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Abstract

Analytical solutions for the evaluation of the behaviour of steel connections are presented which are able to re-

produce their full non-linear behaviour. Because usual models for the analysis of steel connections consist of trans-

lational springs and rigid links whereby the springs exhibit a non-linear force±deformation response, usually taken as a

bi-linear approximation, they require an incremental non-linear analysis. Using a substitute elastic post-buckling model

where each bi-linear spring is replaced by two equivalent elastic springs in the context of a post-buckling stability

analysis using an energy formulation, closed-form solutions are obtained for a connection loaded in bending. Appli-

cation to a beam-to-column welded connection using the component (spring) characterisation of code regulations yields

the same results in terms of moment resistance and initial sti�ness, being additionally able to trace the full unsti�ening

response. Ó 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Currently, the evaluation of the behaviour of con-

nections relies on the independent evaluation of strength,

sti�ness and ductility properties in the context of the so-

called component method [1]. Although the ®rst two, for

a calibrated range of steel and composite connections,

are covered by independent procedures that yield a mo-

ment resistance and an initial sti�ness [2], the latter still

remains quite unexplored, despite some recent attempts

at providing a more quantitative guidance [3].

In spite of these advances in connection behaviour

over the traditional approach of pinned or fully rigid

response, no analytical procedure able to predict the full

non-linear moment±rotation curve of a joint, based on

the load±deformation response of the contributing

components is currently available. This paper presents

analytical expressions for the evaluation of the response

of steel connections based on equivalent post-buckling

models.

2. Equivalent models

2.1. Introduction

The component method consists of idealising a con-

nection as a mechanical model composed of transla-

tional springs and rigid links, whereby the springs

(components) represent a speci®c part of a joint that,

depending on the type of loading, make an identi®ed

contribution to one or more of its structural properties,

as illustrated in Fig. 1 for a typical welded beam-

to-column steel connection.
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In the model of Fig. 1(b), spring k2 represents the

behaviour of the column web in compression [4], which

is characterized by a non-linear curve with an initial

elastic response and a subsequent sti�ness reduction

with limited ductility, as shown in Fig. 2(a). Similarly,

springs k1 and k3 represent, respectively, the column web

panel in shear [5] and in tension [6], which typically

present the non-linear behaviour of Fig. 2(b), practically

with unlimited ductility after an initial linear elastic re-

sponse.

It is thus clear that a bi-linear force±displacement

approximation adequately represents the component

behaviour, involving the identi®cation of four properties

for each component, namely initial elastic sti�ness (ke),

limit load (F C), post-limit sti�ness (kp) and limit dis-

placement (Df ), schematically shown in Fig. 3, the yield

displacement, Dy, being de®ned as (Dy � F C=ke).

The springs and rigid links model of Fig. 1(b), with

the assumed bi-linear behaviour of each spring (compo-

nent) requires an incremental non-linear analysis when

loaded in bending. Here, analytical moment±rotation

curves are obtained using equivalent elastic models, re-

placing each bi-linear spring with an equivalent elastic

system which yields the same response, in the context of

a post-buckling elastic analysis. This approach was

successfully employed in the context of the well-known

Shanley model for the analysis of compressed columns

in the elasto-plastic range [7].

2.2. Non-linear model for equivalent elasto-plastic springs

2.2.1. Elasto-plastic spring in compression

The basic building block of an equivalent model

corresponds precisely to replacing each elasto-plastic

(bi-linear) spring with an equivalent elastic system. Here,

the two degree-of-freedom system of Fig. 4 is proposed,

which consists of one elastic spring with sti�ness ke

(linear elastic sti�ness of component) and a second

elastic spring with sti�ness kp (post-limit sti�ness of

component) and resistance F C � P B=2� � applied as a

pre-compression, the degrees of freedom being de®ned

as follows:

Q1 ± total displacement,

Q2 ± rotation of rigid links.

