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This paper describes the computation of the acoustic insulation provided by a single
simple wall separating two contiguous tunnels when a steady state, spatially sinusoidal,
harmonic line load pressure excites one of the tunnels. The Boundary Element Method
(BEM), formulated in the frequency domain, is used to compute the acoustic pressure in
the two tunnels. The insulation conferred by the wall is characterized, identifying the
location of insulation dips in the frequency domain with those dips related to its own
natural dynamic vibration modes and those related to the natural vibration modes of the
tunnels. This model is also used to assess how the dimension of the rooms, and the rigidity
and thickness of the wall affect acoustic insulation. The transmission loss results obtained
via the BEM are then compared with those provided by simplified analytical models such
as the mass law.

# 2002 Published by Elsevier Science Ltd.
1. INTRODUCTION

The steadily growing impact of low-frequency indoor and outdoor noise sources such as
due to music energy, aircraft noise and traffic noise [1, 2] motivated researchers to develop
practical and theoretical interest on the sound transmission in buildings at low frequencies
[3]. Low-frequency noise is indeed common at residential noise and has received less
attention. Low-frequency noise differs from high-frequency noise since it suffers less
attenuation due to walls and other structures, it travels great distances and loses little
energy through atmospheric and ground attenuation. Ear-protection devices are also less
effective against it [2].

Sound is transmitted through a partition wall by the vibration of the element with the
mass and sound frequency being relevant variables. Airborne sound insulation improves
with element mass increment, as a result of increasing forces of inertia. When the
frequency of the incident sound is increased, for the same element mass, acoustic
insulation rises owing to a fall in the element’s vibration power and to greater dissipation
of sound energy.

The acoustic insulation of a partition element is affected by variables other than mass
and frequency. These include the existence of weak points in the insulation, the angle of
incidence of the waves, the damping of the element, the rigidity and, in the case of multiple
elements, the number of panels, their individual characteristics and how they are
separated.

In a real situation, the transmission of sound between two contiguous rooms depends
not only on the separation elements, but also on the connections between the surrounding
022-460X/02/$35.00 # 2002 Published by Elsevier Science Ltd.
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elements, and on how propagation proceeds inside the emitting and receptor rooms. The
vibration eigenmodes of the rooms excited determine how propagation occurs in this
process.

Airborne wall sound insulation is a classic problem in acoustics. The first publications
on it appeared at the beginning of the 20th century [4]. However, the development of
theoretical simplified solutions to predict the sound insulation of building elements did not
appear until the middle of the 20th century, when London developed theoretical equations
to compute the transmission of sound through single and double walls [5–7]. Since then,
the design of sound separating walls has been performed using classical analytical models.

The prediction of the sound insulation conferred by a single panel above, below, and in
the vicinity of the coincidence effect has motivated different researchers to propose other
simplified methods [8–11]. Callister et al. [12] used a combination of the prediction
methods presented by Cremer [8], Sewell [9] and Sharp [10] to evaluate the sound
transmission loss of a single-layer panel. Novikov [13] described the sound insulation of
finite plates at low frequencies of excitation as the mass law plus a correction coefficient.

An infinite plate model, a baffled plane model and a room–plate–room model were used
by Osipov et al. [14] to predict airborne sound transmission by single partitions at low
frequencies. In these theoretical simplified models, the walls are assumed to be thin
compared with the bending wavelength, and harmonic pure bending wave motion
according to Kirchhoff’s theory is adopted. Their results reveal that the sound insulation
at low frequencies depends not only on the separating wall properties, but also on the
geometry and dimensions of the contiguous rooms.

As the problem of sound insulation is quite complex, laboratory tests have been used to
find the insulation of panels. The two-room method is the laboratory technique most often
used to determine sound insulation [15–17]. The test facilities are built with a view to
prevent flanking transmissions, in an effort to guarantee that the only path for the
transmission of sound is via the test specimen [18]. However, the low-frequency range is
not included in current standards on sound insulation measurements. Work by different
authors [1–3, 19] have shown that the sound reduction index in this range depends on
several parameters, e.g., the room’s dimensions, the reverberation time, the position of
sound source. Therefore, it is very difficult to extrapolate laboratory results to situations
with different geometry and dimensions of the rooms or the partition.

It is not easy to measure the sound insulation provided by a partition construction
element separating two compartments, for low frequencies (below 400Hz). The
reproducibility of sound insulation measurements is not satisfactory at frequencies below
100Hz for typical European transmission rooms with a volume of 50–70m3 [20, 21]. It
should be noted that no standard takes enough account of the fluctuating nature of noise,
and fails to make a sufficient correction for large fluctuations [1].

Various numerical schemes for predicting the sound insulation of a separating wall have
been proposed and developed. The Statistical Energy Analysis (SEA) method is
particularly suitable for studying complex problems such as sound transmission [22].
This method was first introduced in the 1960s [23–25] and it brought together two distinct
areas of study: room acoustics and the study of coupled modes. Before the advent of this
method, the simultaneous study of a room’s acoustic properties and its natural vibration
modes was only practicable for the few first modes.

