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Abstract 

This thesis presents a research work on no-reference quality assessment models for use in future 

3D video broadcast applications over packet-loss-prone channels, such as Internet Protocol 

networks. The objective is to study the state-of-the-art quality measures for 3D video, described 

in the scientific literature, and to propose new empirical quality evaluation methods specific for 

packet-loss effects on the 3D quality of experience (QoE).  

Empirical models with different granularities for outputting scores are proposed: sequence-level, 

GOP-level, and frame-level. The methods’ main input parameters are the average Packet-Loss-

Rate, types of affected frames (I, P or B) and some pixel-domain descriptors of the 

spatiotemporal complexity and packet-loss concealment artifacts, of both the texture and depth 

packet-streams. The outputs are the Peak-Signal-to-Noise Ratio (PSNR) and Structural 

Similarities Index Model (SSIM) – or their averages in the case of coarse granularities – of the 

DIBR-synthesized view of interest. The modeling approach used to obtain the functional 

relationship between inputs and outputs was based on neural networks, as they support a large 

number of inputs, with low computational complexity after training. In order to train these 

models with an acceptable generalization, hundreds of transmission simulations were performed 

with different packet-loss-rates and mean-burst-lengths. Most of the models achieve very high 

accuracy: Pearson Linear Correlation Coefficient (PLCC) over 0.95 between estimates and the 

data. In order to measure the correlation between the sequence-level objective quality scores and 

the corresponding differential mean opinion score (DMOS) values, a set of subjective tests was 

performed involving 35 participants. Results show that DMOS correlates very well with the 

estimated DMOS from the average PSNR of the synthesized view (PLCC of 0.98) and 

reasonably well with the estimated DMOS from the average SSIM (PLCC of 0.89). 

The proposed methodologies and empirical models can be used in an industrial setting, deployed 

in real-time quality monitoring systems of service and network providers, in order to identify and 

classify the severity of the QoE degradations due to transmission losses (e.g. PT Inovação 

ArQoS®). 

 

Keywords: 3D Video, texture-plus-depth, depth-image-based rendering, transmission losses, 

Quality of Service, Quality of Experience, no-reference quality assessment, low complexity, 

neural networks. 



 



 

Resumo 

Esta dissertação apresenta um trabalho de investigação no âmbito de modelos sem referência 

para avaliação de qualidade de vídeo 3D, no formato textura-mais-profundidade. No futuro, 

espera-se que sinais de vídeo 3D venham a ser difundidos neste formato, em redes de pacotes 

sujeitas a perdas, como por exemplo redes IP, substituindo progressivamente a difusão 2D. O 

objectivo é estudar o estado-da-arte no que respeita aos modelos de qualidade de vídeo 3D, 

publicados na literatura científica, e propor novos modelos empíricos específicos que permitam 

quantificar de forma perceptualmente consistente os efeitos das perdas de pacotes na qualidade 

de experiência (QoE). 

Modelos empíricos com diferentes granularidades são propostos nesta dissertação: sequência-a-

sequência, GOP-a-GOP e trama-a-trama. Os principais parâmetros de entrada destes modelos são 

a taxa média de perda de pacotes, os tipos de tramas afectadas (I, P ou B) e alguns descritores de 

complexidade espácio-temporal e de degradação por disfarce de erros, definidos no domínio do 

pixel, para a textura e a profundidade. As saídas dos modelos são o PSNR e o SSIM – ou a sua 

média ao longo de uma série de tramas consecutivas – da vista sintetizada em consideração. A 

abordagem seguida para a modelação baseia-se em redes neuronais, pois estas suportam um 

número elevado de entradas e o seu desempenho, após a fase de treino, é de baixa complexidade 

computacional. Para treinar estes modelos com boa capacidade de generalização, foi necessário 

efectuar milhares de simulações com diferentes taxas de perdas de pacotes e diferentes 

comprimentos médios de rajadas. A maioria dos modelos revelou uma correlação elevada (PLCC 

acima de 0.95) entre as saídas e os valores objectivo. Além disso, foi efectuado um conjunto de 

testes de avaliação subjectiva envolvendo 35 participantes, com o objectivo de medir a 

correlação entre os valores de qualidade objectiva médios das sequências e os valores DMOS. Os 

resultados revelam que os valores de opinião média diferencial (DMOS) exibem uma correlação 

elevada com a DMOS estimada a partir do PSNR médio da vista sintetizada (PLCC de 0.98) e 

uma correlação média-elevada com a DMOS estimada a partir do SSIM médio (PLCC de 0.89). 

Assim, as metodologias e modelos empíricos propostos podem ser usados em ambiente 

industrial, implementados em sistemas de monitorização de tempo real de QoE dos operadores 

de serviço e de rede, para identificação e classificação da severidade de degradações devido a 

perdas nas transmissões (e.g. PT Inovação ArQoS®). 



 

Palavras-chave: Vídeo 3D, textura-mais-profundidade, síntese baseada em mapas de 

profundidade (DIBR), perdas na transmissão, qualidade de serviço, qualidade de experiência, 

avaliação de qualidade sem referência, baixa complexidade, redes neuronais.   
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Chapter 1 -  Introduction 

«It would take an individual over 5 million years to watch the amount of video that will cross 

global IP networks each month in 2017». 

Cisco: The Zettabyte Era — Trends and Analysis (May 29, 2013) 

1.1 Context and motivation 

As the demand for digital 3D video is increasing, in part due to the growing offer of 3D cinema 

immersive feature films, it is expected that in a few years broadcasts of 3D Television (3DTV) 

will become part of our everyday life, progressively replacing 2D television broadcasts. Some 

small steps have already been made towards this goal: since 2008, some live sport events have 

been broadcasted in 2D-frame-compatible side-by-side stereo format. Most current 3D video 

solutions are based on the rendering and displaying of multiplexed left and right views. Special 

passive anaglyphic, polarized, or active-shutter glasses channel each view to the corresponding 

human eye, inducing the stereo parallax that allows depth perception. However, some experts 

believe that the breakthrough for 3D television will only come when glasses won’t be needed to 

that purpose, with the use of autostereoscopic or even the holographic displays.  

Moreover, the fast growth of the 2D – and, in the future, 3D – television broadcasted over the 

Internet (IPTV) and Video-on-Demand (VOD) services will drastically increase the amount of 

data traffic exchanged in the supporting networks. According to a recent forecast published by 

Cisco [1], annual global IP traffic has increased more than fourfold in the past five years, and is 

expected to increase threefold over the next five years, surpassing the zettabyte (1021 bytes) 

threshold by the end of 2015. As shown in Figure 1.1, consumer Internet video traffic (P2P 

traffic excluded) will represent 73% of all consumer Internet traffic in 2017, up from 60% in 

2012. If we include the video exchanged through P2P file sharing systems, this ratio will surpass 

80%. This huge traffic growth will raise the bar for the coding and compression efficiency 

requirements and force the upgrade of network infrastructures and transmission protocols to 

support higher bandwidths; otherwise the network quality of service (QoS) will decrease as a 

result of increased traffic, leading to congestion in routers and, consequently, packet losses, 

specially in the cases of real-time protocols (like RTP) that do not allow retransmissions. Severe 

jitter, defined as the temporal variations of the propagation delay of consecutive packets, also 

leads to events similar to packet losses as a result of the uselessness of the video data received 

outside of its usability time-window. 
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Figure 1.1 – Global consumer IP traffic forecast by Cisco  

The goal of any multimedia delivery system is to ensure the best video end quality possible. As 

described in [2], in an IPTV or a VOD service, a single digital video item might pass from 

content provider to service provider to network provider before reaching the end viewer. The 

content provider wants to ensure that their video, which he created with a given quality level, is 

not further degraded when delivered to the final consumer; service providers want to guarantee 

that the video they got from the content provider has sufficient quality and that the network 

provider does not degrade it significantly, in order to protect their brand images.  

Deploying video quality monitors at the set-top box receiver, or even at some node in the 

transport network, allows managing the streaming services by adjusting dynamically some of the 

transmission (and coding) parameters in order to deliver content at adequate perceived quality 

level, while optimizing resource usage [3], [4]. For instance, for large bit-error wireless channels, 

video can be transcoded at the edge of the wired network by decreasing the coding bitrate: in 

other words, by lowering the video quality with more aggressive source coding. This strategy 

would leave more bits available for improved error protection schemes, with stronger Forward 

Error Correction codes. In an automatic quality controller, unequal protection schemes may be 

used to improve protection for the most important packets in detriment to the less important 

ones, effectively assigning different priorities to different data [5], [6]. As an example of the 

application of this principle, in the case of 3D video in the texture-plus-depth format  

(exemplified in Figure 1.2 and explained in chapter 2), packets carrying texture data may be 

labeled as more important than those transporting depth information [7]. In reliable transmission 

scenarios, the continuous measurement of the jitter allows the receiver to adjust the buffer size 

and buffering times, and to request the retransmission of lost packets, at least the most important 
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Figure 1.2 – Example of a frame extracted from a 3D video in texture-plus-depth format, which is the scope of this 
thesis. It consists of the texture frame (left) and the per-pixel depth information in the form of a depth map (right). 

ones. Finally, if all these quality control mechanisms proved to be unsuccessful, providers may 

adopt variable billing schemes, according to the quality of the received contents. It is thus clear 

that digital video quality monitoring is becoming a more and more important for operation and 

management of (3D) video delivery systems. Currently, PT Inovação uses the quality monitoring 

system ArQoS® for voice calls/connections over different kinds of network technologies (fixed/ 

mobile/IP) [8], and in the future is expected to add new modules related to (3D) video quality. 

Researchers working on objective visual quality assessment aim to create methodologies and 

models capable of predicting the perceived quality of a visual stimulus, by humans [9]. However, 

perceived quality is subjective, and so varies from observer to observer. Thus, in order to obtain 

a mean opinion score (MOS) of the perceived quality of a given visual stimulus (e.g. image, 

video), a sizeable quantity of human observers (at least 15) is shown that stimulus and are asked 

to evaluate it on an opinion grading scale [10], [11]. Scores outputted from an objective model 

used for assessing the perceived quality of that stimulus (among other similar assessed stimuli) 

must correlate with MOS. Yet, measuring perceived quality of video which has been subject to 

rare and unpredictable events like packet losses is a challenging quality assessment problem [2]. 

To distinguish a good quality video from one with bad quality, it is common to aggregate 

technical factors such as the spatiotemporal resolution and the presence of distortions or artifacts 

due to compression and transmission impairments like: blurring, ringing, jagged motion, 

ghosting, freezing, blocking or slicing effects (Figure 1.3). In 3D video based on the texture-

plus-depth format, we also need to take into account the visual comfort and distortions induced 

by rendering of virtual views using depth-image-based rendering (DIBR). Even if the overall 

quality of the 2D texture is excellent, distortions affecting the depth information, inconsistent 

rendering of virtual views, sub-optimal display conditions, and the vergence–accommodation 

conflict may lead to degradation in the perception of depth, visual fatigue and severe mental 

confusion, in other words, a terrible quality of experience (QoE) for the viewer. 
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Figure 1.3 – Examples of low quality visual stimuli: (left) frame from a blurred and magnified low-resolution video; 
(right) frame affected by severe loss in decoded video. 

Although one can consider the 3D video as a simple extension of the 2D video, the classical 

methods for 2D video quality assessment are not well suited to fully assess 3D video quality. The 

MOS obtained from subjective assessment sessions becomes multidimensional: in addition to the 

image quality itself, depth perception and visual comfort of the displayer’s technology would 

play a major role in the subjects opinion [12], so that global subjective quality scores result from 

a combination of those factors weighted according to the subject’s criteria. As a result of these 

specificities, the problem of estimating 3D video overall quality is a lot more complex than the 

corresponding problem of evaluating 2D video quality. 

1.2 Objectives and main contributions 

This thesis presents a study on objective 3D video quality measures able to quantify the effects 

of packet losses on the quality of the 3D video (in the texture-plus-depth format) decoded after 

impaired transmission, with emphasis on losses of the depth information. To simplify the 

problem and decouple coding and transmission effects, the original uncompressed quality as well 

as compression/coding related quality degradations of both texture and depth information are not 

taken into account in this work. Thus, only the effects of the artifacts affecting synthesized 

virtual views which are due to packet losses are studied and modeled. 

The objectives of this thesis, as well as its main scientific contributions, are summarized in the 

following four topics: 

• Conduct a bibliographic search on recent methodologies and models published in 

recent scientific journals and conference proceedings dealing with topics related to the 

evaluation of quality of texture-plus-depth 3D video. Prepare a comparative analysis of 

the most promising works from the point-of-view of their applicability to the subject 

matter of this thesis. 
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• Propose and study new approaches for objective quality assessment of DIBR-

synthesized 3D video subject to packet losses, averaged on a temporal window, based 

on no-reference packet-level and low-complexity empirical models.  

• Conduct a subjective assessment study, focused on depth-only impaired 3D videos, in 

order to measure the correlation between the objective quality scores from the previous 

models and the MOS values, and evaluate their efficiency. 

• Propose and study new approaches for frame-level objective quality assessment of 

DIBR-synthesized 3D video subject to packet losses, based on no-reference media-

layer low-complexity descriptors and packet-layer parameters. 

During the development of the work and writing of this thesis, two articles describing no-

reference models for 3D video quality prediction [13], [14] were written, published and 

presented in two scientific conferences: 9th Conference on Telecommunications and IEEE ICC 

2013. Other two short papers describing the methodologies and results of packet-layer models 

for DIBR-synthesized 3D video quality assessment (chapters 5 and 6 of this thesis) and an article 

that describes some hybrid models for frame-level objective quality assessment (chapter 7) are 

currently being prepared for submission.  

1.3 Outline of the thesis 

In chapter 2, the state-of-the-art of the DIBR-based 3D video is presented, with emphasis on 

depth map estimation issues, coding and transmission solutions and schemes, and the 

mathematical description of the virtual view synthesis used in DIBR.  

Chapter 3 provides information on the state-of-the-art methods for multimedia quality 

assessment, using a methodology based on the classification of the methods according to the use 

(or lack) of original un-encoded video information.  

In chapter 4, the fundamentals of the H.264/AVC video coding and error concealment technique 

used in the Joint Model (JM) Reference Software are explained. The Gilbert-Elliot model to 

obtain packet-loss traces used in the transmitter-simulator software is also explained. 

Chapter 5 describes the packet-layer model proposed to evaluate synthesized 3D video subject to 

packet losses and presents results of its application to several test cases, at sequence- and GOP-

level. 
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In chapter 6, the procedures followed in and the results of the subjective assessment study of the 

impaired 3D videos are presented.  

Chapter 7 describes the procedures and results of the frame-level hybrid quality assessment 

model for impaired synthesized 3D video.  

Finally, chapter 8 concludes this thesis by summarizing the results obtained and suggesting 

future research activities to be performed on the same subject. 
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Chapter 2 -  DIBR-based 3D video 

2.1 System overview and advantages of DIBR-based 3D video 

There are three main types of 3D scene representations:  

• Volumetric representation: is the natural extension from 2D to 3D, where instead of 

pixels the data are represented by voxels. This representation is mainly used in computer-

generated graphics for gaming or medical purposes, and is out of the scope of this thesis. 