Clearly, this model exhibits distinct behaviour in

tension and compression, the latter being of most in-

terest because of the inherent bifurcational behaviour.

Assuming a positive compressive load, and using an

energy approach, the following total potential energy

function is obtained:

Fig. 1. Welded beam-to-column steel connection: (a) connection geometry and (b) mechanical model.

Fig. 2. Individual component behaviour: (a) column web in

compression and (b) column web panel in shear or in tension.

Fig. 3. Typical force±displacement diagram for generic com-

ponent.
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V � 1

2
ke Q1� ÿ 2L 1� ÿ cosQ2��2 � 1

2
kp

P B

2kp

�
� 2L 1� ÿ cosQ2�

�2

ÿ FQ1: �1�

Di�erentiation with respect to the various degrees of

freedom yields the equilibrium equations

giving

Q1 � 1

ke

2Lke 1�� ÿ cosQ2� � F �; �3�

which can be replaced in Eq. (1) to give

V �Q2� � 2L2kp 1� ÿ cosQ2�2 � P BL 1� ÿ cosQ2�

ÿ 2LF 1� ÿ cosQ2� � P B� �2
8kp

ÿ F 2

2ke

: �4�

Solution of Eq. (2) yields a trivial fundamental solution

Q2 � 0;
F � keQ1;

�
�5�

and a post-buckling solution

F � 2Lkp 1ÿ cosQ2� � � P B

2
;

F � ke

ke�kp
kpQ1 � P B

2

� �
:

8><>: �6�

Di�erentiating Eq. (4) twice with respect to Q2, evalu-

ating along the fundamental path and equating to zero

yields the critical load

d2V
dQ2

2

Q2� �
����E � d2V

dQ2
2

����
Q2�0

� 4L2kp cos0� ÿ cos 0� �� � L P B
ÿ ÿ 2F

�
cos0

� L P B
ÿ ÿ 2F

� �7�

or

F C � P B

2
: �8�

The resulting force±deformation curves are shown in

Fig. 5, clearly reproducing the bi-linear behaviour of the

original elasto-plastic spring (component).

Under tensile loading, similar reasoning yields simply

the linear elastic solution,

F � keQ1; �9�

the bifurcational response being absent.

2.2.2. Elasto-plastic spring in tension

As seen in the previous section, the equivalent model

of Fig. 4 is not able to reproduce a bi-linear response in

tension. Such a situation requires the elastic system of

Fig. 6, which, using a similar derivation and assuming F

to be positive in tension, yields the same equilibrium

solutions of Eqs. (5), (6) and (8), and exhibits the re-

quired bi-linear response of the component in tension

and a linear elastic behaviour when loaded in compres-

sion.

Fig. 5. Force±deformation solutions for an equivalent elastic

system.

Fig. 6. Equivalent elastic system for an elasto-plastic spring in

tension.

Fig. 4. Equivalent elastic system for elasto-plastic spring in

compression.

oV
oQ1
� 0

oV
oQ2
� 0

8<: ()
keQ1 ÿ 2Lke 1ÿ cosQ2� � ÿ F � 0;

senQ2 4L2 ke � kp

ÿ �
1ÿ cosQ2� � ÿ 2LQ1 � P B

� � � 0

8<: �2�
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2.3. Non-linear model for the shear and compression zones

Having established a substitute model for one indi-

vidual bi-linear spring, dealing with a steel connection

requires introducing it in the model of Fig. 1(b). Start-

ing, for simplicity, with an equivalent model where only

one component in compression is assumed to reach the

unsti�ening load, the three degree-of-freedom model of

Fig. 7 applies.

