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Abstract

Analytical solutions for the evaluation of the behaviour of steel connections are presented which are able to re-
produce their full non-linear behaviour. Because usual models for the analysis of steel connections consist of trans-
lational springs and rigid links whereby the springs exhibit a non-linear force-deformation response, usually taken as a
bi-linear approximation, they require an incremental non-linear analysis. Using a substitute elastic post-buckling model
where each bi-linear spring is replaced by two equivalent elastic springs in the context of a post-buckling stability
analysis using an energy formulation, closed-form solutions are obtained for a connection loaded in bending. Appli-
cation to a beam-to-column welded connection using the component (spring) characterisation of code regulations yields
the same results in terms of moment resistance and initial stiffness, being additionally able to trace the full unstiffening

response. © 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Currently, the evaluation of the behaviour of con-
nections relies on the independent evaluation of strength,
stiffness and ductility properties in the context of the so-
called component method [1]. Although the first two, for
a calibrated range of steel and composite connections,
are covered by independent procedures that yield a mo-
ment resistance and an initial stiffness [2], the latter still
remains quite unexplored, despite some recent attempts
at providing a more quantitative guidance [3].

In spite of these advances in connection behaviour
over the traditional approach of pinned or fully rigid
response, no analytical procedure able to predict the full

" Corresponding author. Tel.: +351-239-797216; fax: +351-
239-797217.
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non-linear moment-rotation curve of a joint, based on
the load-deformation response of the contributing
components is currently available. This paper presents
analytical expressions for the evaluation of the response
of steel connections based on equivalent post-buckling
models.

2. Equivalent models
2.1. Introduction

The component method consists of idealising a con-
nection as a mechanical model composed of transla-
tional springs and rigid links, whereby the springs
(components) represent a specific part of a joint that,
depending on the type of loading, make an identified
contribution to one or more of its structural properties,
as illustrated in Fig. 1 for a typical welded beam-
to-column steel connection.

0045-7949/00/$ - see front matter © 2000 Elsevier Science Ltd. All rights reserved.
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Fig. 1. Welded beam-to-column steel connection: (a) connection geometry and (b) mechanical model.

In the model of Fig. 1(b), spring k, represents the
behaviour of the column web in compression [4], which
is characterized by a non-linear curve with an initial
elastic response and a subsequent stiffness reduction
with limited ductility, as shown in Fig. 2(a). Similarly,
springs k; and k; represent, respectively, the column web
panel in shear [5] and in tension [6], which typically
present the non-linear behaviour of Fig. 2(b), practically
with unlimited ductility after an initial linear elastic re-
sponse.

It is thus clear that a bi-linear force-displacement
approximation adequately represents the component
behaviour, involving the identification of four properties
for each component, namely initial elastic stiffness (k.),
limit load (FC), post-limit stiffness (k) and limit dis-
placement (4”), schematically shown in Fig. 3, the yield
displacement, 4%, being defined as (4 = F€/k.).

The springs and rigid links model of Fig. 1(b), with
the assumed bi-linear behaviour of each spring (compo-
nent) requires an incremental non-linear analysis when
loaded in bending. Here, analytical moment-rotation
curves are obtained using equivalent elastic models, re-
placing each bi-linear spring with an equivalent elastic
system which yields the same response, in the context of
a post-buckling elastic analysis. This approach was
successfully employed in the context of the well-known
Shanley model for the analysis of compressed columns
in the elasto-plastic range [7].

(a) (b)

F F

» A » A

Fig. 2. Individual component behaviour: (a) column web in
compression and (b) column web panel in shear or in tension.

2.2. Non-linear model for equivalent elasto-plastic springs

2.2.1. Elasto-plastic spring in compression

The basic building block of an equivalent model
corresponds precisely to replacing each elasto-plastic
(bi-linear) spring with an equivalent elastic system. Here,
the two degree-of-freedom system of Fig. 4 is proposed,
which consists of one elastic spring with stiffness k.
(linear elastic stiffness of component) and a second
elastic spring with stiffness k, (post-limit stiffness of
component) and resistance F€ (= PB/2) applied as a
pre-compression, the degrees of freedom being defined
as follows:

Q; — total displacement,

Q, — rotation of rigid links.

