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Abstract

The boundary element method (BEM) has been used to compute the acoustic wave propa-

gation through a single vertical panel, which separates two rooms, made of concrete, when
one of the rooms is excited by a steady-state, spatially sinusoidal, harmonic line load pressure
at low frequencies. This work focuses on how the connection of the panel to the ceiling affects
the acoustic insulation provided by the wall. Perfect double-fixed partitions and acoustic

barrier-type structures with differently-sized gaps between the ceiling and the barrier are
studied. The BEM model is formulated in the frequency domain and takes the air-solid
interaction fully into account. Insulation dips are localised in the frequency domain and

identified with dips associated with both the wall’s natural dynamic vibration modes and with
those associated with the air in the rooms. The influence of the wall’s thickness on acoustic
insulation is also analysed. The computed results obtained with the acoustic barrier type

structure are compared with those obtained by a rigid model. The importance of the rooms’
surface conditions is assessed, modelling the rooms with cork.
# 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Besides the mass and sound frequency, there are other variables that may affect
the acoustic insulation of a separation element. Among these are the angle of
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incidence of the incident sound waves, the presence of weaker areas in the insulation and
the element’s rigidity and damping. The connections between the surrounding walls and
the sound propagation within the two rooms are also important, with the vibration
eigenmodes of the excited rooms being a determining factor for the latter [1,2].
The airborne sound insulation provided has been studied for many years, with the

first publications dating from the early part of the 20th century [3]. It was only in the
middle of the last century, however, that London devised theoretical equations for
calculating sound transmission via single and double walls [4–6], which stimulated
research on simplified theoretical solutions for predicting the levels of acoustic
insulation bestowed by building elements. Simplified methods have since been pro-
posed to help design partition elements [7–11].
Research work has focused less on the low-frequency noise that commonly occurs

in residential areas, even though today’s world contains many outdoor sources of
low frequency noise, which is less effectively reduced by walls and other protective
structures [12–14].
Laboratory tests have been devised to determine the insulation provided by var-

ious elements, and the most commonly used technique is the two-room method [15–
18]. However, the low-frequency range is not included in the standards for sound
insulation measurements in use today. The sound reduction index for the low-fre-
quency range has been shown to depend on parameters such as room size, sound
source location and the reverberation time [12–14,19], making it hard to extrapolate
test results to real-world situations, where rooms and separation elements alike vary
greatly in terms of shape and size.
The reliability of the measurement of the acoustic insulation conferred by a

dividing wall for sound frequencies lower than 100 Hz, for standard 50–70 m3

European transmission rooms [20,21], is also open to question.
Osipov et al. [22] used three different models to predict low frequency airborne

sound transmission through single partitions, namely, an infinite plate, a baffle plate
and a room-plate-room. All these simplified models assume that the separating ele-
ment is thin in comparison with the bending wavelength, and so Kirchhoff’s har-
monic pure bending wave motion theory is used. This method shows that acoustic
insulation at low frequencies depends on the geometry and dimensions of the
adjacent rooms, as well as on the properties of the wall.
The statistical energy analysis method (SEA) is one of the numerical schemes

developed to predict the level of acoustic insulation provided by partition elements,
and it has been usefully applied to complex problems of sound transmission [23–25].
An advantage of this method is that it uses statistical quantities, and so some details
of the dynamic system are not needed. A drawback, however, is its lack of precision
when the modal density is low.
Kropp et al. [26] developed a matrix formulation to calculate the acoustic insula-

tion provided by a double element, at low frequencies, avoiding the problems caused
by the thickness of the two panels of the wall, from which the Kirchhoff and
Mindlin methods suffer. The same group also developed a model where the double
element was composed of two flexible plates, joined together by an elastic layer and
represented by uncoupled springs, not taking into account of shear stiffness.
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Numerical techniques, such as the finite element (FEM) and finite difference
methods, are seldom used to determine acoustic insulation because they require full
discretization of the domain, with extremely fine meshes at high frequencies, which
leads to a very high computational cost.
The FEM has been used, however, by Osipov et al. and by Maluski et al. [27,28] to

