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This paper presents a set of analytical solutions (Green functions) for the steady state
response of a homogenous acoustic three-dimensional space subjected to a point harmonic
load or a spatially sinusoidal harmonic line load. The propagation medium is modelled with
plane surfaces placed so as to reproduce spaces that vary from a simple half-space to
a rectangular parallelepiped closed space. The "nal expressions are implemented to evaluate
"rst the pressure "eld inside a rectangular parallelepiped room, whose walls allow di!erent
absorption coe$cients. Then, the acoustic scattering of a three-dimensional sound source by
an in"nitely long rigid barrier in the vicinity of a tall building is evaluated using the
boundary-element method (BEM), making use of the analytical solution for a spatially
sinusoidal line source. The use of these Green functions allows the required BEM
discretization to be limited to the surface of the barrier, avoiding the discretization of the tall
building and ground. The calculations are performed in the frequency domain and time
signatures are obtained by means of inverse Fourier transforms. Complex frequencies are
used to attenuate the response at the end of the time frame, which is taken into account by
rescaling the time response.
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1. INTRODUCTION

The propagation of acoustic waves in the presence of open or closed spaces, such as in the
vicinity of acoustic barriers or inside parallelepiped closed rooms, involves frequency values
that tend to rule out the use of many numerical techniques, because of the computer e!ort
required.

Sound propagation in closed spaces is often analyzed by means of the ray-tracing and
image model techniques [1}4]. The ray-tracing technique follows only a limited number of
acoustic rays between the source and the receiver points. This procedure allows the
resulting simulation to be calculated in a reasonable time, even when more complicated
geometries are studied. However, the number of rays needed to corroborate the correctness
of the numerical calculation remains uncertain. Furthermore, certain rays that would
contribute to the correct results might not be included in the analysis [5]. In the image
model technique, the acoustic "eld is calculated by adding the contribution of
virtual sources (image sources) to it, placed so as to simulate the direct and successive
multi-re#ections produced by the re#ecting walls. Unlike the ray-tracing technique, there is
no uncertainty involved, but the analysis of models with irregular geometry is complex, and
calculations may result in high computational cost when higher order re#ections are taken
into consideration.
22-460X/01/410117#14 $35.00/0 ( 2001 Academic Press
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Di!raction-based methods have been used to compute the acoustic energy loss caused by
the insertion of acoustic barriers placed in open spaces [6, 7]. Other numerical techniques,
such as the boundary-element method (BEM) or the "nite-element method, may model the
problem more realistically. However, these methods are costly in terms of computational
e!ort, and are therefore di$cult to apply to very high frequencies. The application of these
numerical methods has mostly been restricted to situations where the solution is required
within two-dimensional domains. The evaluation of the full scattering wave "eld generated
by sources placed in the presence of three-dimensional propagation media requires the use
of computationally demanding numerical schemes.

Lacerda et al. [8] proposed a dual boundary-element formulation for analyzing
two-dimensional sound propagation in the vicinity of acoustic barriers, over an in"nite
plane, in which both the ground and the barrier were assumed to be absorptive. The
three-dimensional propagation of sound around an absorptive "nite barrier has been
studied by Lacerda et al. [9], where a dual boundary-element formulation that allowed the
barrier to be modelled as a simple surface was introduced.

The solution becomes much simpler if the medium is two-dimensional (2-D), even if the
dynamic source is three-dimensional (3-D), such as a point load. Such a situation is
frequently referred to as a two-and-a-half-dimensional problem (or 2-1/2-D for short), for
which solutions can be obtained by means of a spatial Fourier transform in the direction in
which the geometry does not vary. For this, a sequence of 2-D problems must be solved,
with di!erent spatial wavenumbers, k

z
, associated with di!erent spatially sinusoidal

harmonic line loads.
Zhang and Chopra [10] used a BEM formulation to compute the 3-D seismic response of

an in"nitely long canyon with an arbitrary cross-section in a homogeneous visco-elastic
half-space. The dynamic excitation was assumed to be represented by Rayleigh surface
waves or plane body waves arriving at the half-space from any direction. The 3-D boundary
integral equation is reduced to a set of 2-D problems by Fourier transforming the 3-D
Green functions along the canyon axis. Stamos and Beskos [11] used a direct BEM to
describe the 3-D dynamic response of long-lined tunnels with a uniform cross-section,
buried in an elastic or visco-elastic half-space, and subjected to plane harmonic waves
propagating in arbitrary directions. The problem is again reduced to a 2-D one by
a co-ordinate transformation and appropriate integration of the full space dynamic
fundamental solution along the direction of the tunnel axis.