By this method, the acoustic system is divided into diverse subsystems. Each subsystem
requires the knowledge of some properties to compute the global acoustical response, such
as dimensions, density and wave speed. The global acoustic response is computed by the
interaction of the different subsystems. One of the basic principles of this method is that
only a minimum amount of information about a system is needed to compute the
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performance of an acoustic system. However, the SEA model is unreliable at low
frequencies owing to the statistical uncertainties that occur when there are few resonant
modes in each of the subsystems. The Finite Elements Model (FEM) is not affected by this
limitation at low frequency. The SEA and the FEM were used by Steel and Craik [26] to
compute the sound transmission between walls. The comparison of these results with
measured data reveals that the FEM can be used for determining the coupling between
subsystems. Hynn.aa et al. [27] used the SEA model to predict the structure-borne sound
transmission in large welded ships’ structures. They applied a pre-processing programme,
frequently used in the context of the FEM, to reduce the modelling work. The SEA model
has recently been used by Craik and Smith [28] to compute the sound transmission
through double-leaf lightweight partitions. The wall is modelled as a single subsystem at
low frequencies, while at higher frequencies the SEA model utilizes a number of
interconnected subsystems.

Two different models were used by Kropp and Rebillard [29] to compute the sound
insulation of double-wall constructions at low frequencies: a matrix formulation, which
avoids the limitations in the thickness of the layers that occur with the Kirchhoff or
Mindlin theories; a model which describes the double-wall construction as two bending
plates connected by an elastic interlayer represented by uncoupled springs, which does not
take into account the shear stiffness.

Other well-established numerical techniques, such as the finite element and finite
difference methods, have not been used to compute sound insulation, given the high
computation cost entailed. They have failed because the domain being analyzed has to be
fully discretized, and very fine meshes are needed to solve excitations at high frequencies.

Osipov et al. [30] used the FEM to study the effect of room dimension on the sound
insulation of a separating wall at low frequencies. The FEM was also used by Maluski and
Gibbs [31] to predict the sound insulation between adjacent rooms at low frequency, and
to compare the results with experimental data. Their results show that the sound
insulation provided by a separating wall, at low frequencies, is strongly dependent on the
modal characteristics of the sound field within each compartment.

The low-frequency diffuse field transmission loss through double-wall sound barriers
with elastic porous linings was calculated by Sgard et al. [32]. They used a FEM to model
the different layers of the sound barrier, coupled to a variational boundary element
method to account for fluid loading. The diffuse field is assumed to be a combination of
uncorrelated freely propagating plane waves with equal amplitude, no two of which are
travelling in the same direction.

Most of the methods described are limited to laterally infinite sound panels, and the
predictions at low frequencies are also limited. The diffuse field is the basis of standardized
transmission loss measurements and, usually, these models assume plane wave excitation,
which represents another limitation. Also, it is classically assumed in most of the above-
cited references that the fluid loading is negligible.

The Boundary Element Method (BEM) is used in this work to compute the sound
insulation provided by an elastic wall that separates two air-filled tunnels at low
frequencies. In the simulated model used, a 3-D source is placed in one of the tunnels,
while the response is computed inside the two tunnels at low frequencies. This method
circumvents the limitations of the thickness of the layer, found with Kirchhoff or Mindlin
theories; it models the surfaces of the tunnel and the separating wall completely, and fully
takes into account the coupling between the fluid (air) and the solid formation.

The steady improvement in computer performance now means that numerical methods,
such as the BEM, can be developed, and these are being applied more frequently. The
BEM has already been used to simulate the propagation of waves between two fluid-filled
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boreholes, when a source is placed in one borehole, and the other hosts the receivers [33].
This models a seismic prospecting technique, known as cross-hole surveying, commonly
used to determine the characteristics of the elastic medium between two boreholes.

This method has been used by Bouchon [34] to study wave propagation in an infinite
open borehole in layered isotropic media. Dong et al. [35] subsequently extended this work
by adding casing and cement to the formation, and assessing its effect, and by
incorporating transversely isotropic layers. Their work used an indirect BEM to model
source radiation from open and cased boreholes in layered transversely isotropic media.

The effect of irregular boreholes on the response has been studied by Randall [36] and
Tadeu and Santos [33], simulating the deformation of the borehole to represent the
mechanical action of the drill string in vertically deviated wells, rock failure adjacent to a
drilled borehole, plastic deformation, or washing out of the borehole in soft or poorly
consolidated rocks, as reported by Bell and Gough [37] and by Zheng et al. [38].

The BEM could be regarded as the best tool for modelling and analyzing wave
propagation in an unbounded medium because it automatically satisfies the farfield
conditions and only the boundary of the elements being studied need to be discretized.

