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Response of clamped structural slabs subjected to a dynamic point
load via BEM
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Abstract

This work computes the response of clamped slabs when subjected to spatially sinusoidal harmonic line loads via the Boundary
Element Method (BEM). The formulation uses 2.5D Green’s functions for the steady state response of a homogeneous three-
dimensional free solid layer formation of infinite extent, proposed earlier by the authors. The inclusion of these Green’s functions
in the BEM formulation avoids the discretization of free horizontal surfaces, which contributes to the efficiency of the BEM model.
Frequency and time responses have been computed for slabs with and without lateral confinements, for different thickness and
varying spatially sinusoidal harmonic line loads.
 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Several approaches for simulating the dynamic
response of infinite and finite plates have been developed
over the years. Given the large number of variables, the
mathematical simulation of the phenomena involved is
very complex. However, certain mathematical models
have been developed that account for a restricted number
of those variables, which have led to a set of simplified
models. Among the simplified formulae established are
expressions for obtaining the propagation of plane waves
in an infinite plate and the acoustic insulation provided
by such structures [1].

In a previous work [2] the authors derived a set of
2.5D Green’s functions for the simulation of the wave-
field produced in a homogeneous three-dimensional free
solid layer formation (slab) of infinite extent, subjected
to a spatially sinusoidal harmonic line load, polarized
along the horizontal, vertical andz directions. This prob-
lem is commonly referred to as a 2.5D formulation since
the load is 3D but the geometry is 2D, that is, it does not
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vary along one direction. The three-dimensional problem
was formulated as a summation of two-dimensional
problems for varying wavenumbers along thez direction,
following the technique of Bouchon [3] and Kim et al.
[4]. Each two-dimensional problem was calculated as a
continuous superposition of plane waves with different
wave numbers in thex direction (kn), adopting the
approach used first by Lamb [5]. The final expressions
were obtained ascribing null stresses to the two horizon-
tal surfaces of the slab.

The present paper includes these Green’s functions in
a direct BEM formulation for computing the response of
a slab of semi-infinite or finite extent along thex direc-
tion, when subjected to a spatially sinusoidal harmonic
line load along thez direction. The slab is considered to
be of infinite extent in thez direction. As the 2.5D
Green’s functions simulate both the free horizontal sur-
faces of the slab, only the lateral boundaries need to be
discretized by boundary elements. The lateral confine-
ments of the slabs are assumed to be clamped, meaning
that null displacements are ascribed along these edges.

The computations are first performed in the frequency
domain for different spatial wavenumbers in thez
dimension. Time responses are then obtained by means
of inverse Fourier transforms. Complex frequencies are
used to avoid aliasing phenomena [6].
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This paper first presents the BEM formulation. Then
the BEM model is validated using a direct boundary
element method requiring the full discretization of all the
boundaries (using Green’s functions for an unbounded
space). Finally, the 2.5D Green’s functions and the
present BEM model are applied to simulate the three-
dimensional wave propagation within slabs of unlimited
and limited extent.

2. BEM formulation

Let us assume the existence of a two-dimensional
solid elastic slab with free (null tensions) horizontal
boundaries and rigid lateral boundaries (clamped). The
Boundary Element Method (BEM) is applied in the fre-
quency domain (w) to compute the 3D field generated
by a spatially sinusoidal harmonic line load buried in
such a structure. As the BEM formulation used here
incorporates the Green’s functions derived in an earlier
work [2], taking the presence of the horizontal free
boundaries into account, the discretization with bound-
ary elements is limited to the lateral boundaries.

The essential BEM equations are widely known [7,8],
and therefore they are only briefly described here. The
boundary integral equations, in the absence of distributed
loads and in the presence of virtual point loads, d(x�
x0), lead to the following equation,

cijuj(x0,w) � �
C

ti(x,n,w) Gij(x,x0,w) ds (1)

��
C

Hij(x,n,x0,w) uj(x,w) ds

where, i, j � 1, 2 refers to the normal and tangential
directions in relation to the boundary surface; i, j �

3 indicates the z direction; Gij(x,x0,w), Hij(x,n,x0,w) are
the displacements and tractions in direction j at x, on
boundary C, provoked by a unit sinusoidal line load act-
ing at source, x0, in direction i; vector n is the unit out-
ward normal at the boundary, and cij is a constant that
equals dij / 2 for a smooth boundary, where Kronecker’s
delta is represented by dij. The 2.5D Green’s functions
Gij are not given here, since they can be found in Tadeu
and António [2] as Gslab

ij , where the steady-state response
of a spatially sinusoidal harmonic line load on a homo-
geneous three-dimensional slab, has been computed.

