
Imagem

Jorge da Silva Perdigão

Collaborative-Control based Navigation

of Mobile Human-Centered Robots

Dissertation submitted in partial fulfillment of the

requirements for the degree of Master of Science

in Electrical and Computer Engineering

July, 2014

University of Coimbra

Faculty of sciences and technology

Department of Electrical and Computer Engineering

Collaborative-Control based Navigation
of Mobile Human-Centered Robots

Jorge da Silva Perdigão

Coimbra, 2014

Collaborative-Control based Navigation
of Mobile Human-Centered Robots

Advisor: Prof. Dr. Urbano José Carreira Nunes

Advisor: Dr. Ana Cristina Barata Pires Lopes

Jury:

Prof. Dr. Manuel Marques Crisóstomo

Prof. Dr. Rui Pedro Duarte Cortesão

Prof. Dr. Gabriel Pereira Pires

Prof. Dr Urbano José Carreira Nunes

Jorge da Silva Perdigão

Submitted in partial ful�llment of the requirements for the degree of Master of Science in

Electrical and Computer Engineering

Department of Electrical and Computer Engineering

Faculty of Sciences and Technology, University of Coimbra

July, 2014

�Not all those who wander are lost.�

-J. R. R. Tolkien.

Acknowledgements

First of all I would like to express gratitude to my advisors Professor Dr. Urbano Nunes and Dr.

Ana Lopes for their guidance, insightful observations, patience and always the best of advice.

This dissertation would be impossible without their dedication.

Writing a dissertation is certainly not an individual task, and I must thank all members

of the Autonomous Vehicles and Human-Centered Robotics team for their support, friendship

and assistance. I owe a special thanks to André Lopes, Cristiano Premebida, Daniel Almeida,

Diogo Gonçalves, Fábio Faria, João Sousa and Luis Garrote.

I would also like to thank ISR for hosting me, providing the best of resources, working

environment and personnel that allowed me to accomplish all the goals I worked for. This

work has been supported by Fundação para a Ciência e Tecnologia (FCT), under the project

of �Assisted Mobility Supported by shared control and advanced Human Machine Interfaces�

(AMS-HMI12 - RECI/EEI-AUT/0181/2012).

I thank my family for always being there for me. I must express special gratitude to my

parents for being so comprehensive and supportive through all my life, specially during my

university years.

To my girlfriend, Sara, I leave my greatest gratitude. Her patience and ever-present cheering

attitude made the way brighter even in my darkest days.

i

Resumo

O envelhecimento da população nos países ocidentais tem pressionado a indústria de cuidados

e de assistência a idosos a apresentar soluções e�cientes para responder à crescente procura aos

seus serviços. Isto leva a crer que a robótica será uma das soluções mais procuradas, ao aliviar

a necessidade de apoio humano constante. Responder a esta procura é uma tarefa que deve

começar a ser tida em conta agora. Esta dissertação é um trabalho na área da Robótica de

assistência. Tem como principais objetivos a análise e a implementação prática de um sistema

de navegação de assistência para a RobChair, uma cadeira de rodas inteligente desenvolvida no

ISR-UC. É um estudo nas áreas de Navegação Autónoma, SLAM (Simultaneous Localization

and Mapping) e de Controlo Colaborativo. De�ne como objetivo criar um sistema inteligente

capaz de melhorar a mobilidade de doentes com graves disfunções motoras, melhorando a sua

qualidade de vida. Começa por analisar o conceito de controlo colaborativo e o estado da

arte em interação Humano-Robô. Analisa também soluções de SLAM sem odometria, mais

concretamente o Hector SLAM, e de navegação autónoma. Para atingir os objetivos propos-

tos, este trabalho apresenta uma arquitetura de um Sistema de Navegação Assistiva (ANS), e

particularmente um desenho para um Controlador Colaborativo. Esse sistema é implementado

em ROS (Robot Operating System) e os seus módulos são explanados. São também apresen-

tadas alterações no hardware da RobChair tendo em vista facilitar o seu uso enquanto robô

experimental. O sistema foi testado experimentalmente, validando o funcionamento de alguns

dos seus componentes. Estes resultados representam os primeiros passos na implementação do

ANS completo na parte de navegação e perceção.

Palavras-chave: Robótica Centrada no Humano; Controlo Colaborativo; SLAM; Navegação

Assistida; Cadeira de Rodas Robótica, RobChair, ISR-UC, ROS.

iii

Abstract

Population aging in western countries has been pressing the industry of elderly care and assis-

tance to present more e�cient solutions in order to meet the growing demand for its services.

This suggests that robotics shall be one of the most sought solutions, relieving the constant

necessary human support. Responding to this demand is a task that must be taken into consid-

eration as soon as possible. This dissertation is a work on the �eld of Assistive Robotics, whose

main goals are the analysis and implementation of an assistive navigation system for RobChair,

an intelligent wheelchair developed at ISR-UC. It is a study on the �elds of Autonomous Navi-

gation, SLAM (Simultaneous Localization and Mapping) and Collaborative Control. It de�nes

the objective of creating an intelligent system able to improve the mobility of patients with

severe motor dysfunctions, improving their quality of living. It starts by analyzing the concept

of Collaborative Control and the state of the art in Human-Robot interaction. It also analyzes

the SLAM solutions without odometry, more speci�cally, the Hector SLAM, and autonomous

navigation. To attain the proposed objectives, this work presents an architecture for the As-

sistive Navigation System (ANS) and particularly a scheme for the Collaborative Controller.

Such system is implemented in ROS and its modules explained in detail. It is also presented

the modi�cations performed in the RobChair hardware in order to facilitate its use as an ex-

perimental robot. The system was tested experimentally, validating the operation of some of

its components. The results achieved represent the �rst steps in implementing the complete

ANS, considering the navigation and perception modules.

Key words: Human-Centered Robotics; Collaborative Control; SLAM; Assisted Navigation;

Robotic Wheelchair; RobChair; ISR-UC; ROS.

v

Contents

Acknowledgements i

Resumo ii

Abstract iv

List of Figures ix

List of Tables xi

Nomenclature xiii

1 Introduction 1

1.1 Motivation and context . 1

1.2 Goals . 2

1.3 Implementations and key contributions . 3

2 Background and literature 5

2.1 Robotic Wheelchairs . 5

2.2 Localization and Mapping . 7

2.2.1 De�nition of the SLAM problem . 7

2.2.2 Darmstadt's team Hector approach to SLAM 9

2.2.2.1 Preprocessing . 9

2.2.2.2 Scan Matching . 10

2.2.2.3 Qualitative comparison with other SLAM implementations . . . 12

2.3 Path Planning . 13

2.3.1 Dijkstra's graph search algorithm . 13

2.3.2 Dynamic Window Approach . 14

2.4 Semi-autonomous Control . 15

2.4.1 Shared Control . 16

2.4.2 Traded Control . 16

2.4.3 Collaborative Control . 17

2.4.3.1 Applications of Collaborative Control in the literature 18

2.5 Human-Machine Interfaces . 19

2.5.1 Brain Computer Interfaces . 20

vii

CONTENTS

3 ANS Architecture 23

3.1 System goals and requirements . 23

3.2 Generic System overview . 24

3.3 HMI protocol . 24

3.4 Collaborative Controller . 25

3.5 Navigation module . 25

3.6 Perception module . 26

3.7 Robot . 26

4 Collaborative Controller 29

4.1 Controller design issues . 29

4.2 Collaborative Control Design . 31

4.2.1 Virtual Constraint (Traded Controller) 31

4.2.2 Intent Matcher (Shared Controller) . 31

5 Implementation for RobChair 35

5.1 HMI integration . 35

5.2 Navigation module . 36

5.2.1 move_base package . 38

5.2.2 options_server node . 38

5.3 Perception Module . 39

5.3.1 Topological State Observer . 41

5.3.2 Obstacle Detection . 41

5.4 Collaborative Controller module . 42

5.5 Simulation in Gazebo . 42

5.6 Physical Layer . 43

6 Experiments 47

6.1 SLAM . 47

6.1.1 Detected Problems . 49

6.2 Autonomous navigation . 50

7 Conclusion and future work 53

7.1 Conclusion . 53

7.2 Future work . 53

Bibliography 55

viii

List of Figures

1.1 ANS main modules and key contributions . 3

2.1 Graphical model of the SLAM problem (adapted from [Siciliano and Khatib, 2008]) 8

2.2 Hector SLAM overview [Kohlbrecher et al., 2011] 9

2.3 Interpolation scheme for the discrete gridmap [Kohlbrecher et al., 2011] 10

2.4 Multiple de�nition map levels [Kohlbrecher et al., 2011] 12

2.5 Sampling of the control space (adapted from [Marder-Eppstein and Perko, 2014]) 14

2.6 Shared control loop . 16

2.7 Traded control loop . 17

2.8 Leonardo collaborating in a button-pressing task [Breazeal et al., 2004] 19

2.9 Example of an visual oddball paradigm (adapted from [Pires et al., 2008]) 20

2.10 P300 event related potential (adapted from [Pires, 2011a]) 21

3.1 Communication channel between human and machine 24

3.2 Assistive Navigation System Overview . 24

3.3 Example of a visual display paradigm for the proposed protocol 25

3.4 Navigation Module components and its interactions with the other modules . . 26

3.5 Perception Module . 27

3.6 Robot's role in the system (S stands for sensors). 27

4.1 Collaborative Control course of action . 30

4.2 Overview of the Collaborative Controller module 31

4.3 Forking situation and corresponding variables 33

5.1 Example of the reception of the environment image 36

5.2 ROS node hmi_comm, a HMI driver . 36

5.3 Navigation module nodes . 37

5.4 Representation of the move_base with RobChair as the robot (adapted from

[Marder-Eppstein and Perko, 2014]) . 38

5.5 option_server design . 39

5.6 Perception module (left) and Obstacle Detection algorithm (right) 40

5.7 Nodes comprising the Perception Module . 41

5.8 Result of the comparison between the two maps 41

5.9 Topics associated with the collab_control node 42

5.10 Simulation of RobChair in gazebo . 42

5.11 Drivers to the physical layer components . 43

ix

LIST OF FIGURES

5.12 Electric connections box . 44

5.13 Sensor and interfaces supports added . 44

5.14 Emergency button . 45

6.1 Probability gridmap with log-odds representation 47

6.2 Ternary state map representation of the initial map 48

6.3 Mapping a new room . 48

6.4 Updating a large loop . 49

6.5 Scan Matching failure . 49

6.6 Corridor environment where scan matching failed 50

6.7 Small test concerning navigation performance 51

6.8 Test comprising a forking situation . 51

6.9 Test comprising a forking situation . 52

x

List of Tables

2.1 Recent wheelchair platforms [Gonçalves, 2013] 6

4.1 Rule-based Traded Controller . 32

5.1 HMI Communication Requests (from the ANS to HMI) 36

5.2 HMI Communication Commands (from HMI to the ANS) 37

xi

Nomenclature

3D Three Dimensional

ALS Amyotrophic Lateral Sclerosis

ANS Assistive Navigation System

BCI Brain-Computer Interface

CC Collaborative Controller

CP Cerebral Palsy

DOF Degrees Of Freedom

DWA Dynamic Window Approach

EEG Electroencephalography

ERP Event-Related Potentials

FCT Fundação para a Ciência e Tecnologia

Hector Heterogeneous Cooperating Teams of Robots

HMI Human-Machine Interaction

HRI Human-Robot Interaction

IM Intent Matcher

ISR Institute of Systems and Robotics

LIDAR Light Detection and Ranging

LRF Laser Rage Finder

RC Remote Controller

RGB Red, Green, Blue

RGB-D Red, Green, Blue and Depth

RobChair Robotic Wheelchair (referring to the ISR Robotic Wheelchair)

ROS Robot Operating System

xiii

Nomenclature

RRT Rapidly-exploring Randomizing Tree

RW Robotic Wheelchair

SLAM Simultaneous Localization and Mapping

TCP/IP Transmission Control Protocol/Internet Protocol

UARS User-Aid-Required Situations

UC Universidade de Coimbra

UID User Interface Design

URDF Uni�ed Robot Description Format

USAR Urban Search and Rescue

VC Virtual Constraint

xiv

Chapter 1

Introduction

This chapter unveils the views and motivations that led to this work, as well as its main goals

and key contributions. It summarizes the course intended for this dissertation and the contents

of each chapter.

1.1 Motivation and context

For the past few years, several studies in Europe and other western countries have showed

a trend in demographics of population aging and depopulation. This increasing in elderly

population will inevitably pressure the senior care industry to innovate and �nd new and

robust solutions to provide full-time care to these individuals [de Jouvenel, 1989,Bloom et al.,

2011]. Such trends seem to lead to a world where robots and intelligent systems will have

an evermore important role in integrating and assisting impaired individuals. On another

perspective, there are several non age-related disorders where robots may assist. Severe cases

of mobility disorder, such as Cerebral Palsy (CP) and Amyotrophic Lateral Sclerosis (ALS)

[Ho�mann et al., 2008,Nijboer et al., 2008] are a notorious example.

This work focuses on the development of human-centered robotics, and speci�cally in the

semi-autonomous control of robotic wheelchairs for the motor impaired, whose life standards

are normally reduced due to their motor conditions, and so are ones where assistive technology

can help �rst. The deployment of human-centered robots, such as robotic wheelchairs, may

contribute to help motor-impaired people to reach a better level of mobility, thus improving

their life standards. Furthermore, increasing the mobility levels of people with motor disabilities

can also ultimately contribute to improve their social inclusion.

Robotic wheelchairs have in fact been one of the �rst taken routes towards assistive robotics

by researchers worldwide. In the Institute for Systems and Robotics (ISR), the RobChair

(Robotic WheelChair) project is being developed [Pires and Nunes, 2002, Lopes et al., 2011,

Lopes et al., 2012,Lopes et al., 2013] since the mid-90's, with particular focus on BCI (Brain

Computer Interfaces) and collaborative control. Since then, di�culties related with pose

estimation, e�cient navigation and other mobile robotics issues have been successfully im-

proved [Grisetti et al., 2007,Marder-Eppstein et al., 2010]. Some of this progress is now more

easily accessed with software sharing communities like ROS, and with increased published work

on the subject. On the other hand, BCI technologies have been evolving consistently and now

1

1.2. GOALS

produce results that increasingly encourage its use on assistive technologies.