• Multiview representation: the 3D visual information is represented with a minimum of 

two views, known as conventional stereo video (CSV) and used for example in 3D 

cinema, to dozens of views. There are a few possible coding and transmission approaches 

suitable for use with this type of representation: (a) simulcast of one or more 2D views; 

(b) frame-compatible formats by multiplexing two or more views into single composite 

2D frames, such as left-right, top-down, interlaced or anaglyphic; (c) multi-view coding 

(MVC), probably the most efficient approach for this representation, by exploiting 

redundancies between views – inter-view prediction – and encode them into a single 

bitstream. As the details of these approaches are not in the scope of this work, please 

refer to [15] for further information. 

• Depth-Based representation: is a simple extension from 2D video (texture), enhanced 

with its associated per-pixel depth information, known as depth maps, used to synthesize 

virtual views in real-time (exemplified in Figure 2.1). Similarly to the case of multiview 

video, we can use different coding and transmission arrangements, from the simple 

video-plus-depth simulcast to the extended multiview-plus-depth format (MVD). 

                      

Figure 2.1 – Example of a virtual view synthesis with the 1st frame of Champagne Tower. Left: texture-plus-depth 
frame from the original view. Right: corresponding frame of the virtual view of a camera placed to the right of the 

original camera, synthesized with the MPEG View Synthesis Reference Software (VSRS 3.5). 

synthesis 
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Figure 2.2 – General concept of a 3D video broadcasting system based on texture-plus-depth video. 

The depth-based representation is believed to be the choice for future 3D video storage and 

broadcast systems, because it comprises a number of advantages [16], such as: 

• Possibility of a customized 3D experience, with either stereoscopic or autostereoscopic 

displays, according to personal preferences of the viewer (e.g. more or less presence). 

• Simulation of head-motion parallax, creating a look-around effect and eliminating “shear-

distortions”. 

• Efficient compression: noise-free depth maps can be compressed up to 25% of the texture 

bitrate [17], which is makes 3D video format based on texture complemented with depth 

information compatible with the current transmission bandwidth. 

• Absence of photometrical asymmetries, in terms of brightness, contrast or color between 

the views, as they are all synthesized from the same original 2D texture. 

The overall 3D Video delivery chain is presented in Figure 2.2, which shows the main stages: 

2D-plus-depth content generation, coding, transmission, decoding, DIBR-synthesis and display.  

2.2 Estimation and representation of depth maps 

Depth estimation techniques can be classified into two categories: 

• Optical active estimation [18], [19], using time-of-flight (TOF) cameras such as ZCam, 

Kinect and Fotonic. Typically infrared light is projected from the TOF camera, is 

reflected by the objects in the scene, being captured by the receiver sensor to rebuild the 

depth information based on the flight time. Issues regarding the low spatial resolution, 

low depth range, low reflectance of dark objects, and inaccurate depth estimation on 

object boundaries make this approach seldom used for the scope of 3DTV. 

• Image-based passive estimation [20]–[22], which has been widely studied. The 

estimation is based on a frame-wise pixel or block matching between different views, or 

in case of direct 2D-to-3D conversion, the estimation is based on motion information 

from two consecutive frames. As the computational complexity is very high, hardware-

based solutions are the most promising for real-time depth estimation. 
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Figure 2.3 – Stereo camera geometry (seen from top), and depth representation. [23] 

Depth maps are typically encoded as greyscale image sequences, with the same spatiotemporal 

resolution of the texture. Each pixel represents the inverse of the depth value of the co-located 

texture pixel, quantized to 8-bits. The inverse relation between the depth and the map value is 

given by equation (2.1): 

 ( )
max min max

1 1 1 1255dI z round
z z z z

    
= ⋅ − −    

    
  (2.1) 

where  and  are defined as the minimum and maximum distances recorded in a video 

sequence, and   is the real depth of the pixel, in some user-defined unity. 

As we can see in Figure 2.3, this representation offers a finer distance resolution for closer 

objects, and coarser resolution for farther objects. This differentiation of resolution with respect 

to distance is in accord with the human perception of depth.  

As the state-of-the-art passive depth estimation algorithms operate on a frame-by-frame basis, 

depth maps often exhibit temporal inconsistencies or noise, as shown in Figure 2.4. These 

inconsistencies reduce the effectiveness of the temporal prediction used in state-of-the-art video 

encoders like H.264/AVC, resulting in harder-to-code depth maps. Nevertheless, provided a high 

enough bitrate is used during the coding, such temporal inconsistencies generally do not degrade 

the quality of the virtual views if the texture pattern, located in the depth noise regions, is 

uniform. 

minz maxz

z
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Figure 2.4 – Three consecutive depth frames from Kendo, to exemplify temporal inconsistencies from estimation.  

2.3 Transmission schemes in packet networks 

Broadcasted video encoded using H.264/AVC is packetized into Network Abstraction Layer 

(NAL) packets, which contains information of a frame or a portion of a frame (slice), and then 

encapsulated into 188 byte MPEG-2 Transport Stream (TS) packets. To transport the TS packets 

over IP networks, they are grouped into seven packets and encapsulated into RTP/UDP/IPv4 

datagrams [24], as shown in Figure 2.5. 

 

Figure 2.5 – MPEG-2 TS/RTP/UDP/IPv4 encapsulation [24]. 

Different coding and transmission schemes may be adopted for texture-plus-depth video, with 

different purposes and levels of backward compatibilities. For instance, Figure 2.6 (a) shows the 

simplest mode of simulcasting texture and depth in independent bitstreams. A 3D set-top box 

decodes the texture and depth (two different program streams) simultaneously, then synthesizes 

the virtual views, and sends them to a stereo/multiview display; a 2D set-top box only decodes 

one channel (the texture is the natural choice) and sends the output to a 2D display. Thus, the 

simulcast approach is fully backward compatible, but has the poorest efficiency, mainly because 

the encoder does not exploit redundancies between texture and depth, like the similarities of 

texture and depth motion vectors. Figure 2.6 (b) is a scheme similar to the frame-compatible 

CSV where in this case a composite frame is made up of the texture side-by-side with the depth 

map. This arrangement is signaled with Supplementary Enhancement Information (SEI) 

messages multiplexed in the bitstream, and may not be fully backward compatible if the 2D set-

top box does not interpret correctly the SEI messages in order to decode and present in the 



11 

display only the texture (possibly after an interpolation for restoring the original frame 

resolution). Moreover, this scheme may be more efficient if the motion vectors of both texture 

and depth are shared. However, the main drawback is that the H.264/AVC encoder will encode 

both texture and depth in the same NAL units, or in the same bitstream, leading to poor 

transmission loss resilience. Figure 2.6 (c) shows a more efficient scheme with scalability, in 

which the texture is encoded as the base layer and the depth is encoded as an enhancement layer, 

with shared motion vectors from the texture. The bitstreams are separated, making this approach 

backward-compatible with 2D set-top boxes, which discard the unknown depth information. This 

last approach is more error-resilient because the enhancement-layer may be corrupted and the 

base-layer still may be correctly decoded. 

 

 

Figure 2.6 – Examples of approaches for texture-plus-depth coding and transmission: H.264/AVC Simulcast (a), 
H.264/AVC Frame-Compatible (b), and H.264/SVC with Scalability (c). 
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2.4 DIBR view synthesis – mathematical description 

In this section, the mathematical 3D image warping formalism [16] describing the view synthesis 

procedure will be briefly explained. Consider a system of two coplanar cameras separated by the 

distance s∆  (baseline), and an arbitrary 3D space point ( , , )TP x y z=  with the projections 

( ), T
l l lp u v=   and ( ), T

r r rp u v=  in the original (left) – resp. virtual (right) view, as shown in 

Figure 2.3. Let the 3x3 matrices lR  and rR , and the 3x1 vectors lt  and rt  define the rotation and 

translation that transform the space point from the world coordinate system into the camera 

coordinate system of the left and right cameras (extrinsic parameters); let the two upper 

triangular 3×3 matrices lA  and rA  specify the intrinsic parameters of the cameras, according to:  

 
focal length radial distortion principal point 

0.0 focal length principal point 
0.0 0.0 1.0

x x
A y y

 
 =  
  

  (2.2) 

Let lz and rz  describe the scene depth in each camera coordinate system, and let’s assume, 

without losing generality, that the world coordinate system equals the camera coordinate system 

of the left camera, such as 3lR I=  and [ ]0 0 0 T
lt = . Then, the two perspective projection 

equations that map point P  to points lp  and rp  of the views are:  

  [ ] [ ]| | 0
1 1

1

l l

l l l l l l l l l l l

x
u u x

y
z p A R t P z v A I z v A y

z
z

 
      
      = ⇔ = ⇔ =      
           

 

  (2.3) 

  [ ] [ ]| |
1 1

1

r r

r r r r r r r r r r r r r r r r

x
u u x

y
z p A R t P z v A R t z v A R y A t

z
z

 
      
      = ⇔ = ⇔ = +      
           

 

  (2.4) 

where the tilde variables symbolize point coordinates in homogeneous notation. Inverting the 

final form of equation (2.3), leads to: 

 

1 1

1

l

l l l l l l

x u
y z A v P z A p
z

− −

   
   = ⇔ =   
      

   (2.5) 
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Substituting equation (2.5) into equation (2.4) leads to the classical affine disparity equation, 

which defines the depth-dependent relation between corresponding points in two images of the 

same scene: 

  

1 1

1 1

r l

r r l r r l l r r r r l r r l l r r

u u
z v z A R A v A t z p z A R A p A t− −

   
   = + ⇔ = +   
      

  (2.6) 

Taking into account simplifications on the geometry of the problem, namely that the intrinsic 

parameters of both cameras are equal (except the horizontal shift h  of the respective principal 

points) and that the movement of the right virtual camera is restricted to be translational in the x-

axis with respect to the original left camera, it follows that r lA A A= = , r lR R I= =  and 

l rz z Z= =  .  

Therefore, Equation (2.6) reduces to: 

 0           ,       with      0  
1 1 0 0

r l

r l

u u h s
Atv v t
Z

η ⋅∆       
       = + + =       
              

  (2.7) 

Finally, the pixel coordinates ru  and rv of the virtual view can be obtained as: 

       ,      with     
u

r l u

c
r l

su u h shZ
Zv v

αη αη
⋅∆ = + + ⋅∆ = −

 =

  (2.8) 

in which cZ  is the convergence distance and uα  represent focal length in multiples of the pixel 

width, defined as u uf mα = ⋅ , where um  is the scale factor relating pixels to distance. 1η =  if 

the virtual view is to the right of the original camera (as in Figure 2.3), and 1η = −  otherwise. 

Equation (2.7) gives the warping pixel mapping from the left view (original) to the right view 

(virtual). Note that the depth values Z  can be retrieved from depth maps by inverting equation 

(2.1), according to: 

 
1

min max max

( ) 1 1 1
255
dI zZ

z z z

−
  

= − +  
  

  (2.9) 
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2.5 Analysis and illustration of occlusions and hole-filling in DIBR 

Taking into account the assumptions and simplifications that lead to equation (2.8), one can 

analyze the DIBR as a one-dimensional pixel mapping, performed over the frame line-by-line. 

Let ( )C u  be a generic pixel array representing a single horizontal line extracted from a texture 

frame; let *( )V u  be the pixel array representing the co-located single line from the synthesized 

virtual view. The pixel mapping can be interpreted as follows: 

 ( ) ( ) ( ) ( )* ( )V u C u V u d u C u= ⇔ + =   (2.10) 

where ( )d u represent the disparity in units of pixels, computed from the depth information, as 

previously discussed. We can also define a generic function as follows: 

 ( )* ( )u f u u d u= = +   (2.11) 

This function is, by rule, non-injective, meaning that different values for u  (i.e. different pixels) 

may be mapped to the same value *u . This originates occlusions, in which foreground objects 

are interposed in the line of sight of background objects, leading to pixel superposition by 

replacement. Furthermore, this function is also, by rule, non-surjective, meaning that the pixel 

mapping may not cover the entire codomain of *u . This originates deocclusions, in which 

foreground objects move away from background previously occluded objects, leading to “holes”, 

as shown in Figure 2.7. However, the view-synthesis algorithm must guarantee that the virtual 

view does not show “black holes” from deocclusions (Figure 2.8), and must put foreground 

objects in front of background objects during occlusions. In other words, it must assure an 

injective and surjective mapping: that’s why this algorithm is typically performed iteratively, in a 

specific rastering direction that depends on the position of the virtual view camera with respect 

to the original view camera. Figure 2.9 shows an example of pixel mapping for a left and right 

virtual view, according to the generic function (2.11). 

The quality of the hole-filling technique plays a major role in the quality of the virtual 

synthesized views, and a lot of effort has been put into this topic to find good solutions [25]–

[27]. Typical solutions are based on the replication of the background pixel next to the 

foreground. Spatiotemporal low-pass filtering on these deoccluded regions is helpful to reduce 

noise and smooth the “unknown” texture. Besides, it has to be assured that coded depth maps 

object edges retain their original quality, i.e. they don't show compression artifacts. That may be 

very difficult to accomplish with the state-of-the-art encoders such as H.264/AVC, calling for 

solutions to improve the depth map coding efficiency such as that of [28]. 
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Figure 2.7 – Luminance1

              

 of the left and right synthesized views of the Ballet’s 1st frame, without hole-filling  
(the green color serves here only to highlight no-filled deoccluded regions, or holes). 

Figure 2.8 – Left and right synthesized views of the Ballet’s 1st frame, with the hole-filling technique developed for 
the work in [29].  

  

Figure 2.9 – Mapping functions for left and right views of the Ballet’s 1st frame – 450th line. 

                                                 
1 Luminance (Y) is the monochromatic representation of an RGB color image. Color is added by two chrominance components: 
U and V. These components are defined as linear combinations of the RGB color channels. 
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2.6 Stereo/multiview displaying and free viewpoint video 

Once the desired views are synthesized, they are ready to be presented to the viewer in a 3D 

display. There are two main technologies for 3D displaying: (a) stereoscopic, currently used in 

3D cinema and widely available on the market for the common consumer; (b) autostereoscopic/ 

multiview, which is not yet well popularized and is much more expensive than the first type. The 

main difference between the two types is that the stereoscopic display requires the user to wear 

special passive-anaglyphic (in the case of color-domain view multiplexing), passive-polarized (in 

the case of polarization-domain view multiplexing), or active-shutter glasses (in the case of 

temporal-domain view multiplexing), which channel each view to the corresponding human eye, 

allowing depth perception. On the other hand, autostereoscopic/ multiview displays do not 

require glasses, because the different views are multiplexed in the spatial-domain by a parallax 

barrier or a lenticular system, and as long as the viewer is placed in the sweet-spot location each 

eye receives only one view. This article [30] provides a detailed state of the art in stereoscopic 

and autostereoscopic display technologies. Figure 2.10 shows cinema spectators wearing 3D 

passive-polarized glasses (left) and the concept of left-right view spatial separation with a 

lenticular system (right). Note that the spatial-domain multiplexing concept is not necessarily 

restricted to two views: for instance, in subjective tests described in chapter 6, a 9-view 

autostereoscopic display is used for presenting 3D content. 

The texture-plus-depth 3D video (or its MVD extension) and DIBR synthesis can also be used in 

the context of free viewpoint video (FVV). In this case, a single virtual view of the viewer’s 

preference is synthesized and then displayed in a 2D display2

3D video and FVV is expected to become part of our everyday life as soon as the QoE becomes 

good enough. Quality assessment aspects will be introduced in the next chapter.   

.  

          
Figure 2.10 – Left: Cinema spectators wearing passive-polarized glasses as they watch a preview of the movie 
Avatar (photo: REUTERS). Right: left-right view spatial separation with a lenticular system (from Wikipedia). 