Our work "rst uses the image model technique to de"ne analytical solutions for the
propagation of sound in 3- and 2-D spaces in the presence of point and linear sound
sources. This work extends the work of Allen and Berkley [1], who computed the response
between two points in a small rectangular room using the image technique. Their model is
built on the impulse response in the time domain, which can be later convolved with any
type of input signal. Thus, the computed impulse response is built up as a &&histogram'' of
image sources received at di!erent time delays. In our method, the problem is solved in the
frequency domain, and the time responses are obtained by means of inverse Fourier
transforms. Furthermore, the Green functions are presented for di!erent geometries.

Our model is then extended to handle a situation where linear harmonic sources, varying
sinusoidally in the third dimension, are excited. These solutions (Green functions) can be of
signi"cant value in the formulation of 2-D and 3-D elastodynamic problems, via boundary
elements, together with integral transforms [10}13].

To illustrate the importance of these equations, the "rst set of equations is implemented
and used to calculate the "eld generated by a point pressure load inside a rectangular
parallelepiped closed room (whose opposite faces are parallel and the adjoining faces are
perpendicular), while the second set is used to compute the acoustic scattering of a 3-D
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sound pressure source by an in"nitely long rigid barrier in the vicinity of a tall building. The
model de"nes the BEM equations by discretizing the barrier alone, while the appropriate
Green functions, which are de"ned in this paper, accomodate the far "eld radiation
conditions and the boundary conditions on the #oor and building. This example extends
the work of Jean et al. [14], where frequency-domain responses are calculated for an
isolated barrier and the importance of the source type for insertion loss is assessed.

The solutions are "rst computed in the frequency domain. The time signatures are then
calculated by using inverse Fourier transforms. Complex frequencies (u

c
"u!ig) are used

to determine the acoustic signals, making it possible to attenuate the response at the end of
the time frame. The e!ect of the complex part of the frequency is taken into account in the
time domain, rescaling the response by applying an exponential function egt [15].

2. INCIDENT FIELD GENERATED BY A POINT OR A LINEAR SOURCE
WITH SPATIAL VARIATION IN z

Consider "rst an in"nite, homogeneous space, subjected to a harmonic point pressure
load in the form d (x!x

0
)d (y!y

0
)d (z!z

0
)e*ut, acting in all directions at (x

0
, y

0
, z

0
). In

this expression, d(x), d (y) and d(z) are Dirac delta functions and u is the frequency of the
load. The resulting pressure "eld generated by this acoustic load can be expressed by the
equation

p(u, x, y, z, t)"
Ae*(u@a) (at~J(x~x0)2`(y~y0)2`(z~z0)2)

J(x!x
0
)2#(y!y

0
)2#(z!z

0
)2

, (1)

in which A is the wave amplitude, a the propagation velocity, and i"J!1.
Consider next an in"nite homogenous space subjected to a spatially varying line load of

the form d (x!x
0
)d (y!y

0
)e*(ut~kz(z~z0)), with k

z
being the wavenumber along the

z direction. This load acts on point (x
0
, y

0
) and varies sinusoidally in the direction z (see

Figure 2).
The response to this load can be obtained by Fourier-transforming equation (1) in the

z direction, and using the e!ective wavenumbers, ka"Ju2/a2!k2
z

with Im ka(0, to
obtain

pL (u, x, y, k
z
)"B H

0
(kaJ(x!x

0
)2#(y!y

0
)2), (2)

in which H
0
(
2

) are Hankel second functions of the order 0, and B"!iA/2.
If one assumes the existence of an in"nite set of evenly spaced sources along the

z direction, the former incident "eld may be written as

p (u, x, y, z)"
2n
¸

m/=
+

m/~=

pL (u, x, y, k
zm

)e*kzm (z~z0), (3)

where ¸ is the spatial source interval, and k
zm
"(2n/¸)m. Thus, the 3-D wave "eld may be

obtained as the wave irradiated by a sum of harmonic (steady state) line loads whose
amplitudes vary sinusoidally in the third dimension. This sum converges and can be
approximated by a "nite number of terms. Therefore, the 3-D solution can be obtained by
superposing 2-D solutions characterized by speci"c axial wavelength values, k

z
. Notice that

k
z
"0 corresponds to a constant linear source along the z direction, i.e., the 2-D problem.