Growing success in both technologies encourages further e�orts on implementing assistive

systems like the one proposed in this work. With the achievements reached so far, with better

solutions and algorithms, the development of systems that put them together contributes to

more robust and fully functioning systems.

1.2 Goals

In 2001, when RobChair Project was still at its beginning, four key goals were established

in [Pires, 2001]. The de�ned goals were:

1. To ensure the safety and integrity of RobChair users;

2. To minimize user's e�ort in driving the wheelchair, by adding growing levels of function-

ality:

(a) Shared control between user and wheelchair;

(b) Local planning of local trajectories for obstacle avoidance;

(c) Autonomous execution of di�cult tasks such as door crossing and wall following;

3. To allow users incapable of using standard HMIs, such as the usual joystick, to command

the wheelchair.

4. To integrate the wheelchair within a network thus providing communication with the

outside.

In 2001, these were goals di�cult to attain. Since then, substantial achievements have been

made in the �eld of mobile robotics and great advances in computing technologies helped

scientists and engineers tackle these problems. Even so, pursuing some of the goals proposed in

2001 remain a challenge today, not only because they are complex in nature, but also because

the tasks needed to achieve such goals depend greatly on the environment the wheelchair is on,

as well as the level of disability of the user controlling it.

This work aims to provide a new take on Assistive Navigation System (ANS), integrating it

with the new software and hardware architecture developed for RobChair in [Gonçalves, 2013],

upgrading the hardware, software and developing new algorithms.

2

CHAPTER 1. INTRODUCTION

 Matlab simulator for generic HMI

Perception

 Modified version

Hector SLAM

module for map

updating

 Obstacle

detection module

 Module for multiple

path evaluation to

surpass unexpected

obstacles

 Path option server

 URDF model of RobChair

for simulation in gazebo

 Increased robustness and

tools for experiments in

hardware layer

 Safety mechanisms for

controlled experiments

 ROS package

implementing a

Collaborative Controller

HMI

Collaborative ControlNavigation

Mobile Robot

Implementation of communication module in

ROS based on TCP/IP protocol

Assistive Navigation System

Figure 1.1: ANS main modules and key contributions

1.3 Implementations and key contributions

The key contribution of this dissertation are the �rst steps towards the development and imple-

mentation of an Assistive Navigation System on ROS framework, for RobChair. To implement

the ANS, several works shared by other authors were studied and analyzed in this system. In

order to build a functioning system, some modules were fully implemented, modi�ed from a

distributed version or added after careful analysis. Figure 1.1 summarizes the implementations

and contributions described in this dissertation.

Assistive Navigation System (ANS) (Chapter 3):

• Overview of the current ANS architecture, where contributions were given in this

dissertation. All modules are brie�y described and interaction between them is

analyzed.

Collaborative Controller (Chapter 4 and 5):

• Collaborative Controller: A collaborative control architecture [Lopes, 2012] was re-

designed and implemented in ROS environment.

Perception (Chapter 3 and 5):

3

1.3. IMPLEMENTATIONS AND KEY CONTRIBUTIONS

• Hector mapping for RobChair: A ROS SLAM method (Hector SLAM) was adapted

for the proposed ANS and speci�cally for RobChair, allowing for an a priori map

and its subsequent updates.

• Obstacle Detection: A method for detection of unexpected obstacles was imple-

mented.

Human-Machine-Interface (Chapter 3 and 5):

• A simulator for a discrete HMI, with a prede�ned set of commands, was implemented

in Matlab. It de�nes a protocol used throughout the ANS.

• A communication protocol was also established for data exchange between HMIs

and the ANS.

Navigation (Chapter 3 and 5):

• Path option server: A module to distribute information about path options available

to the user was implemented. In this dissertation, three situations were considered:

obstacle detection, path forking and deadlocks.

Mobile Robot (Chapter 5):

• RobChair Simulation: A URDF model of RobChair was created for simulation in

gazebo simulator.

• Hardware Update: Safety mechanisms and physical supports were added to RobChair

in order to provide robustness and enable controlled experiments.

In Chapter 6, several experiments for testing and validating the system are described and its

results discussed.

4

Chapter 2

Background and literature

This chapter introduces the fundamental topics required to understand the work presented

in this dissertation. In the �rst section a brief discussion on robotic wheelchairs is carried out.

The subsequent sections review important background theory and state of the art on the spe-

ci�c topics of robotics that are involved in the design and development of this work; by order

of appearance, the subtopics are: Localization and Mapping, Path Planning, Semi-autonomous

Control and Human-Machine interfaces.

2.1 Robotic Wheelchairs

A Robotic Wheelchair (RW) is a type of mobile robot. Mobile robotics is a broad engineering

�eld, and an important branch of robotics. Mobile robots are de�ned as robots capable of

locomotion, meaning they can move more or less freely in their environment; this includes

various types of locomotion, such as wheeled, legged, underwater and airborne motion [Siegwart

et al., 2011]. This �eld studies the kinematic models, motion control, perception (sensory

information processing), planning and navigation for such robots.

Robotic wheelchairs are a particular form of wheeled robots. They are an upgrade from

standard motorized wheelchairs with the general goal of simplifying and assist the users in

navigation tasks. Research concerning RWs has grown consistently over the last few years

and varied intelligent wheelchair platforms have been developed. One of these platforms is

RobChair, the robotic wheelchair developed at the Institute of Systems and Robotics at Uni-

versity of Coimbra [Pires and Nunes, 2002, Lopes et al., 2011, Lopes et al., 2012, Lopes et al.,

2013]. Most of the RWs aim to provide some type of semi-autonomous control, aiding the

patients by easing the hard task of maneuvering the wheelchair. To achieve such goal, an HMI

is required to collect the user intent. On the other hand, all the RWs require some kind of

environment analysis, decision making modules for navigation purposes and a control scheme

that connects user intent and navigation reference. A list of some recent Robotic Wheelchairs

are presented in Table 2.1, summarizing the main technologies implemented.

5

2.1. ROBOTIC WHEELCHAIRS

Table 2.1: Recent wheelchair platforms [Gonçalves, 2013]

Institution Main Technologies Control scheme HMI

University of technology

of Sydney [Patel et al.,

2012]

Montecarlo localization Topological

mapping.

Hierarchical Hidden Markov Model

framework that predicts both the

short term (local) and long term

(navigational) goals of the user.

Joystick.

VAHM (LASC,

University Paul

Verlaine-Metz) [Grasse

et al., 2010]

Particle �ltering approach to implement

the recognition of the most frequent paths

according to an o�ine-constructed

topological map.

Provides assistance to the user during

navigation by proposing the direction

to be taken when a path has been

recognized.

Joystick.

SHARIOTO (Katholieke

Universiteit

Leuven) [Vanhooydonck

et al., 2010]

Dynamic window approach for obstacle

avoidance.

Shared-control with user intention

prediction based on a Bayesian

network.

Joystick.

INRIA [Rios-Martinez

et al., 2011,Escobedo

et al., 2012]

Motion planner based on the RiskRRT;

Map of the environment is built using a

LIDAR mounted on the top of the

wheelchair; Important goals in the map

are set by hand.

A Bayesian network is used to

estimate the user intent. Generation of

human friendly paths based on the

application of a social �lter, which

includes constraints inspired by social

conventions.

Face

tracking and

voice

recognition.

LURCH Politecnico di

Milano [Bonarini et al.,

2012]

Localization based on odometry.

Odometry correction is performed based in

the detection of passive markers placed in

the environment using vision. Trajectory

planning based on the fast planner SPIKE

(Spike plans In Known Environments).

Control module based on a fuzzy

behavior management system, where a

set of reactive behaviors, which will be

carried out by the robot, are

implemented as a set of fuzzy rules.

Two set of rules were established: one

implementing trajectory following, and

the another one implementing obstacle

avoidance.

Joystick,

touch-

screen,

electro

miographic

interface,

and BCI.

University of

Michigan [Park et al.,

2012]

A static occupancy grid map obtained via

SLAM. Global topological map. Position

and velocity estimation of new obstacles in

the environment based on a Kalman �lter.

Model Predictive Equilibrium Point

Control (MPEPC) framework, which

allows the navigation of a wheelchair

in dynamic, uncertain, structured

scenarios with multiple pedestrians.

Joystick.

RobChair Institute for

Systems and Robotics,

University of

Coimbra [Lopes et al.,

2011,Lopes et al.,

2012,?]

A priori metric map; Markov localization

based on laser scan matching; Global

planner based on the A*algorithm and

local planning for obstacle avoidance.

Two-layer collaborative controller that

depends on the user's ability steering

the wheelchair with the BCI (the user

selects among a set of discrete steering

commands); Intent matching

algorithm that matches user intents

with machine steering proposals.

Synchronous

BCI;

scanning

interface

with sin-

gle/multiple

switch.

University of

Zaragoza [Iturrate et al.,

2009]

A binary occupancy grid map is used to

model the static obstacles and free space.

A set of extended Kalman �lters was

chosen to track moving objects around the

robot. The �nal motion of the vehicle was

computed using the nearness diagram

(ND) technique.

Control of real wheelchair and

simulated wheelchair in virtual

environment (selection of local

surrounding points).

Synchronous

BCI.

6

CHAPTER 2. BACKGROUND AND LITERATURE

At ISR, the RobChair has been a research platform for integrating Brain-Computer Inter-

face (BCI) and other HMIs, and to develop navigation and obstacle detection algorithms, with

the goal of improving mobility and life quality of impaired people [Lopes et al., 2012, Lopes

et al., 2011,Pires and Nunes, 2002,Lopes et al., 2013].

2.2 Localization and Mapping

In Mobile Robotics, localization is the problem of estimating the robot's pose relatively to

its environment. This is crucial to most basic tasks in mobile robotics. Localization is a broad

term comprising a group of variations from the core pose estimation problem. As [Thrun et al.,

2005] puts it, localization can be global (initial pose is unknown, the robot can be anywhere)

or local (initial pose is known simplifying the problem to position tracking); it can be set in a

dynamic or in a static environment, it can be passive or active and it can be a problem for a

single robot or a team of cooperating robots. Important solutions to the localization problem

in mobile robotics are the Monte Carlo and Markov-based solutions [Thrun et al., 2005].

The localization problem by itself usually assumes that the map of the environment is

known. However, in many cases, because the environment is unknown or because updating the

map is required, the localization task must run together with the mapping task. This problem,

where the geometric relation between the robot and a set of landmarks (that compose a map

of the environment) must be estimated is known as Simultaneous Localization and Mapping

(SLAM). As [Durrant-Whyte and Bailey, 2006] recalls, while describing the history of this

dual problem, after several years tackling the probabilistic mapping problem with solutions

exhibiting unbounded error growth, it �nally became clear that if the combined mapping and

localization problem was formulated as a single estimation problem, it would became conver-

gent [Durrant-Whyte et al., 1996]. Realizing this was a milestone for the problem and since

then it has been called SLAM, reinforcing the idea of a single approach to achieve the two tasks.

2.2.1 De�nition of the SLAM problem

The SLAM problem is approached in many di�erent and diverse ways. Nevertheless, a

general de�nition of the problem can be established, if some simpli�cations are allowed.

Assume a robot driving through an unknown, static environment, with uncertain motion.

The robot is equipped with sensors that enable estimation of geometric relationships between

the robot and world landmarks. The SLAM problem consists in estimating the position of each

landmark relatively to the initial robot position and between them, i.e., in estimating a map of

the world landmarks. Furthermore, this task also requires an estimate of the robot position in

the map, since both map and robot pose estimates are interconnected [Siciliano and Khatib,

2008]. Since SLAM is an estimation problem, a success mathematical approach to it is done in

probabilistic terms.

7

2.2. LOCALIZATION AND MAPPING

Allow xt to be the robot pose in time frame t; ut the command given to the robot that drives

it from xt−1 to xt and zt the sensor measurements at time t . Let x0:t be a vector comprising

all robot poses since the initial time frame; and u1:t and z1:t the sets of controls given to the

robot and the sensor measurements from the robot in all subsequent time frames, respectively.

Figure 2.1 represents the causal relationship between these variables. Lightly shaded circles

represent variables not directly observable, and the ones SLAM tries to estimate from the

directly observable information, represented by the darker circles. We proceed by distinguish

two possible takes on the SLAM problem:

• One approach seeks to estimate the current robot pose in map m, i.e., calculate the

posterior p (xt,m | z1:t, u1:t). This approach is called online SLAM;

• Another approach seeks to estimate the whole vector x1:t relatively to the world map, by

calculating the posterior p (x1:t,m | z1:t, u1:t). This approach is called full SLAM;

Directly observable

Unknown

Figure 2.1: Graphical model of the SLAM problem (adapted from [Siciliano and Khatib, 2008])

For most applications, only the online problem will be feasible, and practical approaches

that tackle full SLAM must rely on important approximations.

To solve either de�nition of the problem, two probabilistic observation models must be

considered, one that links sensor measurements zt and the world m and other that relates

control measurements ut and robot pose xt. These models may be considered as probability

distributions: p (zt|xt,m) for the �rst model, and p (xt|xt−1, ut) for the second.

Further detailed solutions to the SLAM problem depend greatly on assumptions of the

environment and models. SLAM can be volumetric (by sampling the map) or feature-based

(by extracting sparse information about the world); topological (de�ning a pose graph) or

metric; with known or unknown correspondence of the map landmarks in di�erent time frames;

with a static or dynamic assumption of the world; considering small or large uncertainty; active

or passive (considering exploration) or done by a single robot or by a team of robots.