Besides the total rotation of the joint (q1) and the

rotation of the rigid links (q2) already explained, a third

degree-of-freedom (q4 ± axial displacement of the con-

nection) is required, because of the shift in neutral axis

caused by asymmetries in spring sti�nesses between the

tension and compression zones. Combining, for sim-

plicity, the linear elastic sti�ness of components 1 and 2

into one single equivalent elastic spring

1

kec

� 1

ke1

� 1

ke2

; �10�

the total potential energy function for this system can be

obtained:

V � 1

2
ket q4

�
ÿ z

2
senq1

�2

� 1

2
kec q4

h
� z

2
senq1

ÿ 2Lc 1� ÿ cosq2�
i2

� 1

2
kpc

P B
C

2kpc

�
� 2Lc 1� ÿ cosq2�

�2

ÿMq1: �11�

Eliminating q4 as a passive coordinate through di�er-

entiation of Eq. (11) with respect to q4 and equating to

zero and substituting back into Eq. (11) yields, succes-

sively,

oV
oq4

� 0() q4

� 1

kec � ket

h
ÿ z

2
kec� ÿ ket�senq1

� 2Lckec 1� ÿ cosq2�
i
; �12�

V � z2

2

kecket

kec � ket

sen2 q1 � 2L2
c kpc

�
� kecket

kec � ket

�
� 1� ÿ cosq2�2 ÿ 2zLckecket

kec � ket

senq1

�
ÿ P B

C Lc

�

� 1� ÿ cosq2� �
P B

C

ÿ �2

8kpc

ÿMq1: �13�

Di�erentiation with respect to q1 and q2 gives the equi-

librium equations of the system:

oV
oq1

� z2 kecket

kec � ket

senq1 cosq1

ÿ 2zLckecket

kec � ket

cosq1 1� ÿ cosq2� ÿM � 0;

oV
oq2

� 4L2
c

kpc � kecket

kec � ket

� �
senq2 1� ÿ cosq2�

ÿ 2zLckecket

kec � ket

senq1

�
ÿ P B

C Lc

�
senq2 � 0;

�14�

which correspond to a fundamental solution

M � z2

2
kecket

kec�ket
sen �2q1�;

q2 � 0

8<: �15�

and a coupled solution

M � zkecket

kec�ket
z senq1 ÿ 2zkecket sen q1ÿP B

C
kec�ket� �

2 kpc kec�ket� ��kecket� �
� �

cosq1

1ÿ cosq2 � 2zkecket sen q1ÿP B
C

kec�ket� �
4Lc kpc kec�ket� ��kecket� � :

8>><>>: �16�

2.4. Non-linear model for the tension zone

Likewise, should the tensile component present the

lowest critical value for the limit load, the equivalent

Fig. 7. Equivalent elastic model for a non-linear compression

zone.

Fig. 8. Equivalent elastic model for a non-linear tensile zone.
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model of Fig. 8 applies, the same degrees of freedom

being valid.

