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Abstract

This work describes an iterative technique for the definition of condensation across two-dimensional elements via the boundary element
method (BEM). Initially, the BEM is used to calculate the steady-state conduction of heat and vapour diffusion, discretizing only the
boundary materials’ discontinuities. Then, a small sub-domain is defined, where condensation develops; that is, where the vapour pressure
exceeds the vapour saturation pressure. Using the Glaser approach, the vapour pressure is equalised to the vapour saturation pressure, and
then the vapour equilibrium is redefined by means of the BEM solution. This process is repeated until all sub-domains where vapour pressure
exceeds vapour saturation pressure are eliminated.

The method is first implemented and validated by applying it to a simple one-dimensional hygrothermal problem, for which the solution is
calculated analytically. The applicability of the proposed method is then illustrated by computing the two-dimensional condensation across a

T shaped element, for different boundary conditions. © 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Several kinds of pathology may be caused by condensa-
tion [1], from the appearance of moulds to the deterioration
of the building material itself. To avoid the hazardous
effects of condensation, its presence must be detected, and
corrective measures taken [2].

Ideally, the risk of condensation inside building elements
should be identified during the design phase, before
construction. Several methods have been proposed to deal
with this problem, described by Glaser [3—5], Krischer [6],
Luikov [7], and Philip and De Vries [8], based on fluid
mechanics using the well known mathematical models of
Fourier (heat conduction), Fick (moisture diffusion) and
Darcy (water diffusion). For a good review of the Fourier,
Fick and Darcy laws, see also, Carslaw et al. [9], Crank [10]
and Gebhart [11].

Krischer [6] studied the moisture movements in porous
materials under the influence of temperature gradients. He
identified two transport mechanisms for material moisture,
one being the vapour diffusion and the other being described
as capillary water movement. Luikov and Philip et al. [7,8]
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worked with porous material, defining moisture transport
using methods based on the thermodynamics of irreversible
processes. For an extensive review on these methods, we
refer readers to the work of KieB3l [12], KieBl et al. [13] and
Kiinzel [14].

The Glaser method is based on a number of assumptions,
namely, that the moisture is transported in accordance with
Fick’s law, the transport of heat obeys the Fourier law, the
process occurs under steady-state conditions, the building
elements are airtight and that there is no migration of
condensed moisture. The material properties are taken to
be constant, even under condensation conditions. Con-
densation is assumed to occur when the vapour pressure
equals the saturated vapour pressure (the maximum vapour
pressure allowed).

The Glaser method only takes into account the vapour
transport in building components; it does not take into
account the effects of liquid transport. In spite of the simpli-
fications assumed by this method, it is used frequently to
solve civil engineering problems related to the identification
of internal condensation risks. The method of Glaser is even
proposed by the DIN 4108 [15] and prEN ISO 13788 [16]
standards to define condensation. Most of the models that
have been developed based on the Glaser approach rely on a
simple one-dimensional mathematical formulation. This
procedure is adequate if the wall is straight, with constant
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thickness and subject to uniform state conditions on both
sides. However, there are situations where a one-dimen-
sional formulation is not accurate enough. In these cases,
different numerical techniques, such as the finite elements
[17] and finite difference methods [18], have been used to
model and analyse the problem. These methods require
analysis of the fully discretized domain, leading to very
complex computational numerical schemes.

To avoid this drawback, the present paper proposes the
use of the boundary element method (BEM). The BEM
allows a compact description of the medium in terms of
boundary elements at the material discontinuities alone.
Although the BEM leads to a fully populated system of
equations, contrary to the sparse system given by the finite
difference and finite element techniques, the efficiency of
the technique lies in the reduced computational effort
required, given the substantial reduction of the size of the
linear system of equations that needs to be solved. As is well
known, the BEM is based on the use of appropriate funda-
mental solutions, or Green’s functions, relating the field
variables in a homogeneous medium to point sources placed
somewhere within it. The fundamental solution most often
used is that of an infinite homogeneous space, because it is
known in closed-form and has a relatively simple structure.