The structure of the paper is as follows: first, a brief definition of the 3-D problem is
given, and then the BEM is formulated in the frequency domain. The results are validated
by applying them to the situation of a cylindrical, air-filled circular tunnel for which
analytical solutions are known. The theoretical mass law is then described, and the
importance of variables to the definition of acoustic insulation is explained. Such variables
include the mass, frequency, coincidence effect and eigenmodes of an enclosed room.
Finally, simulations are performed for different tunnel configurations. The computed
insulation curves obtained are then compared with those predicted by the simplified
analytical model. The influence of wall thickness, separating the tunnels, the tunnels
geometry (height and width), the receivers’ position, the mechanical properties of the
elastic material and the apparent wave velocity are all analyzed.

2. BEM FORMULATION

Twin tunnels, separated by a concrete wall, are driven along the z direction in a elastic
medium (see Figure 1). The lining of the tunnel is assumed to be concrete, with density r;
allowing a shear wave velocity of b and a compressional wave velocity of a: The material
surrounding the lining is assumed to have similar properties as those of the lining. Since
the aim of the present model is to calculate the airborne sound insulation conferred by a
wall, separating two tunnels, this simplification is not significant because the amount of
energy crossing the lining of the tunnel is very small compared with the energy that goes
through the separating wall. The fluid (air) inside the tunnels has a density ra and permits
a compressional wave velocity aa: A dilatational point source is placed in one of the
tunnels at position (x0; y0; z0), oscillating with a frequency o: The pressure incident field is
expressed by

pinc ¼
Aeio=aa at�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x�x0ð Þ2þ y�y0ð Þ2þ z�z0ð Þ2

p� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x � x0ð Þ2þ y � y0ð Þ2þ z � z0ð Þ2

q ð1Þ

in which A is the wave amplitude and i ¼
ffiffiffiffiffiffiffi
�1

p
:

As the geometry of the tunnels does not change along the z direction, the solution
can be obtained as a summation of 2-D problems for varying effective
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Figure 1. Geometry of the problem.
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wavenumbers [39],

kaa
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o2

a2a
� k2

z

s
; Im kaa

50 ð2Þ

where kz is the axial wavenumber after Fourier transformation of the problem in the z

direction. The incident field in this frequency wavenumber domain is given by

#ppinc o; x; y; kzð Þ ¼ �iA

2
H

2ð Þ
0 kaa

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x � x0ð Þ2þ y � y0ð Þ2

q� �
ð3Þ

in which the H 2ð Þ
n (...) are Hankel functions of the second kind of order n. This is often

referred to in the literature as a 2 1
2
-D problem, because the geometry is 2 1

2
-D and the

source is 3-D.
As the lining is assumed to be surrounded by material with identical properties, the

BEM only requires the discretization of the inner surfaces of the tunnels. The BEM
equations that are applied to this problem have been applied by the authors to the solution
of the wave propagation in a fluid-filled borehole [33]. The system of equations required
for the solution is arranged so as to impose the continuity of the normal displacements and
normal stresses, and null shear stresses along the boundary of the fluid-filled boreholes.
This system of equations requires the evaluation of the following integrals along the
appropriately discretized boundary of the borehole,

H
sð Þkl

ij ¼
Z

Cl

H
sð Þ

ij xk;xl ; nlð Þ dCl ði; j ¼ 1; 2; 3Þ;

H að Þkl
a1

¼
Z

Cl

H sð Þ
a1

xk; xl ; nlð Þ dCl ;

G
sð Þkl

ij ¼
Z

Cl

G
sð Þ

ij xk; xlð Þ dCl ði ¼ 1; 2; 3; j ¼ 1Þ

G að Þkl
a1

¼
Z

Cl

G að Þ
a1

xk; xlð Þ dCl ð4Þ

in which H
ðsÞ
ij xk; xl ; nlð Þ and G

ðsÞ
ij xk; xlð Þ are, respectively, the Green’s tensor for traction

and displacement components in the elastic medium, at point xl in the direction j caused
by a concentrated load acting at the source point xk in the direction i; H

ðaÞ
a1 xk; xl ; nlð Þ are

the components of the Green’s tensor for pressure in the fluid medium, at point xl caused
by a pressure load acting at the source point xk; G

ðaÞ
a1 xk; xlð Þ are the components of the
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Green’s tensor for displacement in the fluid medium, at point xl in the normal direction,
caused by a pressure load acting at the source point xk; nl is the unit outward normal for
the lth boundary segment Cl; the subscripts i; j ¼ 1; 2; 3 denote the normal, tangential
and z directions respectively. These equations are conveniently transformed from the
x; y; z Cartesian co-ordinate system by means of standard vector transformation
operators. The required 21

2
-D fundamental solution (the Green functions) and

stress functions in Cartesian co-ordinates, for the elastic and fluid media, are listed in
Appendix A.

The required integrations in equation (4) are performed analytically for the loaded
element [40, 41]. A Gaussian quadrature scheme is used when the element to be integrated
is not the loaded element.

