N do
2: ψ(i)← s . s is the predecessor of all nodes
3: L1(i)← 0, L2(i)← 0 . No path has been found from s to i
4: end for
5: L1(s)← b(p), L2(s)← b(p) . Labels are initialized with the bandwidth of the widest path
6: k← s . First node is s
7: S← N−{s} . s is permanently labeled
8: repeat
9: for every arc (k,u),u ∈ S do . For every non-permanent neighbor node of k

10: if L1(u)< min[L1(k),bku] then . If L1(u) can be improved
11: ψ(u)← k . k becomes the predecessor of u
12: L1(u)←min[L1(k),bku] . L1(u) is updated
13: end if
14: end for
15: k← argmax j∈S L1( j) . The non-permanent node with highest L1 is chosen
16: S← S−{k} . Permanently labeled node
17: L2(k)← L2(ψ(k)) . L2 is passed on from the predecessor of k
18: l← ψ(k) . Auxiliary variable
19: if bψ(k)k = ∞∧bψ(l),l 6= ∞ then . If (ψ(k),k) is the first reversed arc of a chain
20: L1(k) and L2(k) swap values.
21: end if
22: until k = t . Terminates
23: if L1(t) = 0 then
24: p′← /0 . No path from s to t
25: else
26: p′ is described by the successive predecessors of t.
27: end if
28: return p′.

To compute the widest path tree in the transformed network G′, the Dual Path Label Dijkstra’s
heuristic is used. Similarly to the widest path Dijkstra’s algorithm, the first step is to label A’s
neighbor nodes and pick the one with largest bandwidth to be part of the tree. Seeing as this is a
small network and there are not many options, node C is easily reached (see Figure 5.3(a)). The
value of L2(A) is passed on from A to D and then to C as these nodes become permanent. C’s non-
permanent neighbor, B, gets labeled with the current path bandwidth, L1(B)← L1(C) = 50. As B

becomes part of the tree, L2(B) takes the value of L2(ψ(B) =C). Since the arc to B is the first (and
in this case only) in a chain of arcs that were the result of edge reversal, the labels are swapped
(see Figure 5.3(b)). If there was a node Y between C and B, then the primary and secondary labels
of Y would swap once the node became permanent, but there would be no swapping when B was
made permanent. Meaning that, regardless of the number of reversed edges that consecutively
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(a) Widest path. (b) Network transformation.

Figure 5.2: Initial steps of the DPLD algorithm.

(a) After node C is permanently labeled (b) Labels swap

Figure 5.3: The Dual Path Label Dijkstra’s heuristic first iterations.

become part of the tree, the labels will swap only once per chain of reversed edges. It is also worth
noting that since the reversed edges have bandwidth equal to the practical equivalent of infinity, the
only difference between the labels at the start and at the end of the chain is that they were swapped.

As the labels swapped, the current path bandwidth is now L1(B) = 100, which means that the
next choice between E and F is not irrelevant, as would happen in the case of the widest path
Dijkstra’s algorithm. Instead, L1(E)< L1(F), so F is the preferred node and, becoming part of the
tree, labels the target node, Z, with L1(Z) equal min[L1(F),bFZ] = 70 (see Figure 5.4(a)). Also,
L2(F) takes the value of L2(B) = 50. However, now the best candidate is E with L1(E) > L1(Z).
In Figure 5.4(b), E becomes part of the tree and labels the target node Z with a larger value,
L1(Z)← 80, because min[L1(E),bEZ]> L1(Z). E also gets the secondary label from B, L2(E)←
L2(B) = 50.

The target node is reached in Figure 5.5(a) and L2(Z)← L2(E) = 50. In thick lines, we have the
widest paths tree; in blue, the widest path on the modified network; and in a dashed line, the edge
that will not be part of the widest path pair. In Figure 5.5(b), the interlacing edge is removed and
the path pair calculation is finished. Note that L1(Z) has the bandwidth of the red path, which was
the current path when the Dual Path Label Dijkstra’s heuristic ended, and L2(Z) has the bandwidth
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(a) Node F is permanently labeled (b) Node E is permanently labeled

Figure 5.4: Impact of the dual labels.

(a) Path (and tree) completion. (b) Path Pair computation.

Figure 5.5: Final steps.

of the blue path. The (C,Z) edge does not affect the veracity of the last affirmation because it was
part of the widest path in the original network and no path in the pair can have bandwidth larger
than that. It should also be noted that although (p∗,q∗) is used to represent the solution returned
by HLO for problem in Section 3.1, this may not be the optimal path pair. This notation is used to
recall that (p∗,q∗) is the desired target of the heuristic.

