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Abstract

The three-dimensional (3D) wave field scattered by an irregular, cylindrical cavity of infinite length contained in a

homogeneous elastic medium illuminated by a dilatational point load is obtained. This model is used to evaluate the

effect of the cross-sectional geometry of the cavity on the waves propagating in its vicinity. It particularly highlights the

identification of the normal modes excited both in the frequency and time domain. The solution is formulated using

the boundary element method for a wide range of frequencies and spatially harmonic line loads, which are then syn-

thesized to obtain the time responses. The 3D solution is obtained as a summation of two-dimensional responses for

different axial wavenumbers.

The responses in the frequency vs. axial-wavenumber domains are presented, allowing the recognition, identification,

and physical interpretation of the variation of the wave field when five irregular cross-sections are used, namely a circle,

an oval, a thin oval, a kidney and a boomerang. � 2002 Published by Elsevier Science B.V.
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1. Introduction

Measuring displacements in the vicinity of cavities, generated by a source either on the ground surface or
buried, is an essential part of several geophysical and seismic prospecting techniques. The interpretation of
the signals recorded during the course of some seismic testing techniques requires a full understanding of
how the waves propagate from the source to the receiver. Depending on the position of the receivers and
sources, and on the type of geological formation, it is known that very complex wave patterns may arise.
A variety of numerical methods have been used to find the solution of wave propagation in cylindrical
cavities.
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Some of the first analytical studies on wave diffraction and scattering addressed the problems of wave
motion and reverberations in alluvial basins of regular shape [1,2] and wave scattering elicited by cavities
[3–6]. Liu and Qu [7,8] computed the dispersion equation for guided circumferential waves and analyzed the
propagation of transient waves of this type in a hollow cylinder. Valle et al. [9] examined the propagation
of time harmonic circumferential waves in a two-dimensional (2D), infinitely long hollow cylinder with
an inner shaft, using analytical solutions written in a cylindrical coordinate system. The interfacial shear
stresses were assumed to be zero, and the normal stress and radial displacements to be continuous. The
dispersion curves of the first modes were presented. Semi-analytical methods have been used to analyze
wave diffraction caused by geological irregularities of arbitrary shape within globally homogeneous media
[10–12]. By contrast, the application of purely numerical methods (i.e. finite elements or finite differences
combined with transmitting boundaries) has largely been restricted to situations where the response is
required only within localized irregular domains, such as soil–structure interaction problems [13–15].
Discrete methods have also occasionally been used to model large alluvial basins, but only in plane-strain
[16]. Manolis and Beskos [17] used the boundary element method (BEM) formulated in the Laplace
transformed domain to compute the dynamic stress concentration in the lining of a circular tunnel within a
linear elastic or viscoelastic medium of infinite extent under conditions of plane strain. Tsinopoulos et al.
[18] described a BEM formulation combined with the fast Fourier transform to analyze general axisym-
metric problems in frequency domain elastodynamics. Finally, hybrid methods involving a combination of
finite elements, for modeling the interior domain containing the inhomogeneities, and semi-analytical
representations, for the exterior domain, have been used as well [19].
The application of these numerical methods has been restricted mostly to situations where the solution is

required within 2D domains. The reason is that the evaluation of the full scattering wave field generated by
sources placed in the presence of three-dimensional (3D) propagation media requires the use of compu-
tationally demanding numerical schemes.
The solution becomes much simpler if the medium is 2D, even if the dynamic source remains 3D. Such a

situation is frequently referred to as a two-and-a-half-dimensional problem (or 21
2
-D for short), for which

solutions can be obtained by means of a spatial Fourier transform in the direction in which the geometry
does not vary (z direction). This Fourier transform can be made discrete if it is assumed that the load is
repeated at equal distances along the z direction. Thus the solution requires first the calculation of a se-
quence of 2D problems with different spatial wavenumbers, kz. Then, using the inverse Fourier transform,
the 3D field is synthesized.
The solution of a 21