analyse how a room’s dimension influences the acoustic insulation provided by a
partition at low frequencies. They also compared the numerical results with experi-
mental findings, which revealed that sound insulation depends on the modal char-
acteristics of the sound field in each room. Ljunggren [29] has recently verified, using
theoretically simplified models, that the boundary and mounting conditions of single
walls at low frequencies are expected to affect the sound reduction index.
Some of the methods described above simulate sound waves propagating through

building partitions at low frequencies. Nearly all the methods described above,
however, tend to assume only plane wave excitation and negligible fluid loading.
We have used the boundary element method (BEM) to compute the acoustic

insulation provided by a single vertical panel, which separates two rooms when one
of the rooms is excited by a steady-state, spatially sinusoidal, harmonic line load
pressure at low frequencies. The limitations of thickness, referred to above, in the
context of the Kirchhoff and Mindlin approaches, are avoided since the method
adopted here fully models the rooms’ surfaces and dividing wall, completely taking
account of the coupling between the fluid (air) and solid structures. The present
work focuses on the way the connection of the separating wall to the ceiling affects
the acoustic insulation provided by the wall. Two distinct geometric models are
analysed: first, where the wall is fixed to both the ceiling and floor; second, where the
wall is fixed to the floor but there may be a gap between the wall and the ceiling (an
acoustic barrier type structure). The second model is a more realistic model. It may
be an acoustic screen, or it may be designed to allow cables and other equipment to
pass between the wall and the ceiling.
The remainder of this paper is divided into four parts. First, the 3D problem is

defined. Then, the BEM is formulated in the frequency domain and the results ver-
ified by applying them to a problem involving a cylindrical fluid-filled cavity, for
which analytical solutions are known. Next, two distinct separating wall configur-
ations, with different thicknesses and materials, are simulated, and the resulting
sound pressure level difference between the two rooms, called acoustic insulation
throughout this work, are compared. Finally, the computed results obtained with
the acoustic barrier type structure are compared with those given by a rigid model.

2. BEM formulation

In the past decade, BEM models have emerged as very powerful tools for solving
applied physics problems. One of the most important advantages of this method is
that only the boundaries of the heterogeneities inside the domain being analyzed
need to be discretized, rather than the domain itself. The BEM is particularly sui-
table for problems involving unbounded domains, because the Green’s functions
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used allow the far field radiation conditions to be satisfied. But the BEM leads to a
fully populated system of equations, as opposed to the sparse system given by the
finite difference and finite element techniques. Nevertheless, this technique is still
efficient because the size of the system matrix is reduced.
The BEM has been used to simulate wave propagation between two fluid-filled

boreholes, where the source and receivers are placed in different boreholes [30]. The
technique thus reproduced is cross-hole surveying, a seismic prospecting
technique that is often used to find the properties of an elastic medium separating
two boreholes.
Bouchon [31] studied wave propagation in an infinite open borehole in layered

isotropic media using the BEM, and his work was subsequently developed by Dong
et al. [32], who refined the problem by adding casing to the borehole, and incorpor-
ating transversely isotropic layers. They used an indirect BEM to model the scat-
tering from a source placed in both open and cased boreholes in transversely layered
isotropic media.
Several authors have studied how geometric irregularities in a borehole affect

acoustic response. Randall [33] and Tadeu et al. [30] simulated irregularities that
might be caused by the mechanical action of the drill string in vertically inclined
wells, or by rock collapse next to a borehole, plastic deformation, or washing a
borehole drilled in soft or crumbling rocks, Bell et al. [34] and Zheng et al. [35].
The BEM model is employed in this work to calculate the three-dimensional

pressure field generated by a steady-state, spatially sinusoidal, harmonic line load
pressure inside two rooms separated by a wall or an acoustic barrier. A brief
description of the BEM model is given below.
Fig. 1 represents the case where a concrete wall is used to separate two identical