                                                 
2 Check an example of 3D FVV in football stadium, available online on http://www.youtube.com/watch?v=dvZa46SwjKc 
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Chapter 3 -  Objective quality assessment of 3D video  

3.1 Overview and classification 

Objective quality measurement methods for multimedia transmitted over packet-switch networks 

(e.g. Internet) have been classified into the following five main models (or layers) according to 

the input information used for quality assessment and the primary application [31]. These are 

parametric planning models, packet-layer models, bitstream-layer models, media-layer models, 

and hybrid models, as summarized in Table 3.1. 

Media-layer models can be further categorized according to the availability (or lack) of the 

original non-distorted media – also known as the reference – to be compared with the impaired 

media [32]: full-reference (FR), reduced-reference (RR) and no-reference (NR), as shown in 

Figure 3.1. Full- and reduced-reference methods play an important role on evaluation of video 

systems in non-real-time scenarios, such as measuring the quality of multimedia encoders and 

transmission condition, at the development phase. While the presence of a reference image or 

information regarding the reference simplifies the task of quality assessment, practical 

applications of such algorithms are very limited in real-world scenarios, where the reference 

media is generally not available at the location/point where the quality computation is 

undertaken, or it is impossible to ensure its correct transmission to those locations by means of 

an ancillary reliable channel. Thus, NR methods are the best suited for these practical scenarios.  

 Planning Packet-Layer Bitstream-Layer Media-layer Hybrid 

Input 
information 

Quality design 
parameters 

Packet headers and 
codec information 

Packet-layer and 
payload information Pixel-domain Combination of any 

Primary 
Application 

Network planning, 
terminal/application 

designing 

In-service 
nonintrusive 
monitoring 

(e.g. network probe) 

In-service nonintrusive 
monitoring 

(e.g. terminal-embedded 
operation) 

Quality 
benchmarking 

In-service 
nonintrusive 
monitoring 

Table 3.1 – Classification of objective quality measurement methods in the context of IPTV [31]. 

 
Figure 3.1 – Media-Layer models categorized accordingly to the availability (or lack) of the reference.  
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Figure 3.2 – No-reference quality monitor which uses a FR-estimated empirical model. 

Moreover, some packet-layer, bitstream-layer and even no-reference media-layer methods use 

some input parameters, according to their layer of operation, to estimate full-reference media 

quality scores, such as the Peak Signal-to-Noise Ratio (PSNR) or the Structural Similarity Index 

(SSIM) [33]. This approach assumes a specific application, or even a specific type of 

impairment, and it is based on learning algorithms for fitting empirical parametric models (e.g. 

curve fitting, neural networks and support vector machines) that represent a functional 

relationship between input parameters and the estimated quality value. Once the model is 

correctly trained and validated, it can be deployed in a no-reference quality monitor, as shown in 

Figure 3.2. This is, in fact, a widely used approach in the work reported in the literature, and it 

was adopted in the work for this thesis as well (see chapters 5 and 7). The motivation for this 

approach is justified by the absence of other effective no-reference quality assessment methods 

that are accurate for a desired specific application (e.g. packet-loss events during transmission), 

and the need for low-complexity real-time quality estimation algorithms. 

The performance and usefulness of a perceptual objective quality model depends on its 

correlation with subjective results. The most used metric for evaluating the performance of an 

objective video quality model is the Pearson Linear Correlation Coefficient (PLCC or R) 

between the subjective MOS values ix  and the MOS values iy  predicted from the objective 

model. For N data pairs ( ),i ix y  , with  and  being the means of the respective data sets, the 

PLCC (or R) is given by: 

 
( )( )

( ) ( )
[ ]1

2 2

1 1

1,1

N

i i
i

N N

i i
i i

x x y y
PLCC R

x x y y

=

= =

− −
= = ∈ −

− ⋅ −

∑

∑ ∑
  (3.1) 

x y



19 

The ITU-R BT.500-11 [10] recommends the mapping between objective metric quality OQM 

scores and predicted MOS values iy  by means of a logistic function, defined as: 

 ( )2 3

1
1 2 3   ,     , ,  are fitting coefficients

1 a OQM a

ay a a a
e +

=
+

  (3.2) 

Due to the availability of several image and 2D video public databases, with common or 

different features (e.g. spatial resolution, types of distortion, severity of distortions, etc.), it is 

very difficult to perform realistic comparisons between different objective quality metrics [34]–

[36]. Often, as a specific objective metric is designed to correlate well with subjective scores 

from a particular database, it is further found not to perform so well on data from other 

databases, as shown in Table 3.2. Furthermore, most quality metrics, like NR, are designed for 

certain types of image artifacts (e.g. blur, blocking …) and are not well suited to evaluate 

multimedia content subject to other types of degradations. This issue is aggravated exponentially 

in the case of 3D video: recall that, as said in the introduction of this thesis, MOS of subjective 

assessment of 3D video becomes multidimensional, even if subjects find very difficult to 

distinguish “depth quality” from “visual comfort” [37]. Moreover, due to the lack of 3D image 

and video databases, most metrics are optimized for a very restricted set of videos – most of 

them are publicly available for a very short period of time.  

The article [38] reports and compares some state-of-the-art quality metrics for 3D image and 

video. However, the authors recognize that it is very difficult (or even impossible) to compare 

the performance of two different 3D quality evaluation algorithms, even in a common dataset, 

due to practical reasons such as: intellectual property rights, different source 3D video formats 

(e.g. texture-plus-depth vs. left-right) and the unavailability of ground truth noise-free depth 

maps. The feature to be evaluated (depth quality, spatial quality …) may also be different among 

different metrics. Therefore, the overall conclusion to close this section is: we can compare only 

the comparable; every quality metric has its pros, cons, objectives and application scope.  

 

 

Table 3.2 – PLCC performance comparison of some state-of-the-art image and 2D video quality algorithms [35]. 

Database VQEG IRCCyN EPFL-PoliMI LIVE 

PSNR 0.7683 0.4160 0.7351 0.5621 

SSIM [33] 0.8215 0.5012 0.6781 0.5444 

VQM [39] 0.8170 0.4850 0.8434 0.7236 

MOVIE [40] 0.8210 0.4850 0.9210 0.8116 

Yu et al. [41] 0.8170 0.7680 0.9470 0.8450 

3D-SSIM [35] 0.8403 0.8194 0.9621 0.8353 
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3.2 Media-layer FR image quality models 

The two most widely known and used media-layer models to evaluate the quality of a gray-scale 

image with reference to the original are the Peak Signal-to-Noise Ratio (PSNR) and the 

Structural Similarity Index (SSIM) [33]. PSNR can be defined as the logarithm of the inverse of 

the energy of the pixel-wise difference between the original and the distorted image (error 

signal): 

 
( ) ( )

2

2
10

1

2 1 110log         ,  with           
n N

i i
i

PSNR MSE x y
MSE N =

−
= = −∑   (3.3) 

where N is the number of pixels of the original and the distorted images, with pixel values ix  

and iy  resp., and n is the number of bits per pixel (typically 8). The higher the PSNR, the better 

the quality. This formula can be used with video data by computing it in a frame-level basis 

usually applied to the luminance component, wherein the overall sequence score may result from 

either a simple or a weighted average of the frame PSNR values. For application-generic 

purposes, this measure has poor correlation with perceived image quality, since the MSE does 

not reflect the way that human visual systems perceive image degradation [42]. However, for 

specific impairments due to packet-loss events, some researchers claim that the PSNR can still 

be a good predictor of subjective video quality (in terms of MOS) [43], [44]. In chapter 5 this 

assumption is confirmed to uphold.  

The human visual system is highly adapted to extract structural information from visual scenes. 

Therefore, a measurement of structural similarity (or dissimilarity) should provide a good 

approximation to perceptual image quality. Nonstructural distortions are distortions that do not 

modify the structure of objects in the visual scene. The SSIM evaluates image similarity based 

on three factors computed from the two images being compared: luminance l(x,y), contrast 

c(x,y), and structure s(x,y), defined as: 

 ( ) ( ) ( )1 2 3
2 2 2 2

1 2 3

2 2
,       ,     ,      ,     ,x y x y xy

x y x y x y

C C C
l x y c x y s x y

C C C
µ µ σ σ σ

µ µ σ σ σ σ
+ + +

= = =
+ + + + +

  (3.4) 

where x and y are the reference and the distorted image luminance pixel values;µ , σ  and xyσ   

represent their mean, standard deviation and covariance; and C1, C2 and C3 are small constants 

added for numerical stability. These factors are combined to yield an overall similarity measure: 

 ( ) ( ) ( ) { }( , ) , . , . , ,    , , 0S S IM x y l x y c x y s x y
α β γ

α β γ= >             (3.5) 
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The score provided by the SSIM ranges between 0 and 1; the closer to 1, the higher the similarity 

of the distorted image to the reference image and so in this context the better the quality of the 

(distorted) image. Usually, this method is applied locally, within a local Gaussian circular-

symmetric small window that moves pixel-by-pixel over the entire image, and then the local 

scores are averaged to produce the overall score. For color images, SSIM and PSNR scores can 

be computed for the luminance and chrominance components, in separate, and the final score can 

be weight-averaged. However, in this thesis, all SSIM and PSNR scores are computed only for 

the luminance component. Figure 3.3 shows an example of a video frame decoded from a 

bitstream affected by packet losses, together with its luminance’s PSNR and SSIM scores. 

3.3 Summary of the newest 3D video quality assessment metrics 

This section reports on some3 Table 

3.3

 state-of-the-art methods for 3D video quality assessment. 

, Table 3.4 and Table 3.5 exemplify resp. some FR, RR, and NR methods, explaining the 

application or the type of distortion to which the method is applicable, the features computed for 

measuring them, and the PLCC that informs how much the metric is correlated with subjective 

quality scores. According to the discussion in section 3.1, we cannot assume a priori that a 

method which has a higher PLCC is better than a method which has a lower PLCC. Even if the 

application and artifacts are similar, the video set used in subjective tests may be different, so 

they are not fully comparable. Values with a tilde indicate averages of the PLCC values, in the 

case that several PLCC values exist for various video sets. 

   

Figure 3.3 – Reference (left) and distorted (right) 120th frame of a synthesized view of Poznan CarPark, extracted 
from a simulation with 20% PLR corrupted depth map. Red ellipses are only to point the most distorted zones. 

 PSNR = 30.54 dB , SSIM = 0.938 (luminance component). 
                                                 
3 The word some is stressed here because due to the large number of methods reported in the scientific literature, it is impossible 
to cover them all; still an effort was made to gather methods that cover different applications. 
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Quality metric 

(Authors) 
Application & Artifacts Features used to measure the artifacts PLCC 

Solh et al. [45] 
Depth map and colored video compression, 
depth estimation (passive stereo matching), 

and depth from 2D to 3D conversion. 

Temporal outliers, temporal inconsistencies and 
spatial outliers, using ideal depth map 

estimation.  
0.8942 

Joveluro et al. 
[46] 

Texture-plus-depth with scalable encoding 
(JSVM) at different QP. Quality of DIBR-

synthesized views, using 2D metrics. 

Distortion in the brightness and contrast 
distortion using an approximation (variances) 

weighted by the mean of each pixel block, of the 
luminance component of synthesized views. 

~ 0.988 

Sun et al. [47] 
Stereoscopic 3D video encoded at different 

compression rates, or video-plus-depth 
rendered into left and right views.  

Distortion for 8x8 block content (luminance and 
contrast) and distortion for block boundary of 

the luminance component of synthesized views. 
~ 0.953 

Yasakethu et 
al. [48] 

Texture-plus-depth with scalable encoding 
(JSVM) at 1Mbps, packetized into 1400-byte 
packets and simulated the transmission over a 

packet network with different PLR. 

After segmentation of depth planes: distortion of 
the relative distance within each depth plane, 

distortion in the consistency of each depth plane, 
and structural error of the depth. 

0.8369 

Table 3.3 – Full-reference methods for 3D video quality assessment 

Quality metric 
(Authors) Application & Artifacts Features used to measure the artifacts PLCC 

Maalouf et al. 
[49] 

JPEG symmetric and asymmetric coding of 
stereoscopic images. 

Contrast sensitivity (spatial frequency and 
orientation) and coherence of cyclopean 
images (combination of locally matched 
stereo regions in a single global image). 

0.981 

Hewage and 
Martini [50] 

Texture-plus-depth H.264/AVC encoded at 
different QPs and simulated the transmission 

over a packet network with different PLR. 

Luminance, structure and contrast of the 
texture; edge-based structural correlation of 

the depth maps. 

0.9273 (T) 
0.9795 (D) 

(vs. FR) 

Nur and Akar 
[51] 

Texture-plus-depth with scalable encoding at 
different bitrates, with 80% / 20% bitrate 

allocation for texture and depth resp. 

VQM [39] between the bilateral-filtered 
original depth map and the bilateral-filtered 

compressed depth map. 
~ 0.913 

Table 3.4 – Reduced-reference methods for 3D video and image quality assessment 

Quality metric 
(Authors) Application & Artifacts Features used to measure the artifacts PLCC 

Sazzad et al. 
[52] 

JPEG symmetric and asymmetric coding of 
stereoscopic images. 

Blockiness and zero-crossing of edge, flat and 
texture areas, and average zero-crossing of 
plane and non-plane areas of the disparity. 

0.960 

Solh et al.[53] 
Depth map and colored video compression, 
depth estimation (passive stereo matching), 

and depth from 2D to 3D conversion 

Temporal outliers, temporal inconsistencies 
and spatial outliers, using a no-reference ideal 

depth map estimation. 
0.916 

Bosc et al. [54] 

Structural distortion indicator for DIBR 
synthesized views due to imperfect matching 

at depth discontinuities, and hole-filling.  
DIBR algorithm benchmarking. 

Contours detection and displacement 
estimation from central (texture) and 

synthesized view. Inconsistent displacement 
and motion vectors; new contours. 

— 

Mittal et al. 
[55] 

Assess the comfort associated with viewing 
stereoscopic image and video. 

Histogram-based features from disparity, 
disparity gradient maps, indicators of spatial 
activity, plus motion compensated disparity 

differences for videos. 

~ 0.77 
(SROOC)4 

Feitor et al. 
[13], [14] 

Packet-Layer quality assessment of 
stereoscopic video subject to packet losses, in 

a frame-level basis. 

Frame loss detection, frame type, and size 
estimate of the lost frame (in bytes). 

~ 0.765 
(vs. FR) 

Table 3.5 – No-reference methods for 3D video and image quality assessment 
                                                 
4 This method does not provide PLCC, instead it provides Spearman Rank Order Correlation Coefficients (SROOC), which 
measure the prediction monotonicity of a metric, i.e. the degree to which the predictions of a metric agree with the relative 
magnitudes of the subjective quality ratings [79]. 
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Chapter 4 -  H.264/AVC encoding and Gilbert-Elliot 
model for packet-loss simulations 

4.1 Introduction 

In this chapter, some general concepts of H.264/AVC video encoding are explained. This 

encoder was chosen as it is currently the most popular and best performing encoder, with very 

high encoding performance. The details of its operation provided here cover just the basic 

information required to understand chapters 5 and 7 of this thesis. For more (technical) details 

we suggest the study of Recommendation ITU-T H.264 [56] as well as reference [57] which 

provides a easier to follow explanation of the technical recommendation. Finally, the IETF-RFC 

6184 [58] defines the RTP Payload format commonly used together with this video codec. This 

chapter also explains the Gilbert-Elliot model for packet-loss simulations. 