5.1.3 Important Remarks on the Heuristic for Widest Edge-disjoint Path
Pair Lexicographic Optimization

Similarly to the case discussed in Figure 4.3, some edges that are not removed during dein-
terlacing may not be part of the solution, though for this heuristic those cases need to be more
elaborate due to the use of the dual labels. The use of labels would prevent the arc (E,C) from
being part of p′ in the example of Figure 4.3, thus making every non-reversed arc of p′ be part of
the solution. However, it might still happen in more ellaborate cases. To ensure it does not happen
at all, in the case of a tie the reversed edges in G′ should be preferred to be part of p′. This led to the
creation of two versions of this heuristic: HLO_f and HLO_l, where, in case of a tie, the unlabeled
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nodes adding a reversed arc to the tree of widest paths under construction (in G′) are ranked first
and last, respectively. In other words, should more than one candidate node have maximum L1,
HLO_f gives priority to a node if the arc that leads to it is reversed and HLO_l gives priority if
it’s not reversed. This applies not just to choosing node k, but also to labeling. In case of a tie in
the other conditions, a node can be relabeled if the arc that leads to it is reversed and the previous
label was associated with a non-reversed arc. The existence of these two versions will be justified
during the performance analysis, but for now it should be said that the dual labels calculated by
HLO_f meet the following condition with perfect accuracy:L1(t) = b(p∗)

L2(t) = b(q∗)
or

L1(t) = b(q∗)

L2(t) = b(p∗)
(5.5)

On the other hand, due to the exclusion of arcs from p′, HLO_l may overestimate bM(p∗,q∗),
i.e., the maximum bandwidth of the pair found in the bandwidth labels of the target node may be
larger than the actual bandwidth of the path. This happens in cases where not all non-reversed arcs
in p and p′ are part of the path pair solution (p∗,q∗). The ignored arc forces an extra label swapping
without actually affecting the bandwidth of the path pair. These cases are rare, but should not be
ignored as they require the recalculation of the bandwidths of the obtained paths. Nevertheless, as
it will be seen ahead, this is no reason to discard this version of the heuristic.

5.2 Heuristic for Edge-disjoint Path Pairs with Minimum Lim-
its

The Widest Pair of Disjoint Paths Decoupled problem (in Section 3.3) is approached in this
section, where an heuristic to solve it, called Heuristic for Edge-disjoint Path Pairs with Minimum
Limits (HML), is presented.

The use of dual path labels has room to be explored in several ways. The innovative and very
exploitable part of it is the fact that, at a given node, the maximum bandwidths that the path pair
can have, if that node is part of the solution, are known. This can be used to solve the problem
formalized in Section 3.3, where a path pair (any path pair) that has bandwidths larger than or
equal to the limits X1 and X2, with X1 > X2, is sought.

After successfully obtaining a path p′ by running DPLD, if the target node’s dual path labels
verify the following conditions:max[L1( j),L2( j)]≥ X1

min[L1( j),L2( j)]≥ X2

, with j ∈ N (5.6)

Then, the resulting path pair (p∗,q∗) also meets the limits X1 and X2. Additionally, if Equa-
tion (5.6) is true for the target node, then it is also true for every other node in path p′. So, by
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including these conditions in the path calculation process, it is possible to obtain a path p′ that
leads to a feasible path pair when deinterlaced with the widest path p. The heuristic that obtains
said path p′ is denominated Dual Path Label Dijkstra’s heuristic with Minimum Limits.

As X1 > X2, the minimum label should be compared with X2 and the maximum label with X1.
A path pair that includes a node that fails to meet any of these conditions will also not respect the
limits X1 and X2 and is not a feasible solution.

Let Y be a node whose neighbors are being scanned for labeling and let W be one of those
nodes. W is labeled only if the condition

min[L1(Y ),bYW ]> L1(W ) (5.7)

and the conditions set in Equation (5.6) are verified.