The BEM has already been used to solve heat and moist-
ure diffusion. Mingfang et al. [19] used the BEM to analyse
the thermal characteristics of a column in contact with an
insulated floor under steady-state conditions. Fratantonio et
al. [20] have analytically calculated the boundary element
integrals required for solving two-dimensional problems
governed by the Laplace equation, for different orders of
interpolation functions. Kassab et al. [21] have proposed a
generalized boundary integral equation for isotropic heat
conduction with spatially varying thermal conductivity.
Ochiai et al. [22] used a multiple-reciprocity analysis to
study steady heat conduction. Melnikov [23] presented
Green’s functions for two-dimensional heat conduction on
thin plates of simple configuration.

The present work uses the BEM to define condensation
areas in two-dimensional spaces using an iterative scheme.
First, the vapour pressure equilibrium and the saturation
pressure are defined across the two-dimensional element
being analysed. Then, an iterative process is used to define,
in each iteration, a small sub-domain where condensation
occurs, i.e. where the vapour pressure is greater than the
vapour saturation pressure. The vapour pressure is rendered
equal to the vapour saturation pressure along this sub-
domain, using the Glaser approach. A new vapour equili-
brium is then defined using the BEM solution. This iterative
process is repeated until there is no sub-domain across the
element where the vapour pressure exceeds the vapour
saturation pressure. Finally, once the full domain suffering
condensation has been determined, the condensed vapour
moisture is quantified inside each small sub-domain. As
pointed out earlier, the method does not consider the trans-
port mechanism of water and the changes in property of the

material. However, this simplification method is frequently
adopted in practical design and is indicated by several
standards.

The type of problem solved here has been solved before
using other iterative schemes based on the Finite Differ-
ences and Finite Element Methods, which require the full
discretization of the domain. Furthermore, the models used
to account for the condensed vapour moisture often use a
one-dimensional discretization and do not quantify the
variation of condensed vapour along the domain.

The present article is organized as follows: first, a brief
definition of the problem is given, and then the BEM is
formulated, indicating the Green’s functions required. The
iterative process for defining the condensations using the
Glaser approach is described. The results are then validated
using a model of a two-dimensional wall subjected to one-
dimensional steady-state heat and vapour pressure diffusion,
for which an analytical solution is defined. The applicability
of the proposed method is then illustrated by computing the
two-dimensional condensation across a T-shaped element,
for different boundary conditions.

2. Definition of the problem

This work aims to define sub-domains where condensa-
tion occurs across a construction element subjected to
prescribed temperature and moisture boundary conditions.
The moisture diffusion is determined assuming that no
vapour pressure at any point can be greater than the vapour
saturation pressure. After the definition of the condensation
sub-domain, the amount of condensed moisture will be
quantified. The Glaser assumptions will be followed.

2.1. BEM formulation

Consider an isotropic and homogeneous medium with
prescribed vapour pressure and vapour fluxes along its
boundary. If one assumes that there is no moisture genera-
tion inside the domain being analysed, then the vapour
pressure equilibrium is governed by the Laplace equation:

2 2
g + g =0 1)
ox ay

where P is the vapour pressure and x and y are the coordi-
nates in the Cartesian axis system. In the present case, where
vapour diffusion is studied, Fick’s law expresses the vapour
diffusion by

§=—mVP, @
where 7 is the material’s permeability and

S oP oP
VP, = —2¢ + —¢,
ox ay
is the vapour pressure gradient.

However, the maximum vapour pressure that may occur
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at any point is the vapour saturation pressure, which holds
for water vapour and is a function of temperature at each
point, according to the BS 5250 [24],

P, = 610.5 exp((17.269T)/(237.3 + T)) 3)

where T is the temperature in °C.

Since the saturation pressure depends on the temperature,
it is necessary to determine the temperature distribution
along the domain being studied. Temperature conduction
in a steady-state isotropic medium with no internal heat
generation is also governed by a Laplace equation. For a
two-dimensional heat conduction problem, the following
equation applies:

T 9T
o T Y @

where T is the temperature and x and y define the Cartesian
coordinate system used.
The heat flow is then given by the Fourier law:

g=—kVT ®)

where k is the conductivity of the material that is assumed to
be independent of temperature, and

is the temperature gradient.

Thus, the definition of the vapour and vapour saturation
pressure across the element analysed requires the solution of
a pressure and a temperature equilibrium problem. This
solution is obtained using the BEM, which requires the
discretization of the element boundary alone.