3. BEM VALIDATION

The BEM algorithm was implemented and validated by applying it to a cylindrical
circular air-filled tunnel for which the solution is known in closed form [42]. The
mechanical properties of the elastic medium (concrete) and the fluid medium of the tunnel
(air) are listed in Figure 2.

The fluid-filled circular tunnel is subjected to a point dilatational load applied at point
O; as represented in Figure 2. The response is computed along a plane, placed
perpendicular to the longitudinal axis of the tunnel, over a fine grid of receivers, as
illustrated in Figure 3(a). The scattered pressure field inside the borehole and the vertical
displacement field in the solid formation, when a harmonic pressure load of 600Hz is
excited at kz ¼ 0�5 rad=m; are represented in Figure 3(b).

All graphics displayed have been normalized by dividing the response by the maximum
displacement and pressure, both outside and inside the borehole. The BEM results were
computed with a different number of boundary elements. Figures 3(c) and 3(d) displays
the BEM error obtained by the difference with the analytical results.

The BEM accuracy improves as smaller boundary elements are used to model the
response, as expected. In these examples, the ratio between the wavelength of the
compressional sound waves and the length of boundary elements increases from 8 (21
y
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Figure 2. Circular cylindrical inclusion in an unbounded elastic medium.



Figure 3. Validation of the BEM: (a) typical BEM mesh; (b) analytical response; (c) normalized BEM error
(21 elements); (d) normalized BEM error (43 elements).
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boundary elements) to 16 (43 boundary elements). The results also show that the BEM
solution improves as the distance to the surface of the inclusion increases.

4. ACOUSTIC INSULATION

4.1. THEORETICAL MASS LAW

One of the commonly used approximations for predicting the sound reduction index of
a single panel wall is known as the Law of Theoretical Mass, or the Law of Theoretical
Frequency [11],

R ¼ 10 log 1þ pf M cos y
raaa

� �2
" #

dB; ð5Þ

where R denotes the sound reduction index, f is the frequency (Hz), M is the mass per unit
area of the panel (kg/m2) and y is the angle of incidence.

This Theoretical Law adopts certain simplifications. It assumes that the partition
element is infinite, that it behaves like a group of juxtaposed masses with independent
displacement, that the partition element has null damping forces and that the incidence
waves are plane waves. This equation predicts an increase in the sound reduction index of
about 6 dB for each doubling of the mass per unit area.

Real division panels have finite size and they are struck by an infinite number of plane
waves with differing angles of incidence, causing a diffuse field. After some mathematical



P. SANTOS AND A. TADEU952
manipulations, assuming the lack of waves at grazing incidence, the mass law can be
assumed as

R ¼ 20 log Mfð Þ � 47 dB: ð6Þ
This simplified method does not take into account the localized dips in sound insulation

provided by a wall due to its dynamic behaviour (rigidity of the partition element and its
damping).

4.2. PROPAGATION OF BENDING WAVES

If one assumes the existence of an infinite thin plate, where the fluid coupling is
negligible, the bending waves can travel along the plate with a velocity (cL) given by [43]

cL ¼ Do2

rh

� �0�25
; ð7Þ

where h is the panel thickness, o ¼ 2pf ; D ¼ ðh3EÞ=½12ð1� v2Þ	; E is Young’s modulus
(N/m2), n is the Poisson ratio and r is the plate material density (kg/m3).

The incident sound waves strike the panel from many directions. When the wavelength
of sound air projected on the wall equals the wavelength of the wall bending waves, the
movement of the partition panel is assumed to increase, leading to a low sound insulation.
This happens when

o ¼ aa

sin f

� �2
ffiffiffiffiffiffi
rh

D

r
; ð8Þ

where f is the incidence angle of the sound, relative to the element perpendicular direction.
The critical frequency corresponds to the case when f is equal to 908, known as the

coincidence effect. In this case, we have

fc ¼
a2a

1�81h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r 1� n2
� �

E

s
ðHzÞ: ð9Þ

4.3. TRANSVERSE VIBRATION OF THE PANEL IN PURE FLEXURE

The transverse movement of the wall affects its capacity to transfer energy to the
surrounding space and, therefore, its sound insulation, producing dips in insulation. These
dips are mainly going to occur at eigenfrequencies related to the panel’s flexure-induced
transverse movement.

4.4. DYNAMIC RESPONSE OF A PARALLELEPIPED ROOM

The precise characterization of a sound field which is established in an enclosed space, in
the presence of a sound source, requires a complex physical–mathematical treatment. It
involves variables that are difficult to quantify, such as the characteristics of sound energy
dissipation in the air and in the surrounding medium, and those of the sound sources
[44–46].

The formation of stationary waves is one of the factors that most influences the
vibration properties of an enclosed tunnel, which occurs at

fqr ¼
aa

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q

a

� 2

þ r

b

� 2
r

ðHzÞ; ð10Þ
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where a; b are the tunnel dimensions (height and width, respectively) and q and r are
integers (0, 1, 2,....).

