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Abstract

A proposal is made, based on the results of a series of tests and calculations, with the aim of

being used as a simple method to correct the value of the critical temperature of steel columns

free to elongate, in order to take into account the restraint effect of the structure to which they

belong in a practical situation. To better illustrate the possible types of behaviour of heated

steel columns with elastic restraint to the thermal elongation, and the reasons why the critical

temperature of axially loaded slender steel columns with thermal restraint can sometimes be

lower than the critical temperature of the same columns free to elongate, a simple model is

presented and used in a qualitative analysis. r 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

It is well known that the load versus axial displacement relationships obtained at
room temperature in a compression test of a slender axially loaded member are
different if the test is load-controlled or displacement-controlled (Figs. 1 and 2). In a
load-controlled test, a load will be reached where equilibrium can no longer be
sustained and buckling occurs giving the maximum load capacity of the member
(Fig. 1). In a displacement-controlled test however, after the maximum load capacity
has been reached, equilibrium is still possible. In this case, the values of the load
measured after the maximum represent the maximum load-carrying capacity of the
member for the corresponding deflected shape. In the unloading path the member
carries only as much load as permitted by the deformed shape.
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If a steel column is heated and its axial thermal elongation is fully prevented,
restraint forces develop, which increase up to a maximum and then decrease, just
like in the displacement-controlled test at room temperature (Fig. 3). In the case
of total restraint, the values of the axial force measured at each steel
temperature represent the maximum load-carrying capacity of the column for that
temperature.

Nomenclature

A cross-section area.
E Young’s modulus of steel at room temperature.
K stiffness.
L length of an element.
M bending moment.
NSd;fi;t¼0 design value of the axial load in fire situation.
P load.
R relative stiffness.
T free

crit critical temperature of a steel column with free elongation.
T rest

crit critical temperature of a steel column with restrained thermal
elongation.

U displacement.
DTcrit reduction in the critical temperature of a steel column due to thermal

restraint.
l slenderness.
Zfi ratio between the initial axial load and the design value of the axial load

in fire situation at time t ¼ 0:
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Fig. 1. Characteristic load-displacement diagram for an axially compressed steel member in a load-

controlled test.
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In a displacement-controlled compression test the stress field is generated by the
displacement of the extremities of the member towards each other, which causes
compression and bending. The heating of an axially fully restrained column will also
cause compression and bending. The expression ‘‘temperature-controlled compres-
sion test under constant displacement’’ could then be used in the very same sense as
the expression ‘‘displacement-controlled compression test under constant tempera-
ture’’ is used at room temperature.

When we consider the heating of one single column in a steel frame, the restraint
to the thermal elongation of the column depends on the stiffness of the structure, and
this may vary from very low (column free to expand) to very high values (column
fully restrained). The way the column behaves (the type of diagram load-axial
displacement) depends on the stiffness of the structure. The whole process is ruled by

Axial displacement

L
o

ad

Slenderness = 115

Fig. 2. Characteristic load-displacement diagram for an axially compressed steel member in a

displacement-controlled test.
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Fig. 3. Characteristic load-temperature diagram for an axially 100% restrained heated steel member.
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force equilibrium and displacement compatibility between the column and the
structure.

The academic example described in Section 2 uses a simple model that may help
clarify, in a qualitative way, how the behaviour of a column changes with the
stiffness of the structure. Several simplifications were intentionally introduced in the
model, keeping only those features that were considered relevant for the purpose.
The fire resistance of slender columns is the most affected by thermal restraint, due
to the strong influence of bending. So, lateral deflection by compression was one of
the main aspects considered in the model, although using it can give us no
quantitative predictions of the fire resistance of restrained steel columns.

The role of a column during a fire must be accepted prior to defining its
fire resistance. The definition of fire resistance of a column free to elongate is
nowadays clearly established and accepted as the time the column withstands a
constant load (the design load in fire situation). Logically, a column with restrained
elongation should also be able to withstand the same load. If we accept this, the
fire resistance of restrained columns will be defined as the time after which
the restraining forces become smaller than the design load in fire situation, and the
accurate calculation of the evolution of these restraining forces becomes very
important.

Under a practical point of view, these calculations may become very cumbersome
and unappealing. The objective of this paper is to provide the reader with a simple
method to take axial restraint into account, allowing for the calculation of safer and
more realistic values of the fire resistance of steel columns.

