Equivalent post-buckling models for the flexural behaviour of steel connections

L. Simões da Silva a,*, Ana Girão Coelho b, Eliseu Lucena Neto c

a Departamento de Engenharia Civil, Fac. de Ciencias e Tecnologia, Universidade de Coimbra, Polo II – Pinhal de Marrocos, 3030 Coimbra Codex, Portugal
b Instituto Superior de Engenharia de Coimbra, 3030, Coimbra, Portugal
c ITA, 12235-390, S. José dos Campos, SP, Brazil

Received 19 May 1999; accepted 8 December 1999

Abstract

Analytical solutions for the evaluation of the behaviour of steel connections are presented which are able to reproduce their full non-linear behaviour. Because usual models for the analysis of steel connections consist of translational springs and rigid links whereby the springs exhibit a non-linear force–deformation response, usually taken as a bi-linear approximation, they require an incremental non-linear analysis. Using a substitute elastic post-buckling model where each bi-linear spring is replaced by two equivalent elastic springs in the context of a post-buckling stability analysis using an energy formulation, closed-form solutions are obtained for a connection loaded in bending. Application to a beam-to-column welded connection using the component (spring) characterisation of code regulations yields the same results in terms of moment resistance and initial stiffness, being additionally able to trace the full unstiffening response. © 2000 Elsevier Science Ltd. All rights reserved.

Keywords: Steel; Joints; Bending; Component method; Nonlinear behaviour

1. Introduction

Currently, the evaluation of the behaviour of connections relies on the independent evaluation of strength, stiffness and ductility properties in the context of the so-called component method [1]. Although the first two, for a calibrated range of steel and composite connections, are covered by independent procedures that yield a moment resistance and an initial stiffness [2], the latter still remains quite unexplored, despite some recent attempts at providing a more quantitative guidance [3].

In spite of these advances in connection behaviour over the traditional approach of pinned or fully rigid response, no analytical procedure able to predict the full non-linear moment–rotation curve of a joint, based on the load-deformation response of the contributing components is currently available. This paper presents analytical expressions for the evaluation of the response of steel connections based on equivalent post-buckling models.

2. Equivalent models

2.1. Introduction

The component method consists of idealising a connection as a mechanical model composed of translational springs and rigid links, whereby the springs (components) represent a specific part of a joint that, depending on the type of loading, make an identified contribution to one or more of its structural properties, as illustrated in Fig. 1 for a typical welded beam-to-column steel connection.
In the model of Fig. 1(b), spring k_2 represents the behaviour of the column web in compression [4], which is characterized by a non-linear curve with an initial elastic response and a subsequent stiffness reduction with limited ductility, as shown in Fig. 2(a). Similarly, springs k_1 and k_3 represent, respectively, the column web panel in shear [5] and in tension [6], which typically present the non-linear behaviour of Fig. 2(b), practically with unlimited ductility after an initial linear elastic response.

It is thus clear that a bi-linear force–displacement approximation adequately represents the component behaviour, involving the identification of four properties for each component, namely initial elastic stiffness (k_e), limit load (F_C), post-limit stiffness (k_p) and limit displacement (Δ_f), schematically shown in Fig. 3, the yield displacement, Δ_y, being defined as ($\Delta_y = F_C / k_e$).

The springs and rigid links model of Fig. 1(b), with the assumed bi-linear behaviour of each spring (component) requires an incremental non-linear analysis when loaded in bending. Here, analytical moment–rotation curves are obtained using equivalent elastic models, replacing each bi-linear spring with an equivalent elastic system which yields the same response, in the context of a post-buckling elastic analysis. This approach was successfully employed in the context of the well-known Shanley model for the analysis of compressed columns in the elasto-plastic range [7].

2.2. Non-linear model for equivalent elasto-plastic springs

2.2.1. Elasto-plastic spring in compression

The basic building block of an equivalent model corresponds precisely to replacing each elasto-plastic (bi-linear) spring with an equivalent elastic system. Here, the two degree-of-freedom system of Fig. 4 is proposed, which consists of one elastic spring with stiffness k_e (linear elastic stiffness of component) and a second elastic spring with stiffness k_p (post-limit stiffness of component) and resistance F_C ($= F_B / 2$) applied as a pre-compression, the degrees of freedom being defined as follows:

Q_1 – total displacement,
Q_2 – rotation of rigid links.