2
-D problem is known in closed form for inclusions with simple geometry, such as a

circular cylinder, for which the wave equation is separable. If the inclusion has an irregular cross-section,
however, the solution is more elaborate. In this latter case the BEM is perhaps the method of choice,
particularly if the inclusion is buried in an unbounded elastic space or in elastic half-space, because of the
ease with which to the far field conditions can be satisfied. Pedersen et al. [20] used the indirect boundary
element method (IBEM) to study the 3D seismic response of 2D topographies to plane waves, making use
of the full-space Green’s functions for a harmonic point force moving along a direction parallel to the
generatrix of the topography. Luco and De Barros [21,22] obtained the 3D harmonic response of an in-
finitely long shell with a circular cross-section, embedded in a layered viscoelastic half-space and subjected
to harmonic plane waves impinging at an oblique angle relative to the axis of the shell. The technique used
combines an indirect representation for the field in the exterior half-space and a model of the pipeline based
on Donnel’s shell theory. The integral representation for the soil is based on the use of moving Green’s
functions for the layered half-space. Stamos and Beskos [23] used the BEM to evaluate the 3D dynamic
response of long, lined tunnels of uniform cross-section in a half-space when illuminated by plane harmonic
waves propagating in an arbitrary direction. The problem was reduced to a 2D one by a coordinate
transformation and appropriate integration of the full space dynamic fundamental solution along the di-
rection of the tunnel axis. Other studies related to 21

2
-D are those of Zhang and Chopra [24,25], who used
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the direct boundary element method to determine the impedance matrix for a 3D foundation supported on
an infinitely long canyon of uniform cross-section cut in a homogeneous half space.
In this paper, we look at the effect of non-circular boreholes, and compute the wavefield and motions

elicited by monopole sources. Non-circular borehole cross-sections may occur for a variety of reasons, e.g,
through the mechanical action of the drill string in vertically deviated wells, rock failure adjacent to a
drilled borehole, or plastic deformation and washing out of the borehole in soft or poorly consolidated
rocks [26,27]. Most of the published work has assumed the borehole to be circular, while there is paucity
of research on non-circular boreholes. Burden [28] calculated and presented dispersion curves for the
modes of elliptical boreholes in homogeneous elastic formations using a surface integral formulation that,
after the surface displacements were approximated by a finite number of wave functions, was cast as a
matrix equation. Bamberger et al. [29] studied the propagation of elastic waves along a cylindrical cavity,
formulating the problem as an eigenvalue problem in the context of an unbounded self-adjoint opera-
tor. Their work involves a true mathematical approach where the existence of a hierarchy of guided
modes, the existence of waves propagating for any value of wavenumber, and the presence of starting
bands (i.e. dispersion branches for modes that exist only above some cut-off frequency) were demon-
strated.
In this work, the BEM is used to evaluate the wave-field produced by a dilatational point load (blast

load) in the vicinity of irregular cylindrical inclusions contained in an unbounded elastic medium: an oval, a
thin oval, a kidney and a boomerang-shaped borehole cavity. The solution at each frequency is expressed in
terms of waves with varying wavenumber kz, which are then used to obtain time series by means of (fast)
inverse Fourier transforms into space-time. The wavenumber transform in discrete form is obtained by
considering an infinite number of virtual point sources equally spaced along the z axis and at a sufficient
distance from each other to avoid spatial contamination [30]. In addition, the analyses are performed using
complex frequencies, shifting down the frequency axis in the complex plane, in order to minimize the in-
fluence of the neighboring fictitious sources [31].
This paper is organized as follows: first, the problem is defined and the BEM formulated; then, the

method is implemented and validated by applying it to a circular cylindrical cavity buried in an infinite
homogeneous elastic medium, which is subjected to a point dilatational load for which the solution is
calculated in closed form; finally, the BEM is used to evaluate the wave-field elicited by a point dilatational
load in the presence of an irregular cylindrical cavity in an unbounded elastic medium. Simulation analyses
with this idealized model are used to study the patterns of wave propagation in the vicinity of these in-
clusions when different cylindrical cross-sections of equal perimeter are used. The amplitude of the
wavefield in the frequency vs. axial-wavenumber domain is presented, allowing the recognition, identifi-
cation, and physical interpretation of the variation of the wave field.

2. Problem definition

Consider an irregular cylindrical cavity of infinite extent, buried in a spatially uniform elastic medium
(Fig. 1), subjected to a harmonic dilatational point source at position ð0; 0; 0Þ, pulsating with a frequency x.
The incident field can be expressed by means of the classical dilatational potential /

/inc ¼
A exp i

x
a

at �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p� �h i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p ð1Þ

in which the subscript inc denotes the incident field, A is the wave amplitude, a is the compressional wave
velocity of the medium, and i ¼

ffiffiffiffiffiffiffi
�1

p
.
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Defining the effective wavenumbers

ka ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

a2
� k2z

r
; Im ka 6 0 ð2Þ

by means of the axial wavenumber kz, and Fourier-transforming Eq. (1) in the z direction, one obtains

/̂/inc x; x; y; kzð Þ ¼ �iA
2

H 2ð Þ
0 ka

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p� �
ð3Þ

in which the H 2ð Þ
n (� � �) are second Hankel functions of order n.