4.2 Frame types and GOP structure 

Video is a sequence of images (frames) displayed at a certain rate (frame-rate), giving the 

perception of continuous movement for the viewer eyes. Typical frame-rates are 25 frames-per-

second (fps) and 30fps. Frames can be encoded with a DCT-domain JPEG encoder [59], which 

explore the spatial redundancy. Contiguous frames from natural videos (as opposed to white-

noise videos or sequences of uncorrelated images) are also temporally correlated. Thus, a good 

video codec can be able to efficiently explore the temporal redundancies between frames, by 

signaling reference frames and computing displacement (motion) vectors in a block-wise 

approach. Frames coded without reference to other frames are called I-frames; these are typically 

the least compressed frames. Rendered frames using information from at least one temporally 

preceding reference frame are called P-frames; reference frames are typically I- or P-frames. 

Finally, rendered frames using information from past and future reference frames are B-frames; 

these are typically the most compressed frames.  

Frames are arranged into groups of pictures (GOP). A GOP includes the I-frame and all 

subsequent frames leading up to the next I-frame. Figure 4.1 shows the frame relationships 

inside a GOP. I-frames provide the reference point for decoding a received MPEG stream, and 

are very important in error propagation recovery. The length and structure of a GOP plays a very 

important role in the engineering task of balancing compression efficiency and error recovery. 

Compression can be controlled by fixing a quantization parameter (QP) or fixing a bitrate. 
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Figure 4.1 – Frame reference relationships within a group of pictures with 7 frames [24]. 

The GOP structure can be classified as open or closed: in the open mode, the I-frame can be a 

reference for the last B-frames of the previous GOP; in the closed mode, the inter-frame 

references are strictly confined inside the GOP, the last frame of the GOP is forced to be a P-

frame and the I-frame is actually an Instantaneous Decoder Refresh (IDR) frame. In this thesis, 

only closed GOPs were used to prevent inter-GOP error propagation. 

4.3 Macroblocks and slices 

Macroblocks are groups of 16x16 pixels, acting as the elementary image partition unit. Each of 

these units carries information of the macroblock type (I, P or B), prediction modes or motion 

vectors, the Coded Block Pattern, the QP and residual data.  

In its simplest arrangement, slices are formed by groups of consecutive macroblocks. Slices can 

be formed with fixed number of macroblocks or fixed number of bytes, and they play an 

important role in error resiliency as they confine the error propagation to a small area of the 

frame. Increasing the number of slices up to a reasonable amount (e.g. 10 per frame) increases 

the error resiliency on the one hand, which improves the overall quality of the video when 

transmitted in loss-prone channels; on the other hand, it reduces compression efficiency, since 

the inter-frame prediction is mostly confined to the slice area, and more overhead information is 

needed. Each slice is then packetized into a Network Abstraction Layer (NAL) unit.  

Annex A provides an overview of the H.264/AVC syntax [57]. 

4.4 JM Reference Software and RTP packets 

The Joint Model (JM) Reference Software, from Joint Video Team (JVT) of ISO/IEC MPEG & 

ITU-T VQEG is used in this thesis as the H.264/AVC codec. It is very popular among the 

scientific multimedia community, and it was designed mainly for research purposes. It is indeed 

a rather complex software, with hundreds of configuration parameters and combinations. 
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In this work, several video-plus-depth sequences were encoded separately. Each NAL unit, 

which contains all the information of just one slice, is packetized into a variable-length RTP 

packet. MPEG-2 TS packets, as shown in Figure 2.5, are not used here explicitly. In order to 

simulate realistic transmission schemes over IP-networks, the average stream packet size was set 

below the maximum-transmission-unit (MTU) size of 1500 bytes. Packets that exceed the MTU 

size are assumed to be split into IP-datagrams; losing at least one of them results in the loss of 

the entire slice. 

4.5 Gilbert-Elliot model for packet losses 

The impact of packet loss on real-time video streaming services can be studied from recorded 

measurement traces of traffic and loss patterns. To generate error patterns with similar 

characteristics as observed in measurements, for offline-simulations, stochastic models such as 

discrete-time Markov chain models can be used [60]. 

In this work, we use the Gilbert-Elliot model [61], which is a stochastic packet loss model based 

on a two-state Markov process (Figure 4.2). It is characterized by a good state (X=0), a bad state 

(X=1), and transition probabilities, p and q, between the two states, as response to events. We can 

define two events: (a) successful arrival of a packet, making the system transit to or remain in the 

good state; (b) packet loss detection or packet corruption, making the system transit to or remain 

in the bad state. 

Gilbert-Elliot model memorizes only the previous state, thus the probability that the next 

expected packet will be lost, , depends only on the current state of the system, . 

This model is able to capture the dependence between consecutive losses, making it suitable for 

network transmission scenarios. Recall that bit errors or packet errors usually do not occur in a 

Bernoulli random fashion, but in bursts. Thus, the conditional transition probabilities can be 

calculated from two variables that characterize the transmission network: the average packet loss 

rate (PLR) and the mean burst length (MBL); using the following equations derived from [62]: 

 

Figure 4.2 – Two-state Markov process for the Gilbert-Elliot model 

( )1 1iP X + = iX
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This model was implemented in Matlab, with the script provided in Annex B. The output is an 

error trace file, with 10000 characters, where the character ‘1’ means a lost packet and ‘0’ a 

successfully received one. Different combinations of (PLR, MBL) were used, to make various 

trace file patterns, with PLR ranging from 0.1% to 20% in nonlinear steps, and MBL from 3 to 7 

in linear steps. The chosen range of values of PLR meets the typical range of values used by 

researchers: 0.1% loss is (most of the time) imperceptible for the viewer, and 20% loss usually 

leads to severe degradation of the video quality, so there is no added value in increasing beyond 

this rate. The chosen values for MBL provides some typical wired-network scenarios for short 

burst loss patterns – wireless networks probably require higher values – and meets the limitations 

of the JM decoder, whose robustness for handling very long burst losses is weak5

4.6 Transmitter simulator 

. 

The transmitter-simulator software [63] used in the work described in the next chapters, corrupts 

the bitstream by discarding some RTP packets, according to a given error pattern file created as 

previously discussed. A modification was done to the source code, in order to output some 

packet-layer relevant parameters about the bitstream corruption process, namely: 

• RTP packet size, in bytes, of all received and lost packets; 

• Frame number, from slice header; 

• Slice type (I, P or B), from slice headers; 

• Received/lost (0/1) inferred from RTP header sequence-number discontinuities. 

                                                 
5 Due to the limitations and programming bugs of the error concealment of JM decoder, the maximum possible loss burst length 
was forced to the number of slices used minus one. Most coded videos use fixed 8 slices per frame, so the maximum burst length 
was forced to 7. In this way, a single frame is never lost entirely. Still, the simulations are believed to be realistic enough. 
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Figure 4.3 – Frame order of an open GOP with 15 frames [24]. (a) The encoder input order and decoder display 
order are the same, but (b) the transmission order and is different. 

Note that the transmitter simulator does not shuffle the packets: they are ordered according to the 

transmission order, which is different from the displaying order after decoding, as exemplified in 

Figure 4.3. In real transmission scenarios, the packet reception order may be altered, but the de-

jitter buffering and the sequence-number of the RTP packets can be used to put them back into 

the correct order. Figure 4.4 shows an example of a decoded packet-loss-impaired video with a 

closed-GOP structure and four fixed-size slices. Green slices represent no-affected slices; red 

slices represent self-lost and concealed slices; yellow slices represent error-propagated impaired 

slices; red-yellow striped slices represent the combination of the previous two situations. Note 

the impairment extension in the first two GOPs due to losses in the reference I-frames and P-

frames. Losses in B-frames do not propagate, as shown in the third GOP. 

 

 

Figure 4.4 – Example of three GOPs of a decoded packet-loss-impaired video with four fixed-size slices.  
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4.7 Error concealment of JM decoder 

When packets are lost or corrupted during transmission, the decoder tries to conceal the effects 

of these losses on the decoded video by the application of some recovery technique. The most 

common and simplest one is copying the slice from the previous correctly received and decoded 

frame; this technique is called frame-copy. Several sophisticated error concealment algorithms 

have been proposed in the literature [64]–[68]. Underlying the design of this type of concealment 

methods is a typical engineering search for a trade-off between the concealment quality and the 

computational cost of the operations required. As the error concealment methods are non-

normative, a video decoder designer can adopt its own error concealment algorithm. The effect 

of packet-losses on the final video quality is thus decoder-dependent. JM decoder version 15.0, 

used in the work of this thesis, adopts intra-spatial concealment for I- and IDR-frames, and 

temporal concealment with motion compensation for P- and B-frames [69], [70].  

In I- and IDR-frames, pixels of lost macroblocks are interpolated – or extrapolated – from the 

boundaries of the correctly received and decoded adjacent ones. Note that the quality of this 

technique is very poor for large slices or when a burst of slices is lost, as shown in Figure 4.5. If 

the entire I-frame is lost, then a copy of the last decoded frame from the previous GOP is used.  

     

Figure 4.5 – Spatial concealment of four contiguous slice loss of an I-frame (Poznan CarPark depth frame no. 181). 
Left: correctly received and decoded version; right: impaired decoded version. 

In P- and B-frame concealment, the decoder begins by evaluating the overall temporal activity of 

the correctly received slices. If the activity is low, slices are concealed by a direct copy of the co-

located slices from the closest reference frame. Otherwise, two steps are performed: (a) 

estimation of the motion vector of the missing macroblocks from available motion information 

of its spatial or temporal neighbors; (b) use of the estimated motion vectors to find out the 

corresponding macroblocks in the nearest reference frame, and use them to substitute the missing 

macroblocks. This technique performs well when the number of slices is high; however block 

boundary artifacts become more and more visible as the error propagates throughout the GOP. 
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Chapter 5 -  Empirical packet-layer models for 
synthesized view quality assessment 

5.1 Context, objective and procedures 

This chapter describes an empirical method for the modeling and evaluation of the quality of 3D 

video, in the texture-plus-depth representation, based on the use of some statistical network 

performance indicators. The objective of the method proposed is to allow the estimation of an 

objective quality score (e.g. PSNR, SSIM…) of a synthesized view, averaged over a temporal 

window of a GOP or a few continuous GOPs, from a set of parameters obtained from the 

packets’ headers. Once this empirical model is obtained, it can be used in in-service non-

intrusive monitoring systems, such as PTinovação ArQoS®, with the model implemented as part 

of a network probe or based on data collected by a network probe. The output of the 3D video 

quality model should be useful for service and network providers, as it potentiates fast detection 

of failures and vulnerabilities of the core network as well as localized congestions that affect the 

end-user 3D video QoE. Providers and network operators can then adopt actions to correct 

undesirable situations, either at the broadcast center by changing video encoding settings or by 

adjusting the consignment of data transport resources; additionally, knowledge about the 

transmission impairments magnitude and location can be used to improve the operation and 

management of the transport network. 

At a first approach, only the depth information stream will be subjected to packet losses. This 

simulates a scenario of a congested network whose routers discard some low-priority packets, 

assuming a simulcast transmission of texture and depth streams having texture packets labeled as 

more important (high-priority) than depth packets. This is a desirable and quite realistic scheme, 

in the sense that in case of severe network congestion, clients may still be able to view 2D video 

with very good quality. Afterwards, further approaches will also include texture packet-losses, as 

described in section 5.6. 

The experiment setup for the first approach is shown in Figure 5.1. It assumes an independent 

encoding and transmission of texture and depth maps. Some depth packets are dropped by the 

transmitter-simulator according to the error traces generated by the Gilbert-Elliot model. The 

uncorrupted texture and corrupted depth stream are then used to synthesize a view with an 

appropriate baseline (see Annex C the used camera parameter settings for each 3D video). 

Finally, the PSNR and SSIM of the distorted synthesized view are computed with respect to the 

reference synthesized view. These objective FR-metrics are later used as ground-truth values for 
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Figure 5.1 – Experiment setup for depth-only loss approach. 

the tuning/training of the empirical model; the inputs are a set of parameters obtained from the 

packets’ headers. In order to obtain an accurate and generalized model, hundreds of simulations 

for each video are needed. As the decoding and DIBR-Synthesis with VSRS 3.5 are very time-

consuming tasks, the use of parallel computing6

5.2 Video dataset and encoder setting parameters 

 is imperative. All videos were encoded with the 

JM version 18.0 (latest release), high profile, and decoded with JM version 15.0, as it is more 

robust to packet-losses than the latest release. 

The 3D video sequences used in this experiment setup are available online and are entitled: 

Balloons, Kendo, Champagne Tower and Poznan CarPark. A description of the charanteristics of 

these videos is available in Annex D. All texture and depth videos were encoded with fixed GOP 

structure, 8 slices (fixed number of macroblocks), inter motion search with reference to two non-

B previous frames, motion search range window of 64 pixels, and entropic encoding CABAC. 

Quality control was set by fixing QP, such that the mean bitrates are compatible with the current 

transmission bandwidth, and the bit budget division between texture and depth has the 

recommended ratio listed in Table 5.1.  

5.3 Sequence- and GOP-level quality assessment 

Full-reference quality assessment target scores of all simulated videos are computed for each ith 

frame, according to equations (3.3) and (3.6), and then averaged over a GOP of KG frames or 

over the entire sequence of KS frames, according to equations (5.1) and (5.2) : 

                                                 
6 Parallel simulations were performed on a Cray clustered computer, owned by Instituto de Telecomunicações – Coimbra 
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3D Video 
(spatial resolution) GOP structure GOP length 

(frames) QP (I / P / B) Bitrate 
(kb/s) 

Bit ratio  
(%) 

Average 
PSNR (dB) 

Balloons 
(1024x768) 

Tex. I-B-B-P-B … 15  28 / 30 / 30 1248 86.4 % 41.55 

Dep. I-B-B-B-P-B … 30  36 / 38 / 39 196 13.6 % 39.37 

Kendo 
(1024x768) 

Tex. I-B-B-P-B … 15  28 / 30 / 30 1245 80 % 42.45 

Dep. I-B-B-B-P-B … 30  36 / 38 / 39 300 20 % 38.40 

Champagne 
Tower 

(1280x960) 

Tex. I-B-B-P-B … 15 28 / 30 / 30 1303 91 % 41.71 

Dep. I-B-B-B-P-B … 30 32 / 34 / 35 129 9 % 45.568 

Poznan 
CarPark 

(1920x1088) 

Tex. I-B-B-P-B … 15  28 / 30 / 30 2627 79.8 % 38.171 

Dep. I-B-B-B-P-B … 30 30 / 30 / 30 666 20.2 % 36.963 

Table 5.1 – Encoder setting parameters of the videos used in the depth-only loss approach. 
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Note that the PSNR of average MSE is preferred than the direct average of PSNR, because no-

impaired frames have infinite PSNR. 

5.4 Single-input models 

Empirical models need to have at least one input parameter, and as the number of relevant inputs 

increases, the model accuracy is expected to increase. The first modeling experiments involved a 

model with a single input parameter: the PLR of the sequence (or GOP). The objective is to 

predict the PSNRSeq, PSNRGOP, SSIMSeq and SSIMGOP knowing only the PLR of the depth stream, 

which can be computed from the discontinuities of the sequence number present in RTP headers 

of the depth stream. 

