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Abstract

This paper computes the insertion loss provided by movable lightweight elastic screens, placed over an elastic half-space, when subjected

to spatially sinusoidal harmonic line pressure sources. A gap between the acoustic screen and the elastic floor is allowed. The problem is

formulated in the frequency domain via the boundary element method (BEM). The Green’s functions used in the BEM formulation permit

the solution to be obtained without the discretization of the flat solid–ground interface. Thus, only the boundary of the elastic screen is

modeled, which allows the BEM to be efficient even for high frequencies of excitation. The formulation of the problem takes into account the

full interaction between the fluid (air) and the solid elastic interfaces.

The validation of the algorithm uses a BEM model, which incorporates the Green’s functions for a full space, requiring the full

discretization of the ground. The model developed is then used to simulate the wave propagation in the vicinity of lightweight elastic screens

with different dimensions and geometries. Both frequency and insertion loss results are computed over a grid of receivers. These results are

also compared with those obtained with a rigid barrier and an infinite elastic panel.

q 2003 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Acoustic screens are widely used as a shield against the

sound generated by road traffic, machinery and equipment.

These acoustics screens are commonly made of lightweight

material, particularly when they are designed to be movable.

In these latter cases, the connection of the barrier to the floor

is frequently loose and there may be an air gap in the

vicinity of the ground surface.

The performance of the acoustic barriers is normally

evaluated assuming them to be rigid panels, firmly bonded

to the floor. However, this simplification leads to an over-

estimation of the performance of the acoustic screen,

particularly at low frequencies. This paper evaluates how

the elastic behavior of the material from which the barrier

and the floor are made influences the insertion loss predicted

for a movable acoustic screen. The thickness of a possible

air gap between the barrier and floor is an important

parameter in this work.

A number of simplified numerical approaches for

modeling wave propagation in the vicinity of acoustic

barriers have been proposed over the years. Several

simplified models that define the diffraction effect on the

edge of a barrier in a basic form are employed in

engineering practice to compute the insertion loss provided

by acoustic barriers [1–4].

Among the numerical techniques, the diffraction-based

methods are frequently used to analyze sound propagation

in the vicinity of acoustic barriers. Lam [5] proposed one

such method to calculate the acoustic energy loss provided

by simple, finite length, three-dimensional (3D) acoustic

barriers. Muradali and Fyfe [6] subsequently extended this

work and compared the results from 2D and 3D models.

They also analyzed the effect of single and parallel barriers

and simulated both coherent and incoherent line-sources.

More elaborate numerical algorithms, such as the

boundary element method (BEM) or the finite element

method (FEM), can be used to compute the acoustic

scattering response of barriers more realistically. However,

a major drawback of these techniques is that they require

very costly computer resources, particularly for very high

frequencies. A boundary integral equation technique was

proposed by Filippi and Dumery [7] and Terai [8] to

calculate the scattering of sound waves by thin rigid screens

in an unbounded medium. Later, Kawai and Terai [9]
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extended this model to predict the sound attenuation by rigid

barriers placed over a totally reflective floor.

Duhamel [10] used the BEM to compute the 3D sound

pressure around a 2D acoustic barrier of constant but

arbitrary cross-section located over a rigid ground. This

technique employs spatial Fourier transformation along the

direction for which the geometry of the barrier does not

change, which allows the 3D response to be obtained as a

summation of simpler 2D solutions. The Green’s function

used in the BEM model is defined using the image source

technique. Duhamel and Sergent [11] incorporated absorp-

tion by the floor, and compared the numerical and

experimental results. A 2D BEM model was used by

Morgan, Hothersall and Chandler-Wilde [12] to assess the

influence of the shape and absorbent surface properties on

the performance of barriers against railway noise. Lacerda

et al. [13] used a dual boundary element formulation for

computing the 2D sound wave propagation in the vicinity of

acoustic barriers placed over an infinite plane, in which both

the ground and the barrier were absorptive. Later, Lacerda

et al. [14] proposed the use of a dual boundary element

formulation to compute the 3D sound propagation around an

absorptive barrier. The Green’s functions used allow the

absorptive properties of the ground to be taken into account.

Jean, Defrance and Gabillet [15] evaluated the performance

of acoustic barriers placed in the presence of traffic noise,

simulated using point pressure sources, and coherent and

incoherent line sources. Responses for point sources are

obtained by using Fourier-like transformations, which allow

the 2D BEM models to be used. In this model, absorbing

properties can be ascribed to both the acoustic barrier and

the ground surface.

The BEM is probably the tool best suited for modeling

wave propagation in unbounded media, because it auto-

matically satisfies the far field radiation conditions and it

only requires a description of the medium in terms of

boundary elements at the material discontinuities.