Clearly, this model exhibits distinct behaviour in
tension and compression, the latter being of most in-
terest because of the inherent bifurcational behaviour.
Assuming a positive compressive load, and using an
energy approach, the following total potential energy
function is obtained:

> A

Fig. 3. Typical force-displacement diagram for generic com-
ponent.
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Fig. 4. Equivalent elastic system for elasto-plastic spring in
compression.

v = o — 2001 - cos ) + i [ 2
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+2L(1 — cost)rFQl. (1)

Differentiation with respect to the various degrees of
freedom yields the equilibrium equations

keQ1 — 2Lk.(1 — cosQy) — F =0,

oy 0

&l

6QV]:0 —
00>

giving
O :kl[sze(l — cosOy) + FJ, ®)

which can be replaced in Eq. (1) to give

V(Q,) = 2L%,(1 — cosQ,)” 4+ PPL(1 — cosQ,)
(P P2

_2LF(1 — _
(I - cos@y) + 8k, 2k

4)

Solution of Eq. (2) yields a trivial fundamental solution

0, =0,
{FZ: kO, )

and a post-buckling solution

F =2Lky(1 — cosQy) + 2,

P (b0 +2). °

Differentiating Eq. (4) twice with respect to Q,, evalu-
ating along the fundamental path and equating to zero
yields the critical load

ey F o dr
' e
2 2 lo,=0
= 4L%k,[cos0 — cos (0)] + L(P® — 2F) cos0
=L(P® —2F) (7)

or

F (kN) . =20 000 kN/m
k, =2 000 kN/m
600.00 L=05m
P’ =800 kN
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Fig. 5. Force-deformation solutions for an equivalent elastic
system.

sen s [4L7 (ke + k) (1 — cos Qs) — 2LQ; + P =0

C
Fr=— (8)
The resulting force-deformation curves are shown in
Fig. 5, clearly reproducing the bi-linear behaviour of the
original elasto-plastic spring (component).

Under tensile loading, similar reasoning yields simply
the linear elastic solution,

F= ktea (9)

the bifurcational response being absent.

2.2.2. Elasto-plastic spring in tension

As seen in the previous section, the equivalent model
of Fig. 4 is not able to reproduce a bi-linear response in
tension. Such a situation requires the elastic system of
Fig. 6, which, using a similar derivation and assuming F
to be positive in tension, yields the same equilibrium
solutions of Eqgs. (5), (6) and (8), and exhibits the re-
quired bi-linear response of the component in tension
and a linear elastic behaviour when loaded in compres-
sion.
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Fig. 6. Equivalent elastic system for an elasto-plastic spring in
tension.
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Fig. 7. Equivalent elastic model for a non-linear compression
zone.

2.3. Non-linear model for the shear and compression zones

Having established a substitute model for one indi-
vidual bi-linear spring, dealing with a steel connection
requires introducing it in the model of Fig. 1(b). Start-
ing, for simplicity, with an equivalent model where only
one component in compression is assumed to reach the
unstiffening load, the three degree-of-freedom model of
Fig. 7 applies.

Besides the total rotation of the joint (g;) and the
rotation of the rigid links (g,) already explained, a third
degree-of-freedom (g4 — axial displacement of the con-
nection) is required, because of the shift in neutral axis
caused by asymmetries in spring stiffnesses between the
tension and compression zones. Combining, for sim-
plicity, the linear elastic stiffness of components 1 and 2
into one single equivalent elastic spring

1 1 1
kec B kel + keZ ' (10)
the total potential energy function for this system can be
obtained:
2 1 z
senq1> + Zkec [q4 + Esenql
Pe
2kpe

1 z
SRS

2 1
—2L(1 — cosqz)} +§kpc{
2
+2L.(1 — cosqz)} — Mg,. (11)

Eliminating ¢4 as a passive coordinate through differ-
entiation of Eq. (11) with respect to ¢, and equating to
zero and substituting back into Eq. (11) yields, succes-
sively,

ov
—=0<=qu
0qa4
1 z
"k [ ) (ke — ket) sSEN G4
+ 2Lckec(1 — COSth)}? (12)

2
z kcckcl

2 ke + ha
2 LCkCCkC
x (1 — cosgy)” — (szkll

(re)’

8pe

V =

keck
2 2L2 kc ecltet
sen”q; + 2L | kp +kec o

seng, — PgLC)

x (1 — cosqy) + — Mgq,. (13)

Differentiation with respect to ¢, and ¢, gives the equi-
librium equations of the system:

o _ 2 hecke sen g cosq
A 1 1
aql kec + ket
2zL keck
_ el cosqi (1 — cosqy) — M =0,
kCC + kCt (14)
o _ 412 e + Kecke sengy(1 — cosqy)
an kec + kel : :
2zL kecker B
Y e S - PL =0,
( T seng; — PCL. | seng
which correspond to a fundamental solution
2 N
M =35 gsisen (2q1), (15)
=0
and a coupled solution
ek  2zhocker sen gy —PE (kee tHhet)
el EELT 2[kpc(kec+kﬂ)ik¢ckﬂ] cosq (16)