Clearly, this model exhibits distinct behaviour in tension and compression, the latter being of most interest because of the inherent bifurcational behaviour. Assuming a positive compressive load, and using an energy approach, the following total potential energy function is obtained:

$$
\frac{1}{k_p} + \frac{1}{k_e}
$$

Fig. 1. Welded beam-to-column steel connection: (a) connection geometry and (b) mechanical model.

Fig. 2. Individual component behaviour: (a) column web in compression and (b) column web panel in shear or in tension.

Fig. 3. Typical force–displacement diagram for generic component.
Di/C128erentiation with respect to the various degrees of freedom yields the equilibrium equations
\[
\begin{align*}
\frac{\partial V}{\partial Q_1} &= 0 \\
\frac{\partial V}{\partial Q_2} &= 0 \\
\end{align*}
\]
which can be replaced in Eq. (1) to give
\[
V(Q_2) = 2L^2k_p(1 - \cos Q_2)^2 + \frac{P^B}{2k_p} - 2LF(1 - \cos Q_2) + \frac{(P^B)^2}{8k_p} - \frac{F^2}{2k_p}.
\]
Solution of Eq. (2) yields a trivial fundamental solution
\[
\begin{align*}
Q_1 &= 0, \\
F &= k_cQ_1,
\end{align*}
\]
and a post-buckling solution
\[
\begin{align*}
F &= 2Lk_p(1 - \cos Q_2) + \frac{P^B}{2}, \\
F &= \frac{k_c}{k_c+k_p} \left(k_pQ_1 + \frac{P^B}{2} \right).
\end{align*}
\]
Differentiating Eq. (4) twice with respect to \(Q_2\), evaluating along the fundamental path and equating to zero yields the critical load
\[
\left. \frac{d^2V}{dQ_2^2} \right| \frac{\partial V}{\partial Q_2} = 0 = 4L^2k_p\left[\cos 0 - \cos (0) \right] + L \left(\frac{P^B}{2} - 2F \right) \cos 0 \\
= L \left(\frac{P^B}{2} - 2F \right)
\]
or
\[
F_C = \frac{P^B}{2}.
\]
The resulting force–deformation curves are shown in Fig. 5, clearly reproducing the bi-linear behaviour of the original elasto-plastic spring (component).

Under tensile loading, similar reasoning yields simply the linear elastic solution,
\[
F = k_cQ_1,
\]
the bifurcational response being absent.

2.2.2. Elasto-plastic spring in tension

As seen in the previous section, the equivalent model of Fig. 4 is not able to reproduce a bi-linear response in tension. Such a situation requires the elastic system of Fig. 6, which, using a similar derivation and assuming \(F\) to be positive in tension, yields the same equilibrium solutions of Eqs. (5), (6) and (8), and exhibits the required bi-linear response of the component in tension and a linear elastic behaviour when loaded in compression.

Differentiating Eq. (4) twice with respect to \(Q_2\), evaluating along the fundamental path and equating to zero yields the critical load
\[
\left. \frac{d^2V}{dQ_2^2} \right| \frac{\partial V}{\partial Q_2} = 0 = 4L^2k_p\left[\cos 0 - \cos (0) \right] + L \left(\frac{P^B}{2} - 2F \right) \cos 0 \\
= L \left(\frac{P^B}{2} - 2F \right)
\]
or
\[
F_C = \frac{P^B}{2}.
\]
The resulting force–deformation curves are shown in Fig. 5, clearly reproducing the bi-linear behaviour of the original elasto-plastic spring (component).

Under tensile loading, similar reasoning yields simply the linear elastic solution,
\[
F = k_cQ_1,
\]
the bifurcational response being absent.

2.2.2. Elasto-plastic spring in tension

As seen in the previous section, the equivalent model of Fig. 4 is not able to reproduce a bi-linear response in tension. Such a situation requires the elastic system of Fig. 6, which, using a similar derivation and assuming \(F\) to be positive in tension, yields the same equilibrium solutions of Eqs. (5), (6) and (8), and exhibits the required bi-linear response of the component in tension and a linear elastic behaviour when loaded in compression.