The results of sequence-level – resp. GOP-level – mean PSNR and mean SSIM score estimation 

are shown in the scatter plots of Figure 5.2 – resp. Figure 5.3 –, each point representing the result 

of one simulation. Plots on the left represent the target (or real) quality scores on y-axis, in terms 

of PSNR and SSIM, and the PLR on x-axis, as well as the fitting curves, for all simulations of the 

four videos; plots on the right represent the quality score predicted from the fitting curves of left 

plots, on y-axis, and the target scores on x-axis. According to the scatter point distribution, for 

PSNR vs. PLR fitting curves we chose the power law of equation (5.3), and for SSIM vs. PLR 

fitting curves we chose the 1st order polynomial law of equation (5.4). 
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Figure 5.2 – Sequence-level PSNR and SSIM estimation with a single-input parameter (depth-only loss approach). 

 bPSNR a PLR= ⋅   (5.3) 

 SSIM a PLR b= ⋅ +   (5.4) 

These models prove to be very inaccurate, as can be observed from the very disperse scatter 

plots, low Pearson correlation coefficients R, and low coefficients of determination R2. The 

reason for this fact is very simple: not all packets are of equal importance, and so their losses 

have different impacts on PSNR and SSIM. As discussed in chapter 4, not all slices are encoded 

with the same prediction modes, there’s a dependency chain between frames introduced by the 

inter-frame prediction that causes error propagation with more or less severity, and concealment 

techniques are different for different types of frames. Note how much bigger is the dispersion in 

GOP-level quality prediction in comparison with the dispersion in sequence-level fashion; the 

latter one is affected by the averaging effect. Note also that the results for the Champagne Tower 

video (blue marks) are the most dispersive ones, mainly due to its high-contrast depth maps in 

comparison with the low-contrast of the other videos’ depth maps.  

These single-input models have proved to be extremely inaccurate. The next section explores 

other modeling techniques with multiple inputs, which have much better prediction accuracy. 
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Figure 5.3 – GOP-level PSNR and SSIM estimation with a single-input parameter (depth-only loss approach). 

5.5 Neural networks based models 

As the number of inputs to the model increases, it becomes difficult to find regression functions 

and represent them in a multiple-axis plot. Given its good fitting properties, artificial neural 

network curve fitting will be adopted from now on, following similar approaches of [71]–[73]. 

A two-layer feed-forward network with sigmoid hidden neurons and linear output neurons can fit 

multi-dimensional mapping problems arbitrarily well, given consistent data and enough neurons 

in its hidden layer. In Figure 5.4 is represented a partially detailed two-layer network. It consists 

in N inputs, H hidden neurons and a single output. The activation functions of the first (hidden) 

layer and the second (output) layer are resp. the hyperbolic-tangent (sigmoid function) and the 

identity function. The output is then given by: 

 ( ) out in in out

1 1
tanh

H N

j ji i j
j i

y x w w x b b
= =

  = ⋅ ⋅ + +  
  

∑ ∑   (5.5) 

where inw  and outw are the weights of the first and second layers, inb and outb are the bias of the 

first and second layers, which are adjusted during in the training phase. 
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Figure 5.4 – Partially detailed two-layer network corresponding to equation (5.5). 

Matlab® nftool uses the Levenberg-Marquardt backpropagation algorithm [74] for training the 

neural network. Given a sufficiently large set of inputs and targets, nftool randomly divides them 

into three groups: the training set used in learning iteration, the validation set used to measure 

network generalization and to halt training when generalization stops improving, and the test set 

that provides an independent measure of the network performance during and after training. In 

all the neural network models trained in this work, the training set is 50% of the overall 

input/target set, the validation set is 20%, and the test set is 30%. Note, however, that the training 

algorithm shows a little instability, due to the random initial-values for the variables and random 

data division, in the sense that different training sessions lead to slightly different results. 

As not all packets are of equal importance, it is important to divide the PLR into three 

parameters: the PLR of each slice type (I, P or B), defined in the slice header. The size in bytes 

of the lost packet is also relevant, because the larger the lost packet is, the more impaired the 

corresponding slice is expected to be, as more information is lost7

                                                 
7 Recall that it is assumed transmission over NAL/RTP/UDP/IP protocol, with variable-size packets, each of them containing a 
single NAL unit corresponding to a single slice, which is different from the fixed-size packet shown in 

. The size of the lost packet is 

estimated as the packet size (real or estimated) of the co-located slice of the same type in the 

previous frame (see Annex E). Thus, adding the estimated sizes of the all three types of lost 

packets gives us three more parameters. The total size in bytes of the entire sequence, 

corresponding to the sum of the received packets’ size and the lost packets’ estimated size may 

also play a role for accuracy improvement, as it provides an estimate for the lost byte ratio. It 

gives us three more parameters. Finally, it is important to take into account the temporal location 

of the losses inside a GOP; for instance, due to error propagation, a lost P-slice affects the entire 

GOP if it is located at the beginning, but not so much if it is located in the middle or at the end of 

the GOP. By knowing exactly which packets were lost, it is possible to infer the affected-frame 

ratio at the packet-layer, in either sequence- or GOP-level.  

Figure 2.5. 
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Input  Packet-layer Parameter (depth stream only) Frame type 

1x   
Packet Loss Rate  

(PLR) 

P 

2x  B 

3x  I 

4x  
Lost number of Bytes 

(LB) 

P 

5x  B 

6x  I 

7x  
Total number of Bytes 

(TB) 

P 

8x  B 

9x  I 

10x  Affected-frame Rate (AFR) all 

Table 5.2 – Input parameters for 3D video quality assessment with neural network accurate models. 

The use of these input parameters, specified in Table 5.2, assume the GOP length and structure 

as well as the number of fixed-size slices used are known. If these encoding settings are not 

known a priori or vary in time, they can be extracted at the bitstream-layer during decoding or 

even at the packet-layer by looking into the headers of a set of consecutive packets. This 

approach was implemented in a C++ program that is included in Annex F.  

 

 

Figure 5.5 – Sequence- and GOP-level PSNR and SSIM estimation with three input parameters: x1, x2 and x3  
(depth-only loss approach). 
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In order to show the relative importance of the lost bytes, total bytes and affected-frame rate of 

the coded depth information stream to model the neural network, Figure 5.5 shows the 

performance of the network trained with only three input parameters (PLR for each type of 

frame) and 10 hidden nodes. The accuracy of the neural network models to predict the mean 

PSNR and SSIM improved significantly when compared with the single input models, as can be 

shown in Table 5.3. However, they are not as accurate as the neural network models with all 10 

input parameters and 20 hidden nodes, shown in Figure 5.6. 

These models were trained with the real number of lost bytes. Plots from Figure 5.7 show that 

the models do not loose accuracy when using the estimated number of lost bytes. 

 

 

Figure 5.6 – Sequence- and GOP-level PSNR and SSIM estimation with 10 input parameters of Table 5.2  
(depth-only loss approach, the number of lost bytes is real) 

Number of Inputs 
Sequence-level quality prediction GOP-level quality prediction 

PSNR SSIM PSNR SSIM 

Single input (Figure 5.2 and 5.3) 0.85656 0.82144 0.66457 0.48050 

Three inputs (Figure 5.5) 0.91575 0.93946 0.82686 0.88275 

Ten inputs (Figure 5.6) 0.93672 0.98417 0.95169 0.98253 

Ten inputs (Figure 5.7) — — 0.95482 0.98588 
Table 5.3 – PLCC of the quality prediction accuracy of the models obtained for depth-only loss approach.  
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Figure 5.7 – GOP-level PSNR and SSIM estimation with 10 input parameters of Table 5.2  
(depth-only loss approach, the number of lost bytes is estimated). 

5.6 Modeling the effect of texture losses 

So far, we dealt with situations where only depth losses occur; for cases where texture losses also 

take place, three more experimental setups can be studied. Given the examples of approaches for 

texture-plus-depth coding and transmission of Figure 2.6, we can obtain quality models for each 

one. From now on, the scheme of the texture and depth simulcast will be designated by the 

abbreviation SIM, the scheme of frame-compatible texture and depth coding will be designated 

by FRM, and the scheme of scalable texture and depth coding will be designated by SCA. Depth-

only loss approach scheme will be addressed by DOL. The experiment setup of Figure 5.1 is 

updated into the setup of Figure 5.8 in order to account for texture packet losses. 

 

 

Figure 5.8 – Experiment setup for extended approaches with texture losses (schemes SIM, SCA and SIM). 
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Let T define the event of loss of (or failure to use) the texture packet of the next slice to be 

decoded; and let D define the same event related to the depth packet. Figure 5.9 illustrates the 

probability relationships of these events for each scheme in Venn diagrams. 

 
Figure 5.9 – Venn diagrams representing texture and depth packet-losses for four different schemes. T defines the 

event of a given slice loses (or is not able to use) its texture packet; D defines the event of the same given slice loses 
(or is not able to use) its depth packet.  

In schemes SIM, FRA and SCA, models were obtained with less simulations than in scheme DOL 

because they become much more time-consuming. The videos Champagne Tower and Poznan 

CarPark used in simulations were replaced by the Lovebird1 and Newspaper. The texture 

bitstreams were re-encoded with the same GOP-structure as the depth bitstreams, in order to 

provide full-compatibility with the scheme FRA. All texture videos were encoded with the same 

QP sets, and all depth videos were encoded with the same QP sets, as documented in Table 5.4. 

Naturally to account for the texture losses the number of inputs for the modeling of the extended 

schemes has to be increased. The PLR, LB and TB must be defined to both depth and texture 

losses independently, for the three types of frames. The AFR for schemes FRA and SCA can be 

inferred just from the depth stream losses, because affected frames just from texture does not 

exist in these two schemes. As for scheme SIM, whose depth and texture losses can coexist 

independently, the AFR is obtained from the number of frames affected by depth losses, texture 

losses or both simultaneously.  

3D Video 
(spatial resolution) GOP structure GOP length 

(frames) QP (I / P / B) Bitrate 
(kb/s) 

Bit budget  
(%) 

Average 
PSNR (dB) 

Balloons 
(1024x768) 

Tex. 
I-B-B-B-P-B … 30  

28 / 30 / 30 1095 84.8 % 41.41 
Dep. 36 / 38 / 39 196 15.2 % 39.37 

Kendo 
(1024x768) 

Tex. 
I-B-B-B-P-B … 30  

28 / 30 / 30 1173 79.6 % 42.45 
Dep. 36 / 38 / 39 300 20.4 % 38.40 

Lovebird1 
(1024x768) 

Tex. 
I-B-B-B-P-B … 30 

28 / 30 / 30 825 89 % 39.17 
Dep. 36 / 38 / 39 102 11 % 42.32 

Newspaper 
(1024x768) 

Tex. 
I-B-B-B-P-B … 30  

28 / 30 / 30 935 85.5 % 39.28 
Dep. 36 / 38 / 39 159 14.5 % 39.08 

Table 5.4 – Encoder setting parameters of the videos used in schemes SIM, FRA and SCA. 



39 

Input Packet-layer Parameter Frame type Scheme 
DOL 

Scheme 
SCA 

Scheme 
FRA 

Scheme 
SIM 

1x  

D
ep

th
 st

re
am

 

Packet Loss Rate 

DepthPLR   

P     

2x  B     

3x  I     

4x  
Lost number of Bytes 

DepthLB   

P     

5x  B     

6x  I     

7x  
Total number of Bytes 

DepthTB   

P     

8x  B     

9x  I     

10x  

Te
xt

ur
e 

st
re

am
 

Packet Loss Rate 

TexturePLR  

P —  same as 1x   

11x  B —  same as 2x   

12x  I —  same as 3x   

13x  
Lost number of Bytes 

TextureLB  

P —    

14x  B —    

15x  I —    

16x  
Total number of Bytes 

TextureTB  

P —    

17x  B —    

18x  I —    

19x  Affected-frame Rate (AFR) all     

Table 5.5 – Input parameters for 3D video quality assessment with neural network accurate models (all schemes). 

Thus, as specified in Table 5.5, the number of inputs N for schemes SIM and SCA increases to 

19, but for scheme FRA it increases to 16, because the PLR of the texture stream is the same as 

of the depth stream. The number of hidden nodes used in neural network training is the same as 

used in scheme DOL (H = 20).  

For these new simulations, the number of (PLR, MBL) combinations of packet-loss modeling 

were restricted to {2%, 8%} for PLR and {3, 5} for MBL. The error trace files used by texture 

stream for scheme SCA were re-assembled so that: 

 ( )| 0.75P T D =   (5.6) 

Figure 5.10, Figure 5.11 and Figure 5.12 shows the results for sequence- and GOP-level PSNR 

and SSIM predictions for resp. schemes SCA, FRM and SIM. We can conclude that the Pearson 

correlation coefficients of the predicted scores vs. target scores remain very high, as listed in 

Table 5.6. The computational cost has slightly increased due to new input parameters regarding 

the texture stream, which are computed with the same algorithms used for depth stream, and the 

number of hidden nodes used in the neural networks can remain the same.  
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Figure 5.10 – Sequence- and GOP-level PSNR and SSIM estimation for scheme SCA, with 19 input parameters 

specified Table 5.5 (with the real number of lost bytes). 

 

 
Figure 5.11 – Sequence- and GOP-level PSNR and SSIM estimation for scheme FRA, with 16 input parameters 

specified Table 5.5 (with the real number of lost bytes). 
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Figure 5.12 – Sequence- and GOP-level PSNR and SSIM estimation for scheme SIM, with 19 input parameters 

specified Table 5.5 (with the real number of lost bytes). 

 

Scheme 
Sequence-level quality prediction GOP-level quality prediction 

PSNR SSIM PSNR SSIM 

DOL 0.93672 0.98417 0.95169 0.98253 

SCA 0.96232 0.97603 0.96081 0.97283 

FRA 0.95693 0.98547 0.96311 0.97463 

SIM 0.95082 0.97264 0.95697 0.96819 
Table 5.6 – PLCC of the quality prediction accuracy of the models obtained for all schemes.  

In the next chapter, we will confirm that the neural network models used for predicting the 

sequence-level PSNR and SSIM scores, for scheme DOL, are accurate enough for predicting the 

perceived 3D video quality in terms of a mean opinion score (MOS). 
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Chapter 6 -  Subjective quality assessment of 3D video 

6.1 Introduction 

In order to measure the correlation between the objective sequence-level quality scores from the 

models obtained in chapter 5, for scheme DOL, and the perceived 3D video quality in terms of a 

mean opinion score (MOS) which is the de facto QoE indicator, a subjective quality assessment 

study was conducted. There’s no optimal methodology to evaluate the quality perceived by 

humans of 3D video subjected to rare events with unpredictable effects, like bit errors or packet 

losses. However, it is convenient to follow the rules specified in the recommendations [10], [11] 

for the environment and test conditions, in order to obtain results that can be compared with 

other researchers’ experiments. In this work, the Double-Stimulus-Continuous-Quality-Scale 

(DSCQS) methodology was used, whose procedures and results are explained in section 6.3.  

Another subjective quality assessment was also conducted with a different goal: to measure the 

extent to which people tolerate losses in depth by comparing a no-loss 2D video with its 

corresponding depth-impaired 3D video. To achieve this goal, the 2D-3D Pair-Comparison 

methodology was used, whose procedures and results are explained in section 6.4. 