Given the amount of existing literature on the BEM solu-
tion of heat and moisture transfer problems under steady-
state conditions [25], only a brief description of the BEM
equations relevant to its application to this type of problem
is given here.

It is sufficient to say that the application of boundary
elements to this type of problem requires the integration
of Green’s functions and their derivatives for all the
elements used to discretize the boundaries of the model
[26], as follows:

GH = jc $G(x.x)AC, ©)

HY = L SH(xp, x1, nC, ™

where G(x;, x;) is the component of the Green’s function for
temperature or moisture, H(xy, x;, n;) the corresponding flux
component at x; due to a concentrated load at x;, n; the
normal outward unit for the /th boundary segment C;, and
¢ is an interpolation function.

The free space Green’s function assumed in the present

case is [26],
1
G(x,xy) = mln(l/r) ®)

where A is the thermal conductivity or moisture permeabil-
ity of the material, which is taken to be constant and r is the
distance between the source and the receiver.

If one takes the partial derivatives of G in relation to the
unit outward normal direction n and applies the Fourier/
Fick’s law, the expressions for the flux components are
given by

1 91In(1/r)
27 dn

When the integrations, given by Eqgs. (6) and (7), are
performed along the loaded element, the integrands exhibit
a singularity, but the integrations can be performed analy-
tically. When the integration is not along the loaded
element, the integrations are performed using a standard
Gaussian quadrature scheme with 12 points.

After the integral equations have been subjected to the
boundary conditions, a system of equations is defined which
can be solved for the nodal temperature or moisture, and
heat or moisture fluxes. Once the nodal values along the
boundary are known, values for the problem variable
analysed (temperature or vapour pressure), or its derivatives
at any point in the domain, can be obtained.

H(x, xg,n) = —

€))

3. Iterative process

The process starts by defining the vapour saturation
pressure from the equilibrium of temperatures across the
construction element being analysed, over a fine grid of
receivers, establishing the boundary temperature conditions.
Then, the first estimation of the vapour pressure over the
same grid of receivers is performed, prescribing the known
boundary vapour pressure conditions. At this stage, if all
receivers register a vapour pressure (P,) lower than the
vapour saturation pressure (Py), this estimated distribution
is the final one.

If the receivers record an amount of P, that exceeds P;, a
second iteration is performed over a modified model. First,
the receiver whose estimated pressure value most exceeds
the corresponding saturation pressure is identified. Then, a
small sub-domain (quadrilateral cell) is defined around this
receiver. The accuracy of the solution was tested by placing
a varied number of boundary elements to define this new
cell. It was found that 16 boundary elements were appro-
priate. A new pressure equilibrium is performed, attributing
the saturation vapour pressure to the boundary elements
used to define this new cell and maintaining the exterior
boundary conditions. In the next iteration, a new receiver
is selected and a new cell is defined. The process is repeated
until the pressure at all receivers does not exceed the Pi.

The cells are defined by dividing the full domain into
small sub-domains, each of which is associated with one
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Thermal conductivity A=0.16 w/m°C
Vapour permeability 7=25*10"Kg/msPa

0.6 m

-’t—0.3m—1':

Fig. 1. Geometry of the model.

receiver. In each iteration, a routine check is performed to
ascertain if any of the new elements coincides with a
previously existing one, in which case both are removed.
This procedure is followed because the P, distribution is
being computed outside the zone subject to condensation,
that is, outside the sub-domains created by the cells.

After the condensation zone has been delimited, the
moisture fluxes inside each cell are computed, using the
BEM, prescribing the vapour saturation pressure. Then,
the quantification of the amount of liquid water generated
is computed from the moisture flux jumps across the bound-
ary of each cell.

4. Validation of the methodology

The BEM algorithm is validated by applying it to a
two-dimensional rectangular wall (Fig. 1), made of cellular
autoclaved concrete, subjected to one-dimensional steady-
state heat and vapour pressure diffusion, for which an analy-
tical solution is known.