Figure 1. Models studied: (1) Geometry 1; (b) Geometry 2; (c) Geometry 3; (d) Geometry 4; (e) Geometry 5;
(f ) Geometry 6; (g) Geometry 7; (h) Geometry 8; (i) Geometry 9.

Figure 2. Linear source with spatial variation in z.
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As described above, the Fourier transforms are arrived at, in mathematical terms, by
adding together the periodic sources in the space ¸"2n/Dk

z
(along the z-axis) and in time

¹"2n/Du, where Dk
z

is the interval of the wavelength and Du the frequency increment
[16]. It is essential that the distance in space, ¸, is large enough to prevent the response
being contaminated by the periodic sources, which means that the "ctitious sources'
contribution to the response, for times less than ¹, has to be nil. Complex frequencies,
expressed by u

c
"u!ig (with g"0)7Du), can be used to achieve this, since they permit
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the periodic sources to be reduced almost to the point where they are eradicated. An
exponential function, egt, is used in the time domain to o!set the damping e!ect that results
from applying this technique [15].

3. 3-D AND 2-1/2-D GREEN FUNCTIONS FOR ACOUSTIC PROBLEMS
IN OPEN AND CLOSED SPACES

The acoustic pressure "eld in the presence of perfectly re#ecting barriers can be obtained
by summing the e!ect of virtual image sources, placed in such a way as to verify the required
boundary conditions, i.e., null pressure #ows on the surface of the barriers. This gives
a regular distribution of image sources, representing the "rst order images of the original
source generated from the "rst re#ections from the various walls and any other higher order
image sources generated from the successive re#ections from the corresponding
combinations of re#ecting walls. The number of image sources used is that which enables all
the signals needed to determine the response in the time interval "xed by the frequency
increment to be considered. Next, a complete set of Green functions is listed, giving the
solution for di!erent scenarios (as in Figure 1). For these di!erent scenarios, the number of
barriers is increased to allow simulation of the pressure "eld propagation generated from
a simple half-space to a rectangular parallelepiped closed space, with dimensions d

1
, d

2
and

d
3
, along the x, y and z directions respectively.

3.1. GREEN FUNCTIONS FOR INCIDENT POINT PRESSURE SOURCES

(a) Horizontal barrier in position y"0 (see Figure 1(a)):

p(u, x, y, z)"A
1
+
j/0

e~* (u@a)rijk
r
ijk

(i"0, k"0, n"0) (4)

with r
ijk
"J(x

i
)2#(y

j
)2#(z

k
)2 de"ned as in Appendix A.

(b) Corner created by a vertical barrier located at x"d
1

and a horizontal one at y"0
(see Figure 1(b)):

p (u, x, y, z)"A
1
+
j/0

1
+
j/0

e~* (u@a)rijk
r
ijk

(k"0, n"0, m"!1). (5)

(c) Layer bounded by horizontal barriers at distance y"0 and d
2

(see Figure 1(c)):

p (u, x, y, z)"A G
e~* (u@a)r000

r
000

#

NSV
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The number of sources used (NSV) is determined such that all the signals needed to de"ne
the response in the time interval "xed by the frequency increment (¹"1/Df ) are taken into
consideration.

(d) Layer bounded by horizontal barriers at distance y"0 and d
2

and another, vertical,
at x"d

1
(see Figure 1(d)):
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(e) Tunnel created by horizontal barriers at distance y"0 and d
2

and vertical ones at
x"0 and d

1
(see Figure 1(e)):
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where NSH represents the number of sources used in the horizontal directions that are
required to enable all the signals needed to de"ne the response in the time interval "xed by
the frequency increment to the considered.

(f ) Tunnel created by horizontal barriers at distance y"0 and d
2

and vertical ones at
x"0 and d

1
, and bounded at z by a barrier placed at z"d

3
(see Figure 1(f )):
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(g) Closed space bounded by horizontal barriers placed at y"0 and d
2
and vertical ones

at x"0, x"d
1
, z"0 and d

3
(see Figure 1(g)):
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where NSZ represents the number of sources used in the z direction that are needed for the
correct de"nition of the acoustic signal.