If one considers an infinite number of virtual point sources equally spaced along the z direction at a
sufficient distance, L, from each other to avoid spatial contamination [30], the incident field may be written
as

/inc x; x; y; zð Þ ¼ 2p
L

X1
m¼�1

/̂/inc x; x; y; kzð Þe�ikzmz ð4Þ

with kzm ¼ ð2p=LÞm. This equation converges and can be approximated by a finite sum of terms.

3. Boundary element formulation

The 3D field generated by a cylindrical cavity subjected to spatially sinusoidal harmonic line loads
(defined by Eq. (3)) is found by means of the BEM. Since the basic equations used when applying boundary
elements to wave propagation are widely known [32,33], it is enough to state that, for the method to be
applied for the scattering problem presented herein, the following integral in the frequency domain must be
evaluated:

Hkl
ij ¼

Z
Cl

/Hil xk; xs; nsð ÞdCl i; jð ¼ 1; 2; 3Þ ð5Þ

where Hij xk; xs; nsð Þ represents the traction components at the point xk in direction i caused by a concen-
trated load acting at the source point xs in direction j, ns is the unit outward normal for the lth boundary
segment, and / are the interpolation functions.

Fig. 1. Geometry of the problem.
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Expressions for the tractions may be obtained from the fundamental 21
2
-D solution or Green’s function

Gij, by taking partial derivatives to deduce the strains and then applying Hooke’s law to find the stresses.
The displacement and stress functions that apply to the present case are listed in Appendix A.
The displacement and stress variations within a boundary element are defined in terms of the nodal

values. Linear interpolation functions are used to map the nodal values, that is to say, boundary elements
with two nodal points have been used. The traction discontinuity at the corner between two boundary
elements is handled by moving the nodes, which would meet at the corner, so that each is inside an element
[34] leading to discontinuous boundary elements. The nodal points are chosen to coincide with those in a
Gauss–Legendre numerical integration (Fig. 2).
After mathematical manipulation of the integral equations, combined and subjected to the continuity

conditions at the interface between the two media, and discretized appropriately, a system of equations that
can be solved for the nodal displacements is obtained. The required integrations in Eq. (5) are performed
using Gaussian quadrature, when the element to be integrated is not the loaded element, using eight
Gaussian points. For the loaded element, on the other hand, the singular integrands are evaluated out in
closed form [35,36].

4. Validation of the BEM algorithm

The BEM algorithm was implemented and validated by applying it to a circular cylindrical cavity, placed
in a homogeneous elastic medium (a ¼ 4208 m/s, b ¼ 2656 m/s and q ¼ 2140 kg/m3). It was then subjected
to a harmonic line dilatational load applied at point O, with kz ¼ 1:0 rad/m, as in Fig. 3a, for which the
solution is known in closed form and described in Pao and Mow [37].
The response is calculated at receiver R1, placed along a line parallel to the longitudinal axis of the

cylinder (x ¼ 0:0 m, y ¼ �0:3 m). The computations are performed in the frequency range (31.25, 4000
Hz), with a frequency increment of 31.25 Hz. The spatial period considered in the analysis is L ¼ 269 m.
The number of elements used to model the cavity is defined by the ratio between the wavelength of the

incident waves and the length of the boundary elements (set to be 15.0). The minimum number of elements
is never less than 40. Fig. 3b displays an example of a BEM mesh.
Fig. 3c displays the real and imaginary parts of the z displacement. In this figure, the continuous line

represents the analytical solution while the marked points represent the BEM solution. Analysis of the
results confirms a good agreement between the two solutions.

Fig. 2. Interpolation functions and position of the nodal points.

