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Abstract

Different seismic testing techniques rely on the propagation of acoustic waves in ¯uid-®lled boreholes from sources placed within the

borehole and in the solid media. The interpretation of the signals recorded relies on understanding how waves propagate in the borehole and

its immediate vicinity. It is known that very complex wave patterns can arise, depending on the distance between the source and the receiver,

and their placement and orientation relative to the axis of a circular borehole. The problem becomes more complex if the cross-section is not

circular, conditions for which analytical solutions are not known. In this work, the Boundary Element Method (BEM) is used to evaluate the

three-dimensional wave ®eld elicited by monopole sources in the vicinity of a ¯uid-®lled borehole. This model is used to assess the effects of

the receiver position on the propagation of both axisymmetric and non-axisymmetric wave modes when different borehole cross-sections are

used. Both frequency vs. axial-wave number responses and time-domain responses are calculated. q 2001 Elsevier Science Ltd. All rights

reserved.
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1. Introduction

A large number of researchers have addressed the

problem of wave propagation along ¯uid-®lled boreholes

from sources inside and outside the borehole, because of

its importance to acoustic logging, vertical pro®ling and

cross-hole surveying.

The problem concerning the interaction of elastic waves

with ¯uid-®lled or air-®lled cylinders has received consid-

erable attention. Before the 1980s, most of the work

published focused on dynamic stresses and wave dispersion

characteristics, with very little being done on particle

motions at a certain point (documented in an excellent

monograph by Pao and Mow [1]).

The propagation of waves along a borehole boundary was

studied nearly half a century ago by Biot [2], who derived the

dispersion equation for guided waves in a borehole, and used

it to ®nd the phase and group velocities for these waves. More

recently, a number of investigators have addressed the propa-

gation of waves along ¯uid-®lled boreholes from sources

aligned with the borehole axis, because of its importance in

acoustic logging. The interaction of elastic plane waves inci-

dent upon a ¯uid or air-®lled borehole has been investigated in

a context of vertical pro®ling and cross-hole surveying. Blair

[3] considered the case of a P-wave normally incident on the

borehole axis, while Schoenberg [4] studied the problem of

plane compressional or shear waves impinging on the ¯uid

borehole at arbitrary angles, providing explicit formulas that

are valid only for low frequencies. Lovell and Hornby [5]

returned to this problem, developing expressions valid for

all frequencies and incidence angles.

Numerical methods have also been used to study how

wave amplitude and attenuation are in¯uenced by the

formation characteristics of the material, by the type of

¯uid in the borehole, and by the source [6±11]. The inverse

problem of estimating the mechanical properties of the

formation has also been the object of research [12,13],

and this work was later extended to consider the state of

fracturing and the presence of damaged zones around the

borehole [14±16]. The effects of the formation anisotropy

on the ¯uid-®lled borehole wave propagation have been

analyzed by different authors. Transversely isotropic forma-

tions, with the symmetry axis aligned with the axis of the

borehole, and the use of monopole and dipole acoustic logs

have also been investigated [17±19]. The perturbation and

the ®nite element methods were also developed to study
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borehole normal modes and waveforms in the anisotropic

formation [20±23] derived the radiation patterns of typical

downhole seismic sources inside a ¯uid-®lled borehole

embedded in a transversely isotropic formation. Anisotropy

has also been included in crosswell tomography techniques

[24].

Kurkjian et al. [25] proposed a numerical technique for

modeling downhole seismic data in crosswell con®gura-

tions, splitting the problem into three distinct parts: the

®rst takes into account the generation of tube waves in

the source well, the second assumes the transmission from

the source well using a preexisting code, and at third

computes the response at the receivers by applying White's

quasistatic approximation. In their method, the boreholes

are discretized into small elements. Later, Peng et al. [26]

make use of both the borehole coupling theory and the

global matrix formulation for calculating synthetic seismo-

grams in a layered medium. This model does not need

discretization along the borehole, and the method applies

to open, cased and partially ®lled boreholes.

Randall [27] studied monopole and dipole acoustic logs

using a ®nite difference method, applying a staggered grid in

a 2-D cylindrical coordinate. A true 3-D ®nite difference

method, utilizing a parallel computing scheme, was later

developed by Ref. [28] to calculate time domain wave

propagation analysis for boreholes in an anisotropic forma-

tion, using a fourth order discretization in space.

Tube waves were found to be a major source of noise,

which made the data recorded at the receivers hard to

interpret. Different data processing schemes have been

suggested [29,30], but, in addition, more realistic models

have been proposed to deal with the scattering of the tube

waves caused by irregularities in the diameter of the bore-

hole.

The effects of borehole irregularities on the Stoneley-

wave propagation have been addressed by Bouchon and

Schmitt [31] using a boundary integral equation combining

with a discrete wavenumber formulation. They concluded

that the Stoneley wave propagation was not affected when

the change in the borehole diameter along its axis was

smooth, while a signi®cant amount of re¯ection was regis-

tered when the diameter varied sharply. Later, Tezuka et al.

[29] implemented a method for low-frequency Stoneley-

wave propagation in a borehole with both spatial variation

of the borehole diameter along it axis and formation prop-

erty changes. In this model, the main features of the low-

frequency Stoneley waves are maintained with a single 1-D

model, while a mass-balance boundary condition and a

propagator matrix are used to express Stoneley wave inter-

actions with the borehole irregularities.

The remainder of this paper is concerned with the effect

exercised by the existing non-circular ¯uid-®lled boreholes,

and computes the wave®eld and motions elicited by mono-

pole sources placed in off-center positions. Non-circular

borehole cross-sections may occur for a variety of reasons,

for example, through the mechanical action of the drill

string in vertically deviated wells, rock failure adjacent to

a drilled borehole, plastic deformation and washing out of

the borehole in soft or poorly consolidated rocks [32,33].