6.2 Test Environment and subjects 

The subjective tests were conducted in a quiet and low-illuminated room. A set of software 

applications with highly intuitive graphical interfaces were specially designed to be used as the 

grading and voting consoles on a tablet-PC, as shown in Figure 6.1. A server workstation was 

used to reproduce all the test sequences in a random order, as well as to register in a database the 

subjective quality results. A 20-inch Philips WOWvx 9-view autostereoscopic display was used 

to display the 3D video test sequences, and the viewer was comfortable seated in front of it at the 

optimal distance of 80 cm. The overall time duration of the evaluation sessions (DSCQS and 

Pair-Comparison) was about 28 minutes. A total of 30 male and 5 female voluntary viewers, 

aged from 21 to 47, participated in the subjective assessment experiments. Most of the 

participants were students and only two of them were already familiar with this kind of 

experiment. All participants have good visual acuity and good stereo vision, as verified with the 

so called “fly” depth acuity test. Before each evaluation session, the test administrator explained 

to the participant, in detail, the evaluation process and its objectives to clarify any doubts the 

participants might have had. 
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Figure 6.1 – Grading console for DSCQS (left) and voting console for PC (right), written in Portuguese. 

 
Figure 6.2 – Presentation structures: (a) DSCQS session, (b) 2D-3D Pair-Comparison session. 

6.3 DSCQS session: procedures and results 

The adopted DSCQS methodology conforms with the ITU-R BT.500-11 [10], but with a minor 

change. The normative procedure states that the pair reference and distorted video are presented 

twice, in sequence and in random order such that the viewer assesses both videos, in a 

continuous quality scale ranging from 0 to 100, but without knowing a priori which video is the 

reference. Then, the differential score is calculated. However, this methodology turns out to be 

very time-consuming. In order to obtain a larger result set in shorter time, and to prevent eye 

fatigue from 3D viewing, each pair reference-distorted is presented only one time and the viewer 

knows a priori that the first video to appear is the reference. Thus, the viewers were asked to 

evaluate the quality of the second video (distorted) with respect to the first video (reference), in 

the continuous quality grading scale of Figure 6.1 (left) which goes from very bad to excellent.  

The video presentation structure is shown in Figure 6.2 (a). Five impaired versions of each 3D 

video simulated with scheme DOL, with PLR ranging from 0.4% to 20% (see Annex G for 

further details), were given to the participants for evaluation in a random order. Each distorted 

video is assigned to a discrete five-rank w according to its PSNR, as explained in Figure 6.3. To 

reduce the result of inconsistent evaluations each video pair was presented twice, in random 

moments, but the participants were not aware of this fact. Thus, each individual session collects 

40 scores, with 2 scores for each video (a minimum and a maximum, if not equal). A single 

opinion score per viewer, for each distorted video j, can be obtained with an average of the two 

scores, weighted according to its rank w, as shown in equation (6.1): 
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Figure 6.3 – Ranking criteria for distorted 3D videos.  

 ( ) ( ) ( )avg , min, max,0.25 0.25 1.25 0.25j j jScore w w Score w Score= − ⋅ + − ⋅  (6.1) 

In this way, low-loss videos will be given a greater weight to the maximum score, and vice-

versa. Then, differential (or delta) scores, for each video j, were obtained as: 

 avg , avg , 100  j jScore Score∆ = −   (6.2) 

 Letting N be the number of viewers, the DMOS for each video j can be calculated as: 

 ( )avg , 
1

1 N

j j i
i

DMOS Score
N =

= ∆∑   (6.3) 

Figure 6.4 shows the results of the DMOS versus PSNRSeq (left) and DMOS versus SSIMSeq 

(right) for the 20 evaluated videos, with error bars representing the 95% confidence interval of 

each DMOS, derived from the standard deviation and size of each sample as: 

( )( )2

avg , 

1

1.96,   ,       with          
( 1)

N j j i
j j j j j

i

DMOS Score
DMOS DMOS

NN
δ δ δ

=

− ∆
 − + = ⋅  −∑   (6.4) 

Also plotted are the fitted logistic curves, according to expression (3.2) (and repeated in (6.5)), 

with fitting coefficients 1a , 2a  and 3a  given in Table 6.1 and OQM meaning objective quality 

metric (PSNRSeq or SSIMSeq). As we can state by the PLCC, the DMOS is highly correlated with 

DMOS predicted from PSNRSeq – even better than with DMOS predicted from the SSIMSeq –, 

which demonstrates the assumption made on chapter 3.2: that the PSNR is a good predictor of 

subjective video quality, for specific impairments due to packet-loss events. 

 ( )2 3

1
Predicted 1 2 3   ,     , ,  are fitting coefficients

1 a OQM a

aDMOS a a a
e +

=
+

  (6.5) 

 1a  8 2a  3a  2R  PLCC between DMOS and DMOSPredicted 

DMOS vs. PSNRSeq 100 0.1755 -36.63 0.95998 0.97978 

DMOS vs. SSIMSeq 100 126 -0.9891 0.78749 0.88741 

Table 6.1 – Logistic fitting coefficients and PLCC of the plots of Figure 6.4. 

                                                 
8 The value of this coefficient was forced to 100 because it is the maximum value of the DSCQS adopted scale. 
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Figure 6.4 – DMOS vs. PSNRSeq (left) and DMOS vs. SSIMSeq (right) for the 20 evaluated videos.  

6.4 2D-3D Pair-Comparison session: procedures and results 

In this session, 30 viewers were presented sequence pairs of 2D video followed by an impaired 

3D video version, as depicted in Figure 6.2 (b), and were asked to indicate (by voting) which one 

they preferred to view – no middle-choices allowed –, according to the voting console of Figure 

6.1 (right). The same impaired videos used in DSCQS are used, but only those ranking from 2 to 

5 are presented for voting, just once, resulting in 16 videos and 16 votes per individual session. 

The results of this subjective experiment are shown in Figure 6.5. As expected, as the magnitude 

of the degradation of the depth information increases (due to higher PLR), viewers tend to prefer 

the “clean” 2D version. Note, however, that not everyone prefers to view an almost “clean” 3D 

version over the 2D version. The technology of the autostereoscopic 3D display used in these 

subjective experiments plays an important role in the perceived quality of 3D video, namely the 

presence of crosstalk between views when the disparity is very large (as in case of Champagne 

Tower) [75], an effect that may explain the preference of some users for the 2D video over the 

3D video.  

 
Figure 6.5 – Voting results for 2D-3D Pair Comparison Test. 
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Chapter 7 -  Empirical hybrid models for frame-level 
synthesized view quality assessment 

7.1 Context, objective and procedures 

This last chapter presents some low-complexity techniques for empirical modeling of the 

synthesized 3D video quality, in a frame-wise fashion. The objective of these techniques is to 

estimate an objective quality score (e.g. SSIM) of a synthesized frame/slice, based on a set of 

media-layer parameters. The techniques introduced take into account the fact that the frame/slice 

which quality is to be estimated has been impaired either due to the loss of its own texture or 

depth packets and also, possibly, due to error propagation. While in this chapter we are not 

taking into account network statistics like PLR or MBL, studied in chapter 5, it is still convenient 

to look into the headers of the packets and to have some knowledge about the GOP and slice 

structure of the texture and depth streams, in order to infer which slices have been actually 

damaged by packet losses. Therefore we cannot classify this kind of models as pure media-layer: 

they are hybrid models (Table 3.1) combining packet layer and media layer information. They 

are well suited for deployment in set-top boxes, because they require the decoded video which is 

readily available in the decoding terminals; however, for this same reason (access to decoded 

video) and contrary to the kind of models studied in chapter 5, these models are not efficient to 

be implemented in a network node. 

The four encoding and transmission schemes considered in chapter 5 will be considered in this 

study as well. The same procedures for inferring which slices are affected by self-loss or error 

propagation in packet-layer models will be used. When checking frame-by-frame, following the 

display order, which slices may be affected, it is convenient to assign them to one of two 

categories: (a) slices whose co-located slice in the previous frame inside the GOP has not been 

affected, and (b) slices whose co-located slice in the previous frame inside the GOP has been 

affected as well. We can define the first group as the initial-loss slices, and the second group as 

the non-initial-loss slices, as exemplified in Figure 7.1 which applies the same packet loss 

pattern of Figure 4.4. Lost I- or IDR-slices are always classified as initial-loss slices; due to the 

error concealment technique adopted by the JM decoder, they are also classified as intra losses. 

In Figure 7.1, green slices represent no-affected slices; red slices represent initial-loss assigned 

slices; and yellow slices represent non-initial-loss assigned slices. Note that other packet-loss 

patterns would have produced the same slice assignment; in other words, given a specific slice 

assignment, it is not possible to infer the exact packet-loss pattern (but that is not important). 
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Figure 7.1 – Example of initial-loss classification given the same error pattern as Figure 4.4. 

In the simulation setup, once again the (un)corrupted texture and corrupted depth stream are used 

to synthesize a view. The SSIM of each slice of the distorted synthesized view is computed with 

respect to the reference synthesized view, and then is used as target of the empirical model. Two 

approaches will be considered: the first one is to train a single neural network for all affected 

slices (section 7.4); the second one is to train a neural network for each of the two slice 

categories (section 7.5). As in chapter 5, hundreds of simulations have been performed to gather 

data to be used in tuning the quality estimators. The videos used are Balloons, Lovebird1 and 

Newspaper, with encoding configurations listed in Table 5.4. 

7.2 Input packet-layer binary parameters  

There are eight binary parameters that can be defined at the packet-layer9

Table 7.1

, to classify the 

rendered slice: four related to the texture information and four related to the depth information, 

as shown in . 13x  and 26x identify if the slice has been somehow impaired, either by 

self-loss or propagated loss of the texture stream or depth stream. As the rendered slices to be 

assessed are known a priori to be impaired, 26x  is not explicitly used in schemes DOL, SCA and 

                                                 
9 Further research is needed to understand if it is possible to aggregate these eight binary parameters into two quaternary 
parameters in order to reduce the amount of inputs and to reduce the neural network complexity, but without losing accuracy. 
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FRA; 13x  is used only in schemes FRA and SIM because these are the schemes where texture loss 

can coexist not simultaneously with depth losses. 10x   and 23x  identify if the slices have been 

(also) impaired by the loss of its own texture or depth packet; they form a unique parameter for 

scheme FRA as the losses are mutual. 11x  and  24x  identify if the impaired slice is an I- or IDR-

slice, relevant information due to the nature of the error concealment; these two form a unique 

parameter for scheme FRA. Finally, 12x  and 25x  identify the assigned category: initial-loss or 

non-initial-loss. 12x  is irrelevant in schemes DOL and SCA (so it is not used); 12x and 25x  form a 

unique parameter for schemes FRA and SIM.  
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)  1x  Mean (µ)     14x  Mean (µ)     

2x  Standard Deviation (σ)     15x  Standard Deviation (σ)     

3x  σ(low resolution) = β     16x  σ(low resolution) = β      

4x  Entropy (H)     17x  Entropy (H)     
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l) 5x  µ (Δslice)     18x  µ – µ (slicePreviousFrame)     

6x  σ (Δslice)     19x  σ – σ (slicePreviousFrame)     

7x  β (Δslice)     20x  β – β (slicePreviousFrame)     

8x  H (Δslice)     21x  H – H (slicePreviousFrame)     

Artifacts 9x  Block discontinuities (η) –    22x  Block discontinuities (η)     

Packet-Layer 
binary  

parameters 

10x  Self-loss –  *  23x  Self-loss   *  

11x  I- or IDR-slice –  *  24x  I- or IDR-slice   *  

12x  Initial-loss slice – – * * 25x  Initial-loss slice   * * 

13x  Impaired slice (general case) –  –  26x  Impaired slice (general case) i i i  

            

Feedback 27x  Quality output from the previous co-located slice (either been affected or not).    

Table 7.1 – Input parameters for slice-wise quality assessment of the synthesized view with neural network models, 
and their use in all transmission schemes. The  means that variable are explicitly used as neural network input; 
 the * means that variables of texture and depth are shared; the i means that variable are not explicitly used as a 
neural network input, but as an implicit system control variable; and the – means that variable is not used at all. 

7.3 Input media-layer histogram-based descriptors 

As listed in Table 7.1, there are three histogram-based low-complexity operators that can be 

applied to the luminance component10

                                                 
10 Recall from section 3.2 that only the luminance component is used to compute PSNR and SSIM scores. Thus, it is irrelevant to 
apply these operators on the chrominance components. 

 of texture and depth slices to compute a series of 
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descriptors: mean, standard deviation and entropy. They are able to measure, to some extent, the 

spatial complexity of a slice. The larger the spatial complexity, the more impaired the slice is 

expected to be if the corresponding packets are lost. In order to measure the temporal complexity 

of a slice, the same three operators can also be applied to the absolute pixel-differences between 

the current slice and the co-located slice from the previous frame, referred here as Δslice that 

defined as: 

 CurrentFrame PreviousFrameslice slice slice∆ = −   (7.1) 

Given a slice histogram where l is the gray level (out of a total of L possible values – typically 

256), whose probability of occurrence is p(l), we can define the mean, standard deviation and 

entropy in equations (7.2), (7.3) and (7.4), respectively: 

 ( )
255

0l
l p lµ

=

= ⋅∑   (7.2) 

 ( ) ( )
255

2

0l
l p lσ µ

=

= −∑   (7.3) 

 ( ) ( )
255

2
0

log
l

H p l p l
=

= −   ∑   (7.4) 

It was defined another operator, referred in Table 7.1 as β, that results from the combination of 

(7.2) and (7.3): first the slice is partitioned into N macroblocks of 16x16 pixels, then each block 

is applied the mean operator, and finally the standard deviation is computed for the resulting 

value set. The result is the same as applying the operator (7.3) to a “raw” low-resolution version 

(16:1) of the slice, and as with the previous three operators, this one can be used in both spatial 

and temporal complexity measurement. 

Typical artifacts seen on impaired slices due to error propagation are blocking effects, 

characterized by abrupt discontinuities at the macroblock and slice boundaries. They are 

indicated in Table 7.1 as η. In Annex H is included the script used to compute the η of a slice. 

These media-layer descriptors don’t have all the same relevancy. The most important ones are 

the entropy and the block discontinuities η. Some descriptors are more relevant in the spatial 

domain than in the temporal domain, and vice-versa. However, as the video content diversity 

broadens the field of impairment possibilities, it was decided to train the neural networks and to 

present the results of the slice SSIM prediction using all the descriptors. 
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7.4 3D-VQM Architecture 1: single neural network model 

The overall structure of the hybrid 3D Video Quality Monitor (Architecture 1) is shown in 

Figure 7.2. The packet-layer and media-layer inputs to the neural network were explained in 

sections 7.2 and 7.3, but another input – probably the most important one – is used: the SSIM 

score from the previous co-located slice, either it has been impaired or not. 

This feedback input is very important for accurate non-initial-loss slice quality assessment, 

because of error propagation. Thus, we can define a “SSIM propagation”, which fluctuations are 

due to the remaining input parameters. However, the accuracy of the initial-loss slice quality 

scores may fluctuate, as the previous co-located slice has not been affected, has maximum 

quality, and thus the score is not correlated at all. In these cases, the packet-layer parameters and 

media-layer descriptors are the only ones which can be used to predict the quality of non-initial-

loss slices.  