The boundary conditions are given in Table 1. In this
table the subscripts i and e refer to the indoor and outdoor
environment conditions, respectively. To simulate one-
dimensional heat and moisture diffusion across this wall,
null vapour fluxes are assumed to occur across the upper

—H— 0.02 m
0.6
_— Air layer
0.4 1 Y
Y (m) Y (m)
0.2
0
0 01 02 03
X (m)

a)

Table 1
Boundary conditions. One-dimensional model

Indoor Indoor relative Outdoor Outdoor relative
temperature humidity temperature humidity
18.0°C 90% 0.0°C 85%

P, = 2062.83 Pa
P,, = 1856.55 Pa

P, =610.5Pa
P, = 51893 Pa

and the lower boundaries placed perpendicular to the wall
surfaces.

Two additional fictitious layers, one internal (A =
0.1667W°C 'm™!) and the other external (A=
0.5 W °C ' m™!), each 0.02 m thick, are added to the two
faces of the wall models to simulate the internal and the
external thermal surface resistance (1/h; = 0.12 m’>°CwW~!
and 1/h, = 0.04 m*°C W™, respectively (Fig. 2a). This
procedure allows the radiation and convection contributions
to be taken into account. The definition of the vapour pres-
sure across the wall assumes that no variation in vapour
pressure occurs between the environment and the surface
of the wall. The model therefore does not require the use of
fictitious layers (Fig. 2b).

The BEM model is first used to compute the temperature
and vapour pressure distribution across the wall over a fine
grid of receivers placed as in Fig. 2, equally spaced at 0.01
and 0.02 m along the horizontal and vertical directions,
respectively. Each of the boundaries is modelled using
120 constant elements. Then, the P distribution is calcu-
lated using Eq. (3). Fig. 3a shows the variation of P, and P;.
As expected, the variation of Py, is linear across the wall.

As a first step of the iterative process, the difference
between the vapour saturation pressure and the vapour pres-
sure is computed (Fig. 3b). Analysis of Fig. 3b confirms the
possibility of condensation occurring and the location where
it may arise (P, — P,, = 0.0 Pa). Fig. 3a indicates the zone
where there is a risk of condensation at the beginning of the
process, labelled Cj;y, where P, exceeds P. The receiver at
higher risk of condensation is selected. Around this receiver,

Boundary
0.6 T elements
Nodes
0.4
Receivers
0.2
0
0 0.1 02 03
X (m)
b)

Fig. 2. Boundary geometry and grid of receivers used in the validation model. (a) Temperature model. (b) Vapour pressure model.
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Fig. 3. Initial vapour equilibrium. (a) Vapour saturation pressure distribution, P;, versus first vapour pressure estimation, Py,. (b) P,—P,, distribution.

a rectangular cell is defined with dimensions made difference between P, and P,,. This process is repeated until
equal to the distance between receivers (Fig. 4a). This no receiver registers a vapour pressure above the saturation
cell is then discretized with four constant boundary value.
elements, placed on each side of the cell, and the vapour Figs. 5 and 6 show the results obtained at the end of
saturation pressure at the nodes is ascribed. A new vapour iterations 3 and 60. It is quite clear that, at the end of itera-
pressure equilibrium is computed. Fig. 4b shows the new tion 3, the three sub-domains identified show P, equal to P,.
0.6 PPy®
00 N—
0.4 504
Y(m)
0
0.2
-504
0 @ =100y -
0 01 02 03 0.6 .. .
X 0.4 :
(m) Y (m) - o1 0.2 0.3
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a) b)
Fig. 4. Results after iteration 1. (a) Cell around the selected receiver. (b) P;—P,, distribution.
0.6 B -
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Fig. 5. Results after iteration 3. (a) Selected receivers after iteration 3. (b) P—P,, after iteration 3.
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Fig. 6. Results after iteration 60. (a) Selected receivers. (b) P—P,, curve.

After iteration 60, the configuration of the condensation
patch is very close to the final one, achieved at iteration
240 and shown in Fig. 7. This figure indicates the exis-
tence of a condensation zone identified as a rectangular
strip located between coordinates x; = 0.135 m and x, =
0.205 m.