2. Representation of the behaviour of a column by means of a simple model

The model shown in Fig. 4 is intended to represent in a simplified manner the
interaction between a column and a structure with a given stiffness. In this figure the
structure is represented by the upper spring with a stiffness Ks: The two rigid bars AB
and BC with length L; connected to each other by the hinge B, represent the column.
The bending stiffness of the column is modelled by the spring with stiffness K1 and
the axial stiffness is modelled by the spring connecting the nodes A and C, with
stiffness K2: This system would not be adequate to model pure compression, but the
qualitative compression/bending behaviour is reproduced quite satisfactorily.

The out-of-straightness of the column is represented by an initial value yi of the
angle y: Springs 1 and 2 are supposed to behave according to Figs. 5 and 6. For the
following qualitative analysis, and for the sake of simplicity, these laws were kept
independent of the temperature. The spring representing the structure is taken as
behaving in a purely elastic manner.

Ignoring the presence of the restraining structure, the relation between the load
applied to the column PC and the corresponding vertical displacement UC at the
top of the column can be obtained from Eqs. (1)–(4) (Figs. 7 and 8). This
displacement results from the deformation between the two ends of the column
due to lateral displacement only. The shortening due to direct axial strains has been
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Fig. 4. Simple model to represent the compression/bending behaviour of a column.
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Fig. 5. Diagram moment–angle for spring 1.
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Fig. 6. Diagram force–displacement for spring 2.
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ignored for simplicity.

UC ¼ 2Lðcos yi � cos yÞ; ð1Þ

PC ¼ P2 þ
M1

L sin y
; ð2Þ

P2 ¼ K2UC and P2pP2;max; ð3Þ

M1 ¼ 2K1ðy� yiÞ and ypymax: ð4Þ
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Fig. 7. Deflected column.
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Fig. 8. Equilibrium diagrams of bar BC and node C.
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Fig. 9 shows, for the given set of parameters, the evolution of the load PC against
the corresponding vertical displacement UC:

Let us now suppose that the system ‘‘column-structure’’ (Fig. 4) is in an
equilibrium state under the action of a vertical load applied at the node C; whereby
the load supported by the column under normal temperature conditions (initial
state) is P0: If a real column in a structure is heated, its elongation will be elastically
restrained by the structure and restraint forces will develop. The temperature rise will
affect the mechanical properties of the column, which in turn will affect the
development of the restraining forces. Apart from this temperature dependency of
the mechanical properties of the column, the evolution of the interaction forces
between the column and the structure will be qualitatively identical to the evolution
that we get if we force the support A to move vertically and continuously upwards by
an amount U ; keeping the temperature constant. This displacement U is the driving
parameter in this simulation, just like the temperature is in a real situation. Eq. (2)
and Eqs. (5)–(8) can be used to obtain all variables as a function of the growing angle
y and then the evolution of the differential force ðPC2P0Þ as a function of
the imposed displacement U ; where y0 is the value of y when PC ¼ P0; US the
displacement of the structure spring as a result of the imposed U ; UC0 the value of
UC when PC ¼ P0

UC � UC0 ¼ 2Lðcos y0 � cos yÞ; ð5Þ

PC ¼ P0 þ PS; ð6Þ

PS ¼ KSUS; ð7Þ

U ¼ ðUC � UC0Þ þ US: ð8Þ

Fig. 10 shows the evolution of the differential force PC � P0 as a function of the
driving displacement U ; for a ‘‘high’’ structural stiffness Ks ¼ 200 kN/m.
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Fig. 9. Load versus vertical displacement.
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If we choose the initial force P0 as the minimum required load-carrying capacity of
the column, the maximum allowable displacement U will be about 0.017 m in this
case. Let us now suppose that the structural stiffness is only Ks ¼ 50 kN/m. The
calculated corresponding differential force (PC � P0) is shown in Fig. 11 as a
function of U :

Notice the qualitative change in this case. The curve was obtained, as referred
above, by letting the angle y continuously grow. This would imply that the
displacement U would have to decrease beyond point A. But if we assume that the
driving displacement U is monotonically growing, just as the temperature does in a
standard fire resistance test, when point A in the diagram is reached a sudden drop in
the force is unavoidable, although the column is the same as in the case of Fig. 10.
Nevertheless, the maximum displacement U remains exactly the same as previously
(Fig. 11, point C).

Po=0.462 kN - Ks=200 kN/m - K1=1 kN.m - K2=1 kN/m - L=1 m θi=0.03
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Fig. 10. Differential force (PC � P0) as a function of the driving displacement U for a stiff structure.
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Fig. 11. Differential force (PC � P0) as a function of the driving displacement U for a flexible structure.
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If we further reduce the value of the structural stiffness to Ks ¼ 20 kN/m the
evolution shown in Fig. 12 is obtained.

