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Abstract

The acoustic scattering of a three-dimensional (3D) sound source by an infinitely long rigid barrier in the vicinity of a tall building is

analyzed using the boundary element method (BEM). The acoustic barrier is modeled using boundary elements, and is assumed to be non-

absorbing, while the image source method is used to model the tall building as an infinite vertical barrier. A frequency domain BEM

formulation is used, and time domain responses are then obtained by applying an inverse Fourier transformation.

Since the geometry of the problem does not vary along one direction, the 3D solution can be calculated as the summation of a sequence of

2D problems, each solved for a different spatial wavenumber, kz: To obtain the 3D solution, a discrete form wavenumber transform is

performed by considering an infinite number of virtual point sources equally spaced along the z axis. Complex frequencies are used to

minimize the influence of these neighboring fictitious sources.

Numerical simulations are performed using barriers of varying sizes, evaluating the attenuation of the sound pressure level in the vicinity

of the building façade. The creation of shadow zones by the barriers is analyzed and time responses are presented to better understand the

sound propagation around these obstacles. q 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Diffraction-based methods have been used by many

authors as a tool to analyze sound propagation in the

presence of obstacles. Lam [1] introduced one such method

for the calculation of the acoustic energy loss produced by

the insertion of simple, finite length three-dimensional (3D)

acoustic barriers. This work was later extended by Muradali

and Fyfe [2] to include the modeling of 2D geometries.

Precision can be improved by using numerical methods

like the boundary element method (BEM) or the finite

element method to solve the wave-equation for each

frequency. Based on the theory of slender bodies, Filippi

and Dumery [3] and Terai [4] developed a boundary integral

equation technique to analyze the scattering of sound waves

by thin rigid screens in unbounded regions. This method

was subsequently extended by Kawai and Terai [5] to allow

the prediction of sound attenuation by rigid barriers over a

totally reflective ground surface. A 2D boundary element

technique was used by Morgan et al. [6] to assess the

influence of the shape and absorbent surface of railway

noise barriers. Their work compared a boundary element

prediction for simple barrier and vehicle shapes with results

given by the standard UK prediction method. Lacerda et al.

[7] proposed a dual boundary element formulation for

analyzing the 2D sound propagation around acoustic

barriers, over an infinite plane, in which both the ground

and the barrier were considered to be absorptive. The 3D

propagation of sound around an absorptive barrier was

studied by Lacerda et al. [8], introducing a dual boundary

element formulation that allowed the barrier to be modeled

as a simple surface.

The present work takes into account both the influence of

the acoustic barrier and the presence of very large buildings

next to it. The pressure field generated by wave scattering at

both objects is calculated using a standard boundary element

formulation. Both the acoustic barrier and the building are

considered to be totally reflective.

In our model, the acoustic barrier is considered to be of

infinite length, while the acoustic source takes the form of a

point load. This situation is usually referred to as a two-and-

a-half-dimensional problem, for which solutions can be

obtained by means of a spatial Fourier transform in the

direction in which the geometry does not vary [9].
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The BEM model is used to compute the 3D pressure field

generated by a point pressure source in the vicinity of a rigid

barrier placed between the source and a tall building. The

building is treated as an infinite rigid vertical plane surface.

Simulation analyses are performed to investigate wave

propagation in the vicinity of such buildings in the presence

of neighboring varying-sized acoustic barriers. Both

frequency and time domain responses are obtained to

permit a quantitative study of the 3D effects of the

scattering.

2. Problem definition

The 3D pressure field generated by a harmonic point load

inside a uniform acoustic medium is given by

pinc ¼

A exp i
v

a
at 2
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where v is the excitation frequency, ðx0; y0; 0Þ the position

of the load, the subscript inc denotes the incident field, A the

wave amplitude, a the pressure wave velocity of the

medium, and i ¼
ffiffiffiffi
21

p
:

Applying a Fourier transformation in the z direction to

Eq. (1), and defining the effective wavenumbers by ka ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðv2=a2Þ2 k2

z

p
with Im ka , 0; where kz is the axial

wavenumber, one obtains
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where Hð2Þ
n ð·Þ are second Hankel functions of order n.

Assuming the existence of an infinite set of sources,

evenly spaced along the z direction, the 3D incident field can

be written as

pincðv; x; y; zÞ ¼
2p

L

X1
m¼21

p̂incðv; x; y; kzÞe
2ikzz ð3Þ

where L is the spatial source interval, and kz ¼ ð2p=LÞm:
The 3D pressure field may now be calculated as the pressure

irradiated by a sum of harmonic (steady-state) line loads

with amplitudes varying sinusoidally in the 3D. This sum

converges and can be approximated by a finite number of

terms.