8

CHAPTER 2. BACKGROUND AND LITERATURE

2.2.2 Darmstadt's team Hector approach to SLAM

The team Hector (Heterogeneous Cooperating Team of Robots) is a research group based

in Technische Universität Darmstadt. Among other topics, they have been researching mobile

robotics for Urban Search and Rescue (USAR) [Darmstadt, 2012]. For several applications in

USAR scenarios, these robots require localization and map of the environment. Such scenarios

may have harsh (i.e., irregular and not planar) terrain, making odometry unreliable and full

6-DOF pose estimation a requirement. A 2D SLAM solution able to function with 6-DOF

pose estimation and elevation mapping was developed, ful�lling the design requirements. An

overview of the solution is depicted in Figure 2.2, displaying the data �ow between sensors, 2D

SLAM (also known as Hector Mapping) and 3D pose estimation subsystems. More details of

the complete system can be found in [Kohlbrecher et al., 2011,Kohlbrecher et al., 2012].

Preprocessing Scan Matching Mapping

LIDAR

SLAM subsystem (2D) [Hector Mapping]

Joint Values

Navigation Filter Controller

Navigation subsystem (3D)

2D Pose Estimate Altitude and Initial Pose

IMU GPS Compass Altimeter

Stabilization

Figure 2.2: Hector SLAM overview [Kohlbrecher et al., 2011]

As Figure 2.2 illustrates, Hector Mapping solves SLAM using only measurements from a

Light Detection And Ranging (LIDAR) device. It contrasts with most used SLAM approaches

as it does not require odometry.

It must be noted that even though the Hector SLAM system makes arrangements to deal

with non-planar, 6-DOF robot movement, the Hector Mapping subsystem can be used in sim-

pler, 3-DOF, 2D environments by ignoring altitude considerations. Hector Mapping subsystem

will be analyzed further, brie�y describing its operation.

2.2.2.1 Preprocessing

The preprocessing module acts as a �lter for the laser data. It �lters the laser data based on

a given z value of the 3D pose estimate, to ensure the map is produced based on the intended

9

2.2. LOCALIZATION AND MAPPING

scan plane. For a planar robot, the value of z remains constant, and so unused in this �lter.

This module also �lters the laser data based on the sensors maximum and minimum read-

ings, to ensure the gathering of correct readings.

2.2.2.2 Scan Matching

Scan Matching is a process that outputs an estimate of the geometric transformation between

the map and a new set of points (laser points). This implementation is based on the Gauss-

Newton approach, commonly used in computer vision to solve non-linear least squares problems

[Lucas and Kanade, 1981].

The map used in this module is an occupancy grid map, more speci�cally an array of

occupation probability values (M(p)ε [0, 1]) that correspond to the information known about

the world. As this module compares laser 2D points and the grid map, an interpolation scheme is

considered, to approximate occupancy values in continuous map coordinates. For a continuous

map coordinate Pm = (x, y), the occupancy value M (Pm) is approximated by using the four

closest grid cells P00..11 as depicted in Fig 2.3 and de�ned in equation 2.1.

Figure 2.3: Interpolation scheme for the discrete gridmap [Kohlbrecher et al., 2011]

M (Pm) ≈
y − y0
y1 − y0

(
x− x0
x1 − x0

M (P11) +
x1 − x
x1 − x0

M (P01)

)
+
y1 − y
y1 − y0

(
x− x0
x1 − x0

M (P10) +
x1 − x
x1 − x0

M (P00)

)
(2.1)

Also, an approximation of the partial derivatives of M (Pm), ∂M
∂x

(Pm) and ∂M
∂y

(Pm), may be

calculated in a similar manner, as equations 2.2 and 2.3 de�ne, respectively.

∂M

∂x
(Pm) ≈

y − y0
y1 − y0

(M (P11)−M (P01)) +
y1 − y
y1 − y0

(M (P10)−M (P00)) (2.2)

10

CHAPTER 2. BACKGROUND AND LITERATURE

∂M

∂y
(Pm) ≈

x− x0
x1 − x0

(M (P11)−M (P10)) +
x1 − x
x1 − x0

(M (P01)−M (P00)) (2.3)

The scan matching module must align the laser scan with the map. In mathematical terms,

this problem consists in �nding a rigid transformation ξ = (px, py, ψ)T that better �ts a set of

scan endpoints si = (si,x, si,y)
T with the map M . Let Si (ξ) be the scan point si transformed

by ξ de�ned by:

Si (ξ) =

[
cos (ψ) −sin (ψ)

sin (ψ) cos (ψ)

]
si +

[
px

py

]
(2.4)

Given n scan endpoints, the scan matcher algorithm seeks to �nd a rigid transformation

that minimizes function ξ∗, de�ned in equation 2.5.

ξ∗ = arg min
ξ

n∑
i=1

[1−M (Si (ξ))]
2 (2.5)

This function reaches a minimum value for a ξ for which the grid cells corresponding to the

transformed scan endpoints are mostly occupied (with M(Si) closest to 1). Given an initial

estimate ξ, the problem is to �nd ∆ξ that optimizes the error measure:

n∑
i=1

[1−M (Si (ξ + ∆ξ))]2 (2.6)

To solve this, it is considered the �rst order Taylor expansion of M (Si (ξ + ∆ξ)):

M (Si (ξ + ∆ξ)) ≈M (Si (ξ)) +∇M (Si (ξ))
∂Si (ξ)

∂ξ
∆ξ (2.7)

Using equation 2.4, the de�nition of ∂Si(ξ)
∂ξ

is:

∂Si (ξ)

∂ξ
=

[
1 0 − sin (ψ) si,x − cos (ψ) si,y

0 1 cos (ψ) si,x − sin (ψ) si,y

]
(2.8)

Using the de�ned Taylor expansion, and setting its partial derivative with respect to ∆ξ to

zero, the equation to solve becomes:

2
n∑
i=1

[
∇M (Si (ξ))

∂Si (ξ)

∂ξ

]T [
1−M (Si (ξ))−∇M (Si (ξ))

∂Si (ξ)

∂ξ
∆ξ

]
= 0 (2.9)

Solving equation 2.9 for ∆ξ gives the Gauss-Newton equation for the minimization problem:

∆ξ = H−1

n∑
i=1

[
∇M (Si (ξ))

∂Si (ξ)

∂ξ

]T
[1−M (Si (ξ))] (2.10)

11

2.2. LOCALIZATION AND MAPPING

with Hessian matrix:

H =

[
∇M (Si (ξ))

∂Si (ξ)

∂ξ

]T [
∇M (Si (ξ))

∂Si (ξ)

∂ξ

]
(2.11)

Evaluation of this Gauss-Newton equation can be done considering the approximation de-

�ned in equations 2.2 and 2.3, and equation 2.8, computing each step towards zero.

The Gauss-Newton algorithm, just like other gradient-based approaches can �nd solutions

in local minima. To avoid such risk, the authors of Hector SLAM use multiple maps with de-

creasingly lower resolutions that are simultaneously updated using the pose estimates generated

by the scan matching. The scan alignment process starts with the lowest de�nition map level,

with that estimate being used for the alignment of the next map level. Figure 2.4 illustrates

three map levels.

 Gradient-based Optimization can get stuck in local minima

 Solution: Use multi-level map representation

 Every level updated separately at map update step using scan

data

 No costly downsampling operations between maps anywhere

Hector SLAM – 2D Pose Estimation (2)

23 Hector SLAM Tutorial | Stefan Kohlbrecher | ROS Workshop Graz | 22/08/2012 Figure 2.4: Multiple de�nition map levels [Kohlbrecher et al., 2011]

2.2.2.3 Qualitative comparison with other SLAM implementations

Hector Team SLAM's approach compares fairly well with other well-known approaches.

Hector approach to SLAM di�ers from Gmapping's (an implementation of the algorithm

proposed in [Grisetti et al., 2005]) in sensor requirements, since odometry is needed by the

latter. According to [Kohlbrecher et al., 2012], his implementation performs better as Gmapping

particle �lter because Hector's approach is designed to leverage higher scan rates that modern

LIDAR's own. Moreover, for many mobile robots the accuracy obtained by scan matching gives

a much more precise displacement estimate than odometry [Kohlbrecher et al., 2011].

Visual SLAM is also an important approach in the state of the art. Compared to algorithms

like Gmapping and Hector's, they still lack robustness or require too much processing capacity

[Thrun et al., 2005].

Finally, SLAM for robots with six degrees of freedom (DOF) and for three dimensional (3D)

worlds are gaining momentum in the SLAM communities. However, they too can be computa-

tionally expensive and still need further development [Nuchter, 2010].

12

CHAPTER 2. BACKGROUND AND LITERATURE

2.3 Path Planning

The path planning problem is de�ned as, given a certain mobile robot, a map, a initial

position and a goal, the task of planning a collision-free path that is valid, feasible and preferably

a geometrically optimum path that the given robot can track from the initial position to the

goal. This task is usually divided in two sub-tasks: global path planning and local path

planning. The global sub-task should generate a rough, high-level path between initial position

and goal; as for the local path planning problem, the sub task must produce a low-level, online

path that solves a segment of the global path, and avoids close sensed objects.

Global path planning solutions are usually based on graph and tree search algorithms such

as A* [Kala et al., 2010], Dijkstra's [Gerkey and Konolige, 2008], etc. These algorithms are

computationally e�cient and provide the theoretical optimal solution for a given cost map.

There are also implementations using D*, a algorithm similar to A* with the key di�erence of

allowing dynamic cost in the search tree [Stentz, 1995], allowing better execution in dynamic

or unknown environments.

Local path planning is a sensor-based, reactive system with collision avoidance as its main

objective. Most common solutions are dynamic window approaches [Fox et al., 1997, Brock

and Khatib, 1999, Simmons, 1996], Trajectory Rollout [Gerkey and Konolige, 2008], Nearness

diagram [Minguez and Montano, 2004], force (or potential) �elds [Pradhan et al., 2006]. In this

work the [Fox et al., 1997] dynamic window approach method is used, which is described in a fol-

lowing subsection. To avoid high computational load and to tackle more di�cult problems like

non-rigid obstacle avoidance, random methods have been proposed; e.g. the rapidly-exploring

randomizing tree (RRT) [Lavalle, 1998].

2.3.1 Dijkstra's graph search algorithm

Dijkstra's algorithm is a graph search algorithm that solves the shortest path problem by

computing a shortest path tree. Among other applications, it can be used for robot path

planning, if a map of the world (be it in grid or graph form) is available. The algorithm is as

follows:

• Let there be an initial node A that de�nes where search tree starts, and let the distance

of node N be the cost of the path from node A to node N.

• Let there be also a ternary value for each node. This value de�nes if a node was not yet

visited, if it was already visited or if it is the node being evaluated. De�ne a structure

that enables the listing of nodes with certain characteristics in a set. De�ne a function

that returns a set of the nodes immediately linked to a node.

1. De�ne the distance of A as zero and the rest of the nodes as in�nity;

13

2.3. PATH PLANNING

2. Mark all nodes as unvisited, and set node A to current. Create a set listing all unvisited

nodes;

3. Get, for the current node, the set of neighbors that haven't yet been visited. Calculate

the distances for the nodes in this set. Compare the distance of the current node with

the distance of each one of the nodes in the set and detect the smallest di�erence.

4. Mark the node of smallest di�erence as the current node and change its visited value. If

the node of smallest di�erence was already visited then terminate the algorithm as there

are no possible solutions. If the selected node is the node N, terminate the algorithm - a

solution was found. In other case, continue the algorithm by returning to point 3.

2.3.2 Dynamic Window Approach

The Dynamic Window Approach (DWA) to obstacle avoidance [Fox et al., 1997] is a method

that solves obstacle avoidance by discretely sampling the control space (v and ω speeds). Figure

2.5 illustrates the control space sampling that will be described next.

Figure 2.5: Sampling of the control space (adapted from [Marder-Eppstein and Perko, 2014])

Let this control space be U de�ned in equation 2.12.

U = {(v ∈ [vmin, vmax] , ω ∈ [ωmin, ωmax])} (2.12)

Let avmin
and avmax be the minimum and maximum accelerations, respectively, for linear

velocity and let aωmin
and aωmax be the minimum and maximum accelerations, respectively, for

angular velocity. For a given control loop period T and current robot speeds (vt, ωt), there is

a control space UR that de�nes the reachable velocities during the duration of a control loop.

UR is de�ned in equation 2.13.

UR = {(v ∈ [vt + avmin
T, vt + avmaxT] , ω ∈ [ωt + aωmin

T, ωt + aωmaxT])} (2.13)

14

CHAPTER 2. BACKGROUND AND LITERATURE

Finally, for each v and ω let it be known the distances from an obstacle: dobs and θobs. Using

this knowledge, a control space UA that de�nes the set of admissible controls can be de�ned

(see equation 2.14).

UA =
{(
v ≤

√
2dobsavmin

, ω ≤
√

2θobsaωmin

)}
(2.14)

Candidate set of controls is de�ned by the control space UC = U
⋂
UA
⋂
UR. Given this

control space, the next step is to select a control pair u in the control space that maximizes an

objective function. Given cost functions TowardsGoal(u) that favors controls approaching goal,

AvoidObstacle(u) that favors controls moving far from obstacles and function BestV elocity(u)

that favors a set of speeds, a control pair u is chosen so that it maximizes the objective function

in equation 2.15.

G(u) = α1 · TowardsGoal(u) + α2 · AvoidObstacle(u) + α3 ·BestV elocity(u) (2.15)

2.4 Semi-autonomous Control

According to [Antsaklis et al., 1991], "Autonomous controllers have the power and ability

for self governance in the performance of control functions. (...) There are several degrees

of autonomy. A fully autonomous controller should perhaps have the ability to even perform

hardware repair, if one of its components fails". A semi-autonomous control system, on the

other hand, is a system that explicitly requires some kind of outside assistance, be it from a

human or another system.

In [Rogers et al., 1996], semi-autonomous control is de�ned as an advancement from teleoper-

ation by reducing the amount of supervision by the operator and as an approach to autonomous

robots, letting the human retain high level operations such as task speci�cation, but handing

down routine and safe portions of tasks to be handled autonomously. Furthermore, [Ong et al.,

2005] summarizes semi-autonomous control into two (and one extra) categories:

• a parallel or shared control type, where portions of a certain task are handled by a machine

agent, and the other parts are handled by a human agent;

• a serial or traded control, where the controller decides over time if the control lies on the

human side or the machine side completely;

• a mixture of the two previous types, where sharing and trading of task both occur (e.g.