The imposition of the lateral boundary conditions
(null displacements) leads to a simplified form of Eq.
(1):

�
C

ti(x,n,w) Gij(x,x0,w) ds � 0 (2)

The displacement field is transformed, at each
element, into the normal, tangential and local (z) co-ordi-
nate system, from equilibrium relations. When the
boundary is discretized into N boundary elements and
the nodal displacements within each element are
assumed both to be constant and to have the same value
at the respective nodal point, Eq. (2) becomes,

�N
n � 1

Gkn
ij tnj � 0 (3)

In Eq. (3), the element number at the point where the
virtual load is applied is defined by k, the boundary
values in element n are identified by tnj , and Gkn

ij rep-
resents the element integrals

Gkn
ij � �

C
n

Gij(x,x0,w) ds (4)

where Cn is the boundary segment.
The application of a virtual load on the boundary, in

each node, leads to a system of linear equations relating
nodal forces and nodal displacements. These equations
can be solved for the nodal tractions.

In the presence of an incident wave within the slab
Eq. (2) is modified as follows,

�
C

ti(x,n,w) Gij(x,x0,w) ds � uinc
j (x0,w) � 0 (5)

where uinc
j (x0,w) are the displacements originated by the

incident wave. In the above equation the incident field
is obtained analytically as the sum of the source terms
(two-and-a-half dimensional full-space) and the surface
terms resulting from the two horizontal surfaces (see
Tadeu and António [2]). A system of equations can be
established from the integral equations subjected to the
boundary conditions, and discretized appropriately.

When the element to be integrated is not the loaded
element, the required integrations in Eq. (5) are
accomplished using Gaussian quadrature. For the loaded
element, the existing singular integrands in the source
terms of the Green’s functions are calculated in closed
form [9,10], while the integrands involving the surface
terms originated on both free and rigid surfaces are
solved using a Gaussian quadrature scheme.

Displacements in the time domain are obtained apply-
ing a numerical inverse fast Fourier transform to the fre-
quency responses. The time responses are obtained for a
source modeled as a Ricker wavelet [11] with a specific
characteristic frequency. The Fourier transformations are
obtained by discrete summations over frequencies,
which is mathematically equivalent to adding periodic
sources at temporal intervals T � 2p /�w, where �w
represents the frequency steps. Complex frequencies are
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used, in the form wc � w�ih (with h � 0.7�w), to
avoid aliasing phenomena. In the time domain, this
effect is removed by rescaling the response using an
exponential window eη t [12].

3. BEM validation

The BEM model is validated by comparing the results
with those given by a BEM formulation which needs the
full discretization of the boundaries. A solid layer
10.0 m thick and 20.0 m wide is used to validate the
response (see Fig. 1a). A spatially sinusoidal harmonic
line load (kz � 0.4 rad /m) is applied at (x0 � �4.0 m,
y0 � 3.0 m), acting along the direction y. The elastic
material of the formation, with a density of r �
2140 kg/m3, allows a dilatational and a shear wave

velocity of a � 4208 m/s and b � 2656 m/s, respect-
ively. The responses are calculated in the frequency
range [2.50, 320.0 Hz] with a frequency increment of
2.5 Hz. The surface scattered displacement field in the
i direction due to a load acting along y, Gsurf

iy is computed
at a receiver point placed at x � �6.0 m and y �
6.0 m.

Fig. 1(b–d) presents the computed responses. The
solid lines represent the present BEM formulation sol-
utions, while the marked points correspond to the BEM
solution using the full boundary discretization. The
square marks refer to the real part of the response while
the round marks represent the imaginary part. A very

Fig. 1. Spatially sinusoidal harmonic line load along the z direction in a slab, applied in the y direction: (a) Geometry of the problem; (b) Gsurf
xy

solutions; (c) Gsurf
yy solutions; (d) Gsurf

zy solutions.

good agreement between the two solutions can be
observed.

4. Applications

The BEM model described here is used to study the
wave propagation generated by a harmonic sinusoidal
line load acting along the vertical direction at (x0, y0)
within a concrete (a � 3498.6 m/s, b � 2245 m/s, and
r � 2500 Kg/m3) slab. Three different configurations
are analyzed: a slab of infinite extent; a slab of semi-
infinite extent with one lateral rigid boundary; and a slab
of finite extent with two lateral rigid boundaries (see
Fig. 2).