2.5. General non-linear model of connection

Finally, a more general model can be proposed which

caters for the bi-linear component behaviour both in the

tensile and compressive zones. From the model of Fig. 9,

using the same procedure as above yields in succession

V � 1

2
kec q4

h
� z

2
senq1 ÿ 2Lc 1� ÿ cosq2�

i2

� 1

2
ket q4

h
ÿ z

2
senq1 � 2Lt 1� ÿ cosq3�

i2

� 1

2
kpc

P B
C

2kpc

�
� 2Lc 1� ÿ cosq2�

�2

� 1

2
kpt

P B
T

2kpt

�
� 2Lt 1� ÿ cosq3�

�2

ÿMq1
; �17�

oV
oq4

� 0() q4

� 1

kec � ket

h
ÿ z

2
kec� ÿ ket�senq1

� 2Lckec 1� ÿ cosq2� ÿ 2Ltket 1� ÿ cosq3�
i
; �18�

V � z2

2

kecket

kec � ket

sen2q1 � 2L2
c kpc

�
� kecket

kec � ket

�
� 1� ÿ cosq2�2 � 2L2

t kpt

�
� kecket

kec � ket

�
� 1� ÿ cosq3�2 ÿ 2zlckecket

kec � ket

senq1

�
ÿ P B

C Lc

�
� 1� ÿ cosq2� ÿ 2zLtkecket

kec � ket

senq1

�
ÿ P B

T Lt

�
� 1� ÿ cosq3� � 4LcLt

kecket

kec � ket

1� ÿ cosq2�

� 1� ÿ cosq3� �
P B

C

ÿ �2

8kpc

� P B
T

ÿ �2

8kpt

ÿMq1
; �19�

oV
oq1

� z2 kecket

kec � ket

senq1 cosq1 ÿ 2zLckecket

kec � ket

cosq1 1� ÿ cosq2�

ÿ 2zLtkecket

kec � ket

cosq1 1� ÿ cosq3� ÿM � 0;

oV
oq2

� 4L2
c kpc

�
� kecket

kec � ket

�
senq2 1� ÿ cosq2�

ÿ 2zLckecket

kec � ket

senq1

�
ÿ P B

C Lc

�
senq2

� 4LcLt

kecket

kec � ket

senq2 1� ÿ cosq3�

� 0; �20�

oV
oq3

� 4L2
t kpt

�
� kecket

kec � ket

�
senq3 1� ÿ cosq3�

ÿ 2zLtkecket

kec � ket

senq1

�
ÿ P B

T Lt

�
senq3

� 4LcLt

kecket

kec � ket

1� ÿ cosq2� senq3

� 0;

and the following solutions:

(i) Fundamental solution

M � z2kecket

2 kec�ket� � sen 2q1� �;

q2 � 0;

q3 � 0:

8>>>><>>>>: �21�

(ii) Non-linear solution in q2

M � zkecket

kec�ket
z senq1 ÿ 2zkecket sen q1ÿP B

C
kec�ket� �

2 kpc kec�ket� ��kecket� �
� �

cosq1;

1ÿ cosq2 � 2zkecket sen q1ÿP B
C

kec�ket� �
4Lc kpc kec�ket� ��kecket� � ;

q3 � 0:

8>>>>>>><>>>>>>>:
�22�

(iii) Non-linear solution in q3

M � zkecket

kec�ket
z senq1 ÿ 2zkecket sen q1ÿP B

T
kec�ket� �

2 kpt kec�ket� ��kecket� �
� �

cosq1;

q2 � 0;

1ÿ cosq3 � 2zkecket sen q1ÿP B
T

kec�ket� �
4Lt kpt kec�ket� ��kecket� � :

8>>>>>>>><>>>>>>>>:
�23�

Fig. 9. General equivalent elastic model.
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(iv) Non-linear solution in q2 and q3

3. Application to beam-to-column welded connections

3.1. Component characterisation

In order to illustrate the application of the equivalent

elastic models, one connection con®guration was chosen

from the database SERICON II (Klein 105.010) [8],

corresponding to a welded beam-to-column steel con-

nection, described in Fig. 1, which was tested by Klein at

the University of Innsbruck in 1985.

As described above, the ®rst step consists in estab-

lishing the components properties, initial sti�ness ki,

resistance F C
i , post-limit sti�ness kpi and maximum dis-

placement Df
i . From Fig. 1, three contributing compo-

nents are identi®ed, namely:

(1) column web in shear,

(2) column web in compression,

(3) column web in tension.

Using the speci®cations of the revised Annex J of

Eurocode 3 [2], the results shown in Table 1 were ob-

tained for the initial sti�ness of each component, where

k1, k2 and k3 denote the initial sti�ness of components 1,

2 and 3, respectively, non-dimensionalised with respect

to YoungÕs modulus. It is noted that the remaining

quantities are described in Ref. [2]. From Eq. (10),

kec � E
1
k1
� 1

k2

� 0:3818� 106 kN=m and

ket � k3 � E � 1:6666� 106 kN=m:

For the resistance (limit load) of each component, again

following the revised Annex J [2], corresponding results

are shown in Table 2.

It is noted that no ductility limits were imposed on

each component because of lack of data. Also, the post-

limit sti�ness is currently not covered by code regula-

tions.