The authors have already used the BEM to evaluate

the influence of the 2D acoustic barriers on the sound

pressure level in the vicinity of tall buildings when a 3D

pressure source is excited (a 2.5D problem) [16]. In that

work, the acoustic barriers and the buildings are assumed

to behave like rigid barriers. The Green’s functions used

were defined by the method of images, automatically

satisfying the boundary conditions for the building and

the floor. Therefore, only the boundaries of the barriers

needed to be discretized with boundary elements. The

BEM was formulated in the frequency domain and time

solutions were obtained by means of inverse Fourier

transforms. The 3D solution was obtained as a sum-

mation of 2D solutions after performing a spatial Fourier

transform in the direction in which the geometry does

not vary [10,16]. This summation is obtained in a

discrete form by considering an infinite number of virtual

point sources equally spaced along the z-axis, and

sufficiently distant from one another to avoid spatial

contamination of the response [17]. The present paper

extends the authors’ work by modeling the ground and

the barrier as elastic mediums, taking into account the

full interaction between the fluid (air) and the solid.

Furthermore, the BEM formulation used allows the

connection between the barrier and the ground floor to

be loose, so that an air gap between the base of the

screen and the ground surface can be included. This

model is used to simulate the propagation of sound

waves in the vicinity of movable lightweight elastic

screens when subjected to spatially sinusoidal harmonic

line pressure sources.

The horizontal ground surface is not discretized since the

Green’s functions account for the required boundary

conditions at this interface. Thus, only the barrier-limiting

surfaces need to be discretized.

The BEM formulation employs the analytical Green’s

functions proposed previously by the authors for the steady

state response of a homogeneous elastic half-space bounded

by a fluid medium, when subjected to spatially sinusoidal

harmonic line loads [18]. These solutions use the solid

displacement potentials defined by the authors [19] to define

the Green’s functions for a harmonic (steady state) line load,

with a sinusoidally varying amplitude in the third dimen-

sion, placed in an infinite medium. Those functions were

found to be in full agreement with the solution for moving

loads given earlier by Pedersen, Sánchez-Sesma and

Campillo [20] and Papageorgiou and Pei [21]. The fluid

potential is obtained via a technique similar to that used for

the solid potentials. All potentials are written as a super-

position of plane waves, according to the technique used

first by Lamb [22] for the 2D case, and then by Bouchon

[23] and Kim and Papageorgiou [24] when evaluating the

three-space dimension field by means of a discrete wave

number representation.

This paper first describes briefly the BEM formulation

used to model lightweight elastic screens. This BEM

algorithm incorporates 2.5D Green’s functions for the

steady state response of a homogeneous elastic half-space

bounded by a fluid medium, when subjected to a spatially

sinusoidal harmonic pressure line load placed in the fluid

medium, which renders the discretization of the ground–

fluid interface unnecessary. The derivation of these 2.5D

Green’s functions is briefly described in Appendix B. A

direct BEM, using Green’s functions for an unbounded

space, which requires the full discretization of all the

boundaries, is used to validate responses. The proposed

BEM model is then used to simulate the wave propagation

in the vicinity of movable lightweight elastic screens.

Different screen dimensions and air gap thicknesses

between the barrier and the floor are modeled. The

frequency and insertion loss responses are computed over

a grid of receivers for different spatially sinusoidal harmonic

line pressure sources. The results obtained for a rigid barrier

and for an infinite panel are used as a reference for

comparison.
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2. BEM formulation

A homogeneous fluid medium bounded by a 2D flat

elastic homogeneous ground formation, contains a homo-

geneous elastic 2D inclusion, as shown in Fig. 1. The ground

has density r1, allowing a shear wave velocity of b1 and a

compressional wave velocity of a1, while the material of the

inclusion allows a shear wave velocity of b2 and a

compressional wave velocity of a2, exhibiting density r2.

The fluid hosting the inclusion has density rf and permits a

compressional wave velocity af.

A point pressure source is placed in the fluid at position

(x0,y0,z0), oscillating at frequency v. The incident pressure

field can be expressed by

sfullðv;x;y;zÞ

¼

Aexp i
v

af

af t2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx2x0Þ

2þðy2y0Þ
2þðz2z0Þ

2
p� �� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx2x0Þ

2þðy2y0Þ
2þðz2z0Þ

2
p ð1Þ

in which A is the wave amplitude and i¼
ffiffiffiffi
21

p
:

As the geometry of the problem does not change along

one direction (z), it can be solved as a summation of 2D

problems, for varying effective wavenumbers [18]

kaf
¼

ffiffiffiffiffiffiffiffiffiffiffi
v2

a2
f

2 k2
z

s
; Im kaf

, 0 ð2Þ

where kz is the spatial wavenumber along the z-direction,

after Fourier transformation of the problem in this direction.

The incident pressure field is then expressed by

ŝfullðv; x; y; kzÞ

¼
2iA

2
Hð2Þ

0 kaf

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx 2 x0Þ

2 þ ðy 2 y0Þ
2

q� �
e2ikzz ð3Þ

in which Hð2Þ
n ð·Þ are second Hankel functions of order n. The

incident field in this frequency wavenumber domain can be

seen as a spatially sinusoidal harmonic pressure line load

along the z-direction, placed in the fluid at ðx0; y0Þ;

oscillating at frequency v (see Fig. 1).