2zkeckey sen gy *Pg (Kec+et)

1 —cosgq, = .
92 7 "L ket k]

2.4. Non-linear model for the tension zone

Likewise, should the tensile component present the
lowest critical value for the limit load, the equivalent

o7
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J(h L
M
e J
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Fig. 8. Equivalent elastic model for a non-linear tensile zone.
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Fig. 9. General equivalent elastic model.

model of Fig. 8 applies, the same degrees of freedom
being valid.

2.5. General non-linear model of connection

Finally, a more general model can be proposed which
caters for the bi-linear component behaviour both in the
tensile and compressive zones. From the model of Fig. 9,
using the same procedure as above yields in succession

1 2
V= Ekec {q4 +%senql —2L(1 — cosqz)}

1 z 2
+§ket [q4 —Esenql +2L(1 — cosq3)}
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+§kpc{ C 4 2L(1— cosqz)}

2k
1 [P ?
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o
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6q4
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- kec + ket |: a 5 (keC a ket)senql
4 2Lekee(1 = cO8Gn) — 2Like(1 — Cosqg)], (18)
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= — 2L ke
2 etk T e T T
2 kecke
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2zl kecke
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2zL ke ke
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ZZLckecket sen PBL sen
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or kecket
o =417 (kpt + P kﬂ) sengs(1 — cosqs)
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and the following solutions:
(i) Fundamental solution

M = Zheke_gen (2g,),

2(kec+et)
Q= O’ (21)
q; = 0.

(it) Non-linear solution in ¢,

zkecker sen g1 —P (ke +het)

M = FEebo | ogeng, — cos
Tee et T el her) k] g1
1— cosq, = 2zkecker SEHQI*Pg(/{cH’kc\) ,
4L [kpe (ke +Hhet) Hecker
q; = 0.
(22)
(iii) Non-linear solution in ¢
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q> = 07
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(23)
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(iv) Non-linear solution in ¢, and q;

(24)

M= %[Zsen% —2L.(1 — cosq,) — 2Li(1 — cosq3)]cosqs,
1 — cosqy = zkecker sen g1 —PE (kee+ket) —4Likecket (1= cos g3)
2 4L, [kpc (koo +het ) e kﬂ} )
1 — cosqs = Dzkechetkpe sen g1 —kecker (PP —P2) PP (KeotheJope
_ L=

ALy [kecket (petkpt )+ (kee ket Vepckp |

3. Application to beam-to-column welded connections
3.1. Component characterisation

In order to illustrate the application of the equivalent
elastic models, one connection configuration was chosen
from the database SERICON II (Klein 105.010) [8],
corresponding to a welded beam-to-column steel con-
nection, described in Fig. 1, which was tested by Klein at
the University of Innsbruck in 1985.

As described above, the first step consists in estab-
lishing the components properties, initial stiffness k;,
resistance FiC? post-limit stiffness &, and maximum dis-
placement 4/. From Fig. 1, three contributing compo-
nents are identified, namely:

(1) column web in shear,

(2) column web in compression,

(3) column web in tension.

Using the specifications of the revised Annex J of
Eurocode 3 [2], the results shown in Table 1 were ob-
tained for the initial stiffness of each component, where
k1, k, and k3 denote the initial stiffness of components 1,
2 and 3, respectively, non-dimensionalised with respect
to Young’s modulus. It is noted that the remaining
quantities are described in Ref. [2]. From Eq. (10),

E

kee = ——=10.3818 x 10° kN/m and

Tk

ke = k3 x E = 1.6666 x 10° kN/m.

For the resistance (limit load) of each component, again
following the revised Annex J [2], corresponding results
are shown in Table 2.

Table 1
Initial stiffness of each component

It is noted that no ductility limits were imposed on
each component because of lack of data. Also, the post-
limit stiffness is currently not covered by code regula-
tions.

3.2. Numerical model

To confirm the results from the analytical model, a
numerical model was implemented using the non-linear
finite element system LUSAS [9], shown in Fig. 10 and
initially analysed using linear elastic properties for the
springs (corresponding to initial stiffness) and subse-
quently analysed with bi-linear properties for the
springs.

The definition of the finite element model is sum-
marised in Table 3.