A.J.B. Tadeu et al. / Comput. Methods Appl. Mech. Engrg. 191 (2002) 3015–3033 3019



5. Results in space-time

The displacements in the spatial-temporal domain are obtained by a numerical fast Fourier transform in
kz, considering a source whose temporal variation is given by a Ricker wavelet, as defined below. This
wavelet form is chosen because it decays rapidly in both time and frequency, which not only reduces the
computational effort, but also allows easier interpretation of the computed time series and synthetic
waveforms.
The Ricker wavelet function is given by

u sð Þ ¼ A 1



� 2s2
�
e�s2 ð6Þ

where A is the amplitude, s ¼ t � tsð Þ=t0 and t denotes time; ts is the time when the maximum occurs, while
pt0 is the characteristic (dominant) period of the wavelet. Its Fourier transform is

U xð Þ ¼ A 2
ffiffiffi
p

p
t0e�ixts

� 
X2e�X2 ð7Þ

in which X ¼ xt0=2.
As stated before, the Fourier transformations are achieved by discrete summations over wavenumbers

and frequencies, which is mathematically equivalent to adding periodic sources at spatial intervals
L ¼ 2p=Dkz (in the z-axis), and temporal intervals T ¼ 2p=Dx, with Dkz and Dx being the wavenumber and
frequency steps, respectively [30]. The spatial separation L is chosen sufficiently large to prevent contami-

Fig. 3. Validation of the BEM: (a) circular cylindrical inclusion in an unbounded elastic medium, (b) typical mesh used (40 elements),

(c) scattered field displacement at receiver #1 in z direction: analytical solution; numerical solution for kz ¼ 1:0 rad/m and k=L ¼ 15.
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nation of the response by the periodic sources. In other words, the contribution to the response by the
fictitious sources must be guaranteed to occur at times later than T. This goal can also be aided sub-
stantially by shifting the frequency axis slightly downward, that is, by considering complex frequencies with
a small imaginary part of the form xc ¼ x � ig (with g ¼ 0:7Dx). This technique results in a significant
attenuation or virtual elimination of the periodic sources. In the time domain, this shift is later taken into
account by applying an exponential window egt to the response [38].

6. Numerical applications

Simulation analyses are performed for the case of a cylindrical cavity in an elastic unbounded medium
that is illuminated by an incident blast load defined by the dilatational potential / given by Eq. (1). Five
inclusions with different cross-sections are considered, namely a circle, an oval with an aspect ratio
e ¼ 1:20=0:76 ¼ 1:58, a thin oval, with an aspect ratio e ¼ 1:4=0:52 ¼ 2:69, a kidney and a boomerang. The
kidney and the boomerang are obtained from the oval and thin oval inclusion, respectively, by deforming
the side wall. The perimeter of all cavities is constant (2p m).
At time t ¼ 0, a point source at a point O, placed 0.2 m from the surface of the inclusion, creates a

spherical dilatational pulse propagating away from O. The field generated is computed at receivers located
on five planes, equally spaced (10.0 m) along the z direction, placed around the inclusion, 0.5 m (#1 and #3)
or 3.0 m (#2) from its surface, as shown in Fig. 4.
The dilatational wave velocity (a ¼ 4208 m/s), the shear wave velocity (b ¼ 2656 m/s) and density

ðq ¼ 2140 kg/m3Þ of the host elastic medium are kept constant for all analyses. The computations are
performed in the frequency range ½31:25; 4000 Hz
, with a frequency increment of 31.25 Hz, which results in
a total time of (T ¼ 32:0 ms) for the analysis in the time domain. This in turn implies that the spatial period
cannot be less than L ¼ 2Ta ¼ 269 m. We choose g ¼ 0:7Dx as the imaginary part of the angular fre-
quency, so as to attenuate the wraparound by a factor of e0:7DxT ¼ 81 (i.e., 38 dB). The source time de-
pendence is a Ricker wavelet with a characteristic frequency of 1500 Hz.
The cavities are modeled with boundary elements, the number of which changes with the excitation

frequency of the harmonic load. A ratio between the wavelengths of the incident waves and the length of
the boundary elements is kept at a minimum of 15.0. In all cases the minimum number of the boundary
elements used to model each cavity is at least 40.
Of the various waves propagating along the boundary of the cylinder, two are non-dispersive (body

waves), namely the dilatational (P) and shear (S) waves. The time records show the existence of an incident
P pulse and a P pulse reflected from the surface of the inclusion (P and PP, respectively, in seismological
nomenclature); secondary arrivals are S waves that are converted from a P wave impinging onto the surface
(PS). Fig. 5 shows the propagation path of these pulses in the z direction between the source and the re-
ceivers #2, located at z ¼ 20:0 and 60.0 m from the plane source, when a circular inclusion is present. Tags
are added in these plots, indicating the arrivals of the various pulses. The arrival times obtained for the P,
PP and PS pulses in these plots are consistent with the predictions given by ray acoustics. In addition, there
are various types of guided waves––the normal modes––propagating along the surface of the cavity at a
slower velocity than the shear (S) waves. Axisymmetric modes and modes with azimuth variation are also
excited. Some of these modes are excited only if the source excitation frequency exceeds the cutoff (or
resonant) frequencies of the cylinder. Ewing et al. [39] has indicated that these wave types do not satisfy a
minimum time condition, and thus do not satisfy the law of geometric acoustics.
The dispersion characteristics of the normal modes can be obtained by solving an eigenvalue problem for