By applying an inverse Fourier transform, the former 3D

pressure field can be obtained as

sfullðv; x; y; zÞ ¼
ð1

21
ŝfullðv; x; y; kzÞe

2ikzz dkz ð4Þ

This continuous integral can be discretized by assuming the

existence of an infinite number of sources placed along the

z-direction at equal intervals, L. Thus, the incident field can

be written as

sfullðv; x; y; zÞ ¼
2p

L

X1
m¼21

ŝfullðv; x; y; kzÞe
2ikzz ð5Þ

with kz ¼ ð2p=LÞm: This equation converges and can be

approximated by a finite sum of terms. The distance L needs

to be large enough to avoid spatial contamination. In

addition, the analyses use complex frequencies that further

reduce the influence of the neighboring fictitious sources.

Using this technique, the incident field generated by a

point pressure load can be obtained as a discrete summation

of 2D line loads with different values of kz. In the same way,

the scattered field originated by a point pressure load can be

evaluated by solving a sequence of 2D problems. This

problem is often referred to in the literature as a 2.5D

problem, because the geometry is 2D and the source is 3D.

A BEM formulation is used to calculate each of the 2D

scattering fields generated by the inclusion and the ground

floor. The formulation used here employs Green’s functions,

which take into account the presence of the horizontal

ground solid–fluid interface. Therefore, only the boundaries

of the inclusion need to be discretized by boundary

elements. A detailed explanation of the BEM equations

can be found in Refs. [25,26]. It is nevertheless important to

state that the BEM solution requires the evaluation of the

integral equations along the appropriately discretized

Fig. 1. Schematic representation of the BEM model.
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boundary of the elastic inclusion. If the boundary is

discretized into N straight boundary elements, with one

nodal point in the middle of each element, and the existence

of an incident pressure wavefield given by s inc is assumed,

the following integral equations can be defined:

along the solid domain

XN
l¼1

T ðsÞkl
i1 GðsÞkl

i1 2
XN
l¼1

½uðsÞkl
1 HðsÞkl

i1 þ uðsÞkl
2 HðsÞkl

i2 þ uðsÞkl
3 HðsÞkl

i3 �

¼ cklu
ðsÞk
i ;

i ¼ 1; 2; 3

along the fluid domain

XN
l¼1

T ðfÞkl
a1

GðfÞkl
a1

2
XN
l¼1

uðfÞkl
a1

HðfÞkl
a1

þ sinc ¼ cklu
ðfÞk
a1

ð6Þ

with T ðsÞkl
i1 and uðsÞkl

j being the nodal tractions and

displacements in the solid, T ðfÞkl
a1

and uðfÞkl
a1

being the nodal

tractions and displacements in the fluid

HðsÞkl
ij ¼

ð
Cl

HðsÞ
ij ðv; xk; xl; nlÞdCl; i; j ¼ 1; 2; 3

HðfÞkl
a1

¼
ð

Cl

HðfÞ
a1
ðv; xk; xl; nlÞdCl

GðsÞkl
i1 ¼

ð
Cl

GðsÞ
i1 ðv; xk; xlÞdCl; i ¼ 1; 2; 3

GðfÞkl
a1

¼
ð

Cl

GðfÞ
a1
ðv; xk; xlÞdCl

where nl is the unit outward normal for the lth boundary

segment Cl; the subscripts i, j ¼ 1,2,3 denote the normal,

tangential and z directions, respectively. In Eq. (6),

HðsÞ
ij ðv; xk; xl; nlÞ and GðsÞ

ij ðv; xk; xlÞ are, respectively, the

Green’s tensor for traction and displacement components in

the elastic medium of the inclusion, at point xl in direction j,

caused by a concentrated load acting at the source point xk in

direction i. The factor ckl is a constant defined by the shape

of the boundary, taking the value 1/2 since the nodal point is

in the middle of each straight element. The required two-

and-a-half dimensional fundamental solution (Green’s

functions), and stress functions in Cartesian co-ordinates,

are those for an unbounded elastic medium (listed in

Appendix A).

HðfÞ
a1
ðv; xk; xl; nlÞ are the components of the Green’s

tensor for pressure in the fluid medium, at point xl caused

by a pressure load acting at the source point xk; GðfÞ
a1
ðv; xk; xlÞ

are the components of the Green’s tensor for displacement

in the fluid medium, at point xl in the normal direction,

caused by a pressure load acting at the source point xk. As

mentioned above, the formulation used here employs

Green’s functions that take into account the presence of

the horizontal ground–fluid interface. These Green’s

functions are given by the sum of the incident field and

the field generated at the solid–fluid interface, expressed by

the so-called surface terms. The surface terms are defined so

as to verify the required boundary conditions at this solid–

fluid interface, namely the continuity of normal displace-

ments and stresses, and the null tangential stresses.