The sudden drop in the differential force when the maximum is reached is still
there, but now the next equilibrium point (Fig. 12, point B) lies below the initial
force. The maximum allowable displacement U is no longer defined by point C. It
has moved to the right (Fig. 12, point D). And it will further move to the right for
smaller values of the structural stiffness Ks:

The above-described behaviour of this simple academic model is qualitatively
exactly the same as previously observed in calculations [1–4] and in fire resistance
tests [5–10] of steel elements with elastic restraint to the thermal elongation. The
main difference is that in this model the mechanical properties, for the sake of
simplicity in the analysis, were kept independent of the temperature, while in a real
column subjected to fire they change with the steel temperature. Curiously, the model
is better adapted to describe the behaviour of the column in the compartment
immediately above the fire compartment, where no temperature rise occurs and the
steel properties remain unchanged. As a matter of fact, the lower node of this column
will really be being pushed upwards by the heated column in the lower compartment,
just like we have assumed in the model.

3. Reduction in fire resistance by thermal restraint

It was shown in previous works [1,4–6,9,10] that restraining the axial thermal
elongation of steel columns causes a reduction in their critical temperature. The
critical temperature should be understood as the steel temperature above which the
column can no longer support its design load in fire situation NSd;fi;t¼0 [11,12]. For an
axially restrained column this means the steel temperature above which the force
acting on the column becomes smaller than NSd;fi;t¼0 [13,14]. Fig. 13 shows the
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Fig. 12. Differential force (PC � P0) as a function of the driving displacement U for a very flexible

structure.
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evolution of the measured axial load during tests performed in Lisbon at Instituto
Superior T!ecnico (IST) [9,10] on axially restrained steel members with several
restraint grades and bending about the weak axis. In this figure, the non-dimensional
stiffness ratio R is defined by

R ¼
KsL

EA
; ð9Þ

where L is the length of the column, A the area of the cross section of the steel
member, E the Young’s modulus of steel at room temperature.

The qualitative behaviour of the simple model described above in Section 2 can
clearly be recognized here.

Why must then a 100% axially restrained slender column have a critical
temperature lower than the same column free to expand? In other words, why is the
load-carrying capacity of a 100% axially restrained slender column, heated to a
temperature T ; smaller than the load-carrying capacity of the same column free to
expand at the same temperature? The answer can be found in Figs. 14 and 15.

During the whole heating process the deflections of the restrained column are
much greater than the deflections of the unrestrained column. At every temperature,
the more deflected column is always much closer to its load-carrying capacity as a
consequence of the geometrical 2nd-order effects. When the temperature T rest

crit is
reached (Fig. 14), the load-carrying capacity of the restrained column has decreased
to the level NSd;fi;t¼0: For the unrestrained column however, this will happen only at a
later stage, when the steel temperature has reached a higher value T free

crit :
If the stiffness Ks of the restraining surrounding structure is small, the de-

flections of the column during heating are also smaller. Therefore, the difference
ðT free

crit � T rest
crit Þ becomes smaller too and vanishes when Ks ¼ 0:

As it was pointed out above, this reduction in the critical temperature of a slender
axially restrained column is a direct consequence of the geometrical 2nd-order
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Fig. 13. Evolution of the axial load in axially restrained steel members for several restraint grades—

measured values (IST).
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effects. Hence, it is expected to affect slender steel, reinforced concrete or composite
steel–concrete columns. The geometrical 2nd-order effects depend upon the length of
the column and on the mass distribution within the cross section (bending about the
weak axis or about the strong axis).

It has been observed both numerically and experimentally [1,2,4,6–10] that below
certain values of the structural stiffness Ks axially restrained columns begin to show
sudden buckling (Fig. 13). It was also observed that these columns reach a second
equilibrium state after buckling, for a lower value of the restraining load (Figs. 11–13
and 16). Some of them reach this equilibrium state for a value of the restraining load
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Fig. 15. Calculated horizontal deflections of steel members, free to expand and 100% restrained

(FINEFIRE).
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Fig. 14. Calculated load evolution in steel members, free to expand and 100% restrained (FINEFIRE).
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N > NSd;fi;t¼0 (Figs. 11,13,16), others for NoNSd;fi;t¼0 (Figs. 12,16). This type of
buckling deserves to be analysed in some detail.