Collaborative Control).

The following three subsections brie�y describe each one of these categories.

15

2.4. SEMI-AUTONOMOUS CONTROL

2.4.1 Shared Control

Shared control, classi�ed as a parallel type of semi-autonomous control, is a paradigm of semi-

autonomous control that shares the e�ort involved in the decision task between human and

machine, so that some tasks are made by the user and others by the machine, side by side.

A simple example of its application is a military application robot gun that automatically

chooses what to aim and track, and leaves to the human the control of the trigger, leaving each

task to the agent that better performs it. Both agents (human and machine) work in a shared,

parallel fashion. Figure 2.6 illustrates the example of a shared control loop.

As compared to manual control, shared control relieves the human of easily automated

tasks while allowing him direct control of more hard-to-control activities such as manipulation

of parts [Hirzinger, 1993, Lee, 1993] or navigation in cluttered areas [Bourhis and Agostini,

1998,Bruemmer et al., 2003]. It also may simply give the human more �exibility in a automated

task.

Other examples of applications of shared control are vision-based guidance control [Pa-

panikolopoulos and Khosla, 1992, Hoppenot and Colle, 2002], safeguarding control [Krotkov

et al., 1996, Fong, 2001,Wasson and Gunderson, 2001] and behavioral control [Bourhis and

Agostini, 1998,Bruemmer et al., 2003].

SYSTEM

r
Human

r
Machine

Sensor

Controller

fusion

Figure 2.6: Shared control loop

2.4.2 Traded Control

As opposed to Shared Control, Traded Control is classi�ed as a serial type of semi-autonomous

control. It is based on a mutually exclusion mechanism for human and machine, exchanging

control between the two. Simply put, a traded controller is an algorithm that decides if user

commands should be put to action or not [Ong et al., 2005].

In the presence of multiple situations such as goal deviations, addition or deletion of goals,

modi�cations in goals importance, incompetent performance of tasks/restrictions and to nullify

potential harmful commands/situations; control based on the demand of the task is exchanged

between the human and the robot. Brie�y, there are two main conditions when control is traded

between human and robot. First, when considering a navigation task [Bruemmer et al., 2003]

16

CHAPTER 2. BACKGROUND AND LITERATURE

if the robot takes a wrong direction, the human may interpose and assume the control from

the robot, giving it a new direction movement. The second condition occurs when the human

issues commands that could cause damage to himself. In this situation the robot may revoke

undesired commands and stop the movement. Given this perspective, this traded control allows

both human and robot to support each other. Figure 2.7 illustrates a control loop applying the

trading philosophy [Ong et al., 2005].

Controller
r
Human

r
Machine

Sensor

SYSTEM

Figure 2.7: Traded control loop

2.4.3 Collaborative Control

In [Fong, 2001], a mixture of the previous two types of semi-autonomous control is explored,

de�ning a new control model called Collaborative Control. This concept tries to break away

from the concept of robot as a tool, and to approach the robot as a partner by developing a

channel of communication between human and machine agents.

Considering this combined con�guration, it is important to underline that both shared and

traded control interact. This type of combined control is observed for example in the aircraft

autopilot system [Billings, 1996], where during the cruise phase, the pilot exchanges the control

over the controller, the autopilot is responsible for holding the altitude, whereas the pilot adjusts

the heading, sharing control at the same time. Collaborative Control can adjust its method

of operation taking into account the needs of the current situation, so it enables a accurate

sharing and trading of control. Taking for example a situation where the robot is not able to

perform accurately, it has the possibility to hand control to the human, enabling the work to

be dynamically allocated to the human or the robot as the tasks take place [Ong et al., 2005].

In [Fong, 2001], Fong refers what are the main appeals in considering the Collaborative

Control. This approach de�nitely enables humans and robots to work better together, being

this an important feature when success strongly depends on joint task performance. Also,

robots can use humans as a resource for non-command functions such as perception. Taking

into account the superior human capabilities in some points like perception, it seems to be

bene�cial to take advantage of them, considering that those same capabilities are poorer in

robots. Fong also refers that this type of combined control can better accommodate multiple

users and adjust its autonomy.

17

2.4. SEMI-AUTONOMOUS CONTROL

In order to build a successful Collaborative Controller (CC), one must satisfy both human

and robot needs. Fong de�nes seven key design issues that should be addressed to construct a

useful system of this kind:

1. Dialogue: A collaborative control system must have a good communication channel,

i.e., the human and the robot should be able to exchange information e�ectively, allowing

questions to be asked and to question each others responses.

2. Awareness: The robot should have the knowledge of what it can and cannot do, being

aware of its abilities. On the other hand, it should also have knowledge of the human

limitations.

3. Self-Reliance: The robot must be self-reliant to a certain degree, meaning that the

robot should not rely on the human to always be available or always provide accurate

information. It must be able to maintain its own safety.

4. Adaptiveness: By design, the collaborative controller should be equipped with tools to

prepare it for certain changes in its working environment. With the same philosophy, it

should be prepared for di�erent characteristics of the human with whom it shares control:

di�erences in experience, skill and training should be accounted for.

5. Human-Robot Interaction (HRI): With collaborative control, HRI is dynamic and

broadly acceptive. The robot may ask for assistance but the human is not required to

answer. He may answer, but he may as well not. For systems like this, humans and robots

need to understand each other through interaction, rather than by design or inspection.

6. User Interface Design (UID): Since communication has a key role in the collabora-

tive control, UIDs are a key design aspect. It may be interesting to allow the robot to

have a mechanism to attract user's attention. Also, information to the user and from the

user could be displayed in di�erent forms, depending on the situation.

7. Control and Data Flow: As opposed to control of teleoperation systems, where the

�ow of control is clear (the operator retains ultimate authority), in collaborative control

systems the control is allowed to be negotiated. Human commands may also be viewed

as approximate and with error. With this being established, there must be rules to solve

situations where robot and human do not agree. On the other hand, data handling should

be �exible, to prevent misunderstanding between robot and human.

2.4.3.1 Applications of Collaborative Control in the literature

Since [Fong, 2001] was published, several other works have been done using this concept of

human-robot collaboration. In [Fong et al., 2003] advances are made allowing the collaborative

control of a multi-robot team. Later, social robot (Leonardo) presented in [Breazeal et al., 2004]

18

CHAPTER 2. BACKGROUND AND LITERATURE

and [Ho�man and Breazeal, 2004], was developed to interact with people in a collaborative

manner. Figure 2.8 shows Leonardo working together with a human on a button-pressing task.

The task manager distinguishes between requests for
autonomous task completion and invitations to task
collaboration, and starts the appropriate execution module.
If Leo is asked to do a known task on his own, then the
task manager executes it autonomously by expanding the
task’s actions and sub-tasks onto a focus stack (in a similar
way to Grosz and Sidner 1990). The task manager
proceeds to work through the actions on the stack popping
them as they are done and, upon encountering a sub-task,
pushing its constituent actions onto the stack. The robot
thus progresses through the task tree until the task's goals
are achieved.

The major contribution of this work, however, concerns the
collaborative scenario: If a collaborative task execution is
requested, the task manager starts the collaboration module
to jointly execute a common plan.

Figure 1: (a) Leonardo participating in a collaborative
button-pressing task. (b) Leonardo negotiating his turn for an
action he is able to perform.

Performing Tasks with Humans
When collaborating with a human partner, many new
considerations come into play. For instance, within a
collaborative setting the task can (and should) be divided
between the participants, the collaborator's actions need to
be taken into account when deciding what to do next,
mutual support must be provided in cases of one
participant’s inability to perform a certain action, and a
clear channel of communication must be used to
synchronize mutual beliefs and maintain common ground
for intentions and actions.

Our implementation supports these considerations as
Leonardo participates in a collaborative discourse while
progressing towards achieving the joint goal. To do so,
and to make the collaboration a natural human interaction,
we have implemented a number of mechanisms that people
use when they collaborate. In particular, we have focused
on communication acts to support joint activity (utilizing
gestures and facial expressions), dynamic meshing of sub-
plans, turn taking, and an intuitive derivation of I-
intentions from We-intentions.

Experimental Setup
In our experimental scenario there are three buttons in front
of Leonardo. The buttons can be switched ON and OFF
(which changes their color). Occasionally, a button that is
pressed does not light up, and in our tasks this is
considered a failed attempt. We use tasks comprised of
vision and speech recognition and simple manipulation
skills. For instance, Leonardo can learn the names of each
of the buttons and is able to point to and press the buttons.

To test our collaborative task execution implementation,
we designed a set of tasks involving a number of
sequenced steps, such as turning a set of buttons ON and
then OFF, turning a button ON as a sub-task of turning all
the buttons ON, turning single buttons ON and others.
This task set represents simple and complex hierarchies
and contains tasks with both state-change and just-do-it
goals.

Dynamic Meshing of Sub-plans
Leo's intention system is a joint-intention model that
dynamically assigns tasks between the members of the
collaboration team. Leo derives his I-intentions based on a
dynamic meshing of sub-plans according to his own
actions and abilities, the actions of the human partner,
Leo’s understanding of the common goal of the team, and
his assessment of the current task state.

Leonardo is able to communicate with the human
teammate about the commencement and completion of task
steps within a turn-taking interaction. Specifically, the
robot is able to recognize changes in the task environment,
as well as successes and failures on both Leo’s and his
teammate's side. Most importantly, Leonardo is able to
communicate to the human teammate the successful
completion or inability to accomplish a crucial task step to
the complete joint action.

Self-Assessment and Mutual Support
At every stage of the interaction, either the human should
do her part in the task or Leo should do his. Before
attempting an element of the task, Leo negotiates who
should complete it. For instance, Leo has the ability to
evaluate his own capabilities. In the context of the button
task, Leonardo can assess whether he can reach each button
or not. If he is able to complete the task element (e.g., press
a particular button) then he will offer to do so. Conversely,
whenever he believes that he cannot do the action (e.g.,
because he cannot reach the button) he will ask the human
for help.

Since Leonardo does not have speaking capabilities yet, he
indicates his willingness to perform an action by pointing
to himself, and adopting an alert posture and facial
expression (see: Figure 1(b)). Analogously, when detecting
an inability to perform an action assigned to him, Leo’s

Figure 2.8: Leonardo collaborating in a button-pressing task [Breazeal et al., 2004]

In a di�erent scope, several works [Monferrer and Bonyuet, 2002, Zeng et al., 2008,Mon-

tesano et al., 2010, Lopes et al., 2013] have been implementing collaborative control schemes

towards intelligent wheelchairs. In particular, a Collaborative Controller designed to work with

BCI commands has been developed at ISR [Lopes, 2012].

2.5 Human-Machine Interfaces

A Human-Machine interface is the module of a machine's system designed to handle human-

machine interaction. Human-machine interaction, term popularized in [Card et al., 1980], is a

multi-discipline �eld of investigation that focuses on interaction between human and machine,

where interaction means a two way exchange of information. When HMI applies to robots or

computers, some authors use the terms Human-Robot Interface (HRI) or Human-Computer

Interface (HCI), respectively. In this work these terms are used interchangeably.

When interacting with a robotic wheelchair, several interfaces have been used, such as the

conventional joystick, touch-screens, voice recognition and more (see Table 2.1). When people

with certain disabilities or handicaps are the main target of a HMI, several adaptations must

be considered to let those users be able to successfully operate those interfaces. For example,

patients with ALS or CP disorders see their muscular activity diminished or absent, in the

most advanced stages of the disease [Ho�mann et al., 2008,Nijboer et al., 2008]. In this cases,

interfacing with joysticks or voice recognition becomes an arduous task, so di�erent solutions

have to be taken into account, such as the use of electroencephalography (EEG) signals, the

detection of small hand movements or eye tracking. An interface that uses EEG brain signals

to estimate user commands is called Brain-Computer Interface (BCI). This interface is one of

the last options available for the patients characterized before, and so it has been an interface

where research has been growing.

19

2.5. HUMAN-MACHINE INTERFACES

2.5.1 Brain Computer Interfaces

Work with monkeys in 1969 [Fetz, 1969] have already showed that signals from singled cortical

neurons could be used to control a needle. Investigations relying in humans began in the 1970s

and it was only in 1973 that Vidal [Vidal, 1973] asked if considering only the use of electri-

cal brain signals it would be possible to carry information in human-machine communication

for controlling devices such as prosthesis. The initial progress in Human BCI was slow and

really limited principally by computer capabilities and even the few knowledge of brain phys-

iology [Shih et al., 2012]. Since then, several developments have been made in both areas. In

1988, Farwell and Donchin [Farwell and Donchin, 1988] showed that P300 event-related poten-

tials could be used such way that allowed healthy volunteers to interface a spelling device and

successfully spell words on a computer screen. The developments observed both in brain un-

derstanding as in computer technologies culminate nowadays in more advanced applications as

for example the implantation of microelectrodes arrays in the primary motor cortex of a young

man with complete tetraplegia, in 2006 [Hochberg et al., 2006]. Using the signals obtained from

the electrode array the patient could successfully open e-mail, operate a television and perform

rudimentary actions with a robotic arm.

Nowadays, BCI research is growing in an extremely rapid rate, and di�erent applications

are being studied and implemented, such as control tasks for game interfaces or even navigation

through the presentation of paradigms with direction cues [Ho�mann et al., 2011,Pires et al.,

2011,Pires et al., 2012].

Figure 2.9: Example of an visual oddball paradigm (adapted from [Pires et al., 2008])

An oddball paradigm is usually used to evaluate the human intent. This type of paradigm

is mainly used in evoked potentials analysis, where the stimuli presentation is used to assess the

20

CHAPTER 2. BACKGROUND AND LITERATURE

brain reaction to unpredictable events. To do so, the stimuli events are presented in a random

fashion. One example of an oddball visual paradigm is represented in Figure 2.9, where the

target event is exhibited by a green �ashing color.