rooms. The floor, the ceiling and all the other walls of the rooms are also made of
concrete, with density �, allowing a shear wave velocity of � and a compressional
wave velocity of �. The fluid component (the air inside the rooms) has a density �a
and permits a compressional wave velocity �a.
The geometric representation used does not model the outer boundaries of the

floor, ceiling, and walls, that is, it assumes that the waves being transmitted to the
slabs and exterior walls are not reflected back by the outer surface of these elements
(see Fig. 1). Furthermore, it does not take into account the existence of walls placed
along the z axis. So, the computed solution approaches that of two tunnels buried
within an unbounded concrete medium. This procedure helps reduce the computa-
tional cost. These simplifications are nevertheless acceptable because the model
described here is used to calculate the airborne sound insulation of the wall separ-
ating two rooms, and very little energy crosses the slabs and outer walls in comparison
with what passes through the dividing wall.
One room contains a dilatational point source at position x0; y0; z0ð Þ, and this

oscillates with a frequency !. The pressure incident field is expressed by

pinc ¼
Aei !�a �t�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x�x0ð Þ

2
þ y�y0ð Þ

2
þ z�z0ð Þ

2
p� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x � x0ð Þ

2
þ y � y0ð Þ

2
þ z � z0ð Þ

2
q ð1Þ
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where A is the wave amplitude and i ¼
ffiffiffiffiffiffiffi
�1

p
.

The geometry of the rooms is assumed to be constant along the z direction, and so
the 3D solution is arrived at by adding together a series of two-dimensional pro-
blems, for varying effective wavenumbers, k�a ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!=�að Þ

2
�k2

z

q
with Imk�a <0 [36],

where kz is the axial wavenumber once a Fourier transformation has been applied to
the problem in the z direction. The incident field in this frequency wavenumber
domain is given by

p̂inc !; x; y; kzð Þ ¼
�iA

2
H

2ð Þ

0 k�a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x � x0ð Þ

2
þ y � y0ð Þ

2

q� �
ð2Þ

in which the H 2ð Þ
n (...) are second Hankel functions of order n.

As the rooms are modelled as though buried in unbounded medium, only the
inner surfaces of the rooms have to be discretized, under the BEM. The BEM
equations that are applied to this problem have already been applied by the authors
to the solution of wave propagation in a fluid filled borehole [37]. The acoustic and

Fig. 1. Geometry of the problem (position of the sources and receivers): (a) Model 1—perfectly fixed

connections between the wall and the floor, and between the wall and the ceiling; (b) Model 2—wall with a

free end (wall/barrier).
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elastic media are assumed to be homogeneous, and a perfect coupling between the
solid and the fluid inside the rooms is held to exist. There is thus a continuity of
normal displacements and stresses, and null tangential stresses at the interface
between the solid and the fluid at the interface between the two media. A system of
equations that can be solved for the nodal solid displacements and fluid pressures is
devised by imposing these boundary conditions along the boundary of the fluid-filled
rooms. This system of equations requires the evaluation of the following integrals
along the appropriately discretized boundary of the rooms,

H
sð Þkl

ij ¼

ð
Cl

H
sð Þ

ij xk; xl; nlð Þ dCl i; j ¼ 1; 2; 3ð Þ

H að Þkl
a1

¼

ð
Cl

H að Þ
a1

xk; xl; nlð Þ dCl

G
sð Þkl

ij ¼

ð
Cl

G
sð Þ

ij xk; xlð Þ dCl i ¼ 1; 2; 3; j ¼ 1ð Þ

G að Þkl
a1

¼

ð
Cl

G að Þ
a1

xk; xlð Þ dCl ð3Þ

in which H
sð Þ

ij xk; xl; nlð Þ and G
sð Þ

ij xk; xlð Þ are the Green’s tensor for traction and dis-
placement components in the elastic medium, at point xl in direction j caused by a
concentrated load acting at the source point xk in direction i; H að Þ