The one-dimensional analytical definition of the con-
densation zone, which can be computed by imposing
pressure flux continuity conditions across the wall
(x; = 0.136 m and x, = 0.21 m), represented by

dpP dP, dpP dP,
w — S , w — S (10)
dx xl’ dx )cIJr dx x; dx x;
where
dPW _Ps(xl)_Pwe dPW _Pwi_Ps(XZ)
dx x;_ X1 ’ dx x;_ e — X

and e is the wall thickness confirms a very good
approximation of the calculated values obtained by the

iterative process [27]. The size (x, —x;) of the
predicted zone obtained by the numerical and analytical
scheme is 0.07 and 0.074 m, respectively. Fig. 8a shows
the final vapour pressure distribution obtained using
the present numerical BEM approach, and the error
obtained when these results are compared with the
analytical solution is shown in Fig. 8b. The precision
of the numerical solution would improve for a finer grid
of receivers.

Once the condensation zone is delimited, the amount of
liquid water generated is computed, by calculating the
moisture flux jumps between the adjacent cells.

Fig. 9 shows the amount of liquid water calculated for
each cell as a three-dimensional plot, which indicates the
existence of a total of 9.0 mgm *h™".

To summarise, the iteration process starts by assuming an
approximated solution that converges towards the real one.
By comparing the initial equilibrium solution (Fig. 3a) with
the solution achieved at the last iteration (Fig. 8), one may
notice that the condensation risk zone is reduced during the
course of the iterative process. The Cyg, in this figure,

P-P (P
0.6 Py P
150
04 100 ‘\
Y (m) 50 \ /|
-50
0
0 0.1 02 03 -100
X (m) 0 0.1 0.2 0.3
X (m)
a) b)

Fig. 7. Results after the final iteration. (a) Final condensation zone. (b) P,—P,, at the end of iteration process.
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Fig. 8. Results after the final iteration. (a) Vapour saturation pressure distribution, Py, versus final vapour pressure estimation, Py,. (b) BEM error.

indicates the zone where P, and P; are equal, that is, where
condensation occurs.

5. Applications

To illustrate the applicability of the proposed method, a
two-dimensional model with a T-shaped geometry is
analysed, as shown in Fig. 10. It represents the separation
between two adjacent rooms and the outdoor environment.
The construction element is assumed to be made of cellular
autoclaved concrete, with the thermal conductivity and
vapour permeability as given in this figure.

Three different temperature and moisture conditions
are studied, as listed in Table 2. Null fluxes are ascribed
to the boundaries perpendicular to the wall surfaces for all
models.

This table defines the temperature and relative humid-
ity conditions that have been selected to generate inter-
nal condensation. These hygrothermal conditions are
frequently found both inside and outside Portuguese
dwellings.

Three different cases are used to illustrate the practical

mg/h

Fig. 9. Liquid water generated by condensation.

importance of the present model in the definition of con-
densation within two-dimensional construction elements.
The first model assumes that rooms A and B have the
same temperature (18 °C) and moisture conditions (90%
relative humidity). The second model ascribes outdoor
environmental conditions to room B (0 °C, 85% relative
humidity). The third model illustrates the situation where
the room B is assumed to be unheated (temperature 10 °C
and 85% relative humidity).

The boundary discretization and the grid of receivers
(1350), equally spaced at 0.02 m apart, used to solve both
the temperature and pressure distributions are shown in
Fig. 11a and b, respectively. A fictitious air layer along
the wall surfaces is used to simulate the internal and external
thermal surface resistance, when the temperature equili-
brium is performed. The model used to compute the vapour
pressure does not require the use of additional layers
because it is assumed that no variation in vapour pressure
occurs between the environment and the surface of the wall.
These assumptions are frequently accepted for the hygro-
thermal design of buildings. Thus, a total of 816 constant

Room B 8 Room A

0,5

! 0,5 m

—— 03 m ——

! Thermal conductivity A=0.16 w/m°C '
| Vapour permeability n=25*10"Kg/msPa |

i 1,3 m i
Outdoor

Fig. 10. Geometry of the model.
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Table 2

Boundary conditions. T-shaped models

N. Simaes et al. / Engineering Analysis with Boundary Elements 26 (2002) 527-536

Room A Room B Outdoor
Temperature Relative Temperature Relative Temperature Relative
humidity humidity humidity

Case 1 18.0°C 90% 18.0°C 90% 0.0°C 85%

P, =2062.83 Pa P, =2062.83 Pa P, =610.5Pa

P, = 1856.55 Pa P, = 1856.55 Pa P, =518.93 Pa
Case 2 18.0°C 90% 0.0°C 85% 0.0°C 85%

P, = 2062.83 Pa P, =610.5Pa P, =610.5Pa

Py, = 1856.55 Pa P, = 51893 Pa P, = 51893 Pa
Case 3 18.0°C 90% 10.0°C 85% 0.0°C 85%

P, =2062.83 Pa P, =1227.31Pa P, =610.5Pa

P, = 1856.55 Pa P, =1043.21 Pa P, =518.93 Pa

boundary elements is needed to discretize the boundary,
while only 645 constant boundary elements are used to
compute the vapour pressure equilibrium.