Differentiating Eq. (4) twice with respect to \(Q_2\), evaluating along the fundamental path and equating to zero yields the critical load
\[
\left. \frac{d^2V}{dQ_2^2} \right| \frac{\partial V}{\partial Q_2} = 0 = 4L^2k_p\left[\cos 0 - \cos (0) \right] + L \left(\frac{P^B}{2} - 2F \right) \cos 0 \\
= L \left(\frac{P^B}{2} - 2F \right)
\]
or
\[
F_C = \frac{P^B}{2}.
\]
The resulting force–deformation curves are shown in Fig. 5, clearly reproducing the bi-linear behaviour of the original elasto-plastic spring (component).

Under tensile loading, similar reasoning yields simply the linear elastic solution,
\[
F = k_cQ_1,
\]
the bifurcational response being absent.

2.2.2. Elasto-plastic spring in tension

As seen in the previous section, the equivalent model of Fig. 4 is not able to reproduce a bi-linear response in tension. Such a situation requires the elastic system of Fig. 6, which, using a similar derivation and assuming \(F\) to be positive in tension, yields the same equilibrium solutions of Eqs. (5), (6) and (8), and exhibits the required bi-linear response of the component in tension and a linear elastic behaviour when loaded in compression.

Differentiating Eq. (4) twice with respect to \(Q_2\), evaluating along the fundamental path and equating to zero yields the critical load
\[
\left. \frac{d^2V}{dQ_2^2} \right| \frac{\partial V}{\partial Q_2} = 0 = 4L^2k_p\left[\cos 0 - \cos (0) \right] + L \left(\frac{P^B}{2} - 2F \right) \cos 0 \\
= L \left(\frac{P^B}{2} - 2F \right)
\]
or
\[
F_C = \frac{P^B}{2}.
\]
The resulting force–deformation curves are shown in Fig. 5, clearly reproducing the bi-linear behaviour of the original elasto-plastic spring (component).

Under tensile loading, similar reasoning yields simply the linear elastic solution,
\[
F = k_cQ_1,
\]
the bifurcational response being absent.
unstiffening load, the three degree-of-freedom model of one component in compression is assumed to reach the zone.

\[V = \frac{z^2}{2} \left(k_{ec} k_{et} \right) \sin^2 q_1 + 2L_c^2 \left(k_{pc} + k_{ec} k_{et} \right) \frac{k_{ec} k_{et}}{k_{ec} + k_{et}} \times (1 - \cos q_2)^2 - \left(\frac{2L_c k_{ec} k_{et}}{k_{ec} + k_{et}} \sin q_1 - \frac{p_b}{k_{pc}} L_c \right) \times (1 - \cos q_2) + \left(\frac{p_b}{k_{pc}} \right)^2 \frac{M q_1}{k_{pc}}. \] (13)

Differentiation with respect to \(q_1 \) and \(q_2 \) gives the equilibrium equations of the system:

\[\frac{\partial V}{\partial q_1} = \frac{z^2}{2} \frac{k_{ec} k_{et}}{k_{ec} + k_{et}} \sin q_1 \cos q_1 - \frac{2L_c k_{ec} k_{et}}{k_{ec} + k_{et}} \cos q_1 (1 - \cos q_2) - M = 0, \] (14)

\[\frac{\partial V}{\partial q_2} = 4L_c^2 \frac{k_{pc} + k_{ec} k_{et}}{k_{ec} + k_{et}} \sin q_2 (1 - \cos q_2) - \left(\frac{2L_c k_{ec} k_{et}}{k_{ec} + k_{et}} \sin q_1 - \frac{p_b}{k_{pc}} L_c \right) \sin q_2 = 0, \]

which correspond to a fundamental solution

\[
\begin{aligned}
M &= \frac{z^2}{2} \frac{k_{ec} k_{et}}{k_{ec} + k_{et}} \sin (2q_1), \\
q_2 &= 0
\end{aligned}
\] (15)

and a coupled solution

\[
\begin{aligned}
M &= \frac{2z, k_{ec} k_{et}}{k_{ec} + k_{et}} \left[z \sin q_1 - \frac{2L_c k_{ec} k_{et}}{4L_c^2 \left(k_{ec} + k_{et} \right) + p_b^2 \left(k_{ec} + k_{et} \right)} \sin g_1 \right] \cos q_1 \\
1 - \cos q_2 &= \frac{2L_c k_{ec} k_{et}}{4L_c^2 \left(k_{ec} + k_{et} \right) + p_b^2 \left(k_{ec} + k_{et} \right)} \sin q_2
\end{aligned}
\] (16)

2.4. Non-linear model for the tension zone

Likewise, should the tensile component present the lowest critical value for the limit load, the equivalent

Fig. 7. Equivalent elastic model for a non-linear compression zone.