3.2. GREEN FUNCTIONS FOR TWO-AND-A-HALF DIMENSIONAL PROBLEMS

(a) Horizontal barrier in position y"0,

pL (u, x, y, k
z
)"B

1
+
j/0

H
0
(kar0j) (n"0) (11)

with B"!iA/2. z
k

and r
ij
"J(x

i
)2#(y

j
)2 are de"ned in Appendix A.
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(b) Corner created by a vertical barrier placed on x"d
1

and another, horizontal, on
y"0:
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z
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(c) Layer bounded by horizontal barriers at distance y"0 and d
2
:
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(d) Layer bounded by horizontal barriers at distance y"0 and d
2

and another, vertical,
at x"d

1
.
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(e) Tunnel created by horizontal barriers at distance y"0 and d
2

and vertical ones
placed at x"0 and d

1
:
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(f ) Space bounded by a vertical barrier at distance z"d
3

(see Figure 1(h)),

p(u, x, y, z)"
2n
¸
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m/~M
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in which E
1
"e*kzm(z6 0)#e*kzm(z6 1).

(g) Layer bounded by two barriers placed at z"0 and d
3

(see Figure 1(i)),
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z
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4. SOUND ENERGY ABSORPTION

If the barriers are not perfectly re#ective, only a fraction of the incident sound energy will
be re#ected from the wall. This energy can be accounted for by its absorption coe$cient a,
that is, the fraction of the incident sound energy absorbed by the wall. In the models given

above, re#ection coe$cients (J1!a) can be introduced in the response each time the pulse
produced by the virtual sources strikes barriers that are not perfectly re#ective. The
frequency-dependent absorption coe$cients can thus also be contemplated. Furthermore,
this process allows the simultaneous use of di!erent absorption coe$cients (a) on each wall.
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It is important to note that this formulation does not take into account di!racted waves
that may travel as guided waves along the walls.

5. SIGNALS IN THE TIME DOMAIN

The pressure "eld in the space and time domains are obtained by using the Fourier
numerical tranforms in both k

z
and in the frequency domain. The dynamic excitation is

idealized as an incident pulse with the time variation of a Ricker wavelet (equation (18)).
This wavelet is chosen because it decays rapidly in both time and frequency, reducing
computational e!ort and allowing easier interpretation of the time series (sequence of
relatively narrow pulses).

The time dependence of the input signal is de"ned as

u(q)"A(1!2q2)e~q2, (18)

where A is the amplitude, q"(t!t
s
)/t

0
, t refers to time, t

s
is the time at which the maximum

occurs, while nt
0
is the characteristic period of the wavelet. Its Fourier transform is given by

;(u)"A[2Jnt
0
e~*uts]X2e~X2, (19)

in which X"ut
0
/2.

6. APPLICATIONS

Two models are used to illustrate the importance of the Green functions presented in this
paper. In the "rst, the 3-D Green functions are used to calculate the pressure "eld inside
a rectangular parallelepiped room. This model ascribed frequency-independent absorption
capacities to the wall, ceiling and #oor surfaces. The second model evaluates the acoustic
scattering by an in"nitely long rigid barrier in the vicinity of a tall building subjected to
a point pressure load, using the BEM, where the analytical solution of a spatially sinusoidal
line source is used. Both the ground and the building surfaces were considered to be
non-absorbing.

6.1. CALCULATION OF THE PRESSURE FIELD INSIDE A RECTANGULAR

PARALLELEPIPED ROOM

The Green function in equation (10) is used to calculate the 3-D pressure wave"eld
generated inside a closed rectangular room, with dimensions d

1
"20)0 m, d

2
"15)0 m, and

d
3
"40)0 m (see Figure 3) illuminated by a point pressure load placed at position

(x
0
"10)0 m; y

0
"2)0 m, z

0
"2)0 m), which produces sound waves propagating with

a velocity of 340 m/s. Three situations were analyzed, in which the walls, ceiling and #oor
were ascribed di!erent absorption capacities (see Table 1).

Time responses were calculated for the receiver placed as shown in Figure 3 (x"10)0 m;
y"1)5 m; z"38)0m). The calculations were made in the frequency domain [1)5,
12 288 Hz], with a frequency increment of 1)5 Hz. This allowed the time-domain analysis to
be as long as ¹"666)6 ms. The signals in time were then calculated by applying an inverse
Fourier transform, using a Ricker pulse with a characteristic frequency of 4000 Hz.