Fig. 12 shows both the condensation patches and the
amount of liquid water generated at the end of the iterative
process for all models analysed. The condensation zone in
model 1 (Fig. 12a) is located in the outside wall, with a
symmetrical distribution in relation to the interior. It can
be seen that the condensation reaches the interior face of
the exterior wall in the vicinity of the inner corners. The
amount of liquid water near the surface was calculated
assuming null vapour pressure flux in the boundary
elements. The plot of liquid water generated reflects this
behaviour by allocating a larger amount of water in the
vicinity of these corners. The amount of liquid water
produced is reduced over the symmetry axis, due to the
presence of the interior wall, which allows the temperature
to fall and, consequently, the vapour saturation pressure to
diminish. Further from the corners, the heat and pressure
flux distributions approach the results of a one-dimensional
model. Notice that another type of moisture flux condition
may easily be incorporated in the model. The condensation
zone would be the same for any condition, with only the

Y (m) I
—+=— 0,02 m

amount of liquid water generated at the surface being
smaller.

Fig. 12b shows the results obtained with model 2. The
condensation patch occurs along the entire wall that sepa-
rates room A from both the room B and the outdoor environ-
ment. This behaviour was expected, since the same variable
conditions have been ascribed to these latter two surfaces.
Given the concentration of fluxes in the corner of room A,
condensation occurs in its vicinity, and the model behaves
there like a thermal bridge. A larger amount of water is then
generated around this singularity. The width of the conden-
sation zone away from the corner matches that of the
previous example.

Fig. 12c refers to the results of model 3. On comparing
these results with the previous cases, we can see that the
condensation zone is smaller. In the inner corner, the
condensation patch still extends up to the interior face of
the wall, but the liquid water is now generated in smaller
amounts. This can be explained by the fact that the hygro-
thermal conditions ascribed to room B (unheated room) do
not lead to condensation, either in the wall separating the
heated room (room A) or in the wall separating the outdoor
environment.

Boundary

elements

Nodes

Receivers

X (m)

b)

Fig. 11. Boundary discretization and grid of receivers. (a) Temperature model. (b) Vapour pressure model.
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Fig. 12. Condensation and liquid water generated: distribution results. (a) Case 1. (b) Case 2. (c) Case 3.

These results underscore the importance of studying
singular zones in walls, like corners or intersections,
where condensation tends to be concentrated and where a
one-dimensional model does not apply.

6. Conclusions

The Boundary Elements Method (BEM) has been
formulated and implemented to solve two-dimensional
steady-state heat conduction and vapour diffusion problems
efficiently.

The present work proposes an iterative BEM process to
identify the zones where there is the risk of condensation

inside construction elements. The proposed method also
calculates the amount of liquid water generated by con-
densation. The iterative process first establishes a vapour
pressure equilibrium state. The vapour pressure at each
internal point is then compared with the corresponding
vapour saturation pressure. The receiver where the vapour
pressure exceeds the vapour saturation pressure by the
greatest amount is removed from the domain, and a cell is
defined ascribing as boundary conditions the vapour satura-
tion pressure in each node. The BEM is computed over this
modified model, and the iterative process continues until the
vapour saturation pressure is not exceeded inside the
domain. This technique was validated by applying it to a
one-dimensional problem for which an analytical solution is
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known. The method provides an accurate identification of
the condensation zone. The amount of water generated,
calculated using the one-dimensional model, gives a good
approximation to the analytical solution.

The applicability of the proposed method was demon-
strated by defining the condensation zone and the amount
of liquid water generated on a T-shaped wall, subjected
to different boundary conditions. Meanwhile, the results
suggest that the use of simplified one-dimensional analysis
in the presence of singularities may lead to misinterpretation
of the condensation phenomena, which may be prevented by
the use of the proposed model.
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