Most of the published work has assumed that the borehole is

circular and little work on non-circular ¯uid-®lled boreholes

has been reported. Randall [34] calculated dispersion curves

for the modes of non-circular ¯uid-®lled boreholes in homo-

geneous elastic formations, using a boundary integral

formulation. Results for the propagation modes of several

borehole shapes in both fast and slow formations were

given. The boundary integral formulation used is similar

to that used by Bouchon and Schmitt [31] to solve the

problem of a circular, but axially varying borehole cross

section. In the frequency versus axial wavenumber domain,

the displacements and the stresses on the borehole are

de®ned as integrals over surface distribution of effective

sources. The unknown sources are calculated imposing the

adequate boundary conditions, leading to a homogeneous

linear system of equations. The zeros of the determinant

of this system provide the modal dispersion functions. In

his work, no frequency and time-domain waveforms are

produced for any type of source excitation. In the present

paper, we compute the wave®eld and motions elicited by

monopole sources placed in off-center positions, when the

cross-section of the ¯uid-®lled borehole is assumed to be

irregular. Because of the cylindrical geometry of this

problem, we can use the separation of variables and express

the solution at each frequency in terms of waves with vary-

ing wavenumber, kz, (with z being the borehole axis), which

we subsequently Fourier-transform into the spatial domain.

We cast this wavenumber transform in discrete form by

considering an in®nite number of virtual point sources

equally spaced along the z axis, and at a suf®cient distance

from each other to avoid spatial contamination. In addition,

our analysis uses complex frequencies, shifting the

frequency axis downward-in the complex plane-in order to

remove the singularities on (or near) the axis, and to mini-

mize the in¯uence of neighboring ®ctitious sources. The

problem is solved using a BEM formulation containing

compact expressions of Green's functions for the elastic

and ¯uid media.

The article is organized as follows: ®rst, a brief de®nition

of the 3-D problem is given, and then the BEM is formulated

in the frequency domain. Then follows a brief validation of

the results using a circular cylindrical ¯uid-®lled borehole

model, for which analytical solutions are known. A circular

¯uid-®lled borehole is also used in this work as a reference,

to better understand the wave propagation changes when the

cross-section of the borehole is non-circular. The theoretical

part of the paper ends with a discussion of the dispersion of

waves in a ¯uid-®lled circular borehole. Finally, we give

examples of simulations performed for a set of four cross-

sections. The solution is computed for a wide range of

frequencies and wavenumbers, which then are used to

obtain time series by means of (fast) inverse Fourier trans-

forms into space-time.
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2. Problem formulation

Consider a cylindrical irregular cavity of in®nite extent,

buried in a spatially uniform elastic medium (Fig. 1),

subjected to a harmonic dilatational point source at the posi-

tion O, oscillating with a frequency v . The incident ®eld can

be expressed by means of the now classical dilatational

potential f :

finc � Aei
v
a at2

���������
x21y21z2
pÿ �

����������������
x2 1 y2 1 z2

p �1�

in which the subscript inc denotes the incident ®eld, A is the

wave amplitude, a is the compressional wave velocity of

the medium, and i � ����
21
p

.

De®ning the effective wavenumbers:

ka �
�����������
v2

a2
2 k2

z

s
; Imka , 0 �2�

by means of the axial wavenumber kz, and Fourier-trans-

forming Eq. (1) in the z direction, one obtains:

f̂ inc�v; x; y; kz� � 2iA

2
H�2�0 ka

���������
x2 1 y2

q� �
�3�

in which the H�2�n (¼) are second Hankel functions of order

n.

Considering an in®nite number of virtual point sources

equally spaced along the z direction, at a suf®cient distance,

L, from each other to avoid spatial contamination [35], the

incident ®eld may be written as:

finc�v; x; y; z� � 2p

L

X1
m�2 1

f̂ inc�v; x; y; kz�e2ikzmz �4�

with:

kzm � 2p

L
m:

This equation converges and can be approximated by a

®nite sum of terms.

3. Boundary element formulation

The Boundary Element Method (BEM) is used to obtain

the three-dimensional ®eld generated by a cylindrical ¯uid

®lled borehole subjected to spatially sinusoidal harmonic

line loads de®ned by Eq. (3). The fundamental equations

underlying the application of boundary elements to wave

propagation are well known [36±38]. It is, therefore,

enough to state that the application of the method in the

frequency domain requires, for the type of scattering

problem presented here, the evaluation of the integrals

along the appropriately discretized boundary of the borehole

H�s�kl
ij �

Z
Cl

H�s�ij �xk; xl; nl�dCl �i; j � 1; 2; 3�

H
� f �kl
f 1 �

Z
Cl

H
� f �
f 1 �xk; xl; nl�dCl

�5�

G�s�kl
ij �

Z
Cl

G�s�ij �xk; xl�dCl �i � 1; 2; 3; j � 1�

G
� f �kl
f 1 �

Z
Cl

Gf 1� f ��xk; xl� dCl

in which H�s�ij �xk; xl; nl� and G�s�ij �xk; xl� are, respectively,

the Green's tensor for traction and displacement compo-

nents in the elastic medium, at the point xl in direction j

caused by a concentrated load acting at the source point xk

in direction i; H
� f �
f 1 �xk; xl; nl� are the components of the

Green's tensor for pressure in the ¯uid medium, at the

point xl caused by a pressure load acting at the source

point xk; G
� f �
f 1 �xk; xl� are the components of the Green's

tensor for displacement in the ¯uid medium, at the point xl

in the normal direction, caused by a pressure load acting at

the source point xk; n1 is the unit outward normal for the lst

boundary segment Cl; the subscripts i, j� 1,2,3 denote the

normal, tangential and z directions, respectively. These

equations are conveniently transformed from the Cartesian

coordinate system (x, y, z) by means of standard vector

transformation operators. The required two-and-a-half

dimensional fundamental solution (Green's functions) in

the Cartesian co-ordinate, for the elastic and ¯uid forma-

tions, are listed in Appendix A. Expressions for the tensions

may be obtained from the Green's functions by taking

partial derivatives to deduce the strains and then applying

Hooke's law to obtain the stresses, as given in Appendix A.