5. NUMERICAL APPLICATIONS

The geometry of the twin concrete rectangular tunnels, and the concrete separating wall,
driven along the z direction in elastic medium, is illustrated in Figure 4(a). As described
above, the lining of the tunnel is assumed to be thick and to have material properties
similar to those of the surrounding elastic medium. The tunnels’ surfaces are modelled
with a number of boundary elements that increases with the frequency excitation of the
harmonic source. The ratio between the wavelength of the incident waves and the length of
the boundary elements is kept to a minimum of 10. The number of boundary elements
used to model each tunnel is never less than 80. Given the small distance between the two
faces of the separating wall, the length of boundary elements modelling the wall is at least
8 times smaller than its thickness.

In our examples, the material properties of the concrete (a ¼ 3499 m=s; b ¼ 2245m=s;
r ¼ 2500 kg=m3), and of the air filling the tunnel (ra ¼ 1�22 kg=m3; aa ¼ 340m=s), are kept
constant.

The computations were performed for two different positions of the source: in the centre
of the tunnel (source 1), and in the close vicinity of the separating wall (source 2), as in
Figure 4(a). Given the symmetry of the problem, the BEM computations use this
characteristic of the geometry to improve its efficiency.

The response was calculated for pairs of receivers when analyzing the response at
particular positions, while a grid of receivers was used to compute the average sound
insulation provided by the wall separating the two tunnels (see Figure 4(b)).

The full 3-D results require high computational effort given the large number of 2-D
solutions that needed to be integrated, thereby making the full integration far too time
consuming. Next, simulations are performed following waves with different spatial
sinusoidal variation along the z direction, that is, with different apparent wave velocities
along the z-axis, to quantitatively study the 3-D effects of the acoustic insulation. This
apparent wave velocity (c) results from waves arriving at the z-axis with a path inclination
given by arccosðaa=cÞ; where aa is the true wave velocity (see Figure 5). In the equations
presented above kz is taken to be o=c: Waves arriving at the receivers with a 908
1.50
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Figure 4. Numerical applications geometry: (a) position of the sources and receivers 1 and 2; (b) grid of
receivers.
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inclination in relation to the z-axis are represented by c ¼ 1m=s; which can be
understood as a pure 2-D problem, in which the source is linear. As the path inclination
ranges from 90 to 08, there is a lower bound value for c that corresponds to the slowest
wave velocities (aa), which corresponds to waves travelling parallel to the z-axis. The
frequency range of the computations is from 0�5 to 1000�0Hz with a frequency increment
of 0�5Hz.

A selection of results illustrating the main findings is given below. First, a separating
wall 0�20m thick is used to illustrate how the sound pressure level within the tunnels
changes when subjected to the incidence of cylindrical waves with different spatial
sinusoidal variations along the z-direction for the two source positions. The peaks and
troughs in the Fourier amplitude spectra occur at particular frequencies and in definite
frequency intervals. They are related to the eigenfrequencies of the tunnels and to the
transversal vibration modes of the wall. The average sound insulation over a grid of
receivers, provided by the separating wall, is then computed for different wall thicknesses
and source positions.

5.1. INCIDENCE OF CYLINDRICAL WAVES OF kz ¼ 0

Next, it is assumed that the 0�20m thick wall is subjected to the incidence of cylindrical
waves of k2 ¼ 0: This corresponds to waves arriving at the receivers with a 908 inclination
in relation to the z-axis.

Figure 6 displays responses obtained when the source is placed on the axis of the first
tunnel (source 1) in the frequency range from 0�5 to 400�0Hz. Figure 6(a) illustrates the
sound pressure level responses, in a dB scale, obtained at the pair of receivers (1, 2), placed
0�2m from the separating wall at its mid-height, in the two tunnels. Receiver 1 is placed
inside the tunnel, where the source is allocated, and receiver 2 is placed in the second
tunnel. A source placed on the axis of the tunnel only excites modes which do not exhibit
null pressure at the centre of this tunnel [ 2q; 2rð Þ with q ¼ 0; 1; ::: and r ¼ 0; 1; :::].
However, part of the energy generated in the first tunnel is transmitted to the second
tunnel. In the second tunnel, this energy is observed as though generated by an off-centre
source placed at mid-height of both tunnels, which excites additional modes [ q; 2rð Þ with
q ¼ 0; 1; ::: and r ¼ 0; 1; :::]. Note that the modes [ q; 2r � 1ð Þ with q ¼ 0; 1; ::: and
r ¼ 1; 2; :::] are not excited; this is because the source is on the horizontal symmetry
axis, for which these modes registered zero pressure. The dynamic process does not stop
here, since the energy in this second tunnel is also transmitted to the first tunnel, and there
it can be seen as an off-centre source, exciting the additional modes. The results in Figure
6(a) agree with this interpretation: at receiver 1, the sound pressure field exhibits enhanced
peaks in the vicinity of the first excited modes [f02 ¼ 113�3 Hz; f20 ¼ 170�0 Hz; f22 ¼
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Figure 6. Responses obtained when source 1 (k2 ¼ 0) is excited in the presence of a concrete wall 0�20m thick:
(a) sound pressure level at receivers 1 and 2; (b) sound pressure difference between receivers 1 and 2 (}}) versus
the theoretical mass law prediction (– – –); (c) average sound insulation (}}) versus the theoretical mass law
prediction (– – –).
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204�3 Hz; f04 ¼ 226�7 Hz; f24 ¼ 283�3 Hz; f40 ¼ 340�0 Hz; f42 ¼ 358�4 Hz and
f26 ¼ 380�1Hz ], while additional peaks are clearly visible on the sound pressure response
recorded on the second tunnel, which correspond to the excitation of the modes
[f1;0 ¼ 85�0 Hz; f12 ¼ 141�7 Hz; f14 ¼ 242�1 Hz; f30 ¼ 255�0 Hz; f32 ¼ 279�1 Hz; f34 ¼
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341�2 Hz; and f16 ¼ 350�5 Hz]; small peaks in the vicinity of these later modes are seen in
the responses for the first tunnel, as a result of energy being transmitted from the second
tunnel to the first.