In the present paper, a spatially uniform acoustic medium

bounded by two perpendicular flat surfaces is modeled. One

of these surfaces simulates the horizontal rigid flat floor,

while the other represents the façade of the tall building.

Inside the acoustic medium, the presence of a vertical

rectangular rigid obstacle (acoustic barrier) is assumed.

When the vertical plane and the horizontal plane are defined

by x ¼ 0 and y ¼ 0; respectively, the acoustic pressure field

(Green’s function Gðx; x0;vÞ) can be computed by the

following expression:

Gðx; x0;vÞ ¼
XNS

j¼1

2i

4
½H0ðkarjÞ� ð4Þ

with NS ¼ 4; and
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3. Boundary element formulation

The acoustic BEM formulation used in this work is well

known, and so the details of its formulation are omitted.

However, it is important to state that the solution of each 2D

problem requires the evaluation of the integral

Hkl ¼
ð

Cl

Hðxk; xl; nlÞdCl ð5Þ

where Hkl is the pressure velocity component at xk due to

pressure load at xl and nl is the unit outward normal for the

lth boundary segment Cl: The Green’s function for pressure

velocity can be obtained by differentiating Eq. (4) in relation

to the unit outward normal.

Gauss–Legendre quadrature is used to perform the

required integrations in Eq. (5), using no fewer than six

integration points. In this work, the acoustic barrier is

modeled as a thick object, and, to maintain accuracy, the

required numerical integrations on elements close to or

directly facing the loaded element are performed using

higher order Gauss–Legendre integration schemes.

The pressure field inside the acoustic medium can then be

calculated in relation to the nodal pressure values obtained.

4. Pressure in time-space

After calculating the frequency domain responses, time

signals are obtained by means of an inverse Fourier

transformation in v. The acoustic source used is assumed

to have a temporal variation given by a Ricker pulse:

uðtÞ ¼ Að1 2 2t2Þe2t2

ð6Þ

where A is the amplitude, t ¼ ðt 2 tsÞ=t0 and t represents the

time, ts the time when the maximum occurs, while pt0

the dominant wavelet period. By applying a Fourier
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transformation to this function, one obtains:

UðvÞ ¼ A½2
ffiffiffiffiffi
pt0

p
e2ivts �V2 e2V2

ð7Þ

where V ¼ vt0=2:
The inverse Fourier transformations required for the

calculation of both the time and the 3D frequency domain

responses are performed by means of a summation of a finite

number of terms, either in frequency or spatial wave-

numbers. This is mathematically equivalent to assuming the

existence of periodic sources placed at spatial intervals of

L ¼ 2p=Dkz along z, and temporal intervals of T ¼ 2p=Dv:
In these expressions, Dkz and Dv represent the wavenumber

and frequency increment, respectively.

To prevent the periodic sources from contaminating the

response, the spacing between them must be sufficient to

ensure that their contribution arrives at times later than T.

To help achieve this goal, the frequency axis is shifted

slightly downwards in the complex plane, using complex

frequencies with an imaginary part of the form vc ¼ v2 ih

(with h ¼ 0:7Dv).

5. Validation of the BEM algorithm

The BEM algorithm used was applied to calculate the

response around a cylindrical circular rigid pipe placed

inside an unbounded homogeneous acoustic medium ða ¼

340 m=sÞ and illuminated by a harmonic point pressure

load. To obtain the required Green’s function, the NS

parameter in Eq. (4) must be set to one. For this geometric

configuration, closed form solutions are well known,

making it possible to validate the numerical algorithm.

The results (not presented) showed an extremely accurate

BEM response for low frequencies and revealed only slight

differences at higher frequencies.

6. Numerical examples

The influence of the presence of an acoustic barrier

placed between a point pressure load and a very tall building

has been assessed using the method described. In all the

examples presented, the ground surface and the building are

modeled as non-absorbing surfaces, and a pressure wave

velocity of 340 m/s was ascribed to the host acoustic

medium. An acoustic point source is placed 25.0 m away

from a tall building and 0.6 m above the ground. An

acoustic barrier of height h is inserted between the source

and the façade, with its axis 5.0 m away from the source, to

reduce the acoustic sound registered on the façade. The

geometry of this problem is represented in Fig. 1.

The acoustic barrier is modeled as a 0.2 m thick body. It

is discretized with an appropriate number of boundary

elements, defined by setting the relation between the

wavelength and the length of each boundary element to 8.