free waves that propagate in the absence of external sources. The associated eigenvalues kz, lead in turn to
the phase and group velocities of the normal modes. Although an infinite (but countable) number of modes
exist, only those with low modal order contribute significantly to the response.
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Next, selected results are used to illustrate the main findings. In addition to the time responses, Fourier
spectra results are included since different wave types in the frequency vs. axial-wave number domain are

Fig. 4. Cross-sections of the fixed cylindrical irregular cavities: (a) circular; (b) oval; (c) thin oval; (d) boomerang; (e) kidney.

Fig. 5. Flight time of different body pulses travelling between the source S and the receiver #2, when a circular inclusion is presented:

(a) propagation path scheme of the different pulses, (b) time responses for receivers located at z ¼ 20:0 m and z ¼ 60:0 m from the

plane source.
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more easily recognized and identified, as they occupy specific sub-domains, according to their phase wave
velocity. As the response is dominated by the behavior of the guided waves, the displayed Fourier spectra
are zoomed for waves with slower phase velocity than the shear wave. These plots use a gray scale where
light and dark shades are ascribed to high and low amplitude values, respectively.
Figs. 6 and 7 display the responses of a circular inclusion at receivers #1 and #3, respectively (see Fig.

4a). The horizontal displacements at receivers #1, placed along the vertical y axis, are null, given that this
axis constitutes an axis of symmetry (absent in Fig. 6). The vertical displacements at these receivers do not
show the arrival of the body waves (P, PP and PS) clearly, because their amplitude is tiny compared with
the amplitude of the guided waves. Meanwhile, the z responses exhibit the arrival of the body waves, but
they do not fully separate into different sets of pulses, because the characteristic frequency of the excitation
of the source does not lead to pulses with a time duration sufficiently small to avoid their overlapping. The
existence of guided waves is clearly visible, and these correspond to waves travelling at slower velocities
than the shear wave. The guided waves are originated on the surface of the cavity and they travel along its
surface. Their amplitude decays as the distance to the cavity surface increases and they exhibit larger
amplitudes along the normal direction of the cavity, and so the body waves are visible for z displacements
because of the smaller amplitude of the guided waves. The Fourier spectra show the existence of different
mode types. In these figures, the first order modes are identified by a number, indicating the variation of the
mode with the azimuth. The first axisymmetric mode is the pseudo-Rayleigh wave (0) which is associated
with slow wave velocities. It shows a cutoff frequency at around 0.9 kHz, where the mode reaches its highest
phase velocity, namely, the shear wave velocity of the solid. As wave frequency increases, the phase velocity

Fig. 6. Time and Fourier spectra responses at receivers #1 in the presence of a circular cylindrical cavity: (a) vertical displacement;

(b) z displacement.
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of these waves decreases and approaches the speed of the Rayleigh waves in a half space [29]. An analysis of
the response allows us to verify that this first mode is highly dispersive. The first mode with azimuth
variation is the flexural mode (1) while the third mode corresponds to the screw mode (2). Other, higher
order, modes occur after these modes. The motion normal to the cavity surface of the first axisymmetric
mode, a pseudo-Rayleigh wave, is essentially a deformed dilation, while the flexural mode is essentially a
localized translation in the y direction. The axisymmetric mode generates null vertical displacements at
receivers #3, while the flexural mode produces null horizontal and z displacements there (see Fig. 7), be-
cause this receiver is placed on a neutral axis (x axis). The screw mode also generates null vertical dis-
placements at this receiver.