Figure 6(b) plots the difference between the sound pressure levels registered at receivers
1 and 2. As expected, low insulation is observed in the vicinity of the eigenmodes of the
tunnel. Figure 6(b) also includes the sound transmission loss predicted by the theoretical
mass law. It can be observed that the calculated sound pressure difference between
receivers 1 and 2 exhibits pronounced dips and troughs not predicted by the simplified
model. These discrepancies are particularly important at lower frequencies (550Hz), for
which the BEM solution indicates higher insulation values than that expected by the Mass
Law.

Figure 6(c) shows the average sound insulation computed from the response obtained
over a grid of 96 receivers, equally spaced 0�25m along the vertical and the horizontal
directions, placed in both tunnels (see Figure 4(b)). This plot is smoother than the
computed pressure level difference between receivers 1 and 2. However, it is still far from
the insulation predicted by the Mass Law. The computed response appears to be highly
dependent on the excited modes of the tunnels, showing poor insulation in the vicinity of
the corresponding eigenfrequencies. As for receivers 1 and 2, at very low excitation
frequencies, the Theoretical Mass Law predicts lower insulation than that computed by
the BEM model. The results do not reveal a clear dip in insulation related to the
coincidence effect. This effect would be more relevant to larger tunnels, or in cases where
single panel walls are inserted in an unbounded medium. The constructive interference
among the reflected fields would be weaker, leading to an enhanced contribution due to
the propagation of the guided waves along the wall, for which the coupling between the
solid and the fluid would be even more important.

Figure 7 displays the sound pressure level computed at receivers 1 and 2 when the
separating wall is 0�05, 0�10 and 0�20m thick, for the frequency range from 0�5 to 400�0Hz.
The responses recorded at receiver 1 do not appear to change significantly as the thickness
of the wall changes. Meanwhile, the sound pressure level registered at receiver 2 changes
markedly when the wall thickness changes. As expected, the highest sound pressure level at
receiver 2 is obtained when the wall is 0�05m thick, while the lowest response is recorded
when the wall is 0�20m thick. The simplified model predicts a constant increase in sound
insulation of about 6 dB for each doubling of mass, which does not occur with the BEM
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and �}� 0�20m), when the source 1 (kz ¼ 0) is excited.
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solution. Indeed, the sound pressure difference among the various responses obtained at
receiver 2 oscillates strongly throughout the frequency domain.

The peaks of the sound pressure level computed at receivers 1 and 2 are still related to
the eigenmodes of the tunnels. The existence of additional enhanced sound pressure levels
in the vicinity of specific frequencies not associated with the normal modes of the tunnels
can also be observed. These enhanced responses are generated by the vibration of the wall,
and change according to its thickness.

Figure 8 illustrates the sound pressure level obtained at receivers 1 and 2 when source 2
is excited, in the presence of a wall, 0�20m thick, in the frequency range from 0�5 to
400�0Hz. These responses exhibit features similar to the previous ones. However, source 2,
placed away from the centre of the tunnel, excites additional eigenmodes, as the sound
pressure results at receiver 1 testify.

5.2. INCIDENCE OF CYLINDRICAL WAVES OF kz=0

Again, a 0�20m thick wall is used to illustrate how the acoustic insulation varies when a
panel is subjected to the incidence of cylindrical waves with different spatial sinusoidal
variation along the axis of the tunnel to find the main features of the 3-D effects of the
acoustic insulation.

In the examples given, two apparent velocities are chosen, namely c ¼ 400:0 and
340�0m/s. The apparent wave velocity c ¼ 340�0m/s corresponds to waves that travel
parallel to the tunnel. The waves travelling along the tunnel with an apparent wave
velocity of c ¼ 400�0m/s correspond to plane waves reaching the surface of the tunnels
with an inclination of 58.28 in relation to the normal direction of the tunnel surfaces.