It was explained in the last section that if the widest path from s to t in the modified graph
G′, p′, is calculated using HLO_f and contains at least one chain of reversed arcs, then these arcs
aren’t part of the final path pair and the remaining arcs are divided between p∗ and q∗, with at
least one arc to each one. Bearing in mind that reversed arcs have bandwidth equal to the practical
equivalent of infinity, it can be said that if there is one arc in p′ that has bandwidth lower than X2,
then path pair (p∗,q∗) won’t pass the condition in Line 10, namely the X2 one. It can also be said
that if p′ has two arcs with bandwidths lower than X1 with an odd number of reversed arcs chains
(that precede and are preceded by non-reversed arcs) between them, (p∗,q∗) fails the X1 condition
in Line 10. Knowing this, if an arc leads to a node with bandwidth labels that do not meet the
criteria, then a path pair that includes it cannot satisfy Line 10. Any other arcs can be part of the
path pair solution and, if the target node is marked as permanent, then the resulting path pair is
feasible.

A feasible path pair (p∗,q∗) is obtained by running HML, which is very similar to HLO (Al-
gorithm 5), except for the fact that it calls DPLD-ML instead of DPLD in Line 5 and passes the
two limits, X1 and X2, as additional parameters.

Because this heuristic relies heavily on the bandwidth labels, the condition to label nodes
(Line 10 in Algorithm 7) and choose k (Line 19) is the same used in HLO_f (in case of a tie,
priority is given to a node if the arc that leads to it is reversed).

The heuristic for calculating p′ is described in the pseudocode of Algorithm 7.

Algorithm 7 follows the same line of thought as Algorithm 6, with the exception of the added Line 11
and Line 12 and the need for two more parameters. However, just like in the adaptations of Dijk-
stra’s algorithm, these small changes make a great difference in the result. While Algorithm 6 was
guaranteed to maximize bm(p∗,q∗) like Bhandari’s algorithm did, Algorithm 7 may sacrifice that
maximization in order to meet the criteria set on Line 10.

Next is an illustrated example of this heuristic that also exemplifies what was discussed in the
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Algorithm 7 Dual Path Label Dijkstra’s Heuristic with Minimum Limits (DPLD-ML)

Require: G′ = (N,A′), modified graph as described in step 4 of Algorithm 5, B′ matrix with arcs’
bandwidth (bi j,(i, j) ∈ A′), nodes source s and target t, bandwidth guaranteed limits (X1,X2).

Ensure: Calculates p′ (if it exits) ensuring that the deinterlacing of p′ and p results in a path pair
(p∗,q∗) that is feasible according to Line 10

1: for all i ∈ N do
2: ψ(i)← s . s is the predecessor of all nodes
3: L1(i)← 0, L2(i)← 0 . No path has been found from s to i
4: end for
5: L1(s)← b(p), L2(s)← b(p) . Labels are initialized with the bandwidth of the widest path
6: k← s . First node is s
7: S← N−{s} . s is permanently labeled
8: repeat
9: for every arc (k,u),u ∈ S do . For every non-permanent neighbor node of k

10: if L1(u)< min[L1(k),bku]∨ (L1(u) = min[L1(k),bku]∧bku = ∞∧bψ(u)u 6= ∞) then
11: if max[min[L1(k),bku)],L2(k)]≥ X1 then . If the limit X1 is respected
12: if min[min[L1(k),bku],L2(k)]≥ X2 then . If the limit X2 is respected
13: ψ(u)← k . k becomes the predecessor of u
14: L1(u)←min[L1(k),bku] . L1(u) is updated
15: end if
16: end if
17: end if
18: end for
19: k← argmax j∈S L1( j), with priority to the last arc being reversed . Next k is chosen
20: S← S−{k} . Permanently labeled node
21: L2(k)← L2(ψ(k)) . L2 is passed on from the predecessor of k
22: l← ψ(k) . Auxiliary variable
23: if bψ(k)k = ∞∧bψ(l),l 6= ∞ then . If (ψ(k),k) is the first reversed arc of a chain
24: L1(k) and L2(k) swap values.
25: end if
26: until k = t . Terminates
27: if L1(t) = 0 then
28: p′← /0 . No path from s to t
29: else
30: p′ is described by the successive predecessors of t.
31: end if
32: return p′.

last paragraph. In this example, X1 = 80

X2 = 40
(5.8)

Figure 5.6(a) shows a network and the widest path from node A to Z and Figure 5.6(b) shows
the transformed network G′ with node labels initialized as they would be in DPLD (Figure 5.2(b)).

Nodes D, C and B are labeled like they were in the DPLD example and label swapping in node
B also occurs. The difference surfaces in Figure 5.6(c), where through arc (B,E), node E would be
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labeled with L1(E)← min[L1(B),bBE ] = min[100,60] = 60 (and L2(E)← L2(B) = 60, if it were
to become permanent). This fails the if condition in Line 11 of Algorithm 7 and, therefore, the
node is not labeled. The only candidate is then Z, which is made permanent with labels L1(Z) = 50
and L2(Z) = L2(D) = 100. Path p′ has no interlacing arcs with p, so there’s no need to deinterlace

(a) Original graph G and widest path p. (b) Transformed graph G′.