Fig. 7. Time and Fourier spectra responses at receivers #3 in the presence of a circular cylindrical cavity: (a) horizontal displacement;

(b) vertical displacement; (c) z displacement.
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As observed in the time responses, the Fourier spectra plots exhibit higher amplitudes along the normal
directions to the cavity. However, there is a marked drop in the amplitude of guided waves as we move
from receiver #1 to #3, as a result of the increased energy dispersion. Notice that receivers #1 are placed
close to the source, while receivers #3 are further away from the source and in a different azimuth distance
(see Fig. 4a). Meanwhile, at the receivers #3, the first axisymmetric mode waves lose importance in com-
parison with the other, higher order, wave guided modes.
Fig. 8 displays the vertical time and Fourier spectra responses at receiver #1, placed 0.5 m above the

inclusion, obtained for the four different irregular cross-sections of inclusions analyzed in this work. As we
move from the circular (Fig. 6a) to the oval e ¼ 1:58 (Fig. 8a), and then to the thin oval e ¼ 2:69 (Fig. 8b),
the spectra plots exhibit the existence of axisymmetric and flexural mode waves with progressively slower
velocity. The time plots confirm this phenomenon by placing the guided pulses with a progressively delayed
arrival. It can be further observed that the amplitude of the guided waves increases as the surface inclusion
becomes flatter (greater curvature radius). This phenomenon may be explained by the reflective power of
the convex shape of the cavity, which enables energy to be reflected to the sides, away from the top surface.
As the radius of the curvature of the inclusion increases, its convexity diminishes and leads to a smaller
energy spread to the sides of the inclusion. This behavior is even more pronounced as we move from a thin
oval to the boomerang (Fig. 8c), whose shape enables the energy to be concentrated in the concave part of
the inclusion. The slower wave modes further reduce their velocity. The concentration of energy at the
receivers #1 is even more pronounced in the case of the kidney shaped inclusion (Fig. 8d), because of the
narrower concavity. Meanwhile the velocity of the slower guided wave increases, apparently as a result of
the decrease of the curvature radius of the concave part of the inclusion.
As the upper surface of the inclusion gets flatter, the pseudo-Rayleigh wave velocity (axisymmetric mode

waves) decreases and it appears that it approaches the Rayleigh wave velocity in a half-space (aR ¼ 2407 m/s)
(see Fig. 8a–d). It can further be observed that these waves show the existence of a cutoff frequency,
which increases slightly as the upper surface of the inclusion gets flatter. The velocity of this mode shows
higher dispersion at low frequencies, which tends to increase as we move from the circular to the boo-
merang cross-section. The amplitude of these waves grows as the upper surface gets flatter (see Fig. 8a and
b), and then when the concavity of the upper surface gets narrower (see Fig. 8c and d).
The flexural waves exist for all frequencies. When the cavity is circular (Fig. 6a) the flexural mode waves

undergo a dispersion behavior similar to that found for the axisymmetric mode. As the elliptical aspect
ratio (e) grows, at lower frequencies, the dispersion curves of these two modes appear to have distinct
behavior, while at higher frequencies their wave phase velocities are closer. This effect agrees with the
tendency reported by Burden [28] in the calculation of the dispersion curves for surface waves along cy-
lindrical cavities of general cross-section.
As we move from the circular inclusion to the oval, the cutoff frequency of the screw mode increases, the

mode becomes less dispersive and exhibits lower amplitude. Moving on to the thin oval, this same trend is
maintained, with the importance of the screw mode continuing to decline. (Fig. 8b does not illustrate a clear
screw wave mode because it overlaps a higher mode). In addition, as we move from the oval to the kidney
cross-section, the importance of the higher order modes also decreases, and a very weak contribution of the
screw mode is registered.
As observed for the circular cross-section, the z displacements at receivers #1 for all other cross-sections

clearly exhibit the arrival of the body waves. These first arrivals are not significantly different when we move
from the circular cross-section to the other shapes. By contrast, the guided waves show features very similar
to those found for the vertical responses. Fig. 9 displays, as an example, the time responses obtained for the
oval and kidney. As observed before, the guided waves are enhanced when we move from the oval to the
kidney shape.
The horizontal displacement at the receivers #3 denotes weaker amplitude for the guided waves as the

ovality ratio increases. The results show a further amplitude decrease when the side wall of the cavity is
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Fig. 8. Time and Fourier spectra vertical responses at receivers #1: (a) oval; (b) thin oval; (c) boomerang; (d) kidney.
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deformed from an oval into a kidney, and from a thin oval into a boomerang. This phenomenon can be
explained by the fact that more energy is retained above the cavity, as the upper surface of the cavity gets
flatter and then concave, as described previously. Fig. 10 illustrates this behavior by displaying the hori-
zontal time responses for the oval and the kidney. Notice, that the x axis is not a neutral axis when the
cross-section is a kidney-shaped cavity. Indeed, the spectra responses show the existence of weak flexural
waves, which are absent when the cavity is an oval.
The vertical displacements at this same receiver only include contributions from the flexural waves when

the cavity is regular. However, when the cavity is irregularly deformed (a kidney- or a boomerang-shaped

Fig. 9. Time responses at receivers #1 in direction z: (a) oval; (b) kidney.