Appendix B briefly explains how these fundamental

solutions are arrived at. Note that imposing the continuity

of normal particle velocities instead of normal displace-

ments would lead to the same final results.

The integrations in Eq. (6) are evaluated using a

Gaussian quadrature scheme, when they are not performed

along the loaded element. For the loaded element, the

existing singular integrands in the source terms of the

Green’s functions are calculated in closed form [27,28],

while a Gaussian quadrature scheme is used to solve the

integrands involving the surface terms originated at the

ground–fluid interface.

The integral equations are manipulated and combined so

as to impose the continuity of the normal displacements and

normal stresses, and null shear stresses along the boundary

of the inclusion, to establish a system of equations

GðsÞ
11 2HðsÞ

11 2HðsÞ
12 2HðsÞ

13

GðsÞ
21 2HðsÞ

21 2HðsÞ
22 2HðsÞ

23

GðsÞ
31 2HðsÞ

31 2HðsÞ
32 2HðsÞ

33

GðfÞ
a1

2HðfÞ
a1

0 0

2
66666664

3
77777775

T ðfÞ
a1

uðsÞ
1

uðsÞ
2

uðsÞ
3

2
66666664

3
77777775

¼

0

0

0

2sinc

2
6666664

3
7777775 ð7Þ

In this system, GðsÞ
i1 ; HðsÞ

ij ; GðfÞ
a1

and HðfÞ
a1

are N £ N submatrices

generated by Eq. 6, when the load is applied along the N

nodal points.

The solution of this system of equations gives the nodal

displacements and tractions. Notice that the incident field in

this system of equations is the sum of the source terms (two-

and-a-half dimensional full-space) and the surface terms

originated at the solid–fluid interface.

3. BEM validation

The results computed by the present BEM algorithm

were compared with those given by a BEM model requiring

the discretization of the ground–fluid interface, and the use

of the Green’s functions for a full space. The use of complex

frequencies with a small imaginary part of the form vc ¼

v2 ih (where h ¼ 0:7ð2p=TÞ) introduces a damping effect

[29,30], which allows the discretization of the ground–fluid

interface in the BEM model to be limited.

Fig. 2 shows the geometry of the model used in the

validation. A cylindrical circular elastic inclusion, with a

radius of 1.0 m, is inserted in a fluid medium bounded by an

elastic ground medium with a horizontal flat surface. The

mechanical properties of the elastic mediums forming the

inclusion and ground, and those of the fluid medium are

listed in Fig. 2.

A spatially sinusoidal harmonic pressure line load is

applied at x ¼ 0 m and y ¼ 20.5 m. Computations are
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achieved in the frequency domain (2.50, 320.0 Hz) with a

frequency increment of 2.5 Hz. The imaginary part of the

frequency has been set to h ¼ 0:7ð2p=TÞ; with

T ¼ 0.0466 s.

Fig. 3 displays the real and imaginary parts of the

scattered pressure field recorded by the receiver placed at

x ¼ 3.0 m and y ¼ 21.0 m, for two different pressure line

loads, kz ¼ 0 and 1.5 rad/m. Note that kz ¼ 0 rad/m

corresponds to the pure 2D solution, while kz ¼ 1.5 rad/m

corresponds to pressure waves that travel along the z-

direction with an apparent velocity of c ¼ v=kz: The solid

lines represent the proposed BEM model solutions, while the

marked line corresponds to the BEM solution using the full

boundary discretization of the ground–fluid interface. The

square marks indicate the real part of the response, while the

round marks refer to imaginary part.

The two solutions are in very close agreement for both

loads, but the BEM solution using the full ground interface

discretization required a very large number of boundary

elements, and the use of significant damping. Equally good

results were achieved from tests in which different loads and

receivers were situated at different points.

4. Movable lightweight elastic screens

The BEM algorithm described above was used to compute

the acoustic behavior of movable lightweight elastic screens

when subjected to spatially sinusoidal harmonic line pressure

sources. A gap between the acoustic screen and the ground

floor is allowed. The solutions calculated for a rigid barrier

are used as a reference to compare the results. This last

problem is solved via BEM using the formulation described

by the authors in an earlier work [16]. The response features

are identified by comparing the results with those given by an

elastic panel model bounded by two fluid media. These

solutions were previously obtained analytically and can be

found in Refs. [18,31].

Simulations are performed for sources with different

spatial sinusoidal variation along the z-direction, that is,

with different apparent wave velocities along the z-axis.

The screens’ surfaces are modeled with a number of

boundary elements that increases with the frequency

excitation of the harmonic source. The ratio between the

wavelength of the incident waves and the length of the

boundary elements is kept to a minimum of six. The number

of boundary elements used to model each screen is never

less than 250. As the distance between the two vertical faces

of the screen panel is small, the length of boundary elements

modeling the screen is at least six times less than its

thickness. To guarantee the accuracy of the results when

there is an air gap, the length of the boundary elements

modeling the base of the screen is at least four times less

than the height of the air gap.