The geometry of the models is constant along the z
direction, which allows the 3D solution to be obtained
by adding together a series of two-dimensional prob-
lems, for the varying effective wavenumbers, kα �
√k2

p�k2
z with kp � w /a and kβ � √k2

s�k2
z with ks �

w /b [2], where kz is the axial wavenumber, once a Four-
ier transformation has been applied to the problem in
the z direction. In this kz domain, the system is struck
by a sinusoidal line load acting along the vertical direc-
tion (y). In the frequency domain, the incident displace-
ment field originated by this load is given by

Gfull
xy �

i
4rw2�x�x0

r � �y�y0

r �B2 (6)
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Fig. 2. Geometry of the models.

Gfull
yy �

i
4rw2�k2

sH0β�
1
r
B1 � �y�y0

r �2

B2� (7)

Gfull
zy �

�kz

4rw2�y�y0

r �B1 (8)

with

r � �(x�x0)2 � (y�y0)2

Hnα � H(2)
n (kαr)

Hnβ � H(2)
n (kβr)

Bn � kn
βHnβ�kn

αHnα

i � ��1

H(2)
n are the second Hankel functions of order n. The

index i in the above equations Gfull
ij , indicates the direc-

tion of the displacement while the second index, j,
defines the direction in which the virtual load is acting.

The calculations are performed in the frequency
domain from 10.0 to 10240 Hz, with a frequency
increment of 10.0 Hz, which determines the total dur-
ation (T � 0.1 s) of the analysis in the time domain. The
time domain responses were obtained by means of an
inverse Fourier transform applied to the frequency
responses. Solutions in the time domain are obtained
simulating a source with a Ricker time dependence, with
a characteristic frequency of 1000.0 and 3000.0 Hz. The
displacements produced by a vertical line load (kz �
0 rad /m) or by a vertical load with spatial sinusoidal

variation along the z direction (kz � 0 rad /m), placed
0.5 m below the surface, are recorded at receivers,
0.01 m below the surface, positioned as in Fig. 3.

4.1. Slab of infinite extent

Next, the results obtained when the slab is of infinite
extent are analyzed. These solutions are computed
directly by the 2.5D analytical functions that are used as
Green’s functions [2] in the BEM model described
above. The influence of slab thickness on the wave
propagation within the slab is analyzed simulating the
response of slabs 0.10 or 0.20 m thick.

Fig. 4 shows the analytical vertical displacements
when the slab is 0.10 m thick, in the presence of a line
load (kz � 0 rad /m). Fig. 4a displays the frequency
domain versus kn wave number response [10, 4000 Hz
], while Fig. 4b and c gives the time solution for incident
pulses with characteristic frequencies of 3000 and
1000 Hz, respectively. The frequency domain versus
kn wave number response reveals the existence of two
different types of waves: body waves traveling with the
shear wave velocity of b � 2245 m/s (labeled S) and
large amplitude dispersive guided waves. The guided
waves exhibit velocities below the shear wave velocity
at low frequencies and approach the shear wave velocity
as the frequency increases.

The propagation of plane waves along a panel is fre-
quently analyzed, ignoring the effects of shear and rotary
inertia. The mathematical development of these assump-
tions leads to the following dispersion relation [1],

cL � �Dw2

rh �0.25

(9)

where cL is the phase velocity of the propagating plane
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Fig. 3. Position of the source and receivers.

Fig. 4. Analytical vertical displacements in a slab of infinite extent
and 0.10 m thick, for kz � 0 rad /m: (a) Frequency domain versus kn

wave number responses; (b) Time domain responses for a source with
a characteristic frequency of 3000 Hz; (c) Time domain responses for
a source with a characteristic frequency of 1000 Hz.

waves along the plate, r is the density of the material
(Kg /m3), h is the thickness of the panel (m), w � 2pf,

D �
h3E

12(1�n2)
with E and n, being the Young’s modu-

lus and the Poisson’s ratio, respectively. It should be
noted that this equation predicts unbounded wave velo-
city for very short wavelength, high frequency con-
ditions, as a consequence of the imperfect mathematical
model in which effects of shear and rotary inertia have
been ignored. It happens in practical applied acoustics
that when the wavelength of sound air projected on a
plate equals the wavelength of these bending waves, the
movement of the panel increases, leading to a low
sound insulation.