One way to develop a BCI using EEG data is to detect the event-related potential (ERP)

P300 elicited by sensory stimuli. ERP are EEG transient voltage shifts induced by internal

events. In the majority of users, sensory stimuli presentation in an oddball paradigm produces

a positive peak in the EEG signal, 300 ms after the onset of the stimulus, being this component

named as P300. It is a common ERP component used to develop BCI and it consists in a

positive voltage shift usually observed in response to target stimulus (see Figure 2.10).

16 Chapter 2. Neurophysiologic background and state of the art

a)
−2 −1 0 1 2 3 4 5

−60

−40

−20

0

20
Event related desynchronization − Motor imagination

Time (s)

P
ow

er
 o

f µ
 r

hy
th

m
 (

%
E

R
D

)

baseline

cue
instant

b)
−1.5 −1 −0.5 0

−6

−4

−2

0

2

Readiness potential − motor preparation

Time (s)

A
m

pl
itu

de
 (

µV
)

c)
0 5 10 15 20 25 30 35

0

2

4

6

8

10

Frequency (Hz)

P
ow

er
 (µ

V
2)

SSVEP frequency spectrum

16 Hz

15 Hz

d)
0 0.2 0.4 0.6 0.8

−10

−5

0

5

10
P300 event related potential

Time after stimulus (s)

A
m

pl
itu

de
 (

µV
)

P300

Figure 2.2: a) Event related desynchronization during a motor imagination task (µ
rhythm). Cue instant indicates the instant when the user starts the SMR control
[Pires 2008a]; b) Readiness potential (Bereitschaftspotential) measured at channel C3.
It is a slow negative shift occurring before a finger movement (keyboard press) at instant
0 s [Pires 2007]; c) Frequency spectrum of SSVEP responses to 15Hz and 16Hz flicker
stimuli, measured at channel Oz [Ribeiro 2009]; d) Example of a typical P300 event re-
lated potential elicited by the LSC paradigm (see chapter 6), measured at channel Cz.

2.3 BCI applications

In the last decade, the research work in EEG-based BCI significantly increased. Ev-

ery year, dozens of interesting works are published. We present here only some

representative works regarding main BCI applications, milestones and trends. See

[Blankertz 2010, Mak 2009, Birbaumer 2006] for more extensive surveys. Our review is

limited to BCI works based on EEG.

BCI applications can broadly be divided in: 1) communication; 2) control of assistive

robotic devices; 3) neurorehabilitation; 4) neurotherapy; and 4) non-medical applications.

Communication - The restoration of communication for people who are ’locked-in’ or suffer

from severe motor disabilities has been the main topic in BCI research. Several speller

Figure 2.10: P300 event related potential (adapted from [Pires, 2011a])

21

Chapter 3

ANS Architecture

This chapter brie�y describes the architecture of the Assistive Navigation System (ANS) that

is the aim of this work. It is done at a conceptual level, trying to attain the prede�ned goals.

To do so, these goals are reviewed, and the requirements needed to achieve them are examined.

At this phase of development, implementation issues are not yet considered; such concerns will

be tackled in Chapter 5.

3.1 System goals and requirements

The assistive navigation system is designed to relieve and support the user in the task of oper-

ating a robotic wheelchair. For the particular ANS developed in this work the main objectives

taken into account were:

1. Allow users in di�erent stages of disability to easily and comfortably communicate with

the RW;

2. Create a control module that merges user and machine's abilities;

3. Incorporate modules of perception and navigation allowing a safe and e�cient navigation;

4. Ensure that the physical layer is capable of supporting such system.

To achieve the de�ned objectives several requirements have been identi�ed. To allow users in

di�erent stages of disability to communicate with the wheelchair, a generic Human-Machine

Interaction protocol was developed so that di�erent Human-Machine Interfaces can be accepted,

such as Brain-Computer Interfaces and others. For a control module capable of merging user

and machine's inputs, a Collaborative Controller was developed, that is further described in

Chapter 4. Taking into account that a safe and e�cient navigation is our aim, a perception

module for obstacle detection and positioning in the environment that provides information to

the navigation module was developed and are described in section 3.5 and 3.6. The theoretical

design expected from the physical layer is considered in this Chapter; implementation concerns

are further debated in Chapter 5.

Figure 3.1 summarizes the main goal of the system, highlighting the essential role of com-

munication between human and machine in this architecture.

23

3.2. GENERIC SYSTEM OVERVIEW

MACHINE

ROBOT

HUMAN

HMI

Figure 3.1: Communication channel between human and machine

3.2 Generic System overview

Figure 3.2 represents the system overview, with the �ve fundamental modules of the designed

system architecture, described in the following sections. The scheme represents the information

�ow between the modules and how they interact.

Perception

Generic HMI

Collaborative ControlNavigation

Robot

goal

options

ν, ω laser, odometry

situation

map, pose

Figure 3.2: Assistive Navigation System Overview

3.3 HMI protocol

Human-Machine Interfaces represent a communication channel between a machine and a hu-

man, such that human intent can be perceived by the machine. This machine component can

take various forms such as computers or robots. Also, the human intent can be extracted from

di�erent methods, such as EEG signal processing (known as BCI) or eye tracking.

In this dissertation our concerns did not rely in the methods used to determine the human

intent, but rather on the set of controls allowed and the �nal choice of the user. To accom-

modate this aspect, and to allow di�erent HMIs, a protocol was designed. For this protocol,

24

CHAPTER 3. ANS ARCHITECTURE

the following set of controls was de�ned: STOP, WC, HALL, HELP, YES, NO, RIGHT90,

RIGHT45, FORWARD, LEFT45 and LEFT90 (see Figure 3.3). Any HMI ful�lling this proto-

col requirements will work with the implemented system.

RIGHT90LEFT90

F
O

R
W

A
R

D

STOP

WC

HELP

HALL

YES NO

Figure 3.3: Example of a visual display paradigm for the proposed protocol

3.4 Collaborative Controller

The Collaborative Controller module has a central role in the navigation system. It must de-

liberate on the perceived situation and decide when to ask the user or the navigation module

for commands. This module receives information from the perception module to update the

current situation; it trades information with the user through the HMI; and lastly it receives

path information from the navigation module. Based on all the collected information, the CC

module outputs the navigation goal. The CC design is described in detail in Chapter 4.

3.5 Navigation module

The considered navigation module has its core function path planning and a module for execut-

ing those paths (path follower). It receives information from the perception module concerning

the existence of unexpected obstacles in the way, when executing a path, and localization data

to perform the path tracking. In some cases, like the presence of unexpected obstacles, the

path planning must output multiple path options to the CC.

The path planning module takes into account the received goal from the CC module and

the chosen path is delivered to the path following module. The function of the path following

module is to calculate the linear velocity v(t) and the angular velocity ω(t) and deliver that

information to the robot.

Figure 3.4 represents the navigation module components and its interaction with the other

modules.

25

3.6. PERCEPTION MODULE

Path Planning

Navigation

chosen

path

Path Following

CC

goal

()
path

options

ν, ω
Robot ()

...

Figure 3.4: Navigation Module components and its interactions with the other modules

3.6 Perception module

The main objectives of the perception module are robot localization and detection of user-

aid-required situations (UARS). Obstacle detection, forked path and deadlocked way are some

examples of UARS.

The perception module is composed by SLAM, required to produce an estimate of the

current robot pose, and it can also integrate several UARS detectors. In this work unexpected

obstacles, multiple path and deadlock detections were considered. Nevertheless, more UARS

detectors can be further added to improve the system robustness.

This module receives sensor data from the robot, this data can comprise for example laser

readings, odometry data, image or others. Internally, SLAM builds a local map that may aid

detection of UARS. For example, obstacle detection can compare the original map with the

current map given by SLAM. When a UARS is detected, the module outputs an noti�cation

to the collaborative controller, which acts accordingly. It also outputs pose estimation for

navigation purposes.

Figure 3.5 shows the internal components of the perception module.

3.7 Robot

The robot is the physical layer of the system and it establishes the link between the system

and its environment. Once the implemented system was designed to be used with a motorized

wheelchair, only di�erential driving was considered, simplifying the navigation task.

The robot receives from the navigation module linear and angular velocities which are

converted to speeds to the left and right wheel, through inverse kinematics. Sensors mounted

on the robot provide data that is then transmitted to the perception module.

26

CHAPTER 3. ANS ARCHITECTURE

Perception

SLAM

UARS Detection

map

updates

Obstacle Detection

Situation Awareness

Risk Assessment

sensor

data

pose

estimate

current

situation

Figure 3.5: Perception Module

Figure 3.6 shows the data �ow from and to the robot.

left

wheel

right

wheel

Robot

driver

ν, ω

ωrωl

S S

Sensory data

Figure 3.6: Robot's role in the system (S stands for sensors).

27

Chapter 4

Collaborative Controller

In this chapter, the Collaborative Controller design is described in detail. In the �rst section,

an introduction to the module is given, highlighting its requirements and operation. In the next

section, the CC design is discussed and its main components are described. Its central role in

the system is analyzed in the last section, with a global perspective of its inputs and outputs.

4.1 Controller design issues

The collaborative controller can be dubbed as the mediator between human and machine. In

Chapter 2, we reviewed the seven key design issues established in [Fong, 2001] that should be

considered during design phase of a Collaborative Controller. In order to design a successful

controller, these issues will be considered in this section, one by one, and a solution for each

issue will be sought. These issues must also be tackled in accordance with the design thought

in Chapter 3.

Design begins by de�ning a limited number of situations to be considered, in order to achieve

a feasible implementation. For this work we will consider three UARS:

1. Detection of unexpected obstacle

2. Fork in the path

3. Deadlock of the way

The controller designed in this chapter must solve this situations by requesting the user's

assistance. With UARS detection reviewed, it is now important to explore related design issues

in order to tackle them.

The �rst design issue to consider is Dialogue. The need of a good communication channel is

fairly understandable. Even though the robot performs well in some tasks, its understanding of

the world is very limited. To enable the human to help it, a good, well-de�ned communication

protocol must be de�ned. Following, other issue to consider is Awareness, which means that

the CC must understand what both human and robot lack. Self-reliance is the third issue

listed in [Fong, 2001]. This means having the ability to maintain security by its own means.

This issue can be viewed from very di�erent standpoints (electrical conditions, environment

hazards, collisions, etc). The primary concern of this design will be navigation and planar

29

4.1. CONTROLLER DESIGN ISSUES

CC waits for

command until

deadline

START

Execution

Update states

Ask user if he

wants to go back
new goal

Situation

detected

situation = = deadlock

deadline = ∞

Read options

Warn user

situation = = bifurcation

Evaluate

obstacle

2 or more

options

Warn user

deadline = 5 min

finished

deadline = ∞

situation = = obstacle

0 options

1 option

Situation = =

deadlock

Figure 4.1: Collaborative Control course of action

collision avoidance problems. Adaptiveness relates to the ability of the controller to accept

users with di�erent characteristics. A possible solution to this problem consists in de�ning

a list of skill levels, and attribute a skill level to each user. Human-Robot Interaction issue

is related with improving the status of HRI to a more natural, partner-to-partner level, and

further way from the robot as machine concept. Finally, there is a issue to have in mind with

the User Interface Design. This is as much an issue to HMI design as it is for the Collaborative

Control design. It concerns about maximizing usability. It will not be an explicit concern in

the design of this controller, as it obeys a protocol de�ned in Chapter 5.

Before delving into the module design, it is important to understand how is it intended to

work. Figure 4.1 shows a �nite-state machine describing the intended operation of the system,

taking into account some of the issues discussed above.

Dialogue is tackled with the existence of a two-way information exchange within a well

de�ned protocol, and the use of an appropriate HMI, in this case a BCI which is adequate for

people unable to control their motor functions. The use of such HMI is very challenging due to

the low information transfer rate and an associated error rate. In other words this means that

only sparse commands can be provided and some of them may be not reliable.

The robot must identify situations where aid is required and ask the user for assistance in

such situations. This is directly related with Awareness, which is well accommodated by the

prede�ned UARS.

Self-Relience is tackled by allowing the robot to act by its own, after a deadline de�ned in

some situations. In all situations not requiring user aid, the RW works as if it was autonomous.

The next sections will de�ne a control design that complies with discussed issues.

30

CHAPTER 4. COLLABORATIVE CONTROLLER

4.2 Collaborative Control Design

The Collaborative Controller is designed as a two layer module; a Virtual Constraint layer and

an Intent Matcher layer. It also contains a module to send information to the human, allowing

the system to have a HRI. Figure 4.2 outlooks the design, and illustrates the �ow of information

and communication channels. The module is updated with the current perceived situation by

the perception module and with path options by means of communication with the navigation

module. By informing the user of the situation, and with his feedback, it decides what action

should be taken by �ltering and matching the intent of such feedback. This process is done

by the Virtual Constraint and Intent Matcher layers, described in the two next subsections. A

Dialogue Manager module is also designed to deal with sending information to the user.

goal

Virtual Constraint

(Traded Controller)

Intent Matcher

(Shared Controller)

semantic

commands

steering

commands

path

options

perceived

situation
Dialogue Manager

situation-related

data

to HMIfrom HMI

perceived

situation

Figure 4.2: Overview of the Collaborative Controller module

4.2.1 Virtual Constraint (Traded Controller)

The Virtual Constraint (VC) layer of the CC is a rule-based �lter. It acts as a Traded Controller,

e�ectively denying or allowing the enforcement of user commands. For each user skill level,

there should exist a rule table (like Table 4.1) that de�nes what commands are passed on (coded

by 1s) to the next layer and what commands are cut o� (coded by 0s).

4.2.2 Intent Matcher (Shared Controller)

The Intent Matcher (IM) module, as the name suggests, tries to �nd an action that better

approximates the user's command, given a set of possible actions. Its output depends on the

current situation. It acts as a Shared Controller by joining user coarse directions with de�nite

geometric goals, used to create the detailed path plans.