3.2. Numerical model

To con®rm the results from the analytical model, a

numerical model was implemented using the non-linear

®nite element system LUSAS [9], shown in Fig. 10 and

initially analysed using linear elastic properties for the

springs (corresponding to initial sti�ness) and subse-

quently analysed with bi-linear properties for the

springs.

The de®nition of the ®nite element model is sum-

marised in Table 3.

3.3. Results

Having established in Table 2 that the critical com-

ponent was the column web in shear, an initial compar-

ison was performed using only a bi-linear approximation

for this component, the remaining being kept linear

elastic. Table 4 and Fig. 11 show the corresponding re-

sults, values for the post-limit sti�ness kpc being chosen

as zero to match the EC3 prediction. Next, a second

comparison was made with all components as bi-linear

springs, shown in Fig. 12.

It is clear that the numerical and analytical results are

similar, and in agreement with the initial sti�ness pre-

dictions of EC3. It is interesting to note in Fig. 12, the

various equilibrium paths corresponding to the various

components reaching their resistance. It should be noted

Table 1

Initial sti�ness of each component

Column web in shear (J.4.2 (1)) Column web in compression (J.4.2 (2)) Column web in tension (J.4.2 (3))

k1 � 0:38Avc=bz k2 � 0:7beff;c;wctwc=dc k3 � 0:7beff;t;wctwc=dc

Avc� 1308 mm2 beff;c;wc� 149.0 mm beff ;t;wc� 149.0 mm

z � hb ÿ tf ;b � 210:8 mm dc� 92 mm dc� 92 mm

b � b1

Table J:4! b � 1

k1 � 0:38� 1308=1� 210:8 � 2:358 mm k2 � 0:7� 149:0� 7=92 � 7:936 mm k3 � 0:7� 149:0� 7=92 � 7:936 mm

M � zkecket

kec�ket
z senq1 ÿ 2Lc 1ÿ cosq2� � ÿ 2Lt 1ÿ cosq3� �� �cosq1;

1ÿ cosq2 � 2zkecket sen q1ÿP B
C

kec�ket� �ÿ4Ltkecket 1ÿ cos q3� �
4Lc kpc kec�ket� ��kecket� � ;

1ÿ cosq3 � 2zkecketkpc sen q1ÿkecket P B
T
ÿP B

C� �ÿP B
T

kec�ket� �kpc

4Lt kecket kpc�kpt� �� kec�ket� �kpckpt� � :

8>>>>><>>>>>:
�24�

620 L. Sim~oes da Silva et al. / Computers and Structures 77 (2000) 615±624



Fig. 10. Finite element model.

Table 2

Resistance of each component

Column web in shear Column web in compression Column web in tension

J:3:5:1 �1� Vwd;Rd

� 0:9fy;wcAvc=
���
3
p

cM0

J.3.5.2 J.3.5.3

fy;wc � 275 MPa �1� Fc;wc;Rd � xbeff;c;wctwcfy;wc=cM0 �1� Ft;wc;Rd � xbeff;t;wctwcfy;wc=cM0

Avc � 1308 mm2 but Fc;wc;Rd 6 xqbeff ;c;wctwcfy;wc=cM1 beff;c;wc � 149:0 mm

cM0 � 1:1 �3� kp � 0:932
���������������������������������������
beff;c;wcdwcfy;wc=Et2

wc

p
fy;wc � 275 MPa

Vwd;Rd � 170 kN beff ;c;wc � 149:0 mm b � b1Table J:4! b � 1

dc � 92 mm Table J:5 ! b � 1) x
� x1 � 1���������������������������������

1�1:3 beff;c;wc twc=Avc� �2
q � 0:74

fy;wc � 275 MPa cM0 � cM1 � 1:1

E � 210 GPa Ft;wc;Rd � 193 kN

kp � 0:932
����������������������������������������������������������������
149� 92� 275=210� 103 � 72

p � 0:56

�2� kp � 0:56 < 0:673) q � 1:0

�4� b � b1Table J:4! b � 1

Table J:5 ! b � 1) x � x1 � 1���������������������������������
1�1:3 beff;c;wc twc=Avc� �2

q � 0:74

cM0 � cM1 � 1:1

Fc;wc;Rd � 193 kN

Without safety coe�cients

Vwd � 187 kN Fc;wc � 212 kN Ft;wc � 212 kN
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that Eq. (24) does not apply in this case because the

post-limit sti�ness was chosen as zero.