Fig. 10. Time and Fourier spectra horizontal responses at receivers #3: (a) oval; (b) kidney.
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inclusion) the results show the existence of other surface mode types, in addition to the flexural waves (not
illustrated).
Fig. 11 illustrates the time displacements at the receivers #3, along the z direction. Analysis of these plots

reveals the existence of similar amplitudes for the body and guided waves. The development of the body
pulses with time is similar for the circular (Fig. 7c), the oval (Fig. 11a) and the thin oval cavities (Fig. 11b),
while it reveals the existence of later arrivals when their side wall is deformed (boomerang––Fig. 11c and
kidney––Fig. 11d). This phenomenon is more pronounced when the results are computed for the boo-
merang, which denotes the existence of higher reverberations within the concave part of the inclusion. The
guided pulses’ patterns are more complicated when the cavity is circular, becoming simpler as the ovality of
the cross-section increases (see Fig. 11a and b). This is because some of the higher modes both lose im-
portance and possess higher cutoff frequencies, as we move from the circular to the oval and then to the thin
oval cross-section, confirming the description above. It can be further observed that the guided pulses
appear more complex as we move from the oval to the kidney, and from the thin oval to the boomerang,
because other higher modes gain in importance.
The vertical displacement responses computed at receiver #2 (Fig. 12), placed away from the cavity, show

some of the features generated at receiver #1. The guided waves decay significantly, but their contribution is
still important. The body arrivals are now clearly visible, and they reveal differences related to the type of
cross-section, becoming more pronounced when the top surface gets flatter and then concave. Again, the first
modes (axisymmetric and flexural) become slower as the ovality of the cavity increases, and as the cavity is
deformed to give a concave cavity. However, the amplitude of the responses, computed for the various cross-
section cavities is similar. Furthermore, these first modes are only important at low excitation frequencies.

Fig. 11. Time responses at receivers #3 in direction z: (a) oval; (b) thin oval; (c) boomerang; (d) kidney.
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Again, the pattern of guided pulses increases in complexity as the cavity becomes concave, for which
higher velocity modes now gain importance. It can even be observed that the time responses show the
arrival of the first guided waves, with enhanced amplitudes.

7. Conclusions

A boundary element formulation was developed to assess the 3D scattered field generated by dilatational
point loads illuminating non-circular cylindrical cavities in an elastic formation. This model was then used

Fig. 12. Time vertical responses at receivers #2: (a) circular; (b) oval; (c) thin oval; (d) boomerang; (e) kidney.
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to assess the influence of receiver position on the propagation of both axisymmetric and non-axisymmetric
wave modes when cavities with different cross-sections were examined, namely a circular, an oval, a thin
oval, a kidney and a boomerang. Both the time responses and the Fourier spectral representations were
included to aid in the visualization of the different wave components.
The amplitude of the guided waves increases as the surface inclusion becomes flatter (greater curvature

radius), and then as the side wall becomes concave for receivers placed above the inclusion and in its
vicinity. As we move from the circular to the oval and then to the thin oval cross-section cavities, the results
indicate progressively slower flexural waves with increasing amplitude, while the pseudo-Rayleigh waves
(axisymmetric waves) have higher cutoff frequencies. Therefore, at lower frequencies the dispersions of
these two modes reveal different tendencies; but as the frequency increases, their wave velocities converge,
and they both denote lower wave velocities, as the ovality ratio increases. These modes lose importance
rapidly as the receiver is placed further away from the surface inclusion, and limit their contribution to
lower excitation frequencies. The screw mode, however, has a higher cutoff frequency, becomes less dis-
persive and exhibits lower amplitude, as we move from the circular inclusion to the oval.
The responses obtained when the wall of an oval- or a thin oval-shaped inclusion is deformed (desig-

nated here as the kidney- or boomerang-shaped inclusion), are related to those calculated for the former
oval, but indicate increasing importance of the higher modes for receivers placed above the cavity and in its
vicinity.
The guided waves at a receiver placed on the x axis undergo significant decay, but their contribution

is still important. The horizontal displacement results indicate decreasing amplitude as the cavity be-
comes flatter. The axisymmetric, guided and flexural waves lose significance and their importance is mostly
limited to low frequencies. Again, the higher order modes become less important when the ovality of
the cavity increases, while their relative importance increases when the side wall of the cavity becomes
concave.