Buckling of these columns occurs when the increase in the steel temperature
has forced the restraining load N to reach the maximum that the column can
support at that temperature. Further equilibrium states will only be possible
if the load acting on the column is allowed to decrease according to the descending
path of the diagram load—axial displacement, characteristic for the column
behaviour at the corresponding steel temperature. If elastic behaviour of the
surrounding structure is assumed, the characteristic load-displacement diagram of
the structure is obviously a straight line. As both equilibrium and displacement
compatibility between heated column and structure must exist, the next equilibrium
state can only be found for a much lower load at costs of a sudden deflection
(buckling) of the column (Figs. 11–13 and 16). If it would be possible to decrease
instantaneously the load just after buckling has occurred in a load-controlled
compression test, the column would reach a stable condition as well. This reduction
in the load is automatically done by the structural system during a fire test or during
a real fire. Again, the phenomenon is qualitatively independent of the structural
material. So, it shall be present in reinforced concrete and composite steel–concrete
slender columns as well.

It would be useful to have some simple guidance on how to correct the fire
resistance of an unrestrained column to obtain the fire resistance of the same column
when its thermal elongation is restrained by a real structure. Based on numerical and
experimental results, the authors make in the following section a proposal for the
correction of the critical temperature of steel columns. It is the authors’ belief that in
the future similar corrections will probably have to be applied to reinforced concrete
and composite steel–concrete slender columns as well, but the necessary supporting
data is not yet available.
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Fig. 16. Buckling of axially restrained steel members at high temperatures—calculated values (FINE-
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4. Proposal for the correction of the critical temperature of steel columns

Using the finite element program FINEFIRE [15] the authors have calculated the
critical temperature of several steel columns with pinned ends and fixed ends, free to
expand and with restrained thermal elongation, for several stiffness values Ks of the
restraining structure, different initial load levels Zfi ¼ N0=NRd;fi;t¼0; different cross-
section profiles, and three values of the column slenderness l; as shown in Table 1.
Figs. 17–20 summarize the results obtained.

The programme FINEFIRE uses an isoparametric Euler–Bernoulli beam finite
element. The element was developed taking into account geometrical non-linearity
and using an approximate updated Lagrangian formulation. This type of element
has two nodes in the plane x; y and 3 degrees of freedom at each node.

Structural elements under fire conditions usually have non-homogeneous
temperatures along the longitudinal axis and in the cross sections. So, at each
point, the material has different mechanical and thermal properties. These
conditions are introduced into the stiffness matrix by numerical Gauss integration
points.

The program uses the temperature dependent relationships of Eurocode 3 for the
thermal elongation of steel [14].

Table 1

Summary of the studied parameters

Cross-section profile HEB120, HEB260, HEB300, HEB400

Ks (kN/cm) 0, 25, 50, 100, 250, 500, 1000, 2500, 5000

l 40, 80, 120

Zfi 0.3–0.5–0.7

End nodes Pin-ended, built-in

Bending about Strong axis, week axis

λ=120 Strong axis 
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Fig. 17. Comparison of calculation results with the proposal l ¼ 120:
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The non-linear equation relating the stiffness matrix ½KðsÞ� of the structure, the
displacement vector fDug and the force vector fDPg

½KðsÞ�fDug ¼ fDPg ð10Þ

is solved using the Newton–Raphson method. The stiffness matrix is updated in each
iteration and it also takes into account the out-of-balance forces as applied forces in
the next iteration. The equilibrium criterion is based on the out-of-balance forces.

The stress–strain relationships for steel of Eurocode 3 were used, with the strain
hardening option.

The graphs represent the reduction in the critical temperature DTcrit ¼ T free
crit � T rest

crit

as a function of the non-dimensional parameter R; where T free
crit is the critical
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Fig. 18. Comparison of calculation results with the proposal l ¼ 80:
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temperature of the column free to expand, T rest
crit the critical temperature of the

column with restrained thermal elongation.
Fig. 21 summarizes the results obtained in a series of experimental tests performed

at IST on small steel elements with elastic restraint to the thermal elongation and
bending about the weak axis, reported in [9,10] (Fig. 13). The patterns are identical
to those in Figs. 17–20.

The above diagrams show the following general aspects:

1. The critical temperature decreases with increasing values of the non-dimensional
stiffness ratio R:

2. There is a value of R; above which no further reduction in Tcrit occurs.
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Fig. 20. Comparison of calculation results with the proposal—load level influence.
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Fig. 21. Reduction in the critical temperature caused by restraint to the thermal elongation—measured
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3. The decrease in the critical temperature depends on the slenderness value l of the
column.