Figure 4 displays the response recorded at the receiver. Each signal in time consisted of
a set of pulses that was located in time according to the re#ections on the barriers. The e!ect



Figure 3. Models studied. Receiver position.

TABLE 1

Absorption coe.cients

Ceiling Floor Rear wall Front wall Right wall Left wall

Case 1 0)0 0)19 0)0 0)0 0)0 0)0
Case 2 0)0 0)19 0)75 0)0 0)0 0)0
Case 3 0)75 0)19 0)75 0)0 0)0 0)0
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of the #oor's absorption (case 1) is observed as a slight but gradual decrease in the
amplitude of the response as the time increases. The introduction of absorption in the rear
wall (case 2) produces a drop in amplitude that is somewhat faster than that seen in the
preceding case, obviously due to the presence of the additional absorbing element. In case 3,
the responses have a very distinctive behaviour. The response now clearly decreases much
faster with time, with fewer signi"cant pulses. The high absorption coe$cient assumed for
the ceiling and rear wall is responsible for this change. It is interesting to see that some
pulses still arrive at later times, signifying that they are re#ections from the lateral walls,
while re#ections from the ceiling and rear wall have now almost disappeared.

The responses show that, after the "rst arrivals, the signal is followed by a set of pulses
with progressively lower amplitude, as a result of absorption at the barriers. To better
illustrate this fall in amplitude, the energy responses were calculated by using the expression
10 log (p2/(2]10~5)2), also illustrated in Figure 4.

The results indicate that a set of small pulses, not visible in the time domain, exist prior to
the beginning of the real dynamic response. This phenomenon corresponds to the
wrap-around response beyond ¹"1/Df, which even the use of complex frequencies
(u

c
"u!ig) could not completely prevent, given both the high reverberation time

involved and the high value of Df. Note that as the reverberation time decreases from cases
1 to 3, the amplitude of this set of pulses also decreases.

6.2. SCATTERING OF 3-D SOUND SOURCES BY RIGID BARRIERS IN THE VICINITY OF A

TALL BUILDING

The scattering of a 2-D acoustic medium when illuminated by a pressure point load
(known as a 2-1/2-D problem), can be solved as a discrete summation of the 2-D BEM



Figure 4. Calculated responses.
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solutions for di!erent k
z

wavenumbers. This is achieved by assuming the existence of an
in"nite number of virtual point sources, spaced at equal intervals along the z-axis, with the
distance between them being large enough to prevent the response from su!ering spatial
contamination [16]. The 3-D "eld is subsequently obtained with the inverse spatial Fourier
transform technique.

We do not give full details of the BEM formulation applied to the type of scattering
problem that is described here, since these can be easily found in the literature (e.g. see the
book by Manolis and Beskos [17]), but it should be noted that the following integral has to
be solved for each 2-D problem:

Hkl"P
Cl

H(x
k
, x

l
, n

l
) dC

l
, (20)
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where Hkl is the pressure velocity component at x
k
resulting from pressure load x

l
, and n

l
is

the unit outward normal for the lth boundary segment C
l
. The pressure velocity function is

obtained by di!erentiating equation (12) in relation to the unit outward normal.
Equation (20) is applied to the set of constant boundary elements used to discretize the

acoustic barrier boundary to give a system of equations that relates the pressure "eld to
a set of nodal pressure values. As the interpolation functions used in the present BEM are
constant, the nodal points are identi"ed as the median points of the boundary segments.
The nodal pressure values are calculated once the equations have been mathematically
manipulated and zero velocity applied to the outward normal direction of the boundary
elements. Gauss}Legendre quadrature, with six integration points, is used for the
integrations in equation (20), and, as the acoustic barrier is taken to have a certain thickness,
higher order Gauss}Legendre quadrature is used for the numerical integration when the
distance from the loaded element to the element being integrated is small.

The nodal pressure values are then employed to calculate the scattered pressure "eld, at
any point within the medium:

pk
sca
"

N
+
l/1

plHkl. (21)

Here, pk
sca

represents the scattered pressure "eld at receiver k, N is the total number of
boundary elements, and pl the nodal pressure value at element l.

The method described above has been used to study the in#uence of an acoustic barrier
placed between a point sound pressure load and a tall building. The ground and the
building were taken to be non-absorbing and the acoustic medium to have a pressure wave
velocity of 340 m/s. A harmonic point source is positioned 0)6 m above the surface of the
ground and at a distance of 25)0 m from the building. A 6)0 m acoustic barrier is placed
20)0 m from the building, with the aim of reducing the sound at its faiade. Figure 5 gives the
layout of the problem. In this "gure, the dots placed along the vertical plane, x"0)0,
represent the faiade of the tall building.