Appendix A. The Green’s functions

Definitions
k, l Lam�ee constants
q mass density
a ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k þ 2lð Þ=q

p
P wave velocity

b ¼
ffiffiffiffiffiffiffiffi
l=q

p
S wave velocity

kp ¼ x=a, ks ¼ x=b

ka ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2p � k2z

q
, kb ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2s � k2z

p

A ¼ 1

4iqx2
amplitude

ci ¼ or=oxi ¼ xi=r, i ¼ 1; 2 direction cosines

Hna ¼ H ð2Þ
n karð Þ, Hnb ¼ H ð2Þ

n kbr

 �
Hankel functions

Bn ¼ knbHnb � knaHna Bn functions

Green’s functions

Gxx ¼ A k2sH0b

�
� 1

r
B1 þ c2xB2

�
ðA:1Þ

3030 A.J.B. Tadeu et al. / Comput. Methods Appl. Mech. Engrg. 191 (2002) 3015–3033



Gyy ¼ A k2sH0b

�
� 1

r
B1 þ c2yB2

�
ðA:2Þ

Gzz ¼ A k2sH0b

�
� k2z B0


ðA:3Þ

Gxy ¼ Gyx ¼ cxcyAB2 ðA:4Þ

Gxz ¼ Gzx ¼ ikzcxAB1 ðA:5Þ

Gyz ¼ Gzy ¼ ikzcyAB1 ðA:6Þ

Volumetric strain (super-index ¼ direction of load)

elVol ¼ Gxl;x þ Gyl;y þ Gzl;z ¼ A
o

oxl
k2sH0b


 ��
þ B0;xlx þ B0;yly þ B0;zlz

�

¼ A
o

oxl
k2sH0b

�
þ B0;xx þ B0;yy þ B0;zz


¼ A

o

oxl
½k2sH0b þ r̂r2B0
 ðA:7Þ

Note: H0b;l ¼ �kbclHlb, H0b;z ¼ �ikzH0b.

Strain components (tensor definition, not engineering)

elij ¼ 1
2
Gil;j



þ Gjl;i

�
¼ 1

2
A dilk2sH0b;j



þ djlk2sH0b;i þ B0;ilj þ B0;jli

�
¼ 1

2
k2sA dilH0b;j



þ djlH0b;i

�
þ AB0;ijl ðA:8Þ

Strains for loads in the plane, l ¼ x, y

elVol ¼ clA
�
� k2s kbH1b þ k2z B1 þ

4

r
B2 � B3

�
ðA:9Þ

elxx ¼ clA
2

r
B2

��
� k2s kbH1b

�
dxl þ

1

r
B2 � c2xB3

�
ðA:10Þ

elyy ¼ clA
2

r
B2

��
� k2s kbH1b

�
dyl þ

1

r
B2 � c2yB3

�
ðA:11Þ

elzz ¼ clk
2
z AB1 ðA:12Þ

elxy ¼ A
1

r
B2

��
� 1

2
k2s kbH1b

�
dxlcy



þ dylcx
�
� cxcyclB3

�
ðA:13Þ

elxz ¼ ikzA
1

r
B1

��
� 1

2
k2sH0b

�
dxl � cxclB2

�
ðA:14Þ

elyz ¼ ikzA
1

r
B1

��
� 1

2
k2sH0b

�
dyl � cyclB2

�
ðA:15Þ

Strain for axial loads, l ¼ z

ezVol ¼ ikzA
�
� k2sH0b þ k2z B0 þ

2

r
B1 � B2

�
ðA:16Þ
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ezxx ¼ ikzA
1

r
B1

�
� c2xB2

�
ðA:17Þ

ezyy ¼ ikzA
1

r
B1

�
� c2yB2

�
ðA:18Þ

ezzz ¼ ikzA


� k2sH0b þ k2z B0

�
ðA:19Þ

ezxy ¼ �ikzcxcyAB2 ðA:20Þ

ezxz ¼ cxA


� 1

2
k2s kbH1b þ k2z B1

�
ðA:21Þ

ezyz ¼ cyA


� 1

2
k2s kbH1b þ k2z B1

�
ðA:22Þ

Stresses

slij ¼ kelVoldij þ 2lelij ðA:23Þ
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