4. The decrease in the critical temperature depends on the initial load level Zfi:
5. When bending is about the weak axis the decrease in critical temperature is

greater than when it is about the strong axis.

The proposal forwarded in Table 2 is based on both calculation and test results.
This proposal takes the above conclusions into consideration and is intended to be
used, within the frame of single element analysis, as a simple method to correct the
value of the critical temperature of a steel column free to expand T free

crit in order to
take into account the restraint effect of the structure to which the column belongs.

Figs. 22–24 make a comparison between experimental and calculation results with
the values obtained when using the proposal.

A further comparison between the proposal and calculation results can also be
found in Figs. 17–20.

The use of the proposal requires an estimation of the stiffness Ks of the structure,
but this can easily be done either on the basis of the 3D computer code used to design
the structure at room temperature, or by using simplified methods like the one
described in [7]. In this estimation, consideration should be given to certain factors,
which are not yet well known. Some of them, like cracking in the concrete, may have
a positive effect, because they lead to smaller values of the structural stiffness. Others
may increase the stiffness of the structure, like the presence of shear walls not
considered as such in the cold design.

Of course, there is always the possibility of considering full restraint [2], but this
might represent a too safe assumption in many cases. If this is done however, full
restraint should be applied to the initially compressed column (initial load level must

Table 2

Proposal for the calculation of the reduction in critical temperature

Tcrit ¼ T free
crit � CbDTcrit R ¼

KsL

EA

Cb= 0.9 Bending about strong axis

1.25 Bending about weak axis

DTcrit ¼ DT

0:03
R

Rp0:03

DT R > 0:03

DT ¼ 0 lo20

85CZ
l� 20

20

20plp40

85 þ
140

40
ðl� 40Þ

� �
CZ

40olp80

ð260 � 0:44 lÞCZ 80olp200

CZ ¼ 0:3 þ Zfi 0:3pZfip0:7
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be considered), and not to an unstressed element. To consider the critical
temperature as the steel temperature when the buckling of the column occurs
(temperature for maximum restraint load) would be an even more conservative
assumption in many practical situations [16], unless it will be proved that the
associated dynamic effects play a decisive role.

5. Conclusions

To illustrate the possible types of behaviour of heated steel columns with elastic
restraint to the thermal elongation, and the reasons why the critical temperature of
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axially loaded slender steel columns with thermal restraint can be lower than the
critical temperature of the same columns free to elongate, a simple model was
presented and used in a qualitative analysis. This model showed the same type of
behaviour already known from tests and FEM calculations on steel columns with
elastic restraint to the thermal elongation. The simplicity of the model leaves no
doubt about the reasons why thermal restraint causes a reduction in the critical
temperature of axially loaded slender columns.

Based on test and calculation results a proposal was made, with the aim of being
used, within the frame of single element analysis, as a simple method to correct the
value of the critical temperature of axially loaded steel columns free to elongate, in
order to take into account the restraint effect of the structure to which they belong in
a practical situation. The proposal has been prepared to give safe results. The test
results were obtained from restrained small elements with buckling about the week
axis and the calculations were performed on several steel cross-section profiles,
considering either bending about the week axis or the strong axis. Some tests on real-
scale steel columns with elastic restraint are foreseen in a near future. Among other
aspects, it is intended to use these tests to assess the margin of safety of the proposal.

As a final remark, it should be remembered that slender columns (lX80) are the
most affected by thermal restraint. So, it is expected that the fire resistance of steel
columns will not be much penalized by the thermal restraint in most of the practical
situations, where the slenderness is low. Moreover, it is obvious that in a global
analysis of structures having redundant connections, due to load transfer, the
decrease of the load-bearing capacity of a column to values below its design value in
fire situation NSd;fi;t¼0 can be tolerated, as long as this does not cause the overall
collapse of the structure, or in any way entrains the performance of other elements
with a fire compartmentation function [17]. However, if this decrease happens in a
sudden way (sudden buckling of the column), the load transfer is accompanied by a
sudden movement of part of the structure, mainly in the zone located above the
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buckled column. The dynamic effects of this mass movement on the structure are
worth being studied, mainly taking in mind that more than one column will be
heated at the same time in the fire compartment and will also have a reduced load-
bearing capacity. On the other hand, it has been shown that the decrease in critical
temperature loses importance as the eccentricity of the load increases, and this load
eccentricity is most of the time present in real structures, either due to non-uniform
load distribution or to the location of the column inside the structure.
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