After mathematical manipulation of the integral Eq. (5),

which are combined and subjected to the continuity of

normal displacements and stresses, and ascribing null

tangential stresses at the interface between the solid and
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the ¯uid at the interface between the two media, we obtain a

system of equations that can be solved for the nodal solid

displacements and ¯uid pressures. The required integrations

in Eq. (5) are performed using Gaussian quadrature when

the element to be integrated is not the loaded element. For

the loaded element, the existing singular integrands are

carried out in closed form [39,40].

4. Validation of the BEM algorithm

The BEM algorithm was implemented and validated

by applying it to a cylindrical circular cavity ®lled with an

inviscid ¯uid with a pressure wave velocity of a f� 1500 m/

s and a density of r f� 1000 kg/m3, placed in a homogeneous

elastic medium with a compressional wave velocity of

a � 4208 m/s, a shear wave velocity b � 2656 m/s and a

density of r � 2140 kg/m3, subjected to a point dilatational

load applied at point O, as in Fig. 2, for which the solution is

known in closed form (described in Appendix B).

The response is calculated over a ®ne vertical grid plane,

placed perpendicular to the longitudinal axis, as illustrated

in Fig. 3. This ®gure also displays an example of a BEM

mesh, including the nodal points in the middle of each

constant boundary element. Fig. 3 represents the scattered

pressure ®eld inside the borehole and the z displacement

®eld in the solid formation, computed when a harmonic

pressure load of 900 Hz is excited at kz� 1.0 rad/m. These

®gures give both the normalized response obtained with the

closed form solution and the difference in the response

obtained using the BEM (error), when the inclusion is

modeled with a different number of boundary elements.

Notice that the normalized response has been obtained by

dividing the response by the maximum displacement and

pressure, both outside and inside the borehole.

As expected, the BEM accuracy improves as shorter

constant boundary elements are used to model the response.

In the present example, the ratio between the wavelength of

the shear waves and the length of boundary elements varies

between six (20 boundary elements) and 12 (40 boundary

elements). Analysis of the results also makes it possible to
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verify the improvement of the BEM solution as the distance

to the surface of the inclusion increases.

5. Results in the time domain

The results (displacements and pressures) in the spatial-

temporal domain are obtained by a numerical fast Fourier

transform in kz, considering a source whose temporal varia-

tion is given by a Ricker wavelet, as de®ned below. This

wavelet form has been chosen because it decays rapidly, in

both time and frequency; this not only reduces computa-

tional effort, but also allows easier interpretation of the

computed time series and synthetic waveforms.

The Ricker wavelet function is given by:

u�t� � A�1 2 2t2�e2t2 �7�
where A is the amplitude, t � �t 2 ts�=t0 and t denotes time;

ts is the time when the maximum occurs, while p t0 is the

characteristic (dominant) period of the wavelet. Its Fourier

transform is:

U�v� � A�2 ��
p
p

toe2ivts �V 2e2V 2 �8�
in which V � vt0=2:

As stated before, the Fourier transformations are achieved

by discrete summations over wavenumbers and frequencies,

which is the mathematical equivalent of adding periodic

sources at spatial intervals L � 2p=Dkz (in the z-axis), and

temporal intervals T � 2p=Dv, with Dkz, and Dv being the

wavenumber and frequency steps, respectively [35]. The

spatial separation L must be suf®ciently large to avoid

contamination of the response by the periodic sources. In

other words, the contribution to the response by the ®ctitious

sources must be guaranteed to occur at times later than T.

Achievement of this goal can also be aided substantially by

shifting the frequency axis slightly downward, that is, by

considering complex frequencies with a small imaginary

part of the form vc � v 2 ih (with h � 0:7Dv). This tech-

nique results in the signi®cant attenuation, or virtual elim-

ination, of the periodic sources. In the time domain, this

shift is later taken into account by applying an exponential

window eht to the response [41].

6. Dispersion of waves in a ¯uid-®lled circular borehole

Of the various waves propagating along the boundary of a

¯uid-®lled cylinder, two are non-dispersive body waves,

namely the dilatational (P) and shear (S) waves. When the

source is within the ¯uid, the waves begin as dilatational

waves in the ¯uid. As they reach the cylinder boundary, they

are critically refracted into the formation as P or S waves,

which are in turn refracted back into the ¯uid as P waves. In

addition, there are various types of guided waves-the normal

modes-propagating along the interface between the ¯uid

and solid. When the source is positioned on the axis of the

cylinder, only the axisymmetric modes are excited. By

contrast, additional modes with some azimuth variation

are excited when the source is placed away from the axis,

but these modes do not contribute to the pressures recorded

at receivers positioned on the axis. Certain modes, however,

are excited only if the source excitation frequency exceeds

the cut-off (or resonant) frequencies of the cylinder.

The dispersion characteristics of the normal modes can be

obtained by solving an eigenvalue problem in the absence of

an incident ®eld. The associated eigenvalues kz, lead in turn to

the phase and group velocities of the normal modes. While an

in®nite (but countable) number of modes exists, only those

with low modal order contribute signi®cantly to the response.