(c) Node B is permanently labeled. (d) Node Z is permanently labeled.

(e) Feasible path pair.

Figure 5.6: Illustrative example of HML.

them. The edge-disjoint path pair solution is (p∗,q∗) = (p, p′) (see Figure 5.6(e)), withbM(p∗,q∗) = 100 > X1 = 80

bm(p∗,q∗) = 50 > X2 = 40
(5.9)
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5.3 Heuristic for Maximum Bandwidth Sum

The last proposed heuristic, Heuristic for Maximum Bandwidth Sum (HMS), addresses the
problem formalized in Section 3.2.

In this heuristic, the optimal (or sub-optimal) pair (p∗,q∗) is obtained in the same manner as
the desired path pairs in the previously described heuristics: through an heuristic in all equal to
HLO (Algorithm 5), except for calling the Dual Path Label Dijkstra’s Heuristic for Maximum Sum
instead of DPLD in Line 5.

If, at each node, it is possible to know the maximum bandwidths each path will have in the final
path pair, then the problem might be solved by choosing the nodes that have maximum label sum.
In case of a tie, the decision to label or relabel (Line 10) a node or pick it as the next k (Line 15) is
made like in HLO_f and HML, i.e., reversed arcs have priority over non-reversed arcs.

(a) Graph G and the widest path p. (b) Label initialization and first steps.

(c) Node Z is permanently labeled. (d) Maximum bandwidth sum path pair.

Figure 5.7: Illustrative example of the HMS heuristic.

Figure 5.7 illustrates an example of this heuristic. In Figure 5.7(a) the widest path is calculated
in graph G. After the graph transformation, labels are initialized like in the previously described
heuristics. In its first steps (Figure 5.7(b)), the heuristic labels nodes D, C and B as permanent,
swapping the labels of the last one, and labels node Z with L1(Z) = 10 and A as its predecessor.
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After B becomes permanent, E is labeled with L1(E) = 80. At this point, L1(E) > L1(Z), but
taking into account the secondary labels they will receive from their predecessors,

L1(E)+L2(B) = 140 < L1(Z)+L2(A) = 410 (5.10)

The maximum sum path pair is then achieved without the need to deinterlace p and p′.

Algorithm 8 Dual Path Label Dijkstra’s Heuristic for Maximum Sum (DPLD-MS)

Require: G′ = (N,A′), modified graph as described in step 4 of Algorithm 5, B′ matrix with arcs’
bandwidth (bi j,(i, j) ∈ A′), nodes source s and target t.

Ensure: Calculates p′ (if it exits) ensuring that the deinterlacing of p′ and p results in a path pair
(p∗,q∗) that maximizes the sum of the bandwidths of the paths (possibly sub-optimal).

1: for all i ∈ N do
2: ψ(i)← s . s is the predecessor of all nodes
3: L1(i)← 0, L2(i)← 0 . No path has been found from s to i
4: end for
5: L1(s)← b(p), L2(s)← b(p) . Labels are initialized with the bandwidth of the widest path
6: k← s . First node is s
7: S← N−{s} . s is permanently labeled
8: repeat
9: for every arc (k,u),u ∈ S do . For every non-permanent neighbor node of k

10: if L1(u)+L2(ψ(u))< L1(k)+L2(k)∨ (L1(u)+L2(ψ(u)) = L1(k)+L2(k)∧bku = ∞∧
bψ(u)u 6= ∞) then

11: ψ(u)← k . k becomes the predecessor of u
12: L1(u)←min[L1(k),bku] . L1(u) is updated
13: end if
14: end for
15: k← argmax j∈S(L1( j)+L2(ψ( j))), with priority to the last arc being reversed . Next k is

chosen
16: S← S−{k} . Permanently labeled node
17: L2(k)← L2(ψ(k)) . L2 is passed on from the predecessor of k
18: l← ψ(k) . Auxiliary variable
19: if bψ(k)k = ∞∧bψ(l),l 6= ∞ then . If (ψ(k),k) is the first reversed arc of a chain
20: L1(k) and L2(k) swap values.
21: end if
22: until k = t . Terminates
23: if L1(t) = 0 then
24: p′← /0 . No path from s to t
25: else
26: p′ is described by the successive predecessors of t.
27: end if
28: return p′.
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Chapter 6

Performance Analysis of the Proposed Heu-
ristics

In this chapter, the performances of the three heuristics proposed in Chapter 5 are analyzed.
These analysis are delivered in the same order the heuristics were proposed.