Fig. 8. Equivalent elastic model for a non-linear tensile zone.
model of Fig. 8 applies, the same degrees of freedom being valid.

2.5. General non-linear model of connection

Finally, a more general model can be proposed which caters for the bi-linear component behaviour both in the tensile and compressive zones. From the model of Fig. 9, using the same procedure as above yields in succession

\[
V = \frac{1}{2} k_{ec} \left[q_4 + \frac{z}{2} \sin q_1 - 2L_c(1 - \cos q_3) \right]^2 \\
+ \frac{1}{2} k_{et} \left[q_4 - \frac{z}{2} \sin q_1 + 2L_c(1 - \cos q_3) \right]^2 \\
+ \frac{1}{2} k_{pc} \left[\frac{P_c^B}{2k_{pc}} + 2L_c(1 - \cos q_3) \right]^2 \\
+ \frac{1}{2} k_{pt} \left[\frac{P_t^B}{2k_{pt}} + 2L_c(1 - \cos q_3) \right]^2 - M_{q_1},
\]

\[
\frac{\partial V}{\partial q_4} = 0 \iff q_4 = \frac{1}{k_{ec} + k_{et}} \left[-\frac{z}{2}(k_{ec} - k_{et}) \sin q_1 \\
+ 2L_c k_{ec}(1 - \cos q_3) - 2L_c k_{et}(1 - \cos q_3) \right],
\]

\[
V = \frac{z^2}{2} k_{ec} k_{et} \sin^2 q_1 + 2L_c^2 \left(k_{pc} + \frac{k_{ec} k_{et}}{k_{ec} + k_{et}} \right) \\
\times (1 - \cos q_3)^2 + 2L_c^2 \left(k_{pt} + \frac{k_{ec} k_{et}}{k_{ec} + k_{et}} \right) \\
\times (1 - \cos q_3)^2 + \frac{2L_c k_{ec} k_{et}}{k_{ec} + k_{et}} \sin q_1 - P_c^B L_c \\
\times (1 - \cos q_3) - \frac{2L_c k_{ec} k_{et}}{k_{ec} + k_{et}} \sin q_1 - P_t^B L_t \\
\times (1 - \cos q_1) + 4L_c L_t \frac{k_{ec} k_{et}}{k_{ec} + k_{et}} (1 - \cos q_2) \\
\times (1 - \cos q_1) + \frac{P_c^B}{8k_{pc}} + \frac{P_t^B}{8k_{pt}} - M_{q_1},
\]

\[
\frac{\partial V}{\partial q_1} = z^2 \frac{k_{ec} k_{et}}{k_{ec} + k_{et}} \sin q_1 - \frac{2L_c k_{ec} k_{et}}{k_{ec} + k_{et}} \cos q_1 (1 - \cos q_3) \\
- \frac{2L_c k_{ec} k_{et}}{k_{ec} + k_{et}} \cos q_1 (1 - \cos q_3) - M = 0,
\]

\[
\frac{\partial V}{\partial q_2} = 4L_c^2 \left(k_{pc} + \frac{k_{ec} k_{et}}{k_{ec} + k_{et}} \right) \sin q_2 (1 - \cos q_2) \\
- \left(\frac{2L_c k_{ec} k_{et}}{k_{ec} + k_{et}} \sin q_1 - P_c^B L_c \right) \sin q_2 \\
+ 4L_c L_t \frac{k_{ec} k_{et}}{k_{ec} + k_{et}} \sin q_2 (1 - \cos q_3) \\
= 0,
\]

\[
\frac{\partial V}{\partial q_3} = 4L_c^2 \left(k_{pt} + \frac{k_{ec} k_{et}}{k_{ec} + k_{et}} \right) \sin q_3 (1 - \cos q_3) \\
- \left(\frac{2L_c k_{ec} k_{et}}{k_{ec} + k_{et}} \sin q_1 - P_t^B L_t \right) \sin q_3 \\
+ 4L_c L_t \frac{k_{ec} k_{et}}{k_{ec} + k_{et}} (1 - \cos q_2) \sin q_3 \\
= 0,
\]

and the following solutions:

(i) Fundamental solution

\[
\begin{align*}
M &= \frac{z^2 k_{ec} k_{et}}{2(k_{ec} + k_{et})} \sin (2q_1), \\
q_2 &= 0, \\
q_3 &= 0.
\end{align*}
\]

(ii) Non-linear solution in \(q_2\)

\[
\begin{align*}
M &= \frac{z^2 k_{ec} k_{et}}{2(k_{ec} + k_{et})} \left[\sin q_1 - \frac{2k_{ec} k_{et} \sin q_1 - P_c^B (k_{ec} + k_{et})}{2k_{pc} (k_{ec} + k_{et}) + k_{ec} k_{et}} \right] \cos q_1, \\
1 - \cos q_2 &= \frac{2k_{ec} k_{et} \sin q_1 - P_c^B (k_{ec} + k_{et})}{4L_c \left(k_{pc} (k_{ec} + k_{et}) + k_{ec} k_{et} \right)}, \\
q_3 &= 0.
\end{align*}
\]

(iii) Non-linear solution in \(q_1\)

\[
\begin{align*}
M &= \frac{z^2 k_{ec} k_{et}}{2(k_{ec} + k_{et})} \left[\sin q_1 - \frac{2k_{ec} k_{et} \sin q_1 - P_t^B (k_{ec} + k_{et})}{2k_{pt} (k_{ec} + k_{et}) + k_{ec} k_{et}} \right] \cos q_1, \\
q_2 &= 0, \\
1 - \cos q_3 &= \frac{2k_{ec} k_{et} \sin q_1 - P_t^B (k_{ec} + k_{et})}{4L_t \left(k_{pt} (k_{ec} + k_{et}) + k_{ec} k_{et} \right)},
\end{align*}
\]
(iv) Non-linear solution in \(q_2 \) and \(q_3 \)

\[
M = \frac{2k}{k + 1} \left[q_1(1 - \cos q_2) - 2L(1 - \cos q_2) \right] \cos q_1,
\]

\[
1 - \cos q_2 = \frac{2k}{k + 1} \left[q_1(1 - \cos q_2) - 2L(1 - \cos q_2) \right] \cos q_1,
\]

\[
1 - \cos q_3 = \frac{2k}{k + 1} \left[q_1(1 - \cos q_2) - 2L(1 - \cos q_2) \right] \cos q_1.
\]

(24)

3. Application to beam-to-column welded connections

3.1. Component characterisation

In order to illustrate the application of the equivalent elastic models, one connection configuration was chosen from the database SERICON II (Klein 105.010) [8], corresponding to a welded beam-to-column steel connection, described in Fig. 1, which was tested by Klein at the University of Innsbruck in 1985.

As described above, the first step consists in establishing the components properties, initial stiffness \(k_i \), resistance \(F_i \), post-limit stiffness \(k_{pl} \) and maximum displacement \(\delta_i \). From Fig. 1, three contributing components are identified, namely:

1. column web in shear,
2. column web in compression,
3. column web in tension.

Using the specifications of the revised Annex J of Eurocode 3 [2], the results shown in Table 1 were obtained for the initial stiffness of each component, where \(k_1 \), \(k_2 \) and \(k_3 \) denote the initial stiffness of components 1, 2 and 3, respectively, non-dimensionalised with respect to Young’s modulus. It is noted that the remaining quantities are described in Ref. [2]. From Eq. (10),

\[
k_{ic} = \frac{E}{E_1 + E_2} = 0.3818 \times 10^6 \text{ kN/m} \quad \text{and}
\]

\[
k_{ct} = k_3 \times E = 1.6666 \times 10^6 \text{ kN/m}.
\]

For the resistance (limit load) of each component, again following the revised Annex J [2], corresponding results are shown in Table 2.

It is noted that no ductility limits were imposed on each component because of lack of data. Also, the post-limit stiffness is currently not covered by code regulations.

3.2. Numerical model

To confirm the results from the analytical model, a numerical model was implemented using the non-linear finite element system LUSAS [9], shown in Fig. 10 and initially analysed using linear elastic properties for the springs (corresponding to initial stiffness) and subsequently analysed with bi-linear properties for the springs.