However, in no case is the number of boundary elements

used less than 32. A first series of simulations was

performed to calculate the response over a grid of receivers

placed along a vertical plane, parallel to the building façade

and 0.5 m away from it, equally spaced at a distance of 1.0

and 4.0 m apart along the vertical and longitudinal

directions, respectively. Responses were calculated for

frequencies in the range 2–256 Hz, with a frequency

increment of 2 Hz. The frequency increment used deter-

mined a total time window response of 0.5 s. The source is

assumed to emit a Ricker pulse with a characteristic

frequency of 100 Hz.

The sound pressure level (10 log½p2=ð2 £ 1025Þ2�; where

p is the maximum amplitude of the time responses

calculated for each receiver) obtained when there is no

barrier is represented in Fig. 2. A gray scale is used to

represent the pressure level, ascribing lighter and darker

shades to higher and lower values of the pressure level,

respectively. The results show that the maximum sound

pressure level field does not occur at z ¼ 0:0 m: This can be

explained by the effect of the directly incident pulses being

added to those reflected on the building. This behavior does

not occur if the grid of receivers is positioned at x ¼ 0:0 m

(not illustrated). A decrease in the general sound pressure

level is noted as the distance of the receiver to the source

increases.

Fig. 3(a) and (b) gives the sound pressure level, and the

attenuation produced by the insertion of an acoustic barrier

between the source and the building. When the barrier is

2.0 m tall, these results indicate a poorer performance of the

barrier for receivers placed closer to the ground, due to the

interaction between the direct field diffracted by the barrier

and that reflected by the rigid ground floor. Receivers placed

at greater distances from the floor register an improvement

in the performance of the barrier, with maximum efficiency

being reached at approximately 8 m above the ground for

z ¼ 0:0 m: Results obtained at receivers placed further from

the ground show a progressive loss of efficiency, and, at

greater heights from the ground, the presence of the barrier

can even lead to an amplification of the response. The

acoustic barrier does not have a constant performance along

the z axis. The points of maximum efficiency for

Fig. 1. Geometry of the problem.
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consecutive vertical z planes form an inclined line, which

indicates better performances at receivers placed further

above the floor as z increases. This behavior indicates that

the reflections on the rigid ground close to the building,

mentioned earlier, increase in importance as z increases.

Increasing the height of the barrier from 2.0 to 4.0 m and

then to 6.0 m, there is a global increase in the sound pressure

level attenuation for the full domain of receivers. The line of

maximum efficiency described earlier is now closer to the

ground surface, and less inclined. It appears that, as the

height of the barrier increases, the sound waves reflected on

the rigid ground close to the building and the direct field

diffracted by the barrier, both lose importance relative to the

receivers closer to the floor.

Next, to better illustrate the propagation of the sound

pressure from its source to the receivers, the time responses

are presented for receivers placed at z ¼ 0:0 and 30.0 m.

Fig. 4(a) displays the time responses at receivers placed

at z ¼ 0:0 m (source plane), for barriers 0.0, 2.0, 4.0, and

6.0 m in height. These records in the time domain exhibit a

series of incident pulses and the result of their reflections on

the ground, wall, and barrier. The results show that the first

set of pulses is recorded at later times at receivers closer to

the ground, as taller barriers are used. A pulse therefore

takes longer to travel from the source to the edge of the

barrier and then to these receivers as the height of the

obstacle increases. The arrival times of the different pulses

agree with those calculated using the acoustic ray theory,

allowing identification of the travel paths followed by the

different pulses shown in the response. It can further be seen

that the amplitude of the response recorded at these

receivers becomes smaller as a result of a diffraction effect

at the edge of the barrier. As described earlier, the efficiency

of the acoustic barrier is seen to increase as its height

increases.

A second pulse is clearly visible in the time responses,

just after the first arrival, when an acoustic barrier is present.

This second pulse is clearly separated from the first when

the barrier is taller and the receivers are placed at greater

distances from the ground. This second pulse is caused by a

prior reflection from the rigid ground.

As time progresses, a third pulse appears when there is an

Fig. 2. Sound pressure level along a vertical plane 0.5 m from the building.

Fig. 3. Sound pressure along a vertical plane 0.5 m from the building: (a) pressure level; (b) pressure attenuation.
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acoustic barrier inserted between the source and the

building. This pulse originates in the energy trapped

between the barrier and the building, which allows

secondary reverberation effects to occur. Other pulses

occur at later times (not visible in the time window

presented) as a result of this interaction between the barrier

and the rigid wall. The approximate time difference between

these pulses, showing progressively lower amplitude as

energy dissipates, is given by 40:0 m=340:0 ðm=sÞ ¼

117:6 ms:
Fig. 4(b) illustrates the responses obtained for the same

set of receivers for z ¼ 30:0 m: The different pulses arrive at

later times because they travel along longer paths. However,

the results exhibit features similar to the ones observed for

Fig. 4. Time response at receivers 0.5 m from the building: (a) z ¼ 0:0 m; (b) z ¼ 30:0 m:
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z ¼ 0:0 m: Comparison of the responses for z ¼ 0:0 and

30.0 m reveals a very slight drop in amplitude. This can be

explained by the effect of the directly incident pulses being

added to those reflected on the building, already mentioned

earlier.