The performance of the heuristics are evaluated using fourteen networks from the SNDLib [16],
where nodes of degree one were removed (and the corresponding networks have an ’*’ appended
to their name in the figures). The deatils regarding the number of nodes, edges and the edge-to-
node ratio (density of the network) is presented in Table B.1 in Appendix B. The bandwidth bi j of
each edge (i, j) was defined to be 1000/ logd(vi,v j), where d(vi,v j) is the distance between nodes
vi and v j, based on the GPS coordinates of vi and v j. These networks appear in ascending order
of number of nodes. The heuristics are applied to every node pair in each of these networks. For
comparison, the ILP formulations of the problems that were defined in Chapter 3 are used.

Every heuristic is compared with CPLEX 12.6 [9] in terms of average CPU time per node pair
using a Desktop with an Intel(R) Core(TM) i7 CPU 950 @ 3.07GHz processor and 6GB of RAM.

6.1 Heuristic for Widest Edge-disjoint Path Pair Lexicographic
Optimization

In Figure 6.1, we present the average CPU time per node pair for solving HLO considering all
node pairs for each network. The error bars represent the minimum and maximum value observed
for each network. Note the different vertical axis for the heuristics and the solver. The CPU time
in all cases grows with size of the networks (ordered in the figures by increasing number of nodes,
from 10 to 64), but the CPU values for the heuristics are about 1% of the corresponding values
obtained by CPLEX. Although the average value of HLO_l is slightly less than the corresponding
value for the HLO_f, the maximum values of the former are not always less than the maximum
values of the latter. Therefore, regarding CPU time, the two heuristics may be considered to have
similar performance.

The percentage of node pairs where HLO (Algorithm 5) is able to find an optimal solution (ver-
ified using the solution obtained by CPLEX) is presented in Figure 6.2. It can be seen that HLO_l
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Figure 6.1: HLO’s CPU time in milliseconds per node pair.

Figure 6.2: Percentage of optimal solutions found by HLO_f and HLO_l.

performs much better than HLO_f regarding the number of optimal solutions found. HLO_l found
100% of the optimal solutions for six of the fourteen tested networks. Out of the remaining eight
networks, HLO_l obtained over 99% of the optimal solutions in three of them and at least 92% in
the rest. HLO_f only managed to obtain 100% of the optimal solutions in two networks, has six
networks with 90%-95% and the remaining six with 85%-90% optimal solutions.

Regarding the cases in which HLO_l returned labels that overestimated bandwidth, there were
two out of all node pairs in all fourteen networks. In these two cases, the bandwidth bM(p,q) was
overestimated 1.923% of the actual value.
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Figure 6.3: Average relative error of the solutions found by HLO_f and HLO_l.

Regarding the sub-optimal solutions of Algorithm 5, the average relative error of bM(p,q)

using the y1 value as reference is presented in Figure 6.3. Only the error in bM(p,q) is accounted
for, because bm(p,q) is guaranteed to be maximized. The error bars represent the minimum and
maximum relative error for all node pairs in each network (some columns have zero error and no
error bars are shown, because all optimal solutions were found). In both cases, the relative error
is, in average, less than 4% and, in the worst case, less than 7% and 14%, for HLO_l and HLO_f,
respectively.

6.2 Heuristic for Edge-disjoint Path Pairs with Minimum Lim-
its

The performance analysis of this heuristic rests on success rate and CPU time. Since this
heuristic addresses a problem solved by a yes/no answer, it is not relevant to study the differences
in the bandwidths of the solutions found by it and the ones found by CPLEX (when both satisfy
the constraints).

To analyze the success rate, the heuristic was applied to the same fourteen networks with ten
different combinations of the parameters X1 and X2 for each one. These parameters were calculated
specifically for each network according to the following equations. Let am and aM be, respectively,
the narrowest and widest arcs in the studied network, and Bm be the maximum bm(p,q) among all
path pairs between every pair of nodes (v,w) which maximize bm(p,q):

Bm = max
(v,w), v,w∈N

max
(p,q)∈P̄vw

bm(p,q) (6.1)
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The constant that determines the number of (X1,X2) pairs is k. In this case, k = 4. A larger k means
the intervals are shorter.