3.3. Results

Having established in Table 2 that the critical com-
ponent was the column web in shear, an initial compar-
ison was performed using only a bi-linear approximation
for this component, the remaining being kept linear
elastic. Table 4 and Fig. 11 show the corresponding re-
sults, values for the post-limit stiffness k. being chosen
as zero to match the EC3 prediction. Next, a second
comparison was made with all components as bi-linear
springs, shown in Fig. 12.

It is clear that the numerical and analytical results are
similar, and in agreement with the initial stiffness pre-
dictions of EC3. It is interesting to note in Fig. 12, the
various equilibrium paths corresponding to the various
components reaching their resistance. It should be noted

Column web in shear (J.4.2 (1))

Column web in compression (J.4.2 (2))

Column web in tension (J.4.2 (3))

fy = 0.384,/fz

Ay = 1308 mm?

z=h, —trp = 210.8 mm

B=h

Table J.4 — f~ 1

k= 0.38 x 1308/1 x 210.8 = 2.358 mm

d. =92 mm

kZ = 0-7beff.c,wctwc/dc
et cwe = 149.0 mm

kr = 0.7 x 149.0 x 7/92 = 7.936 mm

k3 = 0~7belT,l,wctwc/dC
beff‘t‘wc =149.0 mm
d. =92 mm

ks = 0.7 x 149.0 x 7/92 = 7.936 mm
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Resistance of each component
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Column web in shear

Column web in compression

Column web in tension

J.3.5.1 (1) Viara

= 0.9/ weAve/ V3010
fywe = 275 MPa
Aye = 1308 mm?
a0 = 1.1

Vydra = 170 KN

J.3.5.2

(1) F;:.wc.Rd = Wbef(.c,wctwcfif,wc/VMO
bU»t fc,wc,Rd < wpbeff,c,wctwcf;/,wc/VMl
(3) Zp = 0.9321/besr c.wewefywe /Et2,
beffvcvwc = 149.0 mm

d, =92 mm

fywe = 275 MPa

E =210 GPa

Jp = 0.9324/149 x 92 x 275/210 x 10° x 72 = 0.56
(2) 7, =0.56 < 0.673 = p = 1.0

(4) p=p TableJ4 — f~1

J.3.53

(1) Fiwerd = U)beff,l,wctwc.f;',wc/VMo

beff‘c‘wc = 149.0 mm

Sywe =275 MPa

p = pTable]J4 — f ~ 1

TableJ.5 - f=1=0w

o= =074
1413 (bereetne /Ave )

Yo = Yan = 1.1

E.wc,Rd =193 kN

Table]5 - pf=l=ov=0=——L =074
Ym0 = Va1 = 1.1 ]+1.3(bel’(.c.wctwc/A\c)z
F‘c,wc‘Rd =193 kN
Without safety coefficients
Vaa = 187 kKN Fowe =212 kN Fiwe =212 kN
I 2 3 4 5 6 40 41 42 43 44 45
. 7| 4
-+ 7 Z —g 58
7
47 X
48
y 49
z 2 o |18 1 20 = Element numbers
51
X
52
30 35 53
v 7| v 4 o 4 4
7 él g g 59
26 27 28 29 31 32 33 34 54 55 56 57
13 4 5 6 7 83 84 8 8 87
9 16
vy 72 Z
-+ Z ® 0
224 95
X
96
97
y
z z 28 Node numbers
37 38 39 36
103
X
104
53 61 63 71 105
- Z) 2 2 102
1 %I Z p ® 44
52 54 55 56 64 65 66 10 111 112

Fig. 10. Finite element model.

‘ Z Joint symbol }
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Rigid links Joint elements (Component)

Pins
Column web in shear Column web in compression  Column web in tension
Finite element BM3 JPH3
Geometric properties Thin beam 4 = 100 m?, Eccentricity: e = 0
I, =1, = 8.3333 x 10° m*
Material Elastic, isotropic Joint (stiffness, 3DOF)
E =210 x 10° kPa kex = 0.49518 x 10° kex = 1.6666 x 10° kex = 1.6666 x 10° kex = 0.1 x 107!
v=03 key = 0.1 x 102 key = 0.1 x 102 key = 0.1 x 10% key = 0.1 x 107
p =7.850 ton/m? kep = 0.1 x 102 kep = 0.1 x 102 kep = 0.1 x 10%° kep = 0.1 x 1071
fipx = 0.0 kox = 0.0 kox = 0.0 Koy = 0.1 x 107
kpy = 0.1 x 10 kpy = 0.1 x 10 kpy = 0.1 x 10 kpy = 0.1 x 107!
kep = 0.1 x 10% kep = 0.1 x 102 ke = 0.1 x 10% kep = 0.1 x 107"
F =170 kN F =193 kN F =193 kN F=1x10° kN