The scatter plots of Figure 7.3, for each considered scheme, show the excellent accuracy (PLCC 

over 0.99) of the trained neural network models, with 25 hidden nodes. Each point of the plots 

represents one affected slice SSIM score. Note that the majority of the points, with very accurate 

prediction along the Y=T line, are from non-initial-loss slices. However, these models have 

considered the real value of the previous co-located SSIM in the training process. If the initial-

loss slices, in general, do not show very high prediction accuracy, the overall performance of the 

model is lower than expected (see Figure A.3 of Annex I). Thus, it is very important to ensure 

that the initial-loss slice scores are predicted with good accuracy. The next section explains an 

extended version of the hybrid 3D Video Quality Monitor with this aim.  

 

 

Figure 7.2 – Overall structure of the hybrid 3D Video Quality Monitor (3D-VQM Architecture 1). 

 



52 

  

  

Figure 7.3 – Target slice SSIM versus prediced slice SSIM with the 3D-VQM Architecture 1, for all schemes. 

7.5 3D-VQM Architecture 2: double neural network model 

In order to decouple the effects of the feedback input in the quality prediction of initial-loss 

slices, architecture 2 was developed with two neural network models: one oriented to non-initial-

loss slices and another oriented to initial-loss slices, this one with no feedback input. Figure 7.4 

shows the overall structure of this extended architecture. 

 

Figure 7.4 – Overall structure of the hybrid 3D Video Quality Monitor (3D-VQM Architecture 2). 
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Figure 7.5 – Target slice SSIM versus predicted slice SSIM with the 3D-VQM Architecture 2, for all schemes  
(neural network dedicated to initial-loss slices) 

The scatter plots of Figure 7.5, for each considered scheme, show that the accuracy for initial-

loss slice quality prediction scores is still high (PLCC over 0.96). Thus, the overall performance 

of the system is expected not to degrade so much due to the “predicted SSIM propagation”. On 

the other hand, the scatter plots of Figure 7.6 are related to non-initial-loss slice quality 

prediction. As expected from the use of the feedback SSIM, the overall accuracy of these slices’ 

quality prediction is much higher than the initial-loss slice quality prediction (PLCC over 0.99). 

Figure A.4 of Annex I shows an example of the quality monitor performance with the trained 

networks for scheme DOL, in which the predicted SSIM value is fed back to the non-initial-loss 

neural network input. 

7.6 Averaging scores with visual attention models 

In an industrial setting, the slice quality scores obtained using the estimators described in the 

previous chapters and sections can be transmitted to the service or content provider through a 

reliable transport protocol (e.g. TCP/IP) and integrated in the network’s operation and 

management framework.  
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Figure 7.6 – Target slice SSIM versus predicted slice SSIM with the 3D-VQM Architecture 2, for all schemes  

(neural network dedicated to non-initial-loss slices) 

If the goal is to obtain an overall score for the entire frame, the simplest solution is to average the 

scores of the slices that make up that frame and transmit individual frame scores. Conversely if 

longer term quality indicators are preferable, average scores for a sequence of frames within a 

(possibly sliding) temporal window can be computed and sent to the quality control system. 

However, sometimes this averaging process can produce values that are not very well matched to 

the human observer perceived quality. To alleviate this problem, visual attention models for 

multiview 3D video can be used to define weighting factors to incorporate in averaging 

procedures, so that the average scores are closer to the subjective human observer perceived 

quality. However interesting, this topic (3D video attention models) is still in the first stages of 

research, and further work on it is far from the scope of this thesis. As argued by the authors of 

[76], a simple extension of 2D video visual attention models (like the one described in [77]) to 

stereoscopic or multiview 3D video doesn’t seem to be biologically plausible, due to, for 

instance, masking effects between views, occlusions or the effect of large disparities. Research 

on the inclusion of depth information in still 3D image visual saliency has been published very 

recently [78]. However, it is needed further extensive research concerning human behavioral 

responses in the visual exploration of 3D video content. 
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Chapter 8 -  Conclusion 

In this thesis, the subject addressed was the objective quality evaluation of 3D video transmitted 

over packet-loss-prone channels. The four objectives proposed in section 1.2 have all been 

successfully achieved. The empirical quality models discussed and developed in this work yield 

very good results (which are object of future publication in scientific articles), regarding the 

assumptions made and methodologies followed – the encoding and transmission setup and the 

definition of the used input parameters and targets. As discussed in chapter 3, it is very difficult 

to compare different quality assessment methods developed and published in the scientific 

literature, because almost all of them have different kinds of applications, different goals and 

even different assumptions regarding, for instance, the encoding and transmission setup. 

Nevertheless, this premise deserves a little more discussion, before closing this essay. 

The first approach to address the subject of this thesis was to try to assemble no-reference pure 

media-layer models for 3D video quality assessment, either found in the scientific literature, or 

proposing new ones. The quality impairment source was already restricted to packet losses, thus 

a simulation environment was needed to be established: (a) to encode raw texture-plus-depth 

videos, (b) to packetize their bitstreams, (c) to simulate packet losses, and finally (d) to evaluate 

the final quality. The first issue to overcome was to decide the digital encoding format to be 

adopted, how to packetize, and how to discard some packets, in order to decode a video impaired 

by packet-losses. Ideally, a pure media-layer general-purpose and no-reference quality model 

does not give any importance to the simulation environment adopted, so any encoding 

parameters can be used. Soon it became obvious that, currently, there are no such models in the 

scientific literature. Let’s think over it: is it possible to objectively evaluate the quality of a 3D 

video – or even a 2D video or an image – without any reference or trained model, based only on 

pixel-domain information? We can think even further: is it possible to subjectively evaluate a 

short-duration video, or to continuously evaluate a long-duration video, without having some 

common-sense references regarding to how an “excellent quality” video should look like? 

Furthermore, the “excellent quality” references are continuously changing due to the advances of 

technology: a low-resolution video displayed in a large television is typically not assessed as 

“good quality” anymore, but perhaps two decades ago it was. That’s why the subjects who 

participated in the subjective test described in chapter 6 were asked to evaluate the impaired 

videos in a comparison basis. Some of them claimed that even the unimpaired videos used as 

references have very poor quality, not directly related to compression artifacts, but mostly related 

to the displaying conditions of the used autostereoscopic display, which were far from perfect.  
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In this way, methods based on only media-layer information may be highly susceptible to 

erroneous QoE predictions, for instance due to the fact that the original content might be already 

of poor quality (e.g. a very old movie or a video captured with an uncalibrated camera), even if it 

is transmitted with excellent QoS (i.e. without transmission losses or bit errors). In the thesis 

author’s opinion, media-layer models could benefit from other layers’ information (if available), 

such as parameters extracted from the bitstream or packet-layer, in order to output quality scores 

consistent with the potential transmission problems. This approach brings more realism to the 

scope of loss-prone transmission schemes, in the way that media-layer quality assessment of 

video frames, which are known a priori to be impaired due to transmission losses, acquires a 

solid meaning and makes possible to model empirically, as proved in chapters 5 and 7.  

Thus, the work of this thesis was re-oriented into no-reference transmission-purpose packet-layer 

and hybrid quality models. Then we faced a universe of possibilities for video encoding settings 

and transmission schemes: the encoding settings and variables are far from being restricted to the 

adopted codec, GOP structure, slices and QPs. So, we had to choose what we believe to be a 

typical configuration setting for encoding. In an industrial setting, the models derived in this 

thesis must be tuned to the encoding settings adopted by the content provider, and packetizing 

schemes adopted by the service and network providers, performing new training simulations. 

Yet, this is not a serious problem, as for instance, the number of encoding configurations (GOP 

size and structure, bit-rate, and so on) is usually quite limited and, in many cases, only a very 

small set of parameters can be changed, a limitation imposed by codec manufacturers.  

Nevertheless, if specific models are needed, they are easy to obtain with the use of neural 

networks, or even other empirical models.  The use of such empirical models is highly 

convenient in the sense that input variables, topologies, and weights can be adjusted to a wide 

variety of encoding and transmission conditions, and can be updated in real-time, even using the 

same types of inputs and targets. 

Hence, the quality modeling developed in this thesis becomes a proof of concept, which acquires 

a major importance as it supports automated applications for solving transmission problems. 

Several applications have been described in this thesis, but the most important one is the ability 

for the video transmission infrastructure to automatically adapt, according to the traffic and 

environment conditions, and the predicted QoE at the user-end. The video quality monitor 

identifies a QoE degradation problem and, using these empirical low-complexity models, it 

classifies the severity of such problem. Then, it provides this valuable information to other tools 

(out of the specific scope of this thesis) that will to try to solve the problem. Actually, this is the 

task of engineering. 
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Annex A: H.264/AVC syntax overview 

 

 

Figure A.1 – H.264/AVC syntax overview (Figure 4.19 from [57]). 
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Figure A.2 – H.264/AVC syntax overview (Figure 5.1 from [57]). 
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Annex B: Trace-file Generator (Matlab script) 

% Trace-file generator 
% by Chamitha de Alwis, adapted by João Soares 
  
%If p is the probability of transferring from Good State to the bad state 
%and if r is the probability of transferring from the bad state to the Good 
%state, given the p and r values, this code will generate a packet loss 
%pattern (with burst losses) and save it to a file named Loss_Pattern.txt. 
  
% 10/04/13 -> maximum burst length defined in maxBL, very important to  
% prevent the JM decoder fault. 
  
% p = P(X=1/X=0) 
% r = 1 - q = 1 - P(X=1/X=1) = P(X=0/X=1) 
  
%clear all 
%clc 
  
% Burst Length (BL) & Packet Loss Rate (PLR) parameter definition 
BL = [3  5]; 
%PLR = [0.001  0.002  0.004  0.007  0.01    0.03    0.05    0.1]; 
PLR = [0.001 0.002 0.004 0.008 0.02 0.04 0.08 0.2]; 
  
maxBL = 7; % maximum burst length 
  
for g = 1:length(BL) 
    for h = 1:length(PLR) 
  
        p = 1/(BL(g)*(1/PLR(h) - 1)); 
        r = 1/BL(g); 
        total_packs = 10000; 
         
        check = 100; % check the consistency of the trace-file 
  
        while check >= 10 
  
            loss = 0; 
            packets = zeros(1, total_packs); 
  
            for i=1:total_packs 
                if loss == 0 
                    burst = 0; 
                    packets(i) = loss; 
                    loss = (rand(1) < p); % P(X=1/X=0), if 1, moves to bad state 
                elseif loss == 1 
                    burst = burst+1; 
                    if burst <= maxBL 
                        packets(i) = loss; 
                        loss = (rand(1) < (1-r)); %  P(X=1/X=1) 
                    else 
                        packets(i) = 0; 
                        loss = 0; %  forces to get back to the good state is maxBL is reached 
                    end 
                else 
                    fprintf('error\n'); 
                    break; 
                end 
            end 
  
            received_packs = total_packs - nnz(packets); 
            theo_pack_loss_rate = 1 - r / (p+r); 
            act_pack_loss_rate = 1 - received_packs/total_packs; 
  
            % check the real PLR of the trace-file 
            check = abs(theo_pack_loss_rate - act_pack_loss_rate) / theo_pack_loss_rate * 100; 
  
        end 
  
        fid = fopen(['C:\VIDEODATABASE\TOOLS\transmitter_simulator\trace_files\maxBL_7\b' num2str(BL(g)) 'plr' 
num2str(PLR(h)*100)],'w'); 
        fprintf(fid, '%d', packets); 
        fclose(fid); 
  
        %packets; 
        %theo_pack_loss_rate = p / (p+r); 
        %act_pack_loss_rate = 1 - received_packs/total_packs; 
  
    end 
end 
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Annex C: Camera calibration parameters 

 

 
Original view Virtual view 

Intrinsic Parameters [A] Extrinsic Parameters [R|t] Intrinsic Parameters [A] Extrinsic Parameters [R|t] 

B
al

lo
on

s 2241.256 0.0 701.5 1.0 0.0 0.0 0.0 2241.256 0.0 701.5 1.0 0.0 0.0 10.0 

0.0 2241.256 504.5 0.0 1.0 0.0 0.0 0.0 2241.256 504.5 0.0 1.0 0.0 0.0 

0.0 0.0 1.0 0.0 0.0 1.0 0.0 0.0 0.0 1.0 0.0 0.0 1.0 0.0 

K
en

do
 2241.256 0.0 701.5 1.0 0.0 0.0 0.0 2241.256 0.0 701.5 1.0 0.0 0.0 10.0 

0.0 2241.256 504.5 0.0 1.0 0.0 0.0 0.0 2241.256 504.5 0.0 1.0 0.0 0.0 

0.0 0.0 1.0 0.0 0.0 1.0 0.0 0.0 0.0 1.0 0.0 0.0 1.0 0.0 

C
ha

m
pa

gn
e 

To
w

er
 2969.0 0.0 -832.1011 1.0 0.0 0.0 -1975.0 2969.0 0.0 -795.959 1.0 0.0 0.0 -1875.0 

0.0 2969.0 457.7121 0.0 1.0 0.0 0.0 0.0 2969.0 457.7121 0.0 1.0 0.0 0.0 

0.0 0.0 1.0 0.0 0.0 1.0 0.0 0.0 0.0 1.0 0.0 0.0 1.0 0.0 

Po
zn

an
 

C
ar

Pa
rk

 1732.8757 0.0 943.2311 1.0 0.0 0.0 0.0 1732.8757 0.0 943.2311 1.0 0.0 0.0 1.593023 

0.0 1739.9089 548.8450 0.0 1.0 0.0 0.0 0.0 1739.9089 548.8450 0.0 1.0 0.0 0.0 

0.0 0.0 1.0 0.0 0.0 1.0 0.0 0.0 0.0 1.0 0.0 0.0 1.0 0.0 

N
ew

sp
ap

er
 2929.4940 0.0 307.6333 1.0 0.0 0.0 201.6171 2929.4940 0.0 307.6333 1.0 0.0 0.0 155.2750 

0.0 2922.7064 555.01096 0.0 -1.0 0.0 0.0 0.0 2922.7064 555.01096 0.0 -1.0 0.0 0.0 

0.0 0.0 1.0 0.0 0.0 -1.0 0.0 0.0 0.0 1.0 0.0 0.0 -1.0 0.0 

Lo
ve

bi
rd

 2017.8075 0.0 555.4121 1.0 0.0 0.0 193.2942 2017.8075 0.0 555.4121 1.0 0.0 0.0 154.6353 

0.0 2009.3331 385.285 0.0 -1.0 0.0 0.0 0.0 2009.3331 385.285 0.0 -1.0 0.0 0.0 

0.0 0.0 1.0 0.0 0.0 -1.0 0.0 0.0 0.0 1.0 0.0 0.0 -1.0 0.0 

Table A.1 – Camera calibration parameters of the videos used in simulations. 