The normal modes depend strongly on the ratio b=af

between the shear wave velocity in the solid medium and

the dilatational wave velocity in the ¯uid. If this ratio is less

than one (i.e., a slow formation), proper normal modes do not

exist because any waves propagating in the ¯uid will radiate

and lose their energy as shear waves in the solid. However, in

this case one can still ®nd modes with a complex wavenumber

(referred to as leaky modes), which attenuate rapidly as they

propagate. On the other hand, if the stated ratio is larger than

one (a fast formation), energy may remain trapped in the ¯uid

cylinder and normal modes do exist; in addition, there may

also be leaky modes. In general, the amplitude of the normal

modes in the formation decays exponentially with distance to

the cylinder. Thus, the phase and group velocities of all normal

modes must be smaller than the shear wave velocity in the

formation, except of course for the leaky modes.

Next, we consider a ¯uid ®lled borehole (radius� 0.6 m)

placed inside two different formations, studied by Ref. [42]:

Fast formation

a � 4208 m/s

b � 2656 m/s

r � 2140 kg/m3

a f � 1500 m/s

r f � 1000 kg/m3

Slow formation

a � 2630 m/s

b � 1416 m/s

r � 2250 kg/m3

a f � 1500 m/s

r f � 1000 kg/m3

6.1. Fast formation

Fig. 4 gives the phase and group velocities for the lowest

order of normal modes in the fast formation. In these ®gures,

the modes are identi®ed by a pair of numbers. The ®rst number

of the pair is the azimuth order, which indicates the variation of

the mode with the azimuth, while the second is the radial order

that supplies the variation of the mode with radial distance.

The ®rst axisymmetric mode is the tube wave or Stoneley

wave. The tube wave exists for all frequencies, and is
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associated, in Fig. 4, with the pair [(0,0)] as shown. This wave

exhibits a slight dispersion and its energy is usually highest at

low frequencies. Its phase and group velocity values are below

the dilatational velocity of the ¯uid.

The second axisymmetric mode is the Pseudo±Rayleigh

wave [(0,1)], which, in this case has a cut-off frequency of

1.35 kHz. At this cut-off frequency, the mode reaches its high-

est phase velocity, namely the shear wave velocity of the solid.

As the frequency of the wave increases, the phase velocity of

the mode approaches asymptotically, from above the ¯uid

velocity. The group velocity value, however, is less than the

shear wave velocity of the solid at a low-frequency cut-off.

From this point on, it decreases rapidly with frequency, reach-

ing the minimum associated with Airy waves, and thereafter

approaches from below the ¯uid velocity. The Pseudo±

Rayleigh wave is thus highly dispersive.

There is also an in®nite number of higher order Pseudo±

Raleigh waves [(0,2), (0,3), ¼] which have correspond-

ingly higher cut-off frequencies. Within the ¯uid cylinder,

these waves are oscillatory in nature and decay with

distance from the axis. The amplitude of the ®rst mode,

for example, has a zero value at a point located at (approxi-

mately) 2/3 of the distance between the axis and the bore-

hole wall.

The ®rst mode with azimuth variation is the Flexural

wave [(1,0)], which exists at all frequencies. The ¯uid pres-

sure for this mode varies as the cosine or sine of the azimuth

angle. As can be seen in Fig. 4, this mode is highly disper-

sive. Higher Flexural modes also exist, such as the [(1,1)]

mode shown.

The second azimuth modes, which vary as cos 2u or

sin 2u, are referred to as the Screw waves. The fundamental

Screw wave [(2,0)] has a cut-off frequency of approximately

1 kHz. Again, an in®nite number of higher order modes

exist [(2,1), (2,2)¼].

Higher order normal modes [(n, m)] for m, n . 1 which

vary as cos nu or sin nu also exist, but these do not have a

common name.

6.2. Slow formation

The phase and group velocities for the lowest normal

modes, calculated for the slow formation, are presented in

Fig. 5. When the shear wave velocity is lower than the
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dilatational ¯uid velocity, only the lowest order radial

modes exist [(0,0), (1,0), (2.0)¼]. Thus, the only surviving

axisymmetric mode is the tube wave (Stoneley wave). The

Pseudo±Rayleigh waves no longer exist since no critical

shear refraction can occur. The Stoneley wave is more

dispersive in a slow formation than in a fast formation.

Relations for the Flexural and the Screw modes are also

shown in Fig. 5. The cut-off frequency of the Screw wave

is approximately 0.7 kHz, whereas the Flexural wave is

always propagating. Both waves are less dispersive in

slow than in fast formations.

7. Synthetic waveforms

Next we present the wave signatures at a set of receivers

placed inside and outside boreholes, with four different

cross-sections: circular; oval with an ovality ratio of

e � 1.44/0.92� 1.56; a thin oval with an ovality ratio

of e � 1.68/0.62� 2.7, and kidney-shaped. The perimeter

of all these boreholes is constant (1.2 pm), as shown in

Fig. 6, which displays the geometry of the cross-sections.

At time t� 0, a point source at a point O creates a spherical

dilatational pulse propagating away from O.

The inclusions are modeled with boundary elements, the

number of which changes with the frequency of excitation

of the harmonic load. A ratio of the wavelength of the inci-

dent waves to length of the boundary elements is kept at a

minimum of 6.0. In all cases the minimum number of the

boundary elements used is less than 24.

The ®eld generated is computed at receivers, located on

®ve planes, equally spaced (6 m) along the z direction. The

geometry of the plane containing the point source is illu-

strated in Fig. 6.