Fig. 2. Geometry of the problem.

Fig. 3. Frequency domain response at receiver R1: (a) kz ¼ 0 rad/m; (b)

kz ¼ 1.5 rad/m.
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In our examples, the ground is assumed to be made either

of concrete (r1 ¼ 2250 kg/m3, b1 ¼ 1415.8 m/s and

a1 ¼ 2629.8 m/s [32]) or cork (r1 ¼ 180 kg/m3,

b1 ¼ 204.1 m/s and a1 ¼ 288.7 m/s [32]), while the screen

is always modeled with cork (r2 ¼ 180 kg/m3,

b2 ¼ 204.1 m/s and a2 ¼ 288.7 m/s). The host acoustic

medium had a pressure wave velocity of af ¼ 340 m/s and a

density of rf ¼ 1.22 kg/m3 [32]. An acoustic harmonic line

source is placed 0.6 m above the ground and 2.785 m from

an acoustic screen of height h with an air gap of thickness w.

Computations are performed in the frequency domain (2.0,

2000.0 Hz). The imaginary part of the frequency has been

set to h ¼ 3.5p rad/s.

The remainder of this section is divided into two parts. In

the first part, the insertion loss provided by the elastic

acoustic screen is computed. The response is computed

along a grid of 25 receivers placed on the side of the

acoustic screen not containing the source (see Fig. 4).

The computations are performed both with and without the

screen, to assess the reduction in sound pressure level that it

provides. First, the acoustic source is 2D (kz ¼ 0.0 rad/m),

generating an incident field that travels perpendicular to the

z-direction. Next, the acoustic source is assumed to generate

waves with kz – 0.0 rad/m, which can be seen as waves

traveling along the z-direction with a certain inclination,

defining an apparent wave velocity c ¼ v/kz. All these

results are compared with those obtained with a rigid barrier

and with an infinite elastic panel. In the second part,

individual frequency results are computed over a finer grid

of receivers, 0.2 m apart both horizontally and vertically, on

either side of the acoustic screen, to analyze the sound

pressure level registered in the presence of the acoustic

barrier, at specific frequencies. The results obtained with a

rigid acoustic screen are used as a reference.

4.1. Insertion loss results

The model for the first set of simulations describes an

acoustic screen t ¼ 0.15 m thick, and with h þ w ¼ 3.0 m,

when subjected to sound waves generated by a spatially

sinusoidal harmonic line pressure source, with kz ¼ 0.0

rad/m (see Fig. 4). Fig. 5(a) displays the average insertion

loss provided by the elastic and the rigid screens when

there is an air gap w ¼ 0.05 m. The average insertion loss

is obtained by taking the difference between the average

sound pressure levels computed over the grid of receivers

defined in Fig. 4, with and without an acoustic screen. In

the low frequency range, the two curves are similar, but it

can be seen that the rigid screen model outperforms the

elastic screen. The results for the elastic screen show a set

of dips in the insertion loss curve, which are not visible

when the screen is modeled as a rigid body. They are

caused by the interaction of different waves within the

elastic material of the screen, and some of them are very

marked, indicating that the elastic screen performs poorly

at these frequencies. In order to better understand this

behavior, an infinite panel made of cork, and with the

same thickness, was modeled.

A grid of receivers is placed on the side of the panel not

containing the source, as in Fig. 6(a). The average insertion

loss is again computed as the average sound pressure level

difference, obtained over the grid of receivers defined in

the same figure, with and without the presence of the infinite

wall.

The average insertion loss obtained for this model is

represented in Fig. 6(b). It can be seen that the average

insertion loss provided by the wall exhibits pronounced dips

of insulation related to the multiple interactions of waves

within the wall panel, such as those associated with the

resonance effect. The first and second resonance frequencies

occur at fr1 ¼ a2=ð2tÞ ¼ 960 Hz and fr2 ¼ 2a2=ð2tÞ ¼ 1920

Hz: The results found for the elastic screen indicate the

appearance of insertion loss dips at frequencies similar to

those associated with the resonance phenomena described

above. This suggests that this behavior has a considerable

effect on the insertion loss provided by an elastic screen.

The insulation dips are very high and are not predicted by

the rigid model.

Fig. 4. Simulated model and grid of receivers used for insertion loss calculations.
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Fig. 5(b) presents the results obtained when

w ¼ 0.02 m. The rigid screen model again predicts higher

insertion losses for the full domain of frequencies analyzed.

Comparing these results with those when w ¼ 0.05 m, it

can be seen that the smaller air gap allows a significant

increase in the average insertion loss curve over the full

frequency range. It can thus be concluded that the size of

the air gap near the floor is a determinant factor in the final

insertion loss provided by the screen.