31

4.2. COLLABORATIVE CONTROL DESIGN

Table 4.1: Rule-based Traded Controller

↑ ↖,↗ ←,→ STOP HELP HALL WC YES NO
Driving 0 0 0 1 1 1 1 0 0
Forking 1 1 1 0 1 1 1 0 0
Obstacle 0 1 1 0 1 1 1 0 0
Deadlock 0 0 1 1 1 1 1 1 1

Some commands have a very speci�c meaning and lead to the same action, apart of the

situation. The commands �HELP�, �HALL� and �WC� are always accepted by the VC because

their meaning is clear. The robot response to �HELP� should launch a helping task. This could

result in calling someone for help, or launching a dialogue between human and robot to discern

what kind of help the human needs. �HALL� and �WC� command are explicit goal commands,

and lead the CC to order the navigation module to drive the robot to those goals.

For the other commands, the current UARS must be taken into consideration, in order to

�nd the best matching action to the user's command.

First situation to consider is when there is no UARS, which means that the robot is in

Driving situation referred in this subsection. In this situation only semantic commands are

accepted. Receiving a �STOP� command halts the navigation process and establishes a forking

situation, with the last stable point and old goal as the available options.

For the case of Forking, two kinds of commands must be taken into account: steering

and semantic commands. Semantic commands allowed are �HELP�, �HALL� and �WC�, with

actions already described above. For steering commands, there is an algorithm that �nds the

best matching option. It develops as follows:

For each steering commands (→,↗, ↑,↖,←), there is a respective correspondent angle

command θHMI ∈
{
−π

2
,−π

4
, 0,+π

4
,+π

2

}
. The state of the robot (x, y, θ), and n possible goal

positions (xi, yi) with i = 1..n are also known. For each goal, a corresponding angle θigoal is

computed by equation 4.1. Each angle θigoal establishes the directions of the available goals in

the robot's horizon.

θigoal = θ + atan2(yi − y, xi − x) (4.1)

An error function is then de�ned by eiHMI = θHMI−θigoal. The goal i∗ that better corresponds
to the received steering command is then computed by the objective function de�ned in equation

4.2. Figure 4.3 illustrates the problem.

i∗ = arg min
i

(
eiHMI

)
(4.2)

When anObstacle UARS is detected, the obstacle is �rst evaluated, �nding possible openings

to avoid the obstacle. In this implementation, as the obstacle is considered to be one solid object,

only four outcomes are considered: the obstacle is avoidable by the right, by the left, by both

32

CHAPTER 4. COLLABORATIVE CONTROLLER

sides or by none. Furthermore, the user's assistance is only called if both sides are available.

Taking this assumption into consideration, the matching algorithm needs to determine if the

user requested left or right. It is prede�ned that ← and ↖ commands mean left; ↗ and →
mean right.

Figure 4.3: Forking situation and corresponding variables

When a Deadlock is perceived, the user is asked if he desires to return to the last available

node. �NO� command will leave the RW pose unchanged. �YES� command will trigger a half

turn and the de�nition of the last goal as the current goal. If a rear laser exists, backward

motion may also be admissible. Commands← and→ do the same as �YES�, but further de�ne

to which side should the half turn happen.

33

Chapter 5

Implementation for RobChair

After the ANS and CC design phase, the development and implementation of the de�ned tech-

niques and algorithms were carried out, using RobChair, the RW platform of ISR [Lopes et al.,

2013]. Although a generic approach was taken when considering the ANS in previous chapters,

the practical design will now focus speci�cally on RobChair. Given this fact, several implemen-

tation choices were simpli�ed. Recent software and hardware updates done in RobChair de�ned

ROS as the robot middleware, with arguments in favor and against discussed in [Gonçalves,

2013]. It was on top of that decision that all software was designed, and so most software of the

ANS was written in C++. Furthermore, the existing sensors and hardware played a decisive

role in implementation decisions.

The �rst �ve sections will detail the software implementations in ROS environment of the

HMI protocol, navigation, perception and collaborative controller modules and simulation of

this system with gazebo. The �nal section describes the physical layer available components as

well as adaptations made to help successful implementation of the system.

5.1 HMI integration

For communication with HMIs that incorporate the protocol described in Chapter 3, a com-

munication protocol able to operate on the network must be de�ned. A TCP/IP protocol was

de�ned in 2011 speci�cally for BCI two-way communication [Pires, 2011b]. It de�nes the same

type of commands as the de�ned protocol in this work (primarily because the protocol proposed

in this work is based on that BCI).

The proposed TCP/IP protocol for this work is a simpli�ed version of the last one but also

adds to the previous one a new Request Type that allows the transmission of an RGB image

(3 bytes per pixel, 1 byte per pixel color). This new protocol can be used to show the user a

picture of the environment for various purposes, namely to show with detail the current view

of the way, allowing him to analyze in an easier way a given situation (see Figure 5.1 for an

example).

Tables 5.1 and 5.2 list the communication protocol, comprising request and command byte

sequences, respectively. In the special case of image sending, the code sent is variable in size,

being de�ned in the second and third bytes. Length is de�ned by szx and width by szy.

This communication protocol was implemented in a ROS node, hmi_comm, subscribing to

35

5.2. NAVIGATION MODULE

Figure 5.1: Example of the reception of the environment image

Table 5.1: HMI Communication Requests (from the ANS to HMI)

Request code Description

0-0 Inactive (value 0 is special)
1-0 Reserved

2-szx-szy-IMAGE(3× szx × szy)-0 Image sending
3-0 Not de�ned

/hmi_out messages, coming from the CC and publishing /hmi_in messages to the CC. Figure

5.2 illustrates this simple node.

hmi_comm

/hmi_out/hmi_in

Figure 5.2: ROS node hmi_comm, a HMI driver

These concepts were proved using a visual HMI implemented in MATLAB that worked as

a simulator of the BCI system. As two way communication is not yet implemented for such

BCI, the full two-way communication speci�cation could not be tested with the pair BCI - ANS

system.

5.2 Navigation module

A description of this module requirements has already been presented in Chapter 3. Navigation

requires a planning algorithm that given the current pose estimation of the robot and a �nal

goal must produce a path plan. Given that path plan, a path follower algorithm is necessary

to execute it, by computing robot speeds to achieve such plan.

36

CHAPTER 5. IMPLEMENTATION FOR ROBCHAIR

Table 5.2: HMI Communication Commands (from HMI to the ANS)

Command code Description Command code Description

0:19-0 Reserved 45-0 STOP
20:31-0 Not de�ned 46-0 YES
32:40-0 Reserved 47-0 LEFT90
41-0 FORWARD 48-0 LEFT45
42-0 RIGHT45 49-0 WC
43-0 RIGHT90 50-0 HELP
44-0 NO 51-0 HALL

These tasks are executed by the navigation stack available in ROS distributions [Marder-

Eppstein and Perko, 2014], more speci�cally by the move_base package. The functioning of

this package is described in subsection 5.2.1. Furthermore, the role of our navigation module is

also to deliver path options to the collaborative controller module. For that, a submodule able

to compute such options is required. This submodule will be called option_server node and is

further discussed in subsection 5.2.2.

The general view of the navigation module implementation is shown in Figure 5.3, referring

both packages and information �ow between them and the outside.

move_base option_server

navigation

module

/goal /map

warn_sit/cmd_vel

/sit

/topol_pose

/obstacle

/path_options

Figure 5.3: Navigation module nodes

37

5.2. NAVIGATION MODULE

5.2.1 move_base package

This package is one of the most used in ROS-based robots. It performs a task that is essential to

any autonomous wheeled robot. It consists of a global planner that produces global trajectories

between two points in the world map, and a local planner to follow that path in the most optimal

manner.

The global planner uses a global costmap built from received occupancy grid map, by

in�ating occupied cells to the size of the robot. This costmap is built dynamically, every time

the map is updated. Based on this costmap, the global planner performs a tree search to �nd

the optimal path. This implementation uses Dijkstra method, already described in Chapter 2.

The local planner uses a local costmap which is built dynamically with raw data available

from range sensors. The obstacles are also in�ated by a value equal to the robot radius.

It implements a dynamic window approach to collision avoidance, having the global path as

reference.

This package is also able to provide a global path by request without causing move_base

to execute it, enabling external nodes (and particular option_server) to preview paths. Figure

5.4 summarizes this package role in the system.

localization

 cmd_vel geometry_msgs/Twist

global_planner global_costmap

local_planner local_costmap

recovery_behaviours

SLAM
 /map

nav_msgs/OccupancyGrid

sensor transforms

 /tf

tf/tfMessage sensor sources
sensor topics

sensor_msgs/LaserScan

sensor_msgs/PointCloud

robchair_driver

move_base

 move_base_simple/goal

geometry_msgs/PoseStamped

internal

nav_msgs/Path

provided node

platform specific node

Figure 5.4: Representation of the move_base with RobChair as the robot (adapted from
[Marder-Eppstein and Perko, 2014])

5.2.2 options_server node

This node's task is to provide options to the Collaborative Controller regarding robot motion.

Three key UARS (see Chapter 3) are considered in the current implemented system:

1. Detection of an unpredicted obstacle

2. Fork reached

38

CHAPTER 5. IMPLEMENTATION FOR ROBCHAIR

3. Deadlock

For the �rst case, unexpected obstacle detection, this node is prepared to map the obstacle

in the costmap, in�ating it, and assess if there is a way to the left and/or to the right of the

obstacle. Each test is done by virtually closing the other path in the costmap. If both directions

are viable, options are transmitted to the CC, so that it is communicated to the user. If only

one passage is viable, no options are issued to the CC, and the path following is resumed. If no

manageable passage is encountered, the situation is reevaluated as a deadlock, and warn_sit

service called (see de�nition in Section 5.3).

In the deadlock situation, the user should be able to choose if he wants to return to a

previous node, wait or call for help. No special option is assessed while in a deadlock, so the

message sent to the CC only refers to the existence of the deadlock.

Finally, when arriving at a node which connects to other multiple nodes, the situation is

detected by Perception module and transmitted to the Navigation module. With this informa-

tion comes the related information about the situation, as is speci�ed in the message protocol.

In this case, the message carries information about the nodes linked with the current robot

position (current node). This set of nodes is provided to the Collaborative Controller, which

in turn becomes in charge of matching them with the user commands.

In the end of the processing, options are encapsulated in message form by a framing process

(see Figure 5.5).

mapped

obstacles

available

nodes

option_server

situation perceived

mapped

obstacle

analyser

topologic

map

explore

framing

passages

d
ea

d
lo

ck

situation type

situation related information

options

situation parser

Figure 5.5: option_server design

5.3 Perception Module

The Perception module can be viewed as a system state estimator. It takes sensor data and,

based on di�erent algorithms and assumptions, it estimates some state variables of the system

39

5.3. PERCEPTION MODULE

and environment. As designed in Chapter 3, the current pose of the robot and updates of the

map of the environment must be estimated; these estimates are given by a SLAM package.

The SLAM package implemented is a modi�ed version of the Hector Team SLAM's method,

which was altered to receive an initial map of the static environment. This SLAM method is

then responsible to update the gridmap and the estimate of the robot's pose. The resulting

modi�ed version was named isr_hector_mapping.

In order to detect UARS, there are also two modules to assist in such detection. One

of them is the Topological State Observer, which simply matches the pose estimate given by

SLAM and compares it with the graph map. It is also informed of the goal chosen by the CC

to narrow its search for edges/nodes. It outputs one of two possible identi�ers: a node where

the robot currently stands, or the edge that connects the previously visited node and the goal

node. Nodes are encapsulated in an object containing geometric information about its position,

as well as attached objects containing information about other nodes linked to it. The other

module of UARS detection is the Obstacle Detection method. It compares a local cut of both

initial and current grid maps, by sub-sampling both maps around estimated position. From this

comparison, a set of cells that are occupied in the current map but not in the initial map may

be detected, thus providing an insight of a possible unexpected obstacle. The points detected

are encapsulated in a polygon that is sent to the navigation module for further analysis.

Figure 5.6 represents the three essential parts integrating the perception module (on the

left); Obstacle Detection task is emphasized on the right.

initial

map

perception module

isr_hector_mapping

(SLAM)

laser

pose

Obstacle

Detection

detected obstacle

map

Obstacle Detection

detected obstacle

resize resize

≠

polygon encapsulation

Topological

State

Observer

topological

state

topological map

Figure 5.6: Perception module (left) and Obstacle Detection algorithm (right)

In terms of ROS implementation, there is also a virtual agent, a module that publishes to the

environment the current situation. To do this, it establishes a service that UARS detectors can

call to assert the detection of a certain situation. Using a module dedicated to UARS publishing

simpli�es the message network. Figure 5.7 represents the four ROS nodes implemented to do

this tasks, highlighting message topics subscribed and published as well as available services.

40

CHAPTER 5. IMPLEMENTATION FOR ROBCHAIR

topological_state_obs

/goal

/pose /map

/scan

/obstacle

warn_sit

/sit/topol_pose

perception

module

isr_hector_mapping obstacle_detection UARS_publish

Figure 5.7: Nodes comprising the Perception Module

5.3.1 Topological State Observer

The topological state observer routine is required to update a topological state comprising the

location of the robot according to the graph map. In topological terms, the robot can either

be at a node or between two nodes, at an edge.

When the system starts, the robot starts at a given node and all modules are informed.

When the decision of leaving a node is assumed by the CC, the observer is also informed,

changing the state from a node to the given edge. Given a graph describing the network of the

current environment and the pose estimate at a given time, this routine evaluates if the robot

is near the goal node.

5.3.2 Obstacle Detection

This routine works by comparing two grid maps. Results are show in Figure 5.8. When

updating the map, because laser range �nders have some noise in their measure and because

pose estimation is not spotless, the SLAM module may mark as occupied, cells that were close

to other already occupied cells. To avoid considering this cells as part of detected obstacles, only

prede�ned zones of the a priori map (de�ned by a set of geometric rules) must be considered

in obstacle detection.

Figure 5.8: Result of the comparison between the two maps

41

5.4. COLLABORATIVE CONTROLLER MODULE

5.4 Collaborative Controller module

The Collaborative Controller module is implemented as a ROS node, collab_control. This node

implements the design detailed in the last chapter. Figure 5.9 depicts the nodes published and

subscribed topics.

collab_control

/sit

/goal

/path_options

/hmi_in /hmi_out

/image_raw

Figure 5.9: Topics associated with the collab_control node

5.5 Simulation in Gazebo

Before testing the software layer with RobChair, its functionality was partially tested with

gazebo simulator [Howard et al., 2014]. A model of RobChair was de�ned in Uni�ed Robot

Description Format (URDF); a 3D model of ISR ground �oor hallways (named ISR0) was used

and also models of a Laser Range Finder (LRF) sensor and kinect RGB-D camera were tested.