7.1. Fast formation

We performed our computations in the frequency range

from 12.5 Hz to 1600 Hz, with a frequency increment of

12.5 Hz; thus, the total time taken for the analysis is

T� 1/12.5� 80 ms. This implies, in turn, that the spatial

period cannot be less than L� 2Ta s� 673 m. We chose

h � 0.7Dv as the imaginary part of the angular frequency,

to attenuate the wraparound by a factor of e0.7DvT� 81 (i.e.,

38 dB). The source is a Ricker wavelet pulse with a char-

acteristic frequency of 500 Hz. In all cases, the computed

wave ®elds refer to pressure when the receiver is in the ¯uid,

and to vertical (y) displacements when the receiver is in the

solid formation. Also, within each time plot the different
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responses at the various receivers placed along the z axis

keep the same scale.

Fig. 7 displays the response at receiver 1, placed on the

axis, obtained for the four different cross-sections of ¯uid-

®lled inclusions analyzed in this work. Both the time

responses and their Fourier Spectra representations are

included, for a better visual separation of the different

wave types. Indeed, the amplitude of the wave®eld in the

frequency vs axial-wave number domain allows an easier

recognition, identi®cation, and physical interpretation of the

different wave components.

A source placed off the axis excites both axisymmetric

and non-axisymmetric modes, but only the former contri-

bute to the pressure on the axis if the inclusion is regular.

Hence, in the case of the circular, oval and thin oval forma-

tions, only the body waves, the Stoneley waves [(0,0)], and

the Pseudo±Rayleigh waves [(0,1)] are observed. The

response there is similar to what would be generated by a

source on the axis (not shown), except that the amplitudes of

the response are now lower, and the importance of the

Stoneley wave greater than for centered sources.

The response calculated for the circular inclusion

follows the above-de®ned phase and group velocity

curves. Indeed, the time arrivals of the different pulses

agree with the velocities of the P, S, and Stoneley waves

de®ned in these curves. The time plots do not show
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evidence of the existence of the Pseudo±Rayleigh pulses

because of the low frequency characteristic of the excited

Ricker pulse (500 Hz), which is much lower than the cut-

off frequency of these waves (1.35 kHz). As we move

from the circular to the oval e � 1.56, and then to the

thin oval e � 2.7, the spectra plots exhibit a progressively

slower tube wave. The time plots con®rm this phenom-

enon by placing the Stoneley pulses with a progressively

delayed arrival. This effect agrees with the tendency found

by Ref. [34] in the calculation of the dispersion curves for

modes of non-circular ¯uid-®lled boreholes for low

frequencies. Additionally, as we move from the circular

to the oval, and then to the thin oval-shaped inclusions,

our results indicate that the amplitude of the Stoneley

pulses increases, and the arrival of a growing ring packed

with P waves can be seen. The oscillatory tail corresponds

to leaky modes generated by the interaction of the forma-

tion with totally re¯ected P waves in the borehole. Similar

behavior would occur for a circular inclusion with a smal-

ler radius or a higher source frequency excitation. Further-

more, it is observed that the Pseudo±Rayleigh cut-off

frequency decreases as the ovality ratio increases. A

second higher order Pseudo±Rayleigh [(0,2)] can even

be observed. The time responses re¯ect the presence of

these waves, exhibiting a ring of pulses after the S wave

arrives, which decreases rapidly, given the low frequency
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of the pulse excited. The importance of these waves

decreases as the ovality ratio increases.

The responses obtained for the kidney shaped inclusion

are closely related to the ones calculated for the oval

(e � 1.56). It seems that the wall deformation of the oval

does not cause a signi®cant modi®cation of the former

axisymmetric modes behavior.

Fig. 8 illustrates the response close to the wall of the

borehole, at receiver 2, placed in the same azimuth direction

of the source. The responses at this receiver include contri-

butions from the Flexural and Screw waves in addition to

the body, Stoneley and Pseudo±Rayleigh waves.

Analysis of the responses shows that the amplitude of

the P wave registered a stronger value on the axis (recei-

ver 1) for all four cases, the result of the accumulation of

P waves emitted from points located on the periphery of

the borehole. The Stoneley wave is visible and its ampli-

tude is higher than the amplitude of the P wave, but

slightly bigger than its amplitude on the axis (receiver

1), as would be expected. It also retains the same behavior

found at receiver 1, when we move from the circular to

the other inclusions. The Pseudo±Rayleigh waves lose

their importance, as may be seen on the spectral repre-

sentation of the response.

As we have mentioned, the non±axisymmetric guided

waves for the circular inclusion mainly arise from the

®rst order Flexural waves [(1,0)] since the Screw waves

[(2,0)] have a cut-off frequency of approximately 1 kHz.
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If we consider the spectral representation of the response

(Fig. 8(a)), we can visually separate the different wave

types. It indicates that the group velocity of bending

waves is lower than that of Screw waves, which in turn

is lower than for Pseudo±Rayleigh waves. As we move

from the circular inclusion to the oval, and then to the

thin oval, we notice that the guided waves lose their impor-

tance (Fig. 8(a)±(c)). Furthermore, it can be observed that

the Flexural waves reach higher velocities at lower frequen-

cies, approaching the velocity of the Flexural waves found

for the circular inclusion, for later frequencies, as the oval-

ity ratio increases. In the time plots this can be seen in the

progressive disappearance of late arrivals, after the Stone-

ley wave. The Screw wave behaves in a similar way, but,

in addition, it rapidly loses importance.

The responses obtained for the kidney cross-section

inclusion are again closely related to those calculated for

the oval (e � 1.56), but with a pronounced decay in the

amplitude of the Screw and Flexural waves. It seems that,

in this case, the oval wall deformation causes a sharp modi-

®cation in the non-axisymmetric modes' behavior.