a1
xk; xl; nlð Þ are the

components of the Green’s tensor for pressure in the fluid medium, at point xl

caused by a pressure load acting at the source point xk; G að Þ
a1

xk; xlð Þ are the compo-
nents of the Green’s tensor for displacement in the fluid medium, at point xl in the
normal direction, caused by a pressure load acting at the source point xk; nl is the
unit outward normal for the lth boundary segment Cl; the subscripts i; j ¼ 1; 2; 3
denote the normal, tangential and z directions, respectively. Standard vector trans-
formation operators are used to transform these equations from the x, y, z Cartesian
coordinate system. The Appendix gives details of the Green’s functions and stress
functions in Cartesian co-ordinates for the elastic and fluid media. The full derivation
of these equations can be found at Tadeu et al. [38]. The integrations needed for Eq.
(3) are carried out analytically for the loaded element [39,40], and when the element to
be integrated is not the loaded element, a Gaussian quadrature scheme is used.
The internal material loss is considered using a complex Young’s modulus and

complex Lamé constants. The Young’s modulus is computed as E ¼ Er 1þ i�ð Þ,
where Er corresponds to the classic modulus and � is the loss factor. The complex
Lamé constants are written in the same form as the Young’s modulus.

3. BEM validation

The validity of the BEM algorithm was verified by applying it to the solution of a
circular cylindrical cavity driven in a concrete medium (� ¼ 3499 m=s, � ¼ 2245 m=s
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and � ¼ 2500 kg=m3), filled with fluid (�a ¼ 1500 m=s and �a ¼ 1000:0 kg=m3),
when subjected to a dilatational harmonic pressure line load [with A=10,000 in Eq.
(1)], placed at point O (see Fig. 2), with kz ¼ 1:0 rad=m, for which the solution is
known in closed form [41].
The response is calculated at two receivers placed inside (receiver 1) and outside

(receiver 2) the fluid filled cavity. Computations are performed in the frequency
range 1.0–800.0 Hz, with a frequency increment of 1.0 Hz. Fig. 3 displays the real
and imaginary parts of the total pressure field and of the vertical displacements,
calculated at receivers 1 and 2 respectively, when the inclusion is modeled with 30
boundary elements. The solid lines represent the analytical responses, while the
marked points correspond to the BEM solution. The two solutions show very close
agreement. Tests in which different loads and receivers were placed at different
points gave equally good results.

4. Numerical applications

This section, describes the sound pressure level difference provided by a single
vertical wall separating two identical rooms. Throughout this work, the sound
pressure level difference conferred by the wall is termed acoustic insulation Two dis-
tinct geometries are used to model this separating wall: the first ascribes perfectly-fixed
connections between the wall, the ceiling and the floor referred to Model 1 in this work
(see Fig. 1a); the second model (Fig. 1b) is a fixed connection between the wall and the
floor and a free connection on the other end to model the wall as a structural cantilever.
The rooms’ floor, ceiling and wall surfaces are modelled with a number of

boundary elements that increases with the frequency excitation of the dynamic
source. The length of the elements is defined by the sound acoustic wavelength
divided by 10. Given the small distance between the two faces of the separating wall,
the length of boundary elements modelling the wall follows the above relation, but
must also be at least 8 times less than its thickness. The same relation is applied to

Fig. 2. Circular cylindrical fluid-filled cavity in an unbounded elastic medium.
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the definition of the number of elements used to model the top edge of the wall in
Model 2, with the distance between this edge and the ceiling being the reference
distance.
The rooms are made from concrete, with the same properties as those used to

validate the BEM model, and filled with air (�a ¼ 340 m=s and �a ¼ 1:22 kg=m3).
The loss factor ascribed to the concrete is � ¼ 4� 10�3 [42]. The pressure wave field
was computed along a grid of receivers placed in the two rooms, equally space, 0.25
m apart, along the vertical and horizontal directions, as illustrated in Fig. 1. A spa-
tial harmonic line source placed in one of the rooms (source room) excites the full
dynamic system (see Fig. 1). The calculations are performed for a frequency range
from 1.0 to 800.0 Hz, with a frequency increment of 1.0 Hz. Some of the plots show
the responses around specific frequency sub-domains, to better illustrate specific
features of the computed results.
The computation of the response for a point pressure load would require a con-