With gazebo inner physics engine, and using both the RobChair and ISR0 models, the system

was initially tested. Figure 5.10 shows an example of a simulation running.

Figure 5.10: Simulation of RobChair in gazebo

42

CHAPTER 5. IMPLEMENTATION FOR ROBCHAIR

5.6 Physical Layer

To allow the system to be tested in real scenarios, a physical layer is obviously needed. To be

incorporated in the ANS, its components must operate at the hardware level and then there

must be a viable link between hardware and software layers, known as drivers.

In the described implementation, there are three main components in the physical layer:

RobChair as the robot; Microsoft Kinect as the image sensor (only RGB is used) an Hokuyo

UTM-30LX for the LRF. As for the drivers, the robot driver was implemented in [Gonçalves,

2013] and is used here with a few changes, further described. The sensor drivers used in this

work were obtained in the distributions available for the ROS community. Figure 5.11 shows

the integration of the drivers in the ROS environment.

/cmd_vel

robchair_driver kinect_node hokuyo_node

robot module

/scan/rgb/raw_image

Figure 5.11: Drivers to the physical layer components

Some additions were also made to the low level hardware layer, to answer several issues.

The issues to be considered were:

1. Lack of a protocol for electrical connections in RobChair;

2. Lack of physical support for sensors and interfaces;

3. Lack of a safety layer for prevention of possible hazards during testing.

To solve the �rst issue, an electrical connection box was created, and inputs and outputs were

de�ned with a connector scheme for di�erent voltages and signals. Figure 5.12 shows the

created box. RobChair is a research robot and as such, its architecture is changed frequently,

adding new sensors and new interfaces. Limiting electrical connections to this space simpli�es

the robot's architecture and facilitates changes.

The second issue relates with the lack of supports in RobChair to add interfaces, computers

and sensors. To solve this, two trays were designed and added, as well as a speci�c support for

the BCI ampli�er. Figure 5.13 depicts these changes.

Lastly, the need for safety layers was discussed. To proceed to testing the ANS in real

settings, with human participants, safe mechanisms are needed to halt the robot if anything

does not function as planned. To solve this issue, an emergency button was added, electrically

connected to the motor power drivers. Figure 5.14 shows the button.

43

5.6. PHYSICAL LAYER

Figure 5.12: Electric connections box

Figure 5.13: Sensor and interfaces supports added

Also, to reassure the ability to safely halt the robot motion, a remote controller (RC) device

was added to the layer. The microcomputer used to bridge ROS and the power driver was

altered to accept a signal sent by the RC. This signal disables the microcomputer ability to

send non-zero velocities to the power drivers.

44

CHAPTER 5. IMPLEMENTATION FOR ROBCHAIR

Figure 5.14: Emergency button

45

Chapter 6

Experiments

In this chapter, experiments assessing key parts of the system performance are described.

Various experiments with di�erent focus were carried out to assess the current software and

hardware implementation of RobChair ANS. There will be a section dedicated to each tackled

issue.

6.1 SLAM

The perception module performs a fundamental role in the system. Without it, there is

no localization, and without localization, navigation becomes compromised. Bearing this

in mind, assessing the implemented SLAM module was one of the main focuses of testing.

This section reviews experiments with the localization and map updating performance of the

isr_hector_module.

As de�ned in previous chapters, the SLAM module was developed to accept a previous map.

For these experiments, this map was created by running a lap with the team Hector SLAM

around the ISR ground �oor. Figure 6.1 shows the resultant probability grid, in log-odds

representation.

Figure 6.1: Probability gridmap with log-odds representation

This grid map representation is usually simpli�ed in a ternary state map representation

(with states Occupied, Free or Unknown) for visualization purposes. Figure 6.2 shows this

simpler representation of the a priori map.

Having de�ned the initial map, two experiments concerning localization and map updating

were carried out as follows. In the �rst experiment, a new room is mapped to demonstrate

47

6.1. SLAM

Figure 6.2: Ternary state map representation of the initial map

the ability to update the map. In the second experiment a large loop is traveled, revealing the

module capability to maintain the map in long routes.

In the �rst experiment the robot is teleoperated along the hallways, �nishing the experiment

by entering a new unmapped room. Figure 6.3 shows the results of the experiment. The path

taken is represented in a color continuum from green to red - green represents the begin of the

experiment and red the end. Blue cells represent portions of the map updated during the test.

Dark blue represent occupied cells and light blue empty ones.

Figure 6.3: Mapping a new room

In the second experiment, a clockwise lap is done around the hallways of ISR. As the initial

map was done only with a simple counterclockwise lap in the same area, parts of the map

remained unexplored since only one LRF is used. Figure 6.4 displays the results of the test.

The same color scheme as the previous experiment is used. It is noticeable that the map remains

well structured after returning to the starting point.

48

CHAPTER 6. EXPERIMENTS

Figure 6.4: Updating a large loop

6.1.1 Detected Problems

The last two experiments lead to results qualitatively de�ned as successful. Nevertheless,

other tests may show this SLAM implementation shortcomings. Structured environments may

become a problem for the scan matcher, when physical features become scarce or non-existent,

causing an aperture problem.

Figure 6.5 shows a sequence of pose and map updates where scan matching fails due to

error gradient slipping to a local minimum. The robot is moving towards the intersection;

robot estimated pose is represented by the reference axes and laser endpoints are marked in

red. Frames 6.5-a) to c) show correct pose estimation. Between frame 6.5-c) and d), the scan

matcher was trapped in a local minimum of the error function. High density of laser endpoints

closer to the robot were matched with high occupancy probability cells, even though some

sparse endpoints were left unmatched.

a) b) c) d) e)

Figure 6.5: Scan Matching failure

49

6.2. AUTONOMOUS NAVIGATION

Figure 6.6 shows another sequence with the robot moving along a corridor, driven by the

autonomous navigation module towards a goal point. This situation is specially hard because

the environment is a featureless corridor, creating a low variability gradient along the corridor.

In frames a) and b) a correct pose estimation is shown. From frame b) onwards, only the

laser endpoints re�ected by a garbage can (small rectangle on the NE corner) enable the scan

matcher to detect motion along the corridor; without it, an aperture-like problem occurs. Frame

c) shows a small error in pose estimation due to a local minimum found in the error function.

Occupied cells in the beginning of the corridor have higher probability values because they have

now been mapped twice. This results in a slope in the error function towards local minima like

frames d) and e) depict.

a) b) c) d) e)

Figure 6.6: Corridor environment where scan matching failed

6.2 Autonomous navigation

In this section, simple experiments with the autonomous navigation are described.

In the �rst experiment, the robot is given a small graph map and is asked to navigate

through some of its nodes. The robot moved at a slow and constant speed throughout the

experiment. Figure 6.7 depicts the experiment. The color scheme is the same used in SLAM

experiments; squares in magenta represent map points where the robot was order to drive to.

In a second experiment, the system was started in a corridor and the robot driven until

a forking was detected. The user was then given three options, depicted in Figure 6.8. By

choosing the RIGHT90 command, the robot continued its path, establishing the new goal

node.

Another experiment was made to assess the system response to obstacle detection. In this

experiment the user chose previously to be driven to a node. By detecting an obstacle, the

50

CHAPTER 6. EXPERIMENTS

Figure 6.7: Small test concerning navigation performance

RobChair Path
Forking Detected
Path Options
Path chosen

Figure 6.8: Test comprising a forking situation

CC requested user assistance in choosing which side to surpass the obstacle. By sending the

LEFT90 command the user chose one path and the robot executes it, and continues to drive

to the previously asserted node. Figure 6.9 depicts the experiment.

Problems with the autonomous navigation did occur, but were always related with localiza-

tion, discussed above.

Results show that the ANS already has some level of autonomy. It is evident, however, that

some relevant issues may present an obstacle to the good functioning of the ANS and so should

be tackled �rst.

51

6.2. AUTONOMOUS NAVIGATION

RobChair Path
Obstacle Detected
Path Options
Path chosen

Figure 6.9: Test comprising a forking situation

52

Chapter 7

Conclusion and future work

7.1 Conclusion

This thesis presented a new design of the ANS for RobChair, focused in assisting patients with

severely impaired mobility. A Collaborative Controller, Navigation and Perception modules

were designed and developed.

The goal of providing a new take on Assistive Navigation System (ANS) was achieved, fully

integrating it in ROS and with the software and hardware architecture used for RobChair.

Initial testing provided promising results, leading the way to even more robust solutions. The

present work adds valued improvements in the following matters:

• a new SLAM implementation for updating an initial map;

• development of the Collaborative Controller in ROS;

• con�guration of the ROS Navigation stack in RobChair;

• simulation and 3D modeling of RobChair;

• updates in the physical layer.

The implementation of the CC and other algorithms in ROS was, above all things, of great

value because with it great tools for testing and developing software, including real-time and

scienti�c code like the ROS C++ and Boost libraries, became available. The new CC module

implemented in this work is an important improvement to the software layer of the current ANS

as well as an accessible platform for further development. Also noteworthy was the studying

and analysis of a di�cult SLAM implementation, Hector Mapping. It opens new possibilities

in developing and understanding functional SLAM solutions.

7.2 Future work

In order to improve the current stage of development of this system several topics should

be addressed in future works. An immediate task to be done is a full connection between the

designed ANS and BCI. Adapting the current BCI with two-way communication features would

also be bene�cial.

53

7.2. FUTURE WORK

The SLAM module may be subject to update, solving the situations where it currently

fails. Also, a more robust and balanced approach to obstacle detection and analysis should

be studied. Finally, to have a real functioning system, further testing should be done with

patients, strongly validating the system.

54

Bibliography

[Antsaklis et al., 1991] Antsaklis, P. J., Passino, K. M., and Wang, S. (1991). An introduction

to autonomous control systems. IEEE Control Systems, 11(4):5 � 13.

[Billings, 1996] Billings, C. (1996). Aviation automation: the search for a human-centered

approach. Human factors in transportation. Lawrence Erlbaum Associates Publishers.

[Bloom et al., 2011] Bloom, D., Borsch-Supan, A., McGee, P., and Seike, A. (2011). Popula-

tion Aging: Facts, Challenges, and Responses. The @WDA-HSG discussion paper series on

demographic issues: World Demographic & Ageing Forum. WDA-Forum, University of St.

Gallen.

[Bonarini et al., 2012] Bonarini, A., Ceriani, S., Fontana, G., and Matteucci, M. (2012). Intro-

ducing lurch: a shared autonomy robotic wheelchair with multimodal interfaces. IROS 2012

Workshop on Progress, challenges and future perspectives in navigation and manipulation

assistance for robotic wheelchairs.

[Bourhis and Agostini, 1998] Bourhis, G. and Agostini, Y. (1998). The vahm robotized

wheelchair: System architecture and human-machine interaction. Journal of Intelligent and

Robotic Systems, 22(1):39�50.

[Breazeal et al., 2004] Breazeal, C., Gray, J., Ho�man, G., and Berlin, M. (2004). Social robots:

beyond tools to partners. In Robot and Human Interactive Communication, 2004. ROMAN

2004. 13th IEEE International Workshop on, pages 551�556.

[Brock and Khatib, 1999] Brock, O. and Khatib, O. (1999). High-speed navigation using the

global dynamic window approach. In In IEEE Int. Conf. on Robotics and Automation, pages

341�346.

[Bruemmer et al., 2003] Bruemmer, D. J., Marble, J. L., Dudenhoe�er, D. D., Anderson, M. O.,

and McKay, M. D. (2003). Mixed-initiative control for remote characterisation of hazardous

environments. Proceedings of the IEEE 36th Annual Hawaii International Conference on

System Sciences, pages 127�135.

[Card et al., 1980] Card, S. K., Moran, T. P., and Newell, A. (1980). The keystroke-level

model for user performance time with interactive systems. Commun. ACM, 23(7):396�410.

Available from: http://doi.acm.org/10.1145/358886.358895.

[Darmstadt, 2012] Darmstadt, T. H. (2012). Team hector darmstadt website. Available from:

http://www.gkmm.tu-darmstadt.de/rescue/.

55

http://doi.acm.org/10.1145/358886.358895
http://www.gkmm.tu-darmstadt.de/rescue/

BIBLIOGRAPHY

[de Jouvenel, 1989] de Jouvenel, H. (1989). Europe's Ageing Population: Trends and Chal-

lenges to 2025. Futures (London), 0016-3287. Butterworths.

[Durrant-Whyte and Bailey, 2006] Durrant-Whyte, H. and Bailey, T. (2006). Simultaneous

localization and mapping (slam): part i. Robotics Automation Magazine, IEEE, 13(2):99�

110.

[Durrant-Whyte et al., 1996] Durrant-Whyte, H., Rye, D., and Nebot, E. (1996). Localisation

of automatic guided vehicles. The 7th International Symposium on Robotics Research (ISRR),

pages 613�625.

[Escobedo et al., 2012] Escobedo, A., Rios-Martinez, J., Spalanzani, A., and Laugier, C.

(2012). Context-based face control of a robotic wheelchair. IROS 2012 Workshop on

Progress, challenges and future perspectives in navigation and manipulation assistance for

robotic wheelchairs.

[Farwell and Donchin, 1988] Farwell, L. A. and Donchin, E. (1988). Talking o� the top of your

head: Toward a mental prosthesis utilizing event-related brain potentials. Electroencephalog-

raphy and Clinical Neurophysiology, 70:510�523.

[Fetz, 1969] Fetz, E. E. (1969). Operant conditioning of cortical unit activity. Science, 163:955�

958.

[Fong et al., 2003] Fong, T., Thorpe, C., and Baur, C. (2003). Multi-robot remote driving with

collaborative control. Industrial Electronics, IEEE Transactions on, 50(4):699�704.