The features of the responses obtained when c ¼ 400�0m/s are still similar to the ones
described before (see Figure 9(a)). The peaks in the sound pressure level occur at very well-
defined frequency positions, which coincide with the eigenmodes of a tunnel with
dimensions 3�0 sinð31�8Þ ¼ 1�58 m and 2�0 sin 31�8ð Þ ¼ 1�05 m [f10 ¼ 161�9 Hz; f02 ¼ 215�
2 Hz; f12 ¼ 269�3 Hz; f20 ¼ 323�8 Hz and f22 ¼ 388�8 Hz]. This happens because the journey
distance (L1) in this domain is smaller since it corresponds to the projection of the initial
vertical path (d1) to the inclined path, leading to a distance L1 ¼ d1 sin½arccosðaa=cÞ (see
Figure 5).

The response recorded when the apparent wave velocity is c ¼ 400�0m/s does not
exhibit the oscillation found before (see Figure 9(b)). This behaviour was expected because
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Figure 8. Computed sound pressure level at receivers 1 and 2, when source 2 (kz ¼ 0) is excited in the presence
of a 0�20m thick separating wall.
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the journey distance (L1) in this domain tends to be zero. The propagation of waves with
this apparent velocity can be seen as being parallel to the z direction with the wavefront
being perpendicular to this direction. Thus, the reflection of these waves on the lateral
walls of the tunnels is very weak, and does not lead to the constructive interference of
reflected waves, registered above (see Figure 9(a)).

5.3. AVERAGE SOUND INSULATION

The average insulation curves computed for the various walls, with different thicknesses
(0�05, 0�10 and 0�20m), when source 1 is excited in the frequency range from 0�5 to
1000�0Hz, are now given.

Figure 10 plots the average insulation curves predicted by the BEM model when the
source is linear along the z direction (kz ¼ 0). The mass law predictions (equation (6)) are
also included to illustrate the differences between the BEM model and the simplified
model.

As before, at very low frequencies, the simplified model predicts insulation values lower
than those obtained by the BEM model. It can also be seen that the discrepancies between
the simplified insulation curves and the computed curves increase as the mass of the wall
diminishes, that is, as its thickness decreases. The acoustic insulation provided by a wall of
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Figure 10. Average sound insulation when source 1, kz ¼ 0; is excited in the presence of separating walls of
0�05, 0�10 and 0�20m thicknesses.
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0�05m thickness, as computed by the BEM model, is generally lower than that predicted
by the simplified model, equation (6). The acoustic insulation prediction by the simplified
model fits the computed insulation better when the wall is thicker (0�2m). However, the
insulation computed by the BEM model is still exhibiting dips and peaks far removed from
the insulation predicted by the simplified model.

Figure 11 displays the computed BEM results when the source emits cylindrical waves
with an apparent wave velocity of c ¼ 400�0m/s. Again the insulation predicted by the
simplified model is also plotted. Analysis of the results shows the sound insulation as a
curve with pronounced dips. The increase in sound insulation with increasing wall mass is
greater than that predicted by the simplified expression (6). The simplified model predicts
an increase in sound insulation of about 6 dB for each doubling of mass (doubling of wall
thickness), which is lower than that given by the BEM solution.

Figure 12 gives the average insulation calculated by the BEM model when the tunnel is
illuminated by cylindrical waves, which exhibit an apparent wave velocity of c ¼ 340�0m/s.
As described above, these insulation curves do not reveal the existence of a peak/trough
structure. The computed insulation responses are well below the prediction calculated by
the simplified expression (6), particularly at very low frequencies, where the insulation is
close to zero, regardless of wall thickness. Insulation increases for high frequencies, and
the wall thickness is found to be important for the definition of insulation.
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6. CONCLUSIONS

The boundary element method (BEM) was formulated and used to compute the sound
insulation provided by a wall separating two tunnels for low frequencies (51000�0Hz).
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The model avoids the limitations in the thickness of the wall, as occurs with the Kirchhoff
and Mindlin theories, and takes the coupling between the fluid (air) and the solid wall
fully into account. The sound pressure results appeared to be highly dependent on the
vibration modes of the tunnels. The position of the source determines the type of modes
excited.

The theoretical mass law is not able to predict the oscillations in the insulation conferred
by a wall, generated by the modes of the tunnel and by the bending modes of the wall,
which appear to fully define its acoustic behaviour. The differences between the insulation
predicted by the simplified model and that given by the BEM model are more marked as
the mass of the wall diminishes, that is, as the thickness of the wall decreases. At very low
frequencies, particularly, the predicted insulation is lower than the one computed by the
BEM model. The simplified model should be applied with caution in the low-frequency
range.

The responses obtained when the tunnels are struck by cylindrical waves with spatial
sinusoidal variation along their axis display features similar to the ones observed for linear
cylindrical sources. The dips of insulation in this domain appear for higher frequencies
because the journey distances are shorter than the journey paths of the real domain.