The presence of body waves traveling with the velo-
city of the P waves (a � 3498.6 m/s) is not detectable
in Fig. 4. The responses in the time domain agree with
the behavior observed in the frequency plot. The arrival
of a small pulse can be seen in the time responses, corre-
sponding to waves traveling with the shear velocity, and
labeled with “S” . A pack of high frequency pulses is
visible after the arrival of the shear waves, followed by
a ring of low frequency waves. The comparison of the
time responses simulated with characteristic excitation
frequencies of 3000 and 1000 Hz, shows that the guided
waves in the presence of a source with lower character-
istic frequency arrive at later times, owing to the absence
of the high frequency components, which exhibited fas-
ter velocities. Furthermore, the amplitude of the guided
waves becomes larger as the frequency of excitation
decreases.

Fig. 5 shows the vertical displacements registered
when the thickness of the slab is 0.20 m, while the line
load is kept at the same position. The frequency domain
versus kn wave number responses (Fig. 5a) reveals that
the guided waves are less dispersive than before, parti-
cularly at low frequencies. The velocity of these waves is
found to approach the shear wave velocity at frequencies
below those found for a thinner slab. This effect is also
visible in the time plots (Fig. 5b–c), where the guided
waves are seen to be faster than those observed for a
slab 0.10 m thick. When the characteristic frequency of
the excitation source is 1000 Hz, the guided waves are
found to arrive earlier when the slab is thicker. The S



298 J. Antonio et al. / Engineering Structures 25 (2003) 293–301

Fig. 5. Analytical vertical displacements in a slab of infinite extent,
0.20 m thick for kz � 0 rad /m: (a) Frequency domain versus kn

wave number responses; (b) Time domain responses for a source with
a characteristic frequency of 3000 Hz; (c) Time domain responses for
a source with a characteristic frequency of 1000 Hz.

body waves are still noticeable in the frequency domain
versus kn wave number responses. In addition, the P
body waves are now visible in this figure. Given the
scale of the time plots, the arrival of these waves cannot
be seen clearly. Thus, the response obtained at receiver
R4 (x � �19.5 m) has been zoomed and included in
Fig. 5b. In general, the amplitude of the displacements
appears to decrease for the thicker slab.

The slab 0.10 m thick is subjected next to the inci-
dence of a vertical load with an apparent wave velocity
c � 2600 m/s, which corresponds to waves arriving at
the z axis with a path inclination given by arccos(v/ c),

where v is the true wave velocity (kz �
w

2600
rad /m).

Fig. 6 displays the computed responses. The fre-
quency domain versus kn wave number domain (Fig. 6a)
exhibits features similar to the ones observed in Fig. 4a,
but appearing to be caused by waves traveling at higher
velocity. This is because the direction of the wave propa-
gation is inclined in relation to the z axis, and so the
path length to a receiver is shorter than when the waves
propagate normally to the plane of the slab. This
phenomenon is thus perceived in the frequency domain
as if the waves are faster. In the time domain, it can be
observed that the pulses appear earlier (see Fig. 6b and
c and Fig. 4b and c).

Fig. 6. Analytical vertical displacements in a slab of infinite extent,
0.10 m thick for an apparent velocity c � 2600 m/s: (a) Frequency
domain versus kn wave number responses; (b) Time domain responses
for a source with a characteristic frequency of 3000 Hz; (c) Time
domain responses for a source with a characteristic frequency of
1000 Hz.
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4.2. Confined Slab

The slab is assumed to have one or two fixed vertical
lateral confinements. As mentioned above, the free sur-
faces of the slab are not discretized. The lateral bound-
aries are modeled with a number of boundary elements,
defined according to the excitation frequency of the har-
monic source. The ratio between the wavelength of the
incident waves and the length of the boundary elements
is kept to a minimum of 15. In no case, however, is the
number of the boundary elements used to model each
lateral surface less than 5.