X2 = b(am)+ i×∆2, i = 0,1, . . . ,k−1 (6.2)

X1 = X2 + j×∆1, j = 1, . . . ,k− i (6.3)

where ∆1 and ∆2 are

∆1 =
b(aM)−b(am)

k+1
(6.4)

∆2 =
Bm−b(am)

k
(6.5)

This guarantees X1 > X2, while also providing values that are challenging to the heuristic. If
X1 and X2 are too low, it is very easy to find paths, and if one of them is too high, no feasible path
pairs exist and the test is futile. The heuristic results can be seen in Table B.2 in Appendix B.

In Table B.2, it is shown the heuristic’s success rate, which is the percentage of times the heuris-
tic found a feasible solution when feasible solutions existed. Feasible path pairs were assumed to
be nonexistent when CPLEX failed to find one.

The effective success rate of HML should be calculated considering the frequency the heuristic
and the CPLEX agree: both answer “yes” (a solution could be found) or both answer “no” (no
solution exists). This, however, could favourably polarize the performance analysis of HML for
more demanding values of (X1,X2), when there are very few “yes” answers. Hence, in the analysis,
we considered the heuristic’s success rate to be calculated as the percentage of times the heuristic
and CPLEX agree when a solution exists.

To illustrate the percentage of solutions found by HML, Figure 6.4 shows the results, in order
of ascending X1 and X2, for each network. The first thing of note is the range on the vertical axis.
The worst case of all is a little over 94%. Excluding that and five others, all the results were over
96%, with the great majority being 100%. As mentioned before, the complete data regarding these
rates can be found in Appendix B.

The main reason why this heuristic fails is the same reason why HLO fails. The widest path
calculated in graph G, for a given pair of nodes, affects the widest path p′ obtained in G′, limiting
the possibilities and sometimes keeping a solution from being found. Of course, if the network is
denser and the arcs have bandwidth values that satisfy the minimum limits, then the probability of
success increases.

There are two noticeable things in Table B.2: sometimes the success rate decreases when
X2 increases (see networks “newyork”, “ta1”, “norway”, “nobel-eu”, “cost266” and “ta2*”) and
sometimes it increases with X1. The first happens for obvious reasons. If the limit is increased, it
is harder to find a path pair and, given the fact that the heuristic’s capacity to analyze every option
is more limited than CPLEX’s, it is understandable why it fails when the constraints are tighter.
On the other hand, when X1 is raised, the number of node pairs with feasible solutions goes down.
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Figure 6.4: HML’s Success Rate.

If some of the cases that the heuristic was unable to solve disappear, its success rate might grow.
Figure 6.5 displays in detail the values of the CPU times obtained during a run of HML and

CPLEX on the fourteen tested networks. In those histograms, the bars represent average times,
with the error bars being the minimum and maximum values. It is important to note the scale, but
even ignoring it, it is possible to see that HML’s average and minimum times are more constant
and are not as affected by the different values of X1 and X2. On the other hand, for a constant X2

on any network, when X1 rises, CPLEX’s CPU time is reduced. When X2 increases and X1 goes
back to a lower value, CPLEX’s average time goes up again.
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6.3 Heuristic for Maximum Bandwidth Sum

The Heuristic for Maximum Bandwidth Sum is evaluated in terms of CPU time, success rate
and average relative error, similarly to HLO.

Figure 6.6: HMS’s CPU time in milliseconds per node pair.

The average CPU times for each pair of nodes per network is displayed in Figure 6.6, where
minimum and maximum times are also presented. These graphs show the same shape as they
did for the HLO. Taking into account the number of nodes and density of the networks, exhibited
in Table B.1 in Appendix B, it is possible to note that the average times increase with the number of
nodes, but also slightly decrease when the networks are less dense. On the other hand, the success
rates displayed in Figure 6.7 do not seem to be ruled by this logic.

Finally, the average relative error is shown in Figure 6.8. The values are smaller than the ones
presented for HLO. The compared values are in this case the result of a sum and are, therefore,
larger than the bandwidth of a single path. On the other hand, the difference between did not scale.
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Figure 6.7: HMS’s success rate.

Figure 6.8: HMS’s average relative error.
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Chapter 7

Conclusion

Routing with protection while ensuring adequate QoS is necessary in telecommunication net-
works. Path protection requires the calculation of a pair of disjoint paths, satisfying some con-
straints, namely cost or bandwidth.