Table 4
Comparison between the analytical and numerical models

Analytical model

Numerical model

Spring elongation
A = —0.5808 x 1073
M =35.8358 kNm

¢1 = ¢ =0.003239 rad

Bending moment
Rotation

Ay =0.1020 x 1073 m

Ay =0.1020 x 107 m
m A = —0.5808 x 107 m
M =35.8360 kNm
¢ =0.003239 rad

Spring force F,=169.9 kN F;=170.0 kN
F.=-170.0 kN F.=-170.0 kN
Rotation centre x=0.031499 m x=0.03152 m

Comparative Graph - Analytical Model, Numerical Model and EC3

0 (rad)

M (kNm)
60.00 -
50.00 4
40.00 4
r At ir— )i +9: & i g - & g
30.00 4 Model for nonlinear compression zone - eq. (15)
——— Model for nonlinear compression zone - eq. (16)
20.00 1 - - - - -Numerical model - LUSAS
mmm— EC3 - Initial stiffness
1000 7 = = = EC3-Resistance
0.00 T T T T T T T T T 1
=3 p=d [\ fsa) = v o o *® =) =
S S S =1 =1 =] S =) S S =
=1 (=] (=] (=] =1 S =1 =1 (=] (=] =]

Fig. 11. Comparative graph.

that Eq. (24) does not apply in this case because the
post-limit stiffness was chosen as zero.

Because experimental test results were available for
this particular connection, it was possible to use them to
calibrate the post-limit stiffness of the components, as

well as adjusting the actual value of the moment resis-
tance of the connection — Table 5 summarises the data.
Using the same procedure as before, an initial calibra-
tion was performed with only the critical component
with non-linear properties, illustrated in Fig. 13 with a



L. Simoes da Silva et al. | Computers and Structures 77 (2000) 615-624

Comparative graph - Analytical model, Numerical model and EC3

M (kNm)

60.00

50.00

General nonlinear model - eq. (21)
——— General nonlinear model -eq. (22)
—— General nonlinear model - eq. (23)
= *® = Numerical model - LUSAS

= = = EC3 - Initial stiffness

EC3 - Resistance

40.00
30.00
20.00
10.00
0.00 + T T T
=3 o = )
S < = =]
=] < S =]

0 (rad)

0.08
0.10
0.12
0.14
0.16

Fig. 12. Comparative graph.

Table 5
Data used in the general non-linear model of the connection

623

kee = 3.82 x 10° kN/m
kpe = 3.00 x 10° kN/m
PE = 650 kN

P,

F="C=325kN

kg = 1.67 x 10 kN/m
ke = 3.00 x 10° kN/m
PE =795 kN

F="=3975kN

Comparative Graph - Analytical Model, Experimental Test Results

M (kNm)
100.00 -

80.00 4

60.00

40.00

20.00 4

=== Model for nonlinear compression zone - eq. (16)

—@— Experimental test results

Model for nonlinear compression zone - eq. (15)

0.00

0.00

0.02
0.04
0.06

Fig.

subsequent full non-linear implementation, shown in
Fig. 14.

4. Concluding remarks

The four degree-of-freedom elastic model presented
in this paper was able to reproduce the full non-linear
moment-rotation response of a steel connection. In
particular, because of the post-buckling nature of the
analysis, it was possible to pinpoint directly the bifur-

0.08

¢ (rad)

0.10 4
0.124
0.14 4
0.16 4

13. Comparative graph.

cation points which correspond to the “yield”” points of
each component.

An accurate prediction of the post-limit response of
the connection requires the knowledge of the post-limit
stiffness (k,) of each component. The analytical results
presented here can very easily be used to calibrate the
post-limit stiffness against experimental results, as was
shown above.

Current work on the same model loaded in com-
pression seems very promising, opening the way to the
prediction of the behaviour of steel connections under
combined loading (bending moment and axial force).
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Comparative Graph - Analytical Model and Experimental Test Results

M (kNm)
100.00 -
80.00 -
General nonlinear model - eq. (21)

60.00 4

=== General nonlinear model - eq. (22)
40.00 4 ——— General nonlinear model - eq. (23)

s General nonlinear model - eq. (24)
20.00 4

—@—— Experimental test results

0.00 @&

¢ (rad)

0.00
0.02 4
0.04 -
0.06 -

0.08 4

0.10 4
0.12 4
0.14 4
0.16 <

Fig. 14. Comparative graph.
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