We can also observe that the signatures at receiver 4 are not

affected by Flexural waves (Fig. 10), when the inclusion is

regular, because the bending mode has zero amplitude on the

neutral axis, which is the horizontal plane through the axis

that is perpendicular to the line connecting the center with the
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source. Hence, after the passage of the Stoneley wave, the

signatures on the neutral axis experience a substantial drop in

amplitude (Fig. 10(a)±(c)). This drop, however, is not

observed for receivers 2, and 3 located away from the neutral

axis (Figs. 8 and 9). Indeed, receivers 2 and 3 that are farthest

from the neutral axis exhibit the largest increases in pressure,

which is clearly due to the Flexural mode. As mentioned, at

receiver 4, the only surviving guided waves, when the bore-

hole has a regular cross-section, are those arising from the

Screw mode. We may now compare the results calculated at

receiver 1 with those at receiver 4, and conclude once again,

that the Screw mode loses its in¯uence as the ovality ratio

increases from e � 1.56 to e � 2.7.

The kidney cross-section inclusion produces results

showing the presence of the Flexural wave (Fig. 10(d)).

This behavior was expected since receiver 4 is not on the

neutral axis of the inclusion, because of its side wall defor-

mation. However, its in¯uence is very slight, as we may

conclude by comparing these responses with those given

by the oval borehole.

Trailing behind the Flexural waves is a set of pulses asso-

ciated with the Screw mode. We can see that their contribu-

tion to the pressure at receiver 3, which lies on a 458 plane, is

very small, as theory would predict for the circular cavity. It

can be seen that the Screw mode is not null on this 458 plane

when the cross-section of the inclusion is non-circular.
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However, its in¯uence on the time response is very small,

given its cut-off frequency.

The response for receiver 5 (Fig. 11), placed outside the

borehole, shows some of the features generated at receiver

2. The guided waves undergo signi®cant decay, but their

contribution is still important. Again, the Stoneley pulse

increases its importance, while the non-axisymmetric

guided waves lose their importance, as we move from the

circular to the oval, and then to the thin oval-shaped bore-

hole. Furthermore, it can be observed that the Flexural

waves reach higher velocities at lower frequencies,

approaching the shear velocity, before slowing down as

the frequency increases. The time plots show this in the

progressive disappearance of late arrivals, after the Shear

wave. The Screw wave follows similar behavior, but it again

rapidly loses importance.

7.2. Slow formation

The computations are performed in the frequency range

(9.5 Hz, 1216 Hz), with a frequency increment of 9.5 Hz,

which determines the total time duration (T� 105.2 ms) for

the analysis in the time domain. The source time dependence is

a Ricker wavelet with a characteristic frequency of 450 Hz;

h � 0.7Dv is again the imaginary part of the angular

frequency. The computed wave ®elds refer to pressure for
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receivers placed within the borehole, and to vertical (y) displa-

cements when the receiver is in the solid medium.

Fig. 12 shows the calculated responses when the recei-

ver is at position 1, on the axis. The P arrival is very

pronounced and its character is distinctly different from

that in the fast formation. Once more, as we move from

the circular inclusion to the oval and then to the thin oval,

an oscillatory P tail appears, which corresponds to the

leaky modes generated by the interaction of the formation

with totally re¯ected P waves in the borehole. Again, the

Stoneley wave manifests a slower velocity as the ovality

ratio increases, as observed from the time plots. At recei-

ver 2 (Fig. 13), it is possible to identify the presence of

the Flexural wave, but its relative contribution is smaller

than before (note that Flexural waves propagate for all

frequencies). The participation of the Screw waves is

very small because its cut-off frequency is approximately

0.7 kHz. The features of the guided waves in these plots,

when we move from the circular inclusion to the others,

are similar to those for the fast formation. Only the results

obtained for receiver 2 are presented, as an example.

8. Conclusions

The boundary element formulation developed and
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implemented to evaluate the 3-D scattered ®eld generated

by a dilatational point load illuminating non-circular ¯uid-

®lled boreholes was found to be ef®cient. It was therefore

used to assess the in¯uence of receiver position on the

propagation of both axisymmetric and non-axisymmetric

wave modes when different borehole cross-sections were

used, namely a circular, an oval, a thin oval and a kidney.

Both the time responses and their Fourier Spectral represen-

tations were included to give better identi®cation of the

different wave components.

As we move from the circular to the oval cross-section

borehole, placed in a fast formation, the results indicate a

progressively slower tube wave with an increasing ampli-

tude and the arrival of an expanding ring packed of P waves

as the ovality ratio increases. The oscillatory tail corre-

sponds to leaky modes generated by the interaction of the

formation with totally re¯ected P waves in the borehole.

Similar behavior would be found for a circular inclusion

with a smaller radius, or for a higher source frequency

excitation. Furthermore, it is also observed that the

Pseudo±Rayleigh cut-off frequency decreases as the ovality

ratio increases. In some cases, the appearance of a second

higher order Pseudo±Rayleigh [(0,2)] can even be observed.

The responses obtained when the wall of an oval-shaped

inclusion is deformed (designated here as the kidney

shape inclusion), are closely related to the ones calculated

for the former oval, when the receiver is in its center.

The non±axisymmetric guided waves were mainly

caused by the ®rst order Flexural waves [(1,0)] since the

Screw waves [(2,0)] have a high cut-off frequency. As we

moved from the circular inclusion to the oval, we noticed

that the guided waves lost their importance. Furthermore,

it was found that the Flexural waves reached higher

velocities at lower frequencies, approaching the velocity

of the Flexural waves registered for the circular inclusion

for later frequencies, as the ovality ratio increases. The

Screw waves behave similarly, but they also rapidly lose

importance. The responses obtained for the kidney cross-

section inclusion are again closely related to those found

for the oval one, but with a pronounced decay in the

amplitude of the Screw wave.

The response at a receiver placed outside the borehole

showed some of the features found at a receiver placed

within the ¯uid medium, close to the borehole wall. The

guided waves undergo signi®cant decay, but their contribu-

tion is still important. Again, the Stoneley pulse increases in

importance, while the non-axisymmetric guided wave loses

its importance, as we move from the circular to the oval

inclusion.

