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Abstract

This work presents analytical Green’s functions for the steady state response of a homogeneous three-dimensional free solid
layer formation (slab) subjected to a spatially sinusoidal harmonic line load, polarized along the horizontal, vertdditeetibns.
The equations presented here are not only themselves very interesting but are also useful for formulating three-dimensional elastody-
namic problems in a slab-type formation, using integral transform methods and/or boundary elements. The final expressions are
validated by comparing them with the results obtained by using the Boundary Element Method solution, for which both free surfaces
of the slab are discretized with boundary element2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction unbounded medium [2]. All displacement potentials are
written as a superposition of plane waves following the
In an earlier work, the authors provided the Green's approach used first by Lamb [3] for the two-dimensional
functions for computing the wavefield produced by a case, and then by Bouchon [4] and Kim et al. [5] to
harmonic point load buried in a half-space [1]. These compute the three space dimension field by means of a
functions, relating the stresses or displacements at somaliscrete wave number representation. The Green’s func-
location in the half-space domain, caused by a dynamictions for the slab formation are then derived, ascribing
source placed elsewhere in the medium, were proven tonull stresses to both surfaces of the slab. This procedure
be both very useful themselves and also of great interestinvolves writing the final Green’s functions as the sum
to techniques requiring the full discretization of the half- of the Green’s function for a full-space with surface
space surface, such as the Boundary Element Methoderms, produced by the slab’s two free surfaces, using a
(BEM). technique similar to that described by Kawase [6]. The
The present paper expands this earlier work. It Green’s functions presented here for a spatially sinus-
presents the Green’s functions for calculating the wave- oidal harmonic line (steady state) load in a free layer
field produced in a homogeneous three-dimensional freesolid formation, are often referred to in the literature as
solid layer formation (slab), subjected to a spatially the 2.5D problem. The equations are not only intrinsi-
sinusoidal harmonic line load, polarized along the hori- cally very important, they are also very useful for for-
zontal, vertical ana directions, as in Fig. 1(b). The tech- mulating 3D elastodynamic problems, such as those
nique starts out knowing the solid displacement poten- involving the discretization of both free surfaces, via a
tials employed to evaluate the Green'’s functions for a Boundary Element Method.
harmonic (steady state) line load with a sinusoidally  This paper has three parts. First, there is a brief
varying amplitude in the third dimension, in an description showing how the Green’s functions for a
sinusoidal line load, applied in an unbounded solid for-
mation along the, y andz directions, can be calculated
" Corresponding author. Tel+351-239-797-201; fax+351-239- &S @ continuous superposition of plane waves. Then, the
797-190. Green'’s functions for a free solid layer formation are
E-mail address: tadeu@dec.uc.pt (A. Tadeu). established, using the required boundary conditions at

0141-0296/02/$ - see front matter 2002 Elsevier Science Ltd. All rights reserved.
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Fig. 1. Geometry of the problem: (a) Full-space; (b) Slab.

both surfaces. Findly, the full set of expressionsis com-
pared with those provided by the BEM, for which a full
discretization of both free layer surfaces is required.

2. Green's functions in an unbounded medium

An unbounded, homogeneous space is perturbed by a
spatialy varying line load of the form p(Xo,Yo,t)=6(x—
X0)0(Y—Yo)€@ 2 applied at (X,,Yo), acting in one of the
three coordinate directions. In this equation, 6(x—Xxo)
and 6(y—Y,) are Dirac-deltafunctions, w is the frequency
of the load and k, is the wavenumber in z (see Fig. 1(a)).
The solution for this load can be obtained by applying
a spatial Fourier transform in the z direction to the
Helmholtz equations for a point load (see, e.g., [7]). The
z transformed equations are then

62Ap 2Ap ) —iH@(-ikr)
e @
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oy 4pp?

where k,=vk2-kZ with (Im(k,)=0) and k=wla,
ks=vkz-kz with (Im(ks)=0) and k=w/B, a=V(A+2u)lp
and B=Vulp are the velocities for P (pressure) waves and
S (shear) waves, respectively, A and u are the Lamé con-
Stants, p is the mass density, Ap(x v.k,w) and

A(xy,k,w) are the Fourier transforms of the two poten-
tias Ay(xy,zw) and A(x,y,zw) for the irrotational and
equivoluminal parts of the displacement vector, H?()
are Hankel functions of the second kind and nth order,
r= x/(x—xo)2+(y—yo)2 and i=v-1. From equilibrium con-
ditions it is possible to obtain A, and A,

A= pwz[H@(kar)—Hs@(—ikzr)] @

[ > o
A= 1o ) —HE ik

The displacements G;; in direction i, due to a load
applied in direction j, can then be obtained from the
relation

o PAA)
ij —
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in which g is the Kronecker delta, x,=x,y,z for j=1, 2,
3, and (a/az):—ik. We may observe that
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Tadeu and Kausel [2] gives afull set of Green's func-
tions, expressions for the strains and stresses, which fully
agree with the solution for moving loads given earlier
by Pedersen et a. [8] and Papageorgiou et al. [9].