The average insertion loss curves computed for taller

screens, where h þ w ¼ 4.0 m, and the 2D source is the

same, are shown in Fig. 7. Fig. 7(a) and (b) refers to screens

with air gaps of w ¼ 0.05 and 0.02 m, respectively. As

expected, the performance of both the rigid and the elastic

screens is now better than that provided by the smaller

screens, defined by h þ w ¼ 3.0 m. This behavior is

particularly important at lower frequencies. However, as

the frequency increases, the gain in performance decreases,

and the average insertion loss curve approaches that shown

in Fig. 5(a) and (b). When the air gap is w ¼ 0.02 m

(Fig. 7(b)), there is an overall increase in the insertion loss

provided by the screen. Again, this behavior seems to

indicate that the size of the air gap has a marked influence on

the average insertion loss provided by the screen.

Another simulation, also assuming a pure 2D scenario,

was performed to study how the ground material influences

the insertion loss provided by the elastic screen. Fig. 8(a)

gives the results computed when the elastic ground has

the same properties as the elastic screen. This figure also

includes the insertion loss curve computed when the ground

is made of concrete. The insertion loss computed at low

frequencies is similar for the two cases. Meanwhile, at high

Fig. 5. Average insertion loss for h þ w ¼ 3.0 m: (a) elastic versus rigid

screens with w ¼ 0.05 m; (b) elastic versus rigid screens with w ¼ 0.02 m.

Fig. 6. Infinite elastic panel: (a) geometry of the model; (b) insertion loss curve.

Fig. 7. Average insertion loss for h þ w ¼ 4.0 m: (a) elastic versus rigid

screens with w ¼ 0.05 m; (b) elastic versus rigid screens with w ¼ 0.02 m.

A. Tadeu, L. Godinho / Engineering Analysis with Boundary Elements 27 (2003) 215–226 221



frequencies, the insertion loss differences become apparent.

Since the scale of the plots does not allow these differences to

be identified, an enlargement of the high frequency part of the

response is shown in Fig. 8(b). However, the final insertion

loss does not seem to be much influenced by the type of

material of the ground, given the small differences registered.

The last simulation in this section corresponds to the case

of an acoustic source emitting waves with an apparent

velocity of 450 m/s along the z-direction. This apparent

velocity corresponds to waves with an inclination of 40.938 in

relation to the z-axis. Fig. 9(a) gives the results obtained when

h þ w ¼ 3.0 m and w ¼ 0.05 m. Once more, these results are

compared with those found for an infinite panel with the same

thickness as the elastic screen (Fig. 9(b)).

The average insertion loss found for this situation is

slightly lower than that registered for the 2D case (Fig. 5(a)).

However, the main features identified for the case of infinite

apparent velocity are maintained, and the average insertion

loss curve exhibits marked insulation dips in frequencies

where the resonance effect occurs within the elastic material.

4.2. Individual frequency results

A second set of results gives the sound pressure level

evaluated over a fine grid of receivers, placed on either

side of the acoustic screen, for specific frequencies.

The sound pressure level is calculated by the expression

10 logbp2=ð2 £ 1025Þ2c; where p refers to the pressure

amplitude and 2 £ 1025 is a pressure of reference.

Fig. 10 displays the sound pressure level at each receiver

on a dB scale, for 50.0, 500.0, 960.0 Hz, in the presence of

either an elastic (Fig. 10(a)) or a rigid screen (Fig. 10(b)).

These plots use a gray scale, ranging from black to white as

the amplitude increases. At a frequency of 50.0 Hz the two

results are similar, except at the receivers placed behind the

screen, near to the ground and in the close vicinity of the

screen. When elastic ground is simulated, the sound pressure

level behind the screen in the vicinity of the ground is

attenuated, since this does not permit the perfect reflection of

the sound that the rigid floor does. As the frequency

increases, the behavior of the response provided by the two

models becomes similar (500.0 Hz). The results show that

the presence of a small air gap at the base of the screen further

increases the global sound pressure level registered behind it.

However, when the chosen frequency coincides with the first

dip related to the resonance effect inside the elastic material

of the screen (960.0 Hz), the elastic screen model exhibits

high sound pressure levels at receivers placed behind the

screen. This is because the resonance effect arising within the

elastic panel allows sound energy to travel through it with

only small losses. By contrast, the insertion loss computed for

the rigid model reveals a pronounced attenuation behind the

acoustic screen. This result was anticipated, since all the

energy hitting its surface is reflected back. Thus, the only

energy reaching the receivers placed behind the barrier is that

Fig. 8. Average insertion loss computed when the ground is made from

different elastic materials (cork and concrete): (a) frequency range (2.0,

2000.0 Hz); (b) frequency range (100.0, 2000.0 Hz).

Fig. 9. Average insertion loss when the apparent velocity is 450 m/s: (a)

elastic versus rigid screens with w ¼ 0.05 m; (b) infinite elastic panel.
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which is diffracted by its top edge, and that passing through

the air gap at its base. In fact, a distinct increase in the sound

pressure level near the base of the rigid screen can be seen in

Fig. 10(b), and this is due to the presence of the air gap.