Analyses in the frequency domain were performed for

the same geometries. Sound pressure levels are shown in

Fig. 5, for the frequencies of 125 and 1000 Hz. In the

absence of the acoustic barrier, the pressure field results

from the direct incident field interacting with that reflected

by the floor and the building. The total field is thus given by

the sum of waves with different phases leading to a spatially

variable sound pressure level, distinguishable as a pattern of

darker and lighter zones. This phenomenon becomes more

complex as the frequency increases.

Again, the performance of the 2.0 m barrier is poorer at

receivers placed closer to the floor when the excitation

frequency is low. The reflected field on the ground and the

trapped energy between the barrier and the building are

responsible for this behavior. As the frequency increases,

the barrier creates a ‘shadow’ zone behind it, leading to a

pronounced attenuation of the sound pressure field at the

lower receivers. The influence of the reflections at receivers

very close to the ground is, however, maintained.

The shadow created behind the barrier becomes more

intense as the height of the barrier changes from 2.0 to

6.0 m, and as the frequency increases from 125.0 to

1000.0 Hz. This behavior is expected since higher fre-

quency waves have smaller wavelengths, and are easily

influenced by smaller obstacles.

7. Conclusions

The analysis of the sound pressure level obtained over a

plane parallel to the building indicates that there is no

uniform performance on the part of the acoustic barrier. The

barrier achieved maximum efficiency at receivers placed at

greater distances from the floor as z increased. The taller the

barrier the greater the attenuation of the sound pressure

level, for the full domain of receivers, with a maximum

efficiency being found for receivers nearer the ground.

It was shown that the time arrivals of the different pulses

at the receivers agree with the travel path of the incident

pulses and their reflections on the ground, wall and barrier.

The results confirm that the efficiency of the acoustic barrier

was poorer the nearer the receiver was to the ground, owing

to the effect of the interaction of the different pulses:

diffracted by the barrier and reflected on the ground.

Analysis of frequency domain responses shows that, for a

low excitation frequency, the performance of the acoustic

barrier was poorer at receivers placed in the close vicinity of

the floor. As the excitation frequency increased, the barrier

created a shadow zone behind it, leading to a marked drop of

the sound pressure field recorded at lower receivers. The

attenuation provided by the barrier could be further

improved by increasing its height to create a more intense

shadow zone behind it.
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un écran mince. Acustica 1969;21:343–59.

[4] Terai T. On calculation of sound fields around three-dimensional

objects by integral equation methods. J Sound Vib 1980;69:71–100.

[5] Kawai Y, Terai T. The application of integral equation methods to the

calculation of sound attenuation by barriers. Appl Acoust 1990;31:

101–17.

[6] Morgan PA, Hothersall DC, Chandler-Wilde SN. Influence of shape

Fig. 5. Sound pressure along a vertical plane 0.5 m from the building: (a) frequency of 125 Hz; (b) frequency of 1000 Hz.

L. Godinho et al. / Engineering Analysis with Boundary Elements 26 (2002) 781–787786



and absorbing surface—a numerical study of railway barriers. J Sound

Vib 1998;217(3):405–17.

[7] Lacerda LA, Wrobel LC, Mansur WJ. A dual boundary element

formulation for sound propagation around barriers over an infinite

plane. J Sound Vib 1997;202:235–347.

[8] Lacerda LA, Wrobel LC, Power H, Mansur WJ. A novel boundary

integral formulation for three-dimensional analysis of thin acoustic

barriers over an impedance plane. J Acoust Soc Am 1998;104(2):

671–8.

[9] Tadeu A, Godinho L. 3D wave scattering by a fixed cylindrical

inclusion submerged in a fluid medium. Engng Anal Bound Elem 1999;

23:745–56.

L. Godinho et al. / Engineering Analysis with Boundary Elements 26 (2002) 781–787 787


	The scattering of 3D sound sources by rigid barriers in the vicinity of tall buildings
	Introduction
	Problem definition
	Boundary element formulation
	Pressure in time-space
	Validation of the BEM algorithm
	Numerical examples
	Conclusions
	References