In a slow formation, the P arrivals were very pronounced

and their character is quite different from that found in the

fast formation. Again as we moved from the circular to the

oval inclusion, an oscillatory P tail appeared again, corre-

sponding to the leaky modes generated by the interaction of

the formation with totally re¯ected P waves in the borehole.

As for the fast formation, the Stoneley wave showed a

slower velocity as the ovality ratio increased. The features

of the guided waves for non-circular inclusions are similar

to those for the fast formation, its importance, however,

decreases.

Appendix A. The Green's functions

A.1. Solid formation

De®nitions:

l , m LameÂ constants

r Mass density

a � ���������������l 1 2m�=rp
P wave velocity

b � �����
m=r
p

S wave velocity

kp � v=a, ks � v=b

ka �
����������
k2

p 2 k2
z

q
kb �

����������
k2

s 2 k2
z

q
A � 1

4irv2
Amplitude

gi � 2r=2xi � xi=r; i � 1; 2 Direction cosines

Hna � H�2�n �kar�, Hnb � H�2�n �kbr� Hankel functions

Bn � kn
bHnb 2 kn

aHna Bn functions

Green's functions for displacements:

Gxx � A k2
s H0b 2

1

r
B1 1 g2

xB2

� �
�A1�

Gyy � A k2
s H0b 2

1

r
B1 1 g2

yB2

� �
�A2�

Gzz � A�k2
s H0b 2 k2

z B0� �A3�

Gxy � Gyx � gxgyAB2 �A4�

Gxz � Gzx � ikzgxAB1 �A5�

Gyz � Gzy � ikzgyAB1 �A6�
Volumetric strain (super-index� direction of load):

el
Vol � Gxl;j 1 Gyl;l 1 Gzl;z

� A
2

2xl

�k2
s H0b�1 B0;xlx 1 B0;yly 1 B0;zlz

� �

� A
2

2xl

�k2
s H0b 1 B0;xx 1 B0;yy 1 B0;zz�

� A
2

2xl

�k2
s H0b 1 7̂ 2B0� �A7�

Note:

H0b;l � 2kbglHlb H0b;z � 2ikzH0b
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Strain components (tensor de®nition, not engineering):

el
ij � 1

2
�Gil;j 1 Gjl;i� � 1

2
A�dilk

2
s H0b;j 1 djlk

2
s H0b;i 1 B0;ilj 1 B0;jli�

� 1

2
k2

s A�dilH0b;j 1 djlH0b;i�1 AB0;ijl

�A8�

1. Strains for loads in the plane, l� x,y

el
Vol � glA 2k2

s kbH1b 1 k2
z B1 1

4

r
B2 2 B3

� �
�A9�

el
xx � glA

2

r
B2 2 k2

s kbH1b

� �
dxl 1

1

r
B2 2 g2

xB3

� �
�A10�

el
yy � glA

2

r
B2 2 k2

s kbH1b

� �
dyl 1

1

r
B2 2 g2

yB3

� �
�A11�

el
zz � glk

2
z AB1 �A12�

el
xy � A

1

r
B2 2

1

2
k2

s kbH1b

� �
dxlgy 1 dylgx

� �
2 gxgyglB3

� �
�A13�

el
xz � ikzA

1

r
B1 2

1

2
k2

s H0b

� �
dxl 2 gxglB2

� �
�A14�

el
yz � ikzA

1

r
B1 2

1

2
k2

s H0b

� �
dyl 2 gyglB2

� �
�A15�

2. Strain for axial loads, l� z:

ez
Vol � ikzA 2k2

s H0b 1 k2
z B0 1

2

r
B1 2 B2

� �
�A16�

ez
xx � ikzA

1

r
B1 2 g2

xB2

� �
�A17�

ez
yy � ikzA

1

r
B1 2 g2

yB2

� �
�A18�

ez
zz � ikzA 2k2

s H0b 1 k2
z B0

� �
�A19�

ez
xy � 2ikzgxgyAB2 �A20�

ez
xz � gxA 2

1

2
k2

s kbH1b 1 k2
z B1

� �
�A21�

ez
yz � gyA 2

1

2
k2

s kbH1b 1 k2
z B1

� �
�A22�

Stresses:

tl
ij � lel

Voldij 1 2mel
ij �A23�

A.2. Fluid formation

De®nitions:

l f LameÂ constant

r f Mass density

a f P wave velocity

kpf � v=af

kaf �
����������
k2

pf 2 k2
z

q
Af� 1/4i Amplitude

g i� 2r/2xi� xi/ri� 1,2 Direction cosines

Hnaf � H�2�n �kaf r� Hankel functions

Green's functions for displacements:

Gfx � 2Af kaf H1afgx �A24�

Gfy � 2Af kaf H1afgy �A25�

Stresses:

Hf 1 � Aflf H0af �2v2
=a2

f � �A26�

Appendix B. 3-D wave propagation solution for an
analytical ¯uid-®lled circular borehole

Consider a spatially uniform elastic medium of in®nite

extent, having a cylindrical cavity ®lled with an inviscid

¯uid (Fig. 2). Decomposing the homogeneous wave equa-

tions for elastic media in the usual way, by means of the now

classical dilatational potential f and shear potentials C , x ,

one arrives at the three scalar wave equations in these poten-

tials, with associated wave propagation velocities a , and b ,

respectively. For a harmonic dilatational point source at an

off-center position O in the ¯uid or solid, oscillating with a

frequency v , the scalar wave equations lead to three Helm-

holtz equations, whose solution can be expressed in terms of

the single dilatational potential for the incident waves,

together with the set of potentials for scattered waves in

both media.