5. Conclusions

This paper studied the behavior of movable elastic

screens via BEM. The proposed BEM model was found to

be efficient, because only the surface of the inclusion needs

to be discretized, since the Green’s functions used take

the full fluid–solid interaction at the ground surface into

account.

The computed results were compared with those

provided by a rigid model, solved using the BEM. The

insertion loss provided by the elastic screen appeared to be

highly dependent on the dynamic behavior of the screen,

exhibiting pronounced dips related to the resonance effects

originated by the interaction of waves within the panel. The

responses for individual frequencies enabled this behavior

to be clearly identified. Outside these zones the insertion

Fig. 10. Sound pressure level computed over a grid of receivers for individual frequencies, when h þ w ¼ 3.0 m and w ¼ 0.05 m: (a) elastic screen model; (b)

rigid screen model.
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loss provided by the elastic screen appears to be similar to

that of the rigid barrier.

The size of the gap was found to have an important effect

on the performance of the screen. Even a small gap

contributes to the enhancement of the sound pressure level

behind the screen.

The simulations presented assumed the existence of a

lightweight cork screen. Similar dynamic behavior is

anticipated when the elastic material of the screen or its

thickness is changed. Thus, the behavior will be similar to

the rigid model except in the vicinity of the eigenmodes of

the dynamic system, such as those associated with

resonance frequencies.

Appendix A. The 2.5D Green’s functions

for an unbounded formation

A.1. Elastic formation

Definitions:

l2, m2 Lamé constants

r2 Mass density

a2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl2 þ 2m2Þ=r2

p
P wave velocity

b2 ¼
ffiffiffiffiffiffiffi
m2=r2

p
S wave velocity

kp2 ¼ v=a2

ks2 ¼ v=b2

ka2 ¼
ffiffiffiffiffiffiffiffiffiffiffi
k2

p2 2 k2
z

q
kb2 ¼

ffiffiffiffiffiffiffiffiffiffi
k2

s2 2 k2
z

q
r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx 2 x0Þ

2 þ ðy 2 y0Þ
2

p
A ¼ 1=4ir2v

2 Amplitude

gi ¼ ›r=›xi ¼ xi=r i ¼ 1; 2 Direction cosines

Hna ¼ Hð2Þ
n ðka2rÞ Hnb ¼ Hð2Þ

n ðkb2rÞ Hankel functions

Bn ¼ kn
b2Hnb 2 kn

a2Hna Bn functions

Green’s functions for displacements:

Gxx ¼ A k2
s2H0b 2

1

r
B1 þ g2

xB2

� �

Gyy ¼ A k2
s2H0b 2

1

r
B1 þ g2

yB2

� �
Gzz ¼ A k2

s2H0b 2 k2
z B0

h i
(A1)

Gxy ¼ Gyx ¼ gxgyAB2

Gxz ¼ Gzx ¼ ikzgxAB1

Gyz ¼ Gzy ¼ ikzgyAB1

The mathematical derivation of these Green’s

functions, expressions for the strains and stresses are

given in Ref. [19].

A.2. Fluid formation

Definitions:

lf Lamé constant

rf Mass density

af P wave velocity

kpf
¼ v=af

kaf
¼

ffiffiffiffiffiffiffiffiffiffi
k2

pf
2 k2

z

q
with Im kaf

# 0

Af ¼ 2i=4 Amplitude

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx 2 x0Þ

2 þ ðy 2 y0Þ
2

p
gi ¼ ›r=›xi ¼ xi=r i ¼ 1; 2 Direction cosines

Hnaf
¼ Hð2Þ

n ðkaf
rÞ Hankel functions

Green’s functions for displacements:

Gfx ¼ 2Afkaf
2

a2
f

v2lf

 !
H1af

gx

Gfx ¼ 2Afkaf
2

a2
f

v2lf

 !
H1af

gy

ðA2Þ

Appendix B. The 2.5D Green’s functions for a flat

solid–fluid interface

Consider a homogeneous fluid medium of infinite extent,

bounded by a flat homogeneous elastic medium. This system

is subjected at point (x0,y0) to a spatially sinusoidal harmonic

pressure line source along the z-direction.

The solution for this load can be calculated by adding the

incident field generated by a unit pressure load to the field

generated at the solid–fluid interface, expressed by the so-

called surface terms. These surface terms are obtained as a

function of solid displacement and fluid pressure potentials.

The amplitudes of these potentials are defined so as to verify

the required boundary conditions at this solid–fluid inter-

face, namely the continuity of normal displacements and

stresses, and null tangential stresses. Throughout this

procedure the incident field and the surface terms must be

expressed as an integral of plane waves. In order to

transform this integral into a summation, it is assumed that

there is an infinite number of sources distributed along the x-

direction, at equal intervals Lx.

A full description of the mathematical derivation of this

solution can be found in Ref. [18]. Only the potentials

associated with the source, the surface terms and the final

Green’s function are given here.