The observed insulation features in this work are expected to be similar to those
registered for rooms in buildings when a wall inserted between two rooms is weaker than
the surrounding walls.
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APPENDIX

A. THE GEEEN’S FUNCTIONS

A.1. Solid formation

Definitions

l; m Lamé constants
r mass density

a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlþ 2mÞ=r

p
P wave velocity

b ¼
ffiffiffiffiffiffiffiffi
m=r

p
S wave velocity

kp ¼ o=a; ks ¼ o=b

ka ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

p � k2
z

q
; kb ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

s � k2
z

p
A ¼ 1

4iro2
amplitude

gi ¼
@r

@xi

¼ xi

r
; i ¼ 1; 2 directions cosine

Hna ¼ H
ð2Þ
n ðkarÞ; Hnb ¼ H

ð2Þ
n ðkbrÞ Hankel functions

Bn ¼ kn
bHnb � kn

bHna Bn functions

Green’s functions for displacements

Gxx ¼ A k2
s H0b �

1

r
B1 þ g2xB2

� �
; Gyy ¼ A k2

s H0b �
1

r
B1 þ g2xB2

� �
;

Gzz ¼ A k2
s H0b � k2

z B0

� �
;

Gxy ¼ Gyx ¼ gxgyAB2; Gxz ¼ Gzx ¼ ikzgxAB1;

Gyz ¼ Gzy ¼ ikzgyAB1:
ðA:1Þ

Volumetric strain (super-index=direction of load)

el
Vol ¼ Gxl;x þ Gyl;y þ Gzl;z ¼ A

@

@xl

k2
s H0b

� �
þ B0;xlx þ B0;yly þ B0;zlz

� �

¼ A
@

@xl

k2
s H0b

� �
þ B0;xx þ B0;yy þ B0;zz

� �

¼ A
@

@xl

k2
s H0b þ #rr2

B0

h i
: ðA:2Þ

Note : H0b;l ¼ �kbglHlb; H0b;z ¼ �ikzH0b:



P. SANTOS AND A. TADEU964
Strain components (tensor definition, not engineering)

el
ij ¼ 1

2
Gil;j þ Gjl;i

� �
¼ 1

2
A dilk

2
s H0b;j þ djlk

2
s H0b;i þ B0;ilj þ B0;jli

� �
¼ 1

2k
2
s A dilH0b;j þ djlH0b;i

� �
þ AB0;ijl : ðA:3Þ

(a) Strains for loads in the plane, l ¼ x; y

el
Vol ¼ glA �k2

s kbH1b þ k2
z B1 þ

4

r
B2 � B3

� �
;

el
xx ¼ glA

2

r
B2 � k2

s kbH1b

� �
dxl þ

1

r
B2 � g2xB3

� �

el
yy ¼ glA

2

r
B2 � k2

s kbH1b

� �
dyl þ

1

r
B2 � g2yB3

� �
; el

zz ¼ glk
2
z AB1

el
xy ¼ A

1

r
B2 �

1

2
k2

s kbH1b

� �
dxlgy þ dylgx

� �
� gxgyglB3

� �

el
xz ¼ ikzA

1

r
B1 �

1

2
k2

s H0b

� �
dxl � gxglB2

� �
;

el
yz ¼ ikzA

1

r
B1 �

1

2
k2

s H0b

� �
dyl � gyglB2

� �
:

ðA:4Þ

(b) Strain for axial loads, l ¼ z

ez
Vol ¼ ikzA �k2

s H0b þ k2
z B0 þ

2

r
B1 � B2

� �
ez

xx ¼ ikzA
1

r
B1 � g2xB2

� �

ez
yy ¼ ikzA

1

r
B1 � g2yB2

� �
ez

zz ¼ ikzA �k2
s H0b þ k2

z B0

� �
ez

zz ¼ ikzA �k2
s H0b þ k2

z B0

� �
ez

xy ¼ �ikzgxgyAB2

ez
xz ¼ gxA �1

2
k2

s kbH1b þ k2
z B1

� �
ez

xz ¼ gxA �1

2
k2

s kbH1b þ k2
z B1

� �

ez
yz ¼ gyA �1

2
k2

s kbH1b þ k2
z B1

� �
ðA:5Þ

(c) Stresses

tl
ij ¼ lel

Voldij þ 2mel
ij: ðA:6Þ

A.2. Fluid formation

Definitions

la Lamé constant

ra P wave velocity

kpa ¼ o=aa

kaa ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

pa � k2
z

q
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Aa ¼ 1

4i
amplitude

gi ¼
@r

@xi

¼ xi

r
i ¼ 1; 2 direction cosines

Hnaa ¼ H
ð2Þ
n ðkaarÞ Hankel functions

The Green’s functions for displacements

Gax ¼ �AakaaH1aagx; Gay ¼ �AakaaH1aagy: ðA:7Þ

Stresses

Ha1 ¼ AalaH0aa �o2=a2a
� �

: ðA:8Þ
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