B.1. Incident ®eld (or free-®eld)

The incident dilatational potential is given by the expres-

sion:

finc � Aei
v
a at2

���������
x21y21z2
pÿ �

����������������
x2 1 y2 1 z2

p �B1�

in which the subscript inc denotes the incident ®eld, A is the

wave amplitude, a is the acoustic (dilatational) wave velo-

city of the medium containing the source, and i � ����
21
p

.
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De®ning the effective wavenumbers:

ka �
�����������
v2

a2
2 k2

z

s
; Imka , 0; �B2�

kb �
�����������
v2

b2
2 k2

z

s
; Imka , 0

by means of the axial wavenumber kz, the frequency of

excitation v , and the wave velocities a , b , and Fourier-

transforming Eq. (B1) in the z direction, one obtains:

finc�v; x; y; kz� � 2iA

2
H�2�0 �ka

���������
x2 1 y2

q
� �B3�

in which theH�2�n (¼) are second Hankel functions of order n.

Eq. (3) poses a dif®culty, however, because it expresses

the incident ®eld in terms of waves centered at the source

point O, and not at the axis of the borehole. This dif®culty

can be overcome by expressing the incident potential in

terms of waves centered at the origin, which can be achieved

by resorting to Graf's addition theorem [43], leading to the

expressions (in cylindrical coordinates):

finc�v; r; u; kz� � 2
iA

2

X1
n�0

�21�nenH�2�n �kar0�Jn�kar�cosnu

when r , r0

�B4�

finc�v; r; u; kz� � 2
iA

2

X1
n�0

�21�nenH�2�n �kar�Jn�kar0�cosnu

when r . r0

�B5�

in which the J�2�n (¼) are Bessel functions of order n, u is the

azimuth, and:

en �
1
2

if n � 0

1 if n ± 0

(

r � ���������
x2 1 y2

p � radial distance to the receiver

r0 � radial distance from the cylinder axis to the

source

cosu � x=r, sinu � y=r

B.2. Scattered ®eld in the exterior region (solid)

In the frequency-axial-wavenumber domain, the scattered

®eld in the exterior region (the solid formation) can be

expressed in a form similar to that of the incident ®eld,

namely

fs
sca�v; r; u; kz� �

X1
n�0

AnH�2�n �kar�cosnu �B6�

c s
sca�v; r; u; kz� �

X1
n�0

BnH�2�n �kbr�sinnu

xs
sca�v; r; u; kz� �

X1
n�0

CnH�2�n �kbr�cosnu

in which the subscript sca denotes the scattered ®eld, An, Bn,

and Cn, are as yet unknown coef®cients to be determined

from appropriate boundary conditions. Together with an

implicit factor expi(v t 2 kzz), the second Hankel functions

in Eq. (B6) represent diverging or outgoing cylindrical

waves.

B.3. Scattered ®eld in the interior region (¯uid)

If the source is outside the borehole (i.e., within the solid

formation), the scattered (or refracted) ®eld in the ¯uid

consists of standing waves, which can be expressed as:

ff
sca�v; r; u; kz� �

X1
n�0

DnJn�kaf r�cosnu �B7�

where the index f identifying the ¯uid, and:

kaf �
�����������
v2

a2
f

2 kz

vuut

B.4. Displacement ®eld

The unknown constants An, Bn, Cn, Dn in Eqs. (B6 and B7)

are obtained by imposing the continuity of displacements

and stresses at the interface between the solid and the ¯uid,

namely ur � uf
r , srr � s f

rr, and sru � srz � 0. Notice that

since we have assumed an inviscid ¯uid, the tangential

displacements at the boundary of the solid (i.e., uu, uz)

may be different from those in the ¯uid (i.e., u
f
u, uf

z). The

imposition of the four stated boundary conditions for each

summation index, n, leads to a system of four equations in

the four unknown constants.

Having obtained the constants, we may compute the

motions associated with the scattered ®eld by means of

the well-known equations relating potentials and displace-

ments. In essence, this requires the application of partial

derivatives of Eq. (B6) as well as Eq. (B7), to move from

potentials to displacements. After carrying out this proce-

dure, one obtains expressions for the scattered ®eld in the

solid and ¯uid of the form:

ur�v; r; u; kz� �
X1
n�0

fn�r�cosnu �B8�

uu�v; r; u; kz� �
X1
n�0

gn�r�sinnu

uz�v; r; u; kz� �
X1
n�0

hn�r�cosnu
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in which the functions fn, gn and hn are given by:

Solid

fn�r� � n

r
H�2�n �kar�2 kaH�2�n11�kar�

� �
An 1

n

r
H�2�n �kbr�Bn

2 ikz

n

r
H�2�n �kbr�2 kbH�2�n11�kbr�

� �
Cn

�B9�

gn�r� � 2
n

r
H�2�n �kar�An 2

n

r
H�2�n �kbr�2 kbH�2�n11kbr

� �
Bn

1 ikz

n

r
H�2�n �kbr�Cn

hn�r� � 2ikzH
�2�
n �kar�An 1 k2

bH2�
n �kbr�Cn

Fluid

fn�r� � n

r
Jn�kaf r�2 kaf Jn11�kaf r�

� �
Dn �B10�

gn�r� � 2
n

r
Jn�kaf r�Dn

hn�r� � 2ikzJn�kaf r�Dn

From these equations, it follows that on the axis of the bore-

hole, only the n� 0 terms survive, and we retrieve the expres-

sions derived earlier by Ref. [5]. On the other hand, at points

away from the axis, the displacements are also a function of the

non-axisymmetric terms with n . 0. Finally, the incident ®eld

obtained from Eqs. (B4) or (B5) by partial differentiation must

be added to Eq. (B9), for the medium containing the source, to

give the total ®eld in the kz, wavenumber domain.
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