Fig. 7 shows synthetic time responses generated by a
vertical line load (kz � 0 rad /m) in the presence of a
slab, 0.10 m thick, and with a lateral confinement at
x � �20.0 m. Fig. 7a displays the solution when the
characteristic frequency of excitation is 3000 Hz. The
comparison of these results with those presented in Fig.
4b reveals pronounced differences. The set of guided
waves strikes the lateral rigid boundary, is reflected
back, and travels in the opposite direction. The time
domain exhibits two packs of high frequency pulses;
given the small distance between the receivers and the
lateral edge of the slab, they do not fully separate. The

Fig. 7. Vertical time domain displacements obtained with the BEM
model for the slab 0.10 m thick, with one lateral confinement, when
a vertical line load is applied (kz � 0 rad/m): (a) Characteristic fre-
quency of excitation 3000 Hz; (b) Characteristic frequency of exci-
tation 1000 Hz.

superposition of these two sets of surface waves deter-
mines that the response amplitude is enhanced mainly
in the vicinity of the lateral confinement. For the receiver
placed further away from the lateral edge of the slab,
these two sets of pulses are seen separately in the time
domain, with similar amplitudes. Fig. 7b plots the
response when the excitation frequency is 1000 Hz.
With the larger wavelengths, the existence of the two
packs of guided pulses is not observable, given that they
travel more slowly, determining their overlap. The final
amplitude of the signal is consequently larger than that
registered in the absence of a lateral confinement (Fig.
4c). It can further be seen that the response tends to
maintain an enhanced amplitude for a longer time.

Fig. 8 shows the time responses generated by a verti-
cal line load with an apparent wave velocity c �
2600m/s along the z axis (kz � 0 rad /m), placed within

the same slab. As before, when the apparent wave velo-
city is smaller, the different wave pulses reach the
receivers earlier. This is also seen when the present
results are compared with those obtained when kz �
0 rad /m (compare Figs. 7 and 8). Comparing the

present results with those registered when the excitation
load is two-dimensional, kz � 0 rad /m, it is observed

Fig. 8. Vertical time domain displacements obtained with the BEM
model for the slab 0.10 m thick, with one lateral confinement, in the
presence of a vertical load with an apparent wave velocity c �
2600 m/s: (a) Characteristic frequency of excitation 3000 Hz; (b)

Characteristic frequency of excitation 1000 Hz.
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that the amplitude decreases. It happens that in this case
the scattering energy is not totally limited to the vertical
x, y plane containing the source, because part of this
energy in fact propagates along the z direction.

Fig. 9 gives the time responses when a vertical line
load (kz � 0) is applied in a slab 0.10 m thick, with two
lateral confinements placed at x � �20.0 and x �
20.0 m. Fig. 9a illustrates the vertical displacements

when the characteristic excitation frequency is
3000 Hz. Wave features similar to those found in the
case of one lateral confinement are registered. Additional
guided wave pulse trains are observable, caused by
multi-reflections on both lateral confinements. After the
arrival of the first incident pulse train and the pulse train
first reflected on the left confinement, a second reflection
coming from the right lateral confinement is visible.
Then, the response becomes very complex due to the
superposition of the different wave trains originated by
the repetition of these scattering phenomena. The low
frequency components of the response lose importance
in the presence of the high frequency components con-
tained in the multi reflection pulses. As time elapses, the
amplitude of the signal tends to decrease slightly because
of the energy dissipation. Fig. 9b displays the vertical

Fig. 9. Vertical time domain displacements obtained with the BEM
model for the slab 0.10 m thick, with two lateral confinements, when
a vertical line load is applied (kz � 0 rad/m): (a) Characteristic fre-
quency of excitation 3000 Hz; (b) Characteristic frequency of exci-
tation 1000 Hz.

displacements when the excitation frequency is
1000 Hz. The response exhibits similar trends to those
observed in Fig. 9a but it retains the particular features
relating to the low excitation frequency, that is lower
velocities and higher amplitudes.

5. Conclusions

This paper describes the displacement field computed
within slabs with and without lateral confinements. Ana-
lytical functions were used to obtain the three-dimen-
sional displacement field within a slab of infinite extent.
The same analytical functions have been incorporated as
Green’s functions in a BEM model to compute the wave
field in a two-dimensional slab of finite and semi-infinite
extent, avoiding the discretization of the free horizon-
tal surfaces.

The results for the simulations reveal a wave field
composed by body waves and dispersive surface guided
waves. As the thickness of the layer increases the guided
waves are less dispersive and become faster, particularly
at low frequencies. The inclusion of lateral rigid bound-
aries in an infinite slab generates additional pulses due
to the reflections on them and the enhancement of the
amplitude responses, as observed in the time plots.

The waves propagating with an apparent wave velo-
city along the z axis of c � 2600 m/s reach the receivers
at earlier times than those propagating at c � � m/s
(kz � 0 rad /m), revealing a reduction in amplitude.
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