 

 Balloons Kendo Champagne Tower Poznan CarPark Newspaper Lovebird 

minz   448.251214 448.251214 2281.357719 -50.191107 3393.977060 1418.292789 

maxz   11206.280350 11206.280350 7045.261474 -2760.510889 7542.171244 156012.206895 

Table A.2 – Nearest and farthest depth values of depth maps used in simulations. 
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Annex D: Content description of 3D video used 

 

 Texture (frame 203) Depth (frame 203) 

B
al

lo
on

s (
ca

m
. 1

) 

  
Resolution Number of frames Frame Rate Content description: A man entering and jumping in a big 

balloon; moving camera, complex motion and moderate depth. 1024x768 300 30 fps 
Table A.3 – Content description of Balloons 

 Texture (frame 165) Depth (frame 165) 

K
en

do
 (c

am
. 1

) 

  
Resolution Number of frames Frame Rate Content description: Two men practicing kendo with spectators 

on the back; moving camera, high motion and moderate depth. 1024x768 300 30 fps 
Table A.4 – Content description of Kendo 

 Texture (frame 1) Depth (frame 1) 

C
ha

m
pa

gn
e 

T
ow

er
 (c

am
. 3

9)
 

  

  
Resolution Number of frames Frame Rate Content description: A woman stands next to a cup pyramid and 

grabs a glass; static camera, moderate motion and high depth. 1280x960 300 30 fps 
Table A.5 – Content description of Champagne Tower 
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 Texture (frame 245) Depth (frame 245) 

N
ew

sp
ap

er
 (c

am
. 2

) 

  
Resolution Number of frames Frame Rate Content description: Three friends talking around a small table; 

static camera, moderate motion and moderate depth. 1024x768 300 30 fps 
Table A.6 – Content description of Newspaper 

 Texture (frame 207) Depth (frame 207) 

L
ov

eb
ir

d1
 (c

am
. 6

) 

  
Resolution Number of frames Frame Rate Content description: A boy and a girl walking on a garden, 

coming closer; static camera, slow motion and high depth. 1024x768 240 30 fps 
Table A.7 – Content description of Lovebird1 

 Texture (frame 147) Depth (frame 147) 

Po
zn

an
 C

ar
Pa

rk
 (c

am
. 3

) 

  
Resolution Number of frames Frame Rate Content description: Men walking in a parking lot and a leaving 

car; static camera, complex motion and high depth. 1920x1088 250 25 fps 
Table A.8 – Content description of Poznan CarPark 

The sequences Balloons, Champagne Tower and Kendo were obtained under permission of Taminoto Lab at 

Nagoya University – Japan, available at http://www.tanimoto.nuee.nagoya-u.ac.jp/ (password protected). The 

sequence PoznanCarPark was obtained under permission of Poznań University of Technology – Poland, available at 

ftp://multimedia.edu.pl/ (password protected). The sequences Newspaper and Lovebird1 were obtained under 

permission of Gwangju Institute of Science and Technology (GIST) – Republic of Korea, but currently they are not 

available online. 
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Annex E: Packet-layer parameter extractor (C++) 

The next portion of C++ code, extracted from the developed PL3DVQA software, is the iterative 

script used to extract the input parameters of the packet-layer quality models of chapter 5, 

scheme DOL, depicted in Table 5.2. 

class PLI{ 
private: 
 
  int numSlices, GOPsize, numBframes, numPframes; 
  int *slice_size, *slice_num, *slice_lost, *slice_type; 
  int **slices_registo; 
  string ts_output_file; 
  int width, height; 
 
  int num_slices_OK[3], num_slices_KO[3], cumsize_slices_OK[3], cumsize_slices_KO[3], AF, burst_count; 
  bool flags[4]; // [loss_P | loss_B | loss_I | event] 
 
  int LB[3], TB[3]; 
  float PLR[3], AFR, MBL; 
 
  double PSNR, SSIM, MSE; 
 
  double NN_PSNR(); // neural network evaluation functions 
  double NN_SSIM(); 
  double NN_MSE(); 
 
public: 
   
  PLI(Parameters *p, GOPstructure *gop); //Constructor: 
  ~PLI();// Destructor 
  void Extract(); 
   
}; 

 
 
void PLI::Extract(){ 
 
  ifstream read(ts_output_file); // opens packet-layer output from Naccari's transmitter-simulator 
  ofstream write("output.txt"); 
  int aux1, aux2;  
 
  while(true){ // GOP by GOP  
 
    for (int i = 0; i < 3; i++){  // initialize to zero in the beginning of the GOP 
      num_slices_OK[i] = 0; 
      num_slices_KO[i] = 0; 
      cumsize_slices_OK[i] = 0; 
      cumsize_slices_KO[i] = 0; 
      flags[i] = 0; 
    } 
 
    AF = 0; // number of affected frames 
    burst_count = 0; 
    flags[3] = 0; // flag_loss_event 
 
    for(int f = 0 ; f < GOPsize ; f++){ // frame-by-frame 
 
      flags[1] = 0; // initialize frame-B flag to zero 
 
      for (int s = 0 ; s < numSlices ; s++){ // slice-by-slice 
         
        // read a line and store the values 
        read >> slice_size[s] >> slice_num[s] >> slice_lost[s] >> slice_type[s];  
 
        if(read.eof()) 
          goto fim_do_ficheiro;  // end-of-file hard stopping condition 
 
         
        if(slice_lost[s] == 0){  
        // in the case of successful slice reception, register its size in the table 
          slices_registo[slice_type[s]][s] = slice_size[s]; 
        } 
 
      } // end of slice 
       
      // in this moment, in the first iteration there may be some slices without size, 
      // thus they must be estimated from the neighbourhood received slices 
 
      for (int s = 0 ; s < numSlices ; s++){ // slice-by-slice again 
 
        if(slice_lost[s] == 1){ // if it's lost 
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          if(slices_registo[slice_type[s]][s] > 0){  
          // if exists the register of size (most probable case)   
          slice_size[s] = slices_registo[slice_type[s]][s]; 
 
          }else{ // non-zero-mean of the values of the table 
            aux1 = 0; 
            aux2 = 0; 
 
            for(int i = 0; i < numSlices ; i++){ 
              if(slices_registo[slice_type[s]][i] > 0){ 
                aux1 += slices_registo[slice_type[s]][i]; 
                aux2++; 
              } 
            } 
 
            slices_registo[slice_type[s]][s] = aux1/aux2; 
            slice_size[s] = slices_registo[slice_type[s]][s]; 
 
          } 
 
          cumsize_slices_KO[slice_type[s]] += slice_size[s]; 
          num_slices_KO[slice_type[s]] ++; 
 
          flags[slice_type[s]] = 1; 
          flags[3] = 1; 
 
 
        } else { // if the slice has been received 
 
          cumsize_slices_OK[slice_type[s]] += slice_size[s]; 
          num_slices_OK[slice_type[s]] ++; 
 
          if(flags[3] == 1){ 
            burst_count++; // increments burst counter 
            flags[3] = 0; 
          } 
 
        } 
 
      } // end of slice 
 
      // increment AF, if the frame is affected (any slice) 
 
      if(flags[0] || flags[1] || flags[2]) // if there's any active flag_loss  
        AF++; 
 
 
    } // end of frame 
 
  // Computation of PLR, LB e TB for each type of frame 
  PLR[0] = (float) num_slices_KO[0] / (numPframes*numSlices); 
  PLR[1] = (float) num_slices_KO[1] / (numBframes*numSlices); 
  PLR[2] = (float) num_slices_KO[2] / numSlices; 
 
  for(int i = 0; i < 3; i++){ 
    LB[i] = cumsize_slices_KO[i]; 
    TB[i] = cumsize_slices_KO[i] + cumsize_slices_OK[i]; 
  } 
 
  if(burst_count > 0) 
    MBL = (float) (num_slices_KO[0] + num_slices_KO[1] + num_slices_KO[2]) / burst_count;  
  else 
    MBL = 0; 
 
  AFR = (float) AF/GOPsize; 
 
   
  write << PLR[0] << '\t' << PLR[1] << '\t' << PLR[2] << '\t' << LB[0] << '\t' << LB[1] << '\t' << LB[2] << 
'\t' << TB[0] << '\t' << TB[1] << '\t' << TB[2] << '\t' << AFR << '\t' << MBL << '\t'; 
 
  // calls neural network evaluation functions 
  PSNR = NN_PSNR();  
  SSIM = NN_SSIM(); 
  MSE = NN_MSE(); 
 
  write << PSNR << '\t' << SSIM << '\t' << MSE << endl; // end of output line 
 
  } // end of GOP 
 
fim_do_ficheiro:; 
 
  read.close(); 
  write.close(); 
 
} 
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Annex F: GOP structure detector (C++) 

The next portion of C++ code is the script used for GOP structure detection, extracted from the 

developed PL3DVQA simulation software. 

 

class GOPstructure{ 
private: 
 int numSlices, GOPsize; 
 int numFrames[2]; 
 string ts_output_file; 
public: 
 //Constructor: 
 GOPstructure(Parameters *p); 
 
 // Destructor 
 ~GOPstructure(); 
 
 void detect_GOP(); 
 
 int get_numSlices(){return numSlices;} 
 int get_GOPsize(){return GOPsize;} 
 int get_numBframes(){return numFrames[1];} 
 int get_numPframes(){return numFrames[0];} 
 
};  

void GOPstructure::detect_GOP(){ 
 
 ifstream read; 
 read.open(ts_output_file); // opens the Naccari’s transmitter-simulator output file 
 
 ofstream write; 
 write.open("GOPstructure.txt"); 
 
 int aux[4]; // auxilliary variables used to store values as the file is being read 
 
 while(1){ 
 
  read >> aux[0] >> aux[1] >> aux[2] >> aux[3]; 
 
  if(aux[1] > 0 && aux[3] == 2) 
   break; 
 
  if(aux[1] == 0)  // if is the first frame, increments the number of slices 
   numSlices++; 
  else if(aux[3] < 2) 
   numFrames[aux[3]]++; 
 
  GOPsize++; // increments GOP’s number of packets 
 
 } 
 
 GOPsize /= numSlices;  // number of GOP frames 
 numFrames[0] /= numSlices;  // number of P-frames 
 numFrames[1] /= numSlices;  // number of B-frames 
 
 write << GOPsize << '\t' << numFrames[0] << '\t' << numFrames[1] << '\t' << numSlices << endl; 
 
 read.close(); 
 write.close(); 
 
} 
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Annex G: Packet-Layer specifications and overall 
quality of the 3D videos used in the subjective tests 

Rank 
(w) 

Packet-Loss-Rate (PLR) Mean Burst 
Length (MBL) 

Affected Frame 
Rate (AFR) 

Average 
PSNR 

Average 
SSIM Overall P-frames B-frames I-frames 

1 0,42% 0,29% 0,13% 0,00% 5,0 2,00% 51 0,9998 

2 0,92% 0,42% 0,50% 0,00% 3,6 14,30% 46 0,9991 

3 3,96% 0,75% 3,00% 0,21% 4,5 33,00% 36 0,9902 

4 8,38% 2,08% 6,04% 0,25% 3,4 68,00% 34 0,9861 

5 18,50% 4,63% 13,46% 0,42% 4,0 91,30% 30 0,9723 
Table A.9 – Specifications and overall quality of the Balloons sample set 

Rank 
(w) 

Packet-Loss-Rate (PLR) Mean Burst 
Length (MBL) 

Affected Frame 
Rate (AFR) 

Average 
PSNR 

Average 
SSIM Overall P-frames B-frames I-frames 

1 0,46% 0,08% 0,38% 0,00% 2,7 7,00% 56 0,9999 

2 1,04% 0,54% 0,50% 0,00% 5,0 24,30% 45 0,9996 

3 4,38% 0,96% 3,33% 0,08% 2,5 75,00% 34 0,9945 

4 8,46% 1,92% 6,29% 0,25% 3,3 61,60% 30 0,9891 

5 19,38% 5,33% 13,63% 0,42% 4,2 90,00% 25 0,9753 
Table A.10 – Specifications and overall quality of the Champagne Tower sample set 

Rank 
(w) 

Packet-Loss-Rate (PLR) Mean Burst 
Length (MBL) 

Affected Frame 
Rate (AFR) 

Average 
PSNR 

Average 
SSIM Overall P-frames B-frames I-frames 

1 0,54% 0,00% 0,54% 0,00% 4,3 1,30% 50 0,9998 

2 1,04% 0,33% 0,71% 0,00% 5,0 20,60% 42 0,9967 

3 4,04% 0,88% 3,17% 0,00% 2,4 58,30% 36 0,9938 

4 8,04% 2,21% 5,63% 0,21% 3,2 55,00% 33 0,9886 

5 19,54% 4,63% 14,00% 0,92% 4,3 90,66% 26 0,9547 
Table A.11 – Specifications and overall quality of the Kendo sample set 

Rank 
(w) 

Packet-Loss-Rate (PLR) Mean Burst 
Length (MBL) 

Affected Frame 
Rate (AFR) 

Average 
PSNR 

Average 
SSIM Overall P-frames B-frames I-frames 

1 0,50% 0,05% 0,45% 0,00% 5,0 9,60% 53 0,9996 

2 1,20% 0,25% 0,95% 0,00% 3,0 23,20% 46 0,9985 

3 5,00% 1,65% 3,20% 0,15% 5,0 57,20% 37 0,9797 

4 8,10% 1,90% 5,90% 0,30% 2,9 69,20% 34 0,9782 

5 19,00% 5,50% 12,90% 0,60% 3,0 93,60% 30 0,9413 
Table A.12 – Specifications and overall quality of the Poznan CarPark sample set 
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Annex H: Discontinuity measure at macroblock edges 
(Matlab script) 

 

persistent linhas; 
persistent colunas; 
B = 16; % macroblock side pixel-length 
  
if isempty(linhas) 
    linhas = logical(repmat([1, zeros(1, B-1)]', dims(1)/B, dims(2))); 
    linhas(1, :) = 0; 
end 
if isempty(colunas) 
    colunas = logical(repmat([1, zeros(1, B-1)], dims(1), dims(2)/B)); 
    colunas(:, 1) = 0; 
end 
  
TH1 = 5; % threshold for discontinuity detection at block edges 
 
block_effect = zeros(numSlices,numfrm); 
 
for k=1:numfrm % frame-by-frame 
     
    if sum(afectacao(:,k)) > 0 % if is there any affected slice in this frame 
         
    % frame replication with a single-line displacement to the bottom, and a single column to the right 
    Yd_shiftdown = [zeros(1,dims(2)) ; Y2{k}(1:end-1, :)]; 
    Yd_shiftright = [zeros(1,dims(1))' ,Y2{k}(:, 1:end-1)]; 
         
    % pixel-wise calculation of the diferences between the original and displaced frames, 
    % and multiplication by the grid mask   
    aux_linhas_d = (double(Y2{k}) - double(Yd_shiftdown)).*linhas; 
    aux_colunas_d = (double(Y2{k}) - double(Yd_shiftright)).*colunas; 
         
    % pixel-wise difference energy measure (only if the threshold TH1 is exceeded)   
    mbedge_d = (aux_linhas_d.^2) .* (abs(aux_linhas_d) > TH1) + ... 
                  (aux_colunas_d.^2) .* (abs(aux_colunas_d) > TH1); 
              
    for s=1:numSlices   
        if(afectacao(s,k) == 1) 
 
            % overall slice discontinuity measure: average and square-root 
            block_effect(s,k) = sqrt(  sum(sum(mbedge_d(dims(1)/numSlices*(s-1)+1 : dims(1)/numSlices*(s) , 
:))) / sum(sum(logical(linhas+colunas))) * numSlices ); 
         
 else 
            block_effect(s,k) = 0; 
        end 
    end 
     
    else 
         block_effect(:,k) = 0; 
    end 
     
     
end 
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Annex I: Examples of the media-layer quality monitor 
performance for scheme DOL 

 
Figure A.3 – Performance of the media-layer 3D-VQM (Architecture 1) for scheme DOL, using the actual predicted 

SSIM from the previous co-located slice as the feedback input. PLCC = 0.97079 

 
Figure A.4 – Performance of the media-layer 3D-VQM (Architecture 2) for scheme DOL, using the actual predicted 

SSIM from the previous co-located slice as the feedback input. PLCC = 0.97778 
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