In order to obtain the Green's functions that apply to
the dlab formation, the above equations must be
expressed as a continuous superposition of homogeneous
and inhomogeneous plane waves when the load acts in
the direction x, y and z

3. Green's functions in a free solid layer formation
3.1. Load acting in the direction of the x-axis

The displacement potentials generated by a spatialy
sinusoidal harmonic line load along the z direction,
applied at the point (Xo,Yo) in the x direction, are given
by the expressions,
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where v=vk3-kz—k? with (Imag(v)=0), y=vki-kZ-k?
with (Im(y)=0), and the integration relates to the hori-
zontal wave number, k, along the x direction.

These integrals can be obtained as a discrete sum-
mation, assuming the existence of an infinite number of
such sources distributed along the x direction, at equal
intervals L,. The above compressional and rotational
potentials can then be written as

oe3 el

n=-—o

yi=0 (6)
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where
E,=e ™Yl
E =g ol
E=e k0,
= kz—k2-k2 with (Im(v,)=0)
= k2—kz-kZ with (Im(,)=0)

2r
K L"
which can be approximated by a finite sum of terms (N).
The Green’s functions for an unbounded medium can
therefore be expressed in terms of the compressional and
rotational potentials, ¢, y3, v and 3, from which the
following three components of displacement can be cal-

culated,
n=-+N . Ik
GlU=E, E[ (—wn Z)EC]Ed
n=—N J/n
n=+N

Gi'=E, Z [—1 sgn(y—Yo)KaEn+i Sgn(y—Yo)KEc] Eq

GlI=E, Z ( Ikzkn |k;knEc>Ed )

The Green’s functions for a free solid layer formation
(slab), with thickness h, can be expressed as the sum of
the source terms equal to those in the full-space and the
surface terms needed to satisfy the boundary conditions
at the two free stress surfaces (null normal and tangential

stresses). Both interfaces (top and bottom) generate sur-
face terms which can be expressed in a form similar to
that of the source term,

3.2. Solid medium (top free surface)
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3.3. Solid medium (bottom free surface)
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where, Eyg=e™, E=e, EBy=eVnb Nl ES=enmbhl
A% B, CX, D%, EX and F}; are as yet unknown coefficients
to be defined by imposing the appropriate boundary con-
ditions, so that the field produced simultaneously by the
source and the surface terms guarantees o3,=0, o3,=0
and o3,=0 at y=0 and at y=h.

The imposition of the sixth stated boundary conditions
for each value of n leads to a system of six equations
in the six unknown constants. The derivation of the tota
system of equations is quite straightforward, but the
details are rather unwieldy, and for this reason the final
system of equations alone is presented here

[ i=1,6; j=16][cci=16]=[bri=1,6] (10)

but the full derivation is described in Appendix B.
Once this system of equations has been solved, the
amplitude of the surface potentials has been fully
defined, and thus the displacements relative to the slab
can be obtained. The final expressions for the Green's
functions are then obtained from the sum of the source
terms and the surface terms originated in the two free
surfaces, which leads to the following expressions,
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The expressions for the Green’s function for two-and-
a-half dimensional full space Gii!', Gii' and Gi!' can be
defined in explicit form, as listed in Appendix A [2].
The Green’s functions for loads applied along the y and
z directions can be computed following a similar pro-
cedure. The derivation of these solutions is then
presented, but in condensed form.

3.4. Load acting in the direction of the y-axis

The discrete form of the displacement potentials, for
a spatially sinusoidal harmonic line load along the z
direction, applied at the point (xo,Yo) in the y direction,
is now given by the expressions,
n=+N

¢'=E, >, [SIn(y—Yo)Ep]Eq

n=—N

—

n=—N

e @

wy=0
W=E, >, (';“EC)Ed

The Green’s functions for a two-and-a-half dimensional
full space are thus,
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The surface terms generated at the two free slab surfaces
can be expressed in the form

3.5. Solid medium (top free surface)
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3.6. Solid medium (bottom free surface)
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The imposition of the sixth stated boundary conditions

for each value of n leads to a system of six equations
in the six unknown constants,

[af i=16; j=1,6][c¥i=1,6]=[bri=16] (16)
which is fully described in Appendix C.