[Fong, 2001] Fong, T. W. (2001). Collaborative Control: A Robot-Centric Model for Vehicle

Teleoperation. PhD thesis, Robotics Institute, Carnegie Mellon University, Pittsburgh, PA.

[Fox et al., 1997] Fox, D., Burgard, W., and Thrun, S. (1997). The dynamic window approach

to collision avoidance. IEEE Robotics and Automation, 4(1).

[Gerkey and Konolige, 2008] Gerkey, B. P. and Konolige, K. (2008). Planning and control in

unstructured terrain. In In Workshop on Path Planning on Costmaps, Proceedings of the

IEEE International Conference on Robotics and Automation (ICRA).

[Gonçalves, 2013] Gonçalves, D. (2013). Robchair 2.0: Simultaneous localization and mapping

and hardware/software frameworks.

[Grasse et al., 2010] Grasse, R., Morere, Y., and Pruski, A. (2010). Assisted navigation for

persons with reduced mobility: path recognition through particle �ltering (condensation

algorithm). Journal of Intelligent and Robotic Systems, (60):19�57.

56

BIBLIOGRAPHY

[Grisetti et al., 2005] Grisetti, G., Stachniss, C., and Burgard, W. (2005). Improving grid-based

slam with rao-blackwellized particle �lters by adaptive proposals and selective resampling.

In Proc. of the IEEE International Conference on Robotics and Automation (ICRA), pages

2443�2448.

[Grisetti et al., 2007] Grisetti, G., Stachniss, C., and Burgard, W. (2007). Improved techniques

for grid mapping with rao-blackwellized particle �lters. IEEE Transactions on Robotics,

23:2007.

[Hirzinger, 1993] Hirzinger, G. (1993). Multisensory shared autonomy and tele-sensor program-

ming - key issues in space robotics. pages 141�162.

[Hochberg et al., 2006] Hochberg, L. R., Serruya, M. D., and Friehs, G. M. (2006). Neuronal

ensemble control of prosthetic devices by a human with tetraplegia. Nature, 442:164�171.

[Ho�man and Breazeal, 2004] Ho�man, G. and Breazeal, C. (2004). Robots that work in col-

laboration with people. Proceedings of the CH12004 Extended Abstracts.

[Ho�mann et al., 2011] Ho�mann, U., marc Vesin, J., and Ebrahimi, T. (2011). Recent ad-

vances in brain-computer interfaces.

[Ho�mann et al., 2008] Ho�mann, U., Vesin, J.-M. M., Ebrahimi, T., and Diserens, K. (2008).

An e�cient p300-based brain-computer interface for disabled subjects. Journal of neuro-

science methods, 167(1):115�125.

[Hoppenot and Colle, 2002] Hoppenot, P. and Colle, E. (2002). Mobile robot command by

man-machine co-operation - application to disabled and elderly people assistance. Journal

of Intelligent and Robotic Systems, 34(3):235�252.

[Howard et al., 2014] Howard, A., Koenig, N., Hsu, J., et al. (2014). Gazebo simulator website.

Available from: http://gazebosim.org/.

[Iturrate et al., 2009] Iturrate, I., Antelis, J., Kubler, A., and Minguez, J. (2009). A noninva-

sive brain-actuated wheelchair based on a p300 neurophysiological protocol and automated

navigation. IEEE Transactions on Robotics.

[Kala et al., 2010] Kala, R., Shukla, A., and Tiwari, R. (2010). Fusion of probabilistic a*

algorithm and fuzzy inference system for robotic path planning. Arti�cial Intelligence Review,

33(4):307�327.

[Kohlbrecher et al., 2012] Kohlbrecher, S., Meyer, J., Petersen, K., and Graber, T. (2012).

Hector slam for robust mapping in usar environments. In ROS RoboCup Rescue Summer

School, Graz, Austria.

57

http://gazebosim.org/

BIBLIOGRAPHY

[Kohlbrecher et al., 2011] Kohlbrecher, S., Stryk, O. V., Darmstadt, T. U., Meyer, J., and

Klingauf, U. (2011). A �exible and scalable slam system with full 3d motion estimation. In

in International Symposium on Safety, Security, and Rescue Robotics. IEEE.

[Krotkov et al., 1996] Krotkov, E., Simmons, R., Cozman, F., and Koenig, S. (1996). Safe-

guarded teleoperation for lunar rovers: From human factors to �eld trials. In In Proc. IEEE

Planetary Rover Technology and Systems Workshop.

[Lavalle, 1998] Lavalle, S. M. (1998). Rapidly-exploring random trees: A new tool for path

planning. Technical report.

[Lee, 1993] Lee, S. (1993). Intelligent sensing and control for advanced teleoperation. Control

Systems, IEEE, 13(3):19�28.

[Lopes et al., 2012] Lopes, A., Pires, G., and Nunes, U. (2012). Robchair: Experiments evalu-

ating brain-computer interface to steer a semi-autonomous wheelchair. IEEE/RSJ Interna-

tional Conference on Intelligent Robots and Systems (IROS12).

[Lopes et al., 2011] Lopes, A., Pires, G., Vaz, L., and Nunes, U. (2011). Wheelchair navigation

assisted by human-machine shared-control and a p300-based bci. IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS11).

[Lopes, 2012] Lopes, A. C. (2012). Mobile Robot Assisted Navigation based on Collaborative

Control. PhD thesis, University of Coimbra.

[Lopes et al., 2013] Lopes, A. C., Pires, G., and Nunes, U. (2013). Assisted navigation for

a brain-actuated intelligent wheelchair. International Journal of Robotics and Autonomous

Systems.

[Lucas and Kanade, 1981] Lucas, B. D. and Kanade, T. (1981). An iterative image registration

technique with an application to stereo vision. pages 674�679.

[Marder-Eppstein et al., 2010] Marder-Eppstein, E., Berger, E., Foote, T., Gerkey, B., and

Konolige, K. (2010). The o�ce marathon: Robust navigation in an indoor o�ce environment.

In International Conference on Robotics and Automation.

[Marder-Eppstein and Perko, 2014] Marder-Eppstein, E. and Perko, E. (2014). Navigation

stack description website. Available from: http://wiki.ros.org/navigation.

[Minguez and Montano, 2004] Minguez, J. and Montano, L. (2004). Nearness diagram (nd)

navigation: collision avoidance in troublesome scenarios. Robotics and Automation, IEEE

Transactions on, 20(1):45�59.

58

http://wiki.ros.org/navigation

BIBLIOGRAPHY

[Monferrer and Bonyuet, 2002] Monferrer, A. and Bonyuet, D. (2002). Cooperative robot tele-

operation through virtual reality interfaces. In Information Visualisation, 2002. Proceedings.

Sixth International Conference on, pages 243�248.

[Montesano et al., 2010] Montesano, L., Diaz, M., Bhaskar, S., and Minguez, J. (2010). To-

wards an intelligent wheelchair system for users with cerebral palsy. Neural Systems and

Rehabilitation Engineering, IEEE Transactions on, 18(2):193�202.

[Nijboer et al., 2008] Nijboer, F., Sellers, E. W., Mellinger, J., Jordan, M. A., Matuz, T.,

Furdea, A., Halder, S., Mochty, U., Krusienski, D. J., Vaughan, T. M., Wolpaw, J. R.,

Birbaumer, N., and Kubler, A. (2008). A p300-based brain-computer interface for people

with amyotrophic lateral sclerosis. Clin Neurophysiol, 119(8):1909�16.

[Nuchter, 2010] Nuchter, A. (2010). 3D Robotic Mapping: The Simultaneous Localization and

Mapping Problem with Six Degrees of Freedom. Springer-Verlag.

[Ong et al., 2005] Ong, K. W., Seet, G., and Sim, S. K. (2005). Sharing and trading in a

human-robot system. Cutting Edge Robotics, pages 467�496.

[Papanikolopoulos and Khosla, 1992] Papanikolopoulos, N. and Khosla, P. (1992). Shared and

traded telerobotic visual control. In Robotics and Automation, 1992. Proceedings., 1992

IEEE International Conference on, volume 1, pages 878�885.

[Park et al., 2012] Park, J., Johnson, C., and Kuipers, B. (2012). Robot navigation with model

predictive equilibrium point control. IEEE/RSJ Int. Conf. on Intelligent Robots and Systems

(IROS).

[Patel et al., 2012] Patel, M., Miro, J. V., and Dissanayake, G. (2012). Probabilistic activity

models to support activities of daily living for wheelchair users. IROS 2012 Workshop on

Progress, challenges and future perspectives in navigation and manipulation assistance for

robotic wheelchairs.

[Pires et al., 2008] Pires, G., Castelo-Branco, M., and Nunes, U. (2008). Visual p300-based bci

to steer a wheelchair: a bayesian approach. Conf Proc IEEE Eng Med Biol Soc, 2008:658�61.

[Pires and Nunes, 2002] Pires, G. and Nunes, U. (2002). A wheelchair steered through voice

commands and assisted by a reactive fuzzy-logic controller. Journal of Intelligent and Robotic

Systems, 34:301�314.

[Pires et al., 2011] Pires, G., Nunes, U., and Castelo-Branco, M. (2011). Statistical spatial

�ltering for a p300-based bci: tests in able-bodied, and patients with cerebral palsy and

amyotrophic lateral sclerosis. Journal of neuroscience methods, 195(2):270�281.

59

BIBLIOGRAPHY

[Pires et al., 2012] Pires, G., Nunes, U., and Castelo-Branco, M. (2012). Comparison of a row-

column speller vs. a novel lateral single-character speller: Assessment of bci for severe motor

disabled patients. Clinical Neurophysiology, 123(6):1168�1181.

[Pires, 2001] Pires, G. P. (2001). Navegação assistida de uma cadeira de rodas controlada por

computador e com interface de voz.

[Pires, 2011a] Pires, G. P. (2011a). Biosignal Classi�cation for Human Interface with Devices

and Surrounding Environment. PhD thesis, University of Coimbra.

[Pires, 2011b] Pires, G. P. (2011b). Protocolo de Comunicação.

[Pradhan et al., 2006] Pradhan, S. K., Parhi, D. R., Panda, A. K., and Behera, R. K. (2006).

Potential �eld method to navigate several mobile robots. Applied Intelligence, 25(3):321�333.

[Rios-Martinez et al., 2011] Rios-Martinez, J., Spalanzani, A., and Laugier, C. (2011). Under-

standing human interaction for probabilistic autonomous navigation using risk-rrt approach.

IEEE/RSJ International Conference on Intelligent Robots and Systems.

[Rogers et al., 1996] Rogers, E., Murphy, R. R., Stewart, A., and Warsi, N. (1996). Cooperative

assistance for remote robot supervision. Presence, 5:224�240.

[Shih et al., 2012] Shih, J. J., Krusienski, D. J., and Wolpaw, J. R. (2012). Brain computer

interface in medicine. volume 87, pages 268�279.

[Siciliano and Khatib, 2008] Siciliano, B. and Khatib, O., editors (2008). Springer Handbook

of Robotics. Springer.

[Siegwart et al., 2011] Siegwart, R., Nourbakhsh, I., and Scaramuzza, D. (2011). Introduction

to Autonomous Mobile Robots. Intelligent Robotics and Autonomous Agents. Mit Press.

[Simmons, 1996] Simmons, R. (1996). The curvature-velocity method for local obstacle avoid-

ance. In In Proc. of the IEEE International Conference on Robotics and Automation, pages

3375�3382.

[Stentz, 1995] Stentz, A. (1995). The focussed d* algorithm for real-time replanning. In In

Proceedings of the International Joint Conference on Arti�cial Intelligence, pages 1652�1659.

[Thrun et al., 2005] Thrun, S., Burgard, W., and Fox, D. (2005). Probabilistic Robotics. Intel-

ligent robotics and autonomous agents series. Mit Press.

[Vanhooydonck et al., 2010] Vanhooydonck, D., Demeester, E., Hantemann, A., Philips, J.,

Vanacker, G., Brussel, H. V., and Nuttin, M. (2010). Adaptable navigational assistance

for intelligent wheelchairs by means of an implicit personalized user model. Robotics and

Autonomous Systems, 58(8):963�977.

60

BIBLIOGRAPHY

[Vidal, 1973] Vidal, J. J. (1973). Toward direct brain-computer communication. Annual Review

of Biophysics and Bioengineering, 2:157�180.

[Wasson and Gunderson, 2001] Wasson, G. S. and Gunderson, J. P. (2001). Variable autonomy

in a shared control pedestrian mobility aid for the elderly.

[Zeng et al., 2008] Zeng, Q., Teo, C. L., Rebsamen, B., and Burdet, E. (2008). A collaborative

wheelchair system. Neural Systems and Rehabilitation Engineering, IEEE Transactions on,

16(2):161�170.

61

	Acknowledgements
	Resumo
	Abstract
	List of Figures
	List of Tables
	Nomenclature
	Introduction
	Motivation and context
	Goals
	Implementations and key contributions

	Background and literature
	Robotic Wheelchairs
	Localization and Mapping
	Definition of the SLAM problem
	Darmstadt's team Hector approach to SLAM
	Preprocessing
	Scan Matching
	Qualitative comparison with other SLAM implementations

	Path Planning
	Dijkstra's graph search algorithm
	Dynamic Window Approach

	Semi-autonomous Control
	Shared Control
	Traded Control
	Collaborative Control
	Applications of Collaborative Control in the literature

	Human-Machine Interfaces
	Brain Computer Interfaces

	ANS Architecture
	System goals and requirements
	Generic System overview
	HMI protocol
	Collaborative Controller
	Navigation module
	Perception module
	Robot

	Collaborative Controller
	Controller design issues
	Collaborative Control Design
	Virtual Constraint (Traded Controller)
	Intent Matcher (Shared Controller)

	Implementation for RobChair
	HMI integration
	Navigation module
	move_base package
	options_server node

	Perception Module
	Topological State Observer
	Obstacle Detection

	Collaborative Controller module
	Simulation in Gazebo
	Physical Layer

	Experiments
	SLAM
	Detected Problems

	Autonomous navigation

	Conclusion and future work
	Conclusion
	Future work

	Bibliography