The definition of the finite element model is summarised in Table 3.

3.3. Results

Having established in Table 2 that the critical component was the column web in shear, an initial comparison was performed using only a bi-linear approximation for this component, the remaining being kept linear elastic. Table 4 and Fig. 11 show the corresponding results, values for the post-limit stiffness \(k_{pl} \) being chosen as zero to match the EC3 prediction. Next, a second comparison was made with all components as bi-linear springs, shown in Fig. 12.

It is clear that the numerical and analytical results are similar, and in agreement with the initial stiffness predictions of EC3. It is interesting to note in Fig. 12, the various equilibrium paths corresponding to the various components reaching their resistance. It should be noted

<p>| Table 1 |</p>
<table>
<thead>
<tr>
<th>Initial stiffness of each component</th>
</tr>
</thead>
<tbody>
<tr>
<td>Column web in shear (J.4.2 (1))</td>
</tr>
<tr>
<td>(k_1 = 0.38A_{bc}/\beta)</td>
</tr>
<tr>
<td>(A_{bc} = 1308 \text{ mm}^2)</td>
</tr>
<tr>
<td>(z = h_b - t_b = 210.8 \text{ mm})</td>
</tr>
<tr>
<td>(\beta \equiv \beta_i)</td>
</tr>
<tr>
<td>Table J.4.2 – (\beta \approx 1)</td>
</tr>
<tr>
<td>(k_1 = 0.38 \times 1308/1 \times 210.8 = 2.358 \text{ mm})</td>
</tr>
</tbody>
</table>
Table 2
Resistance of each component

<table>
<thead>
<tr>
<th>Column web in shear</th>
<th>Column web in compression</th>
<th>Column web in tension</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_{\text{wd,Rd}}) = 0.9(f_y)(A_{\text{wc}})/(\sqrt{3} \gamma_M)</td>
<td>(F_{\text{wc,Rd}} = 0.9b_{\text{eff},\text{wc}} f_y) (A_{\text{wc}})/(\gamma_M) but (F_{\text{wc,Rd}} \leq 0.9b_{\text{eff},\text{wc}} f_y) (A_{\text{wc}})/(\gamma_M)</td>
<td>(V_{\text{wd}}) = 187 kN</td>
</tr>
<tr>
<td>(f_y) (A_{\text{wc}}) = 275 MPa</td>
<td>(b_{\text{eff},\text{wc}}) = 149.0 mm</td>
<td>(F_{\text{wc}}) = 212 kN</td>
</tr>
<tr>
<td>(V_{\text{wd,Rd}}) = 170 kN</td>
<td>(\gamma_M) = 1.1</td>
<td>(F_{\text{wc}}) = 212 kN</td>
</tr>
</tbody>
</table>

Without safety coefficients
\(V_{\text{wd}} \) = 187 kN \(F_{\text{wc}} \) = 212 kN

Fig. 10. Finite element model.
that Eq. (24) does not apply in this case because the post-limit stiffness was chosen as zero.

Because experimental test results were available for this particular connection, it was possible to use them to calibrate the post-limit stiffness of the components, as well as adjusting the actual value of the moment resistance of the connection – Table 5 summarises the data. Using the same procedure as before, an initial calibration was performed with only the critical component with non-linear properties, illustrated in Fig. 13 with a
subsequent full non-linear implementation, shown in Fig. 14.

4. Concluding remarks

The four degree-of-freedom elastic model presented in this paper was able to reproduce the full non-linear moment–rotation response of a steel connection. In particular, because of the post-buckling nature of the analysis, it was possible to pinpoint directly the bifurcation points which correspond to the “yield” points of each component.

An accurate prediction of the post-limit response of the connection requires the knowledge of the post-limit stiffness (k_o) of each component. The analytical results presented here can very easily be used to calibrate the post-limit stiffness against experimental results, as was shown above.

Current work on the same model loaded in compression seems very promising, opening the way to the prediction of the behaviour of steel connections under combined loading (bending moment and axial force).
Acknowledgements

The financial support from the “Ministério da Ciência e Tecnologia” – PRAXIS XXI research project PRAXIS/P/ECM/13153/1998 and PRODEP II (Sub-programa 1) is acknowledged.

References