The work developed in this thesis led to the development of new heuristics for the calculation
of edge-disjoint path pairs. The first proposed heuristic seeks to obtain a widest edge-disjoint path
pair, while maximizing the bandwidth of the widest path of the pair; the second one attempts to
obtain a path pair such that each path satisfies a specific bandwidth requirement; the third one tries
to calculate a path pair maximizing the sum of the bandwidth of the paths. Prior to developing these
heuristics, several other related problems were studied, as well as their respective algorithms, some
of which were implemented. In particular, algorithms for solving the shortest, widest, shortest-
widest, and widest-shortest path problems were implemented; algorithms for solving the min-sum
edge-disjoint, widest edge-disjoint, min-sum maximally edge-disjoint and widest maximally edge-
disjoint path problems were also implemented.

The performance of the proposed heuristics was evaluated. Each optimization heuristic was
shown to have a large optimal solution rate and a low relative error (less than 5% on average).
Both of the HLO heuristics took less than 1% of CPLEX’s time, while presenting high success
rates (over 82% in HLO_f’s case and over 92% in HLO_l’s case). Also, HLO_f provided the
dual labels precision that was necessary to implement the other two proposed heuristics (HML and
HMS), which present even higher solution ratios. HML was on a par with CPLEX in most cases
and only took about 0.3% of the CPU time, regarding obtaining a feasible path pair. HMS took
roughly 1% of CPLEX’s CPU time, the average relative error was below 1.5%, and the largest
observed relative error value was only 3.5%.

This makes these heuristics interesting and less costly alternatives to CPLEX when it comes to
solving these problems, because in real-world applications, the networks may be larger and denser
and the time needed to solve a problem may render CPLEX and similar tools impractical. To sum
up, the considered problems were successfully addressed.

Regarding future work, it may be possible to combine HLO_f’s label accuracy with the success
rate of HLO_l.
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Appendices
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Appendix A

Deinterlacing Algorithm for q∗

Algorithm 9 deinterlaces two paths to obtain path q∗ that is part of an edge-disjoint path pair
(p∗,q∗), similarly to Algorithm 1.

Algorithm 9 Deinterlacing q∗

Require: Paths p and p′ from s to t (described by the successive successors of s).
Ensure: Calculates path q∗ of path pair (p∗,q∗).

1: k← 1 . Starts from the first element of p′

2: q∗← s . s is the first node of q∗

3: repeat . q∗ gets arcs and nodes from p′

4: if a′′k /∈C then . If arc from p′ is not reversed in p
5: p∗ � (v′′k ,v

′′
k+1) . Arc a′′k = (v′′k ,v

′′
k+1) and next node v′′k+1 are added to q∗

6: k← k+1 . Increment k
7: else
8: k← k′, with v′k′ = v′′k . k gets p’s index of the last node in q∗

9: repeat . q∗ gets arcs and nodes from p
10: if a′k /∈C then . If arc from p is not reversed in p′

11: p∗ � (v′k,v
′
k+1) . Arc a′k = (v′k,v

′
k+1) and next node v′k+1 are added to q∗

12: k← k+1 . Increment k
13: else
14: k← k′, with v′′k′ = v′k . k gets p′’s index of the last node in q∗

15: break Line 9 cycle
16: end if
17: until v′k′ = t . Algorithm terminates when t is reached
18: end if
19: until v′′k = t . Algorithm terminates when t is reached
20: return q∗ (as a set of alternating nodes and arcs)
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Appendix B

Additional Information Regarding
Performance Analysis

B.1 Characteristics of the Tested Networks

Network |N| |E| |E|/|N|

dfn-bwin 10 45 4.5
dfn-gwin 11 47 4.273
di-yuan 11 42 3.818

pdh 11 34 3.091
nobel-us 14 21 1.5
newyork 16 49 3.063

nobel-germany 17 26 1.529
ta1 26 51 1.962

norway 27 51 1.889
nobel-eu 28 41 1.464
cost266 37 57 1.541
giul39 39 86 2.205
zib54* 53 80 1.509
ta2* 64 107 1.672

Table B.1: Networks from SNDLib [16].