The source term can be obtained making use of the

dilatational potential

ffluidðv; x; y; kzÞ

¼
2i

4
2

a2
f

v2lf

 !
Hð2Þ

0 kaf

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx 2 x0Þ

2 þ ðy 2 y0Þ
2

q� �
ðB1Þ
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which can be written in the form

ffluid ¼ 2
i

2Lx

Xn¼þN

n¼2N

2a2
f

v2lf

 !
Ef

vf
n

" #
Ed ðB2Þ

where Ef ¼ e2ivf
nly2y0l and vf

n ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

pf
2 k2

z 2 k2
n

q
with

Imðvf
nÞ # 0

The solid displacement potentials are expressed as

f ¼ Ea

Xn¼þN

n¼2N

ðEbAf
nÞEd

cx ¼ Eakz

Xn¼þN

n¼2N

2Ec

gn

Cf
n

� �
Ed (B3)

cy ¼ 0

cz ¼ Ea

Xn¼þN

n¼2N

kn

gn

EcBf
n

� �
Ed

while the fluid pressure potential is given by the expression

ffluid ¼ 2
i

Lx

Xn¼þN

n¼2N

2a2
f

v2lf

 !
Ef

vf
n

Df
n

" #
Ed;

when y , 0

ðB4Þ

where v is the frequency of the load, kz is the wavenumber in

z andi ¼
ffiffiffiffi
21

p
: Also in these expressions Ea ¼ 1=ð2rv2LxÞ;

Eb ¼ e2ivny; Ec ¼ e2igny; Ef ¼ e2ivf
ny and kn ¼ ð2p=LxÞn;

vn¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

p12k2
z 2k2

n

q
with ImðvnÞ#0; gn¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

s12k2
z 2k2

n

q
; with

ImðgnÞ#0; kp1¼v=a1; ks1¼v=b1; a1¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl1þ2m1Þ=r1

p
and

b1¼
ffiffiffiffiffiffiffi
m1=r1

p
are the velocities for P (pressure) waves and S

(shear) waves, respectively,l1 andm1 are the Lamé constants

and r1 is the mass density of the elastic medium. Meanwhile,

vf
n¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

pf
2k2

z 2k2
n

q
with Imðvf

nÞ#0; kpf
¼v=af ; af¼

ffiffiffiffiffiffi
lf =rf

p
is

the acoustic (dilatational) wave velocity of the medium, lf is

the fluid Lamé constant and rf is the mass density of the fluid.

An, Bn, Cn, and Dn are as yet unknown coefficients to be

determined from the appropriate boundary conditions, so that

the field produced simultaneously by the source and surface

terms should produce ss
yx¼sf

yx¼0; ss
yz¼sf

yz¼0; ss
yy¼sf

yy

and us
y¼uf

y at y ¼ 0. Imposing the four stated boundary

conditions for each value of n a system of four equations in

the four unknown constants is found. This is a straightfor-

ward procedure, but the details are rather complex, and so are

not presented here. The final system of equations is

½af
ij i¼1;4; j¼1;4�½cf

i i¼1;4�¼½bf
i i¼1;4� ðB5Þ

with ½af
ij i¼1;4; j¼1;4�

af
11¼22vn af

12¼
2k2

n

gn

þgn af
13¼

2k2
z

gn

af
14¼0

af
21¼22vn af

22¼
2k2

n

gn

af
23¼

2k2
z

gn

þgn af
24¼0

af
31¼ð2k2

s122v2
znÞ af

32¼22k2
n af

33¼22k2
z af

34¼
i2r1v

2

vf
nm1

af
41¼2ivn af

42¼
2ik2

n

gn

af
43¼

2ik2
z

gn

af
44¼

2r1v
2

k2
pf
lf

bcf
i i¼1;4c

cf
1¼Af

n cf
2¼Bf

n cf
3¼Cf

n cf
4¼Df

n

bbf
i i¼1;4c

bf
1¼0 bf

2¼0 bf
3¼

2ir1v
2

vf
nm1

Ef1 bf
4¼

r1v
2

k2
pf
lf

Ef1

with vzn¼
ffiffiffiffiffiffiffiffiffiffiffi
2k2

z 2k2
n

q
and Ef1¼e2ivf

ny0 :

Once the constants have been found, the pressures

associated with the surface terms may be calculated using

the equations that relate potentials to pressures. The Green’s

functions for the fluid formation are then obtained from the

sum of the source terms and these surface terms. Once this

has been done, the final expression for the pressure field in

the fluid medium is obtained in the following form

sfs ¼
2i

4
Hð2Þ

0 kaf

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx 2 x0Þ

2 þ ðy 2 y0Þ
2

q� �

2
i

Lx

Xn¼þN

n¼2N

Ef

vf
n

Df
n

� �
Ed; when y , 0 (B6)

Notice that, if kz ¼ 0 is used, the system of equations

derived above is reduced to three unknowns, leading to the

2D response.
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