Because experimental test results were available for

this particular connection, it was possible to use them to

calibrate the post-limit sti�ness of the components, as

well as adjusting the actual value of the moment resis-

tance of the connection ± Table 5 summarises the data.

Using the same procedure as before, an initial calibra-

tion was performed with only the critical component

with non-linear properties, illustrated in Fig. 13 with a

Fig. 11. Comparative graph.

Table 3

Numerical model

Rigid links Joint elements (Component) Pins

Column web in shear Column web in compression Column web in tension

Finite element BM3 JPH3

Geometric properties Thin beam A � 100 m2;

Ix � Iy � 8:3333� 103 m4

Eccentricity: e � 0

Material Elastic, isotropic Joint (sti�ness, 3DOF)

E � 210� 106 kPa kex � 0:49518� 106 kex � 1:6666� 106 kex � 1:6666� 106 kex � 0:1� 1021

t� 0.3 key � 0:1� 1020 key � 0:1� 1020 key � 0:1� 1020 key � 0:1� 1021

q� 7.850 ton/m3 keh � 0:1� 1020 keh � 0:1� 1020 keh � 0:1� 1020 keh � 0:1� 10ÿ19

kpx � 0:0 kpx � 0:0 kpx � 0:0 kpx � 0:1� 1021

kpy � 0:1� 1020 kpy � 0:1� 1020 kpy � 0:1� 1020 kpy � 0:1� 1021

keh � 0:1� 1020 keh � 0:1� 1020 keh � 0:1� 1020 keh � 0:1� 10ÿ19

F � 170 kN F � 193 kN F � 193 kN F � 1� 105 kN

Table 4

Comparison between the analytical and numerical models

Analytical model Numerical model

Spring elongation Dlt � 0:1020� 10ÿ3 m Dlt � 0:1020� 10ÿ3 m

Dlc � ÿ0:5808� 10ÿ3 m Dlc � ÿ0:5808� 10ÿ3 m

Bending moment M� 35.8358 kN m M� 35.8360 kN m

Rotation q1�/� 0.003239 rad /�36� � 0.003239 rad

Spring force Ft � 169.9 kN Ft � 170.0 kN

Fc�)170.0 kN Fc�)170.0 kN

Rotation centre x� 0.03149 m x� 0.03152 m
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subsequent full non-linear implementation, shown in

Fig. 14.

4. Concluding remarks

The four degree-of-freedom elastic model presented

in this paper was able to reproduce the full non-linear

moment±rotation response of a steel connection. In

particular, because of the post-buckling nature of the

analysis, it was possible to pinpoint directly the bifur-

cation points which correspond to the ``yield'' points of

each component.

An accurate prediction of the post-limit response of

the connection requires the knowledge of the post-limit

sti�ness (kp) of each component. The analytical results

presented here can very easily be used to calibrate the

post-limit sti�ness against experimental results, as was

shown above.

Current work on the same model loaded in com-

pression seems very promising, opening the way to the

prediction of the behaviour of steel connections under

combined loading (bending moment and axial force).

Table 5

Data used in the general non-linear model of the connection

kec � 3:82� 105 kN=m ket � 1:67� 106 kN=m

kpc � 3:00� 103 kN=m kpt � 3:00� 103 kN=m

P B
C � 650 kN P B

T � 795 kN

F � P B
C

2
� 325 kN F � P B

T

2
� 397:5 kN

Fig. 12. Comparative graph.

Fig. 13. Comparative graph.
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