Once the amplitude of each potential has been calcu-
lated, the Green's functions for the displacements are
then given by the sum of the source terms and the sur-
face terms originated at the two free slab surfaces,
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3.7. Load acting in the direction of the z-axis

Similarly, the discrete form of the displacement poten-
tials, resulting from a spatially sinusoidal harmonic line
load along the z direction, applied at the point (Xo,Yo) in
the z direction, is given by the expressions,
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The Green's functions for the two-and-a-half dimen-
sional full space are then,
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The surface terms generated at the two free slab surfaces
can be expressed in the form

3.8. Solid medium (top interface)
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3.9. Solid medium (bottom interface)
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The imposition of the sixth stated boundary conditions
for each value of n leads to a system of six equations
in the six unknown constants,

[af i=1,6; j=1,6][cfi=1,6]=[bfi=1,6] (22)
and this is fully described in Appendix D.

Once the unknown amplitude of each potential has
been calculated, the Green's functions are expressed by
the sum of the source terms and the surface terms orig-

inated on both free dab surfaces, leading to the follow-
ing expressions,
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Notice that, if k=0 is used, the system of equations
derived above is reduced to four unknowns, leading to
the two-dimensional Green's function for plane strain
line-loads.

4, Validation of the solution

The analytical expressions described above were used
to calculate the three displacement fields generated by a
spatially harmonic varying line load in the z direction
in a dab 10.0 m thick. The results provided were then
compared with those arrived at by using the BEM. The
BEM code uses a direct formulation in the frequency
domain and applies the Green's functions for a full
space. The discretization of both dab surfaces is thus
required.

An unlimited discretization of the free surface can be
avoided by using complex frequencies with a small
imaginary part, of the form w=w—in [with
1n=0.7(27/T)] [10,11]. Boundary elements make a sig-
nificant contribution to the response for a certain value
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Fig. 2. Definition of the boundary elements.

of damping, but are otherwise unnecessary. These
elements are distributed along the surface up to a spatial
distance (Lgg) from the center, given by Lyg=oT.

The scheme adopted here for determining the place-
ment and size of the boundary elements uses a geometri-
cal construction, by which an auxiliary circular arc is
divided into equal segments according to a previously
defined ratio between the wavelength of the dilatational
waves and the length of boundary elements. The bound-
ary elements are then defined on the two free surfaces
by the vertical projection of these segments. The radius
of the required circular arc (R) is greater than (2Lg)/2
and is placed at a tangent to the topographic surface at
its boundary discretization end, thus making excessively
small boundary elements unnecessary. In this work Ris
assumed to be [(2L4)/2]/c0s10° (see Fig. 2).

A. Tadeu, J. Antonio/ Engineering Structures 24 (2002) 491-499

A harmonic point source was applied to the dab
medium (o=4208 m/s, f=2656 m/s with p=2140 kg/mq),
at the source point (x=1.0 m, y=2.0 m), acting along the
directions x, y and z independently. Calculations are per-
formed in the frequency range [2.50, 320.0 Hz] with a
frequency increment of 2.5 Hz. The scattered displace-
ment field G (surface terms), (the displacement in the
i direction due to aload acting along j), is calculated at
a receiver point placed at x=3.0 m and y=5.0 m. The
imaginary part of the frequency has been set to
1n=0.7(27/T) with T=0.0466 s.

The results are calculated for a single vaue of
k, (k,=0.4 rad/m), to prove that the analytical expressions
are correct. The real and imaginary parts of the displace-
ments are shown in Figs. 3-5, the analytical responses
are represented by the solid lines, while the marked
points correspond to the BEM solution. The square and
round marks indicate the real and imaginary part of the
responses, respectively. The BEM solution required the
use of a very large number of boundary elements,
defined by the ratio between the wavelength of the inci-
dent waves and the length of the boundary elements,
which was kept to a minimum of 80.

It is obvious that these two solutions are in very close
agreement, and equally good results were obtained from
tests in which loads and receivers were situated at differ-
ent points.
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Fig. 3. Spatiadly sinusoidal harmonic line load along the z direction in a slab, applied in the x direction: (a) Geometry of the problem; (b) G
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Fig. 4. Spatialy sinusoidal harmonic line load along the z direction in a slab, applied in the y direction: (a) Geometry of the problem; (b) G

solutions; (c) G5y solutions; (d) G3 solutions.
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5. Conclusions

Having successfully obtained a wholly analytical sol-
ution for the steady state response of a spatially sinus-
oidal, harmonic line load in a homogeneous three-dimen-
sional dab, we compared the final expressions with the
numerical results calculated with the BEM, in order to
validate them. The solutions were found to be in very
close agreement when the free surfaces were both discre-
tized with a large number of boundary elements.

Appendix A. The Green’s function for a two-and-
a-half dimensional full-space

A. Tadeu, J. Antonio/ Engineering Structures 24 (2002) 491-499
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