B.2 Results of the HML Heuristic

In the following table are the results of the comparison of the proposed heuristic algorithm that
addresses the problem in Section 3.3 and CPLEX. The contents of the columns are, from left to
right: network’s name, bandwidth limit X2, bandwidth limit X1 and heuristic success rate (HSR).
This success rates are relative to the results obtained from CPLEX, in other words, a 100% success
rate means that the heuristic found solutions for all cases where CPLEX also found solutions.
Cases for which CPLEX did not find a feasible path pair are discarded.
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Network X2 X1 HSR (%) Network X2 X1 HSR (%)

dfn-bwin 156 169 100 ta1 101 108 100

dfn-bwin 156 182 100 ta1 101 115 100

dfn-bwin 156 195 100 ta1 101 122 100

dfn-bwin 156 208 100 ta1 101 129 100

dfn-bwin 165 178 100 ta1 104 111 96.970

dfn-bwin 165 191 100 ta1 104 118 100

dfn-bwin 165 204 100 ta1 104 125 100

dfn-bwin 174 187 100 ta1 107 114 100

dfn-bwin 174 200 100 ta1 107 121 100

dfn-bwin 183 196 100 ta1 110 117 100

dfn-gwin 156 170 100 norway 101 105 95.157

dfn-gwin 156 184 98.182 norway 101 109 100

dfn-gwin 156 198 100 norway 101 113 100

dfn-gwin 156 212 100 norway 101 117 100

dfn-gwin 165 179 100 norway 102 106 95.667

dfn-gwin 165 193 100 norway 102 110 100

dfn-gwin 165 207 100 norway 102 114 100

dfn-gwin 174 188 100 norway 103 107 98

dfn-gwin 174 202 100 norway 103 111 100

dfn-gwin 183 197 100 norway 104 108 98.718

di-yuan 101 105 100 nobel-eu 143 154 98.860

di-yuan 101 109 100 nobel-eu 143 165 100

di-yuan 101 113 100 nobel-eu 143 176 100

di-yuan 101 117 100 nobel-eu 143 187 100

di-yuan 103 107 100 nobel-eu 149 160 94.587

di-yuan 103 111 100 nobel-eu 149 171 97.917

di-yuan 103 115 100 nobel-eu 149 182 100

di-yuan 105 109 100 nobel-eu 155 166 100

di-yuan 105 113 100 nobel-eu 155 177 100

di-yuan 107 111 100 nobel-eu 161 172 95.455

pdh 161 177 100 cost266 135 148 98.498

pdh 161 193 100 cost266 135 161 97.430

pdh 161 209 100 cost266 135 174 100

pdh 161 225 100 cost266 135 187 100

pdh 169 185 100 cost266 143 156 97.898

pdh 169 201 100 cost266 143 169 98.344
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Network X2 X1 HSR (%) Network X2 X1 HSR (%)

pdh 169 217 100 cost266 143 182 100

pdh 177 193 100 cost266 151 164 96

pdh 177 209 100 cost266 151 177 100

pdh 185 201 100 cost266 159 172 100

nobel-us 125 135 100 giul39 101 111 100

nobel-us 125 145 100 giul39 101 121 100

nobel-us 125 155 100 giul39 101 131 100

nobel-us 125 165 100 giul39 101 141 100

nobel-us 134 144 100 giul39 104 114 100

nobel-us 134 154 100 giul39 104 124 100

nobel-us 134 164 100 giul39 104 134 100

nobel-us 143 153 100 giul39 107 117 100

nobel-us 143 163 100 giul39 107 127 100

nobel-us 152 162 100 giul39 110 120 100

newyork 102 106 100 zib54* 101 111 96.779

newyork 102 110 97.468 zib54* 101 121 100

newyork 102 114 100 zib54* 101 131 100

newyork 102 118 100 zib54* 101 141 100

newyork 105 109 99.048 zib54* 105 115 100

newyork 105 113 100 zib54* 105 125 100

newyork 105 117 100 zib54* 105 135 100

newyork 108 112 100 zib54* 109 119 100

newyork 108 116 100 zib54* 109 129 100

newyork 111 115 100 zib54* 113 123 100

nobel-germany 175 199 100 ta2* 101 113 98.573

nobel-germany 175 223 100 ta2* 101 125 100

nobel-germany 175 247 100 ta2* 101 137 100

nobel-germany 175 271 100 ta2* 101 149 100

nobel-germany 189 213 100 ta2* 105 117 95.694

nobel-germany 189 237 100 ta2* 105 129 100

nobel-germany 189 261 100 ta2* 105 141 100

nobel-germany 203 227 100 ta2* 109 121 100

nobel-germany 203 251 100 ta2* 109 133 100

nobel-germany 217 241 100 ta2* 113 125 100

Table B.2: Comparison results of the Heuristic for Edge-disjoint Path Pairs with Minimum Limits
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