The barrier is 0)2 m thick and has been discretized with boundary elements, the number
of which was determined by the ratio between the wavelength and the length of the
boundary elements, "xed at 8. The minimum number of boundary elements is 32.

The response for the "rst simulation was captured by a grid of receivers arranged on
a vertical plane 0)5 m from the rigid wall. The receivers were spaced at intervals of 1)0 m
Figure 5. Geometry of the problem.



Figure 6. Sound pressure along a vertical plane 0)5 m away from the building: (a) pressure level; (b) pressure
attenuation.

Figure 7. Time response at receivers 0)5 m away from the building: (a) z"0)0 m; (b) z"30)0 m.
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vertically and 4)0 m longitudinally. Calculations were performed for a frequency range of
2}256 Hz, with increments of 2 Hz, giving 0)5 s as the total time frame for the response.
A Ricker wavelet, with frequency of 100 Hz, was taken as the source time dependence.

The sound pressure level and its attenuation, once the barrier is placed between the
source and the building, are given in Figures 6(a) and 6(b). It can be seen from these "gures
that the performance of the barrier is poorer close to the ground, owing to the interaction of
the direct "eld, di!racted by the barrier, and the "eld re#ected by the ground. The receivers
placed higher up, however, show improving e$ciency, with a maximum being achieved at
a height of around 4 m for z"0)0 m. After this, the e$ciency of the barrier drops to the
point where the performance is poorer than in a situation where there is no barrier. The
performance is not constant along the z-axis. A plot of the points of maximum e$ciency for
consecutive vertical z planes is a sloping line, which indicates better performances for the
receivers placed higher up, as z increases. The re#ections on the ground near the building
also appear to gain in importance as z increases.

For a better appreciation of the way the sound propagates from its source to the
receivers, the time responses for receivers placed at z"0)0 m and 30)0 m, 0)5 m distant from
the building, are given.

The time responses at receivers placed at z"0)0 m, the source plane, are given in
Figure 7(a). They represent the e!ects of the re#ection of a series of incident pulses and the
result of their re#ections on the ground, wall and barrier. The arrival times of the di!erent
pulses agree with those calculated using the acoustic ray theory. A second pulse is recorded
just after the "rst one, and the receivers placed higher up show this more clearly. The second
pulse results from a prior re#ection on the ground.

After more time has elapsed, a third pulse is recorded. This is caused by the energy
occurring between the barrier and the building, which gives rise to secondary
reverberations. The interaction of the barrier and the wall creates additional pulses, but
these are not visible in the time frame used. The approximate di!erence in time separating
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these pulses is represented by 40)0 m/340)0 ms"117)6 ms. Their amplitude decreases as the
energy dissipates.

The responses for z"30)0 m at the same set of receivers are shown in Figure 7(b). The
pulses arrive later because their trajectories are longer, although their characteristics are
generally similar to those found for z"0)0 m. Comparisons of the two sets of responses
show a very small drop in amplitude, as a result of the addition of the directly incident
pulses to the pulses re#ected on to the building.

Notice that, the faiade of the building was modelled as a virtual in"nite plane. However,
the results obtained are still valid when a tall building is analyzed. Indeed, the scattered
"eld, generated for waves illuminating the virtual plane above the top level of the building,
is small. In addition, the larger amount of energy re#ected on these points is scattered to
higher levels, while much less energy is re#ected to lower levels.

7. CONCLUSIONS

The analytical equations used to solve problems of acoustic wave scattering are presented
for situations where the scattering is caused by point and line acoustic sources, placed either
within an unbounded medium or in con"ned spaces. The amplitude of such acoustic sources
may vary in one direction. The equations use complex frequencies and are formulated in the
frequency domain. Inverse Fourier transforms are used to get the temporal responses.

Pressure "elds inside a rectangular parallelepiped space, and near a sound barrier, were
determined in the frequency and time domains to demonstrate that the equations are
applicable to these two situations. The results corresponded to what was expected
theoretically, thus indicating that the technique could be used to model acoustic pressure
inside both open and closed spaces, making it possible to use absorption coe$cients de"ned
as function of the frequency.
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