siderable computational effort, given the large number of 2D solutions that would
have to be integrated. Simulations are thus performed following waves with different
apparent wave velocities along the z-axis, to seek the main features of the 3D effects
of a point source. This apparent wave velocity (c) is given by waves arriving at the z
axis with a path inclination given by arccos �a=cð Þ, where �a is the true wave velocity
(see Fig. 4). Thus, in the equations presented above, kz is taken to be !=c.
Next, a cylindrical linear source (kz ¼ 0 rad=m) excites Model 1, where the

separating wall is 0.10 m thick. This model is used to illustrate how the sound
pressure level inside the two rooms is dependent on both the eigenfrequencies of the

Fig. 3. Analytical versus BEM solution: (a) real part of the response; (b) imaginary part of the response.
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rooms and on the transversal vibration modes of the wall. The average sound insu-
lation, provided by the separating wall, is then computed for different wall thick-
nesses and for both models (Models 1 and 2). Model 2 has a gap of 0.05 m between
the ceiling and the top edge of the separating wall. The displacements of the separ-
ating wall and the size of the gap are used to explain the average sound insulation
differences between Models 1 and 2. The results for Model 2 are compared with
those obtained assuming the existence of rigid walls and slabs. The importance of
the rooms’ surface conditions is assessed by modelling the rooms with cork. The
average sound insulation provided by the two models is then obtained for a spatial
sinusoidal harmonic source that generates waves, which propagate along the z
direction with an apparent wave velocity of 400.0 m/s. Finally, a set of simulations is
performed to study what effect a larger gap between the top of the wall and the
ceiling has on the sound reduction provided by the dividing barrier.

4.1. Incidence of cylindrical waves of kz=0 rad/m

The different models were first subjected to the incidence of cylindrical linear
waves of kz=0 rad/m, which corresponds to waves with an apparent wave velocity
of c=1 m/s that are normally incident along the z direction. This corresponds to
waves reaching the receivers with a 90	 inclination in relation to the z axis (2D).
Fig. 5 gives the results when the source is placed on the first dynamic system

defined by a separating wall, 0.10 m thick, perfectly fixed to the floor and ceiling
(Model 1) in the frequency range sub domain from 1.0 to 200.0 Hz, to explain the
main features of the response at very low frequencies more clearly. Fig. 5a displays
the sound pressure level results, on a dB scale, obtained at the pair of receivers (1, 2),
placed 0.125 m from the separating wall at 1.625 m from the floor, in the two rooms
(see Fig. 1a). Receiver 1 is placed inside the source room, while receiver 2 is placed in
the receiver room.
Stationary waves form and exercise a strong influence on the vibration properties

of a room. These waves occur in the frequency domain according to the following
equation [43,44],

fqr ¼
�a

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q

a

� 	2
þ

r

b

� 	2r
Hzð Þ ð4Þ

where a, b are the height and width of the room, and q and r are integers (0, 1, 2,....).

Fig. 4. Apparent wave velocity.
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Fig. 5. Responses obtained when the source 2D (kz ¼ 0 rad=m) is excited in (Model 1) with a wall 0.10 m

thick: (a) sound pressure level at receivers 1 and 2; (b) Sound insulation estimated by the receivers 1 and 2

versus the analytical solution for a wall of infinite extent; (c) Average sound insulation versus the analy-

tical solution for a wall of infinite extent.
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A dynamic source only excites modes, which do not exhibit null pressure at the
position of the load. A fraction of the energy generated in the source room by the
modes excited, passes through the separating wall to the receiver room. In the
receiver room, this energy is seen as generated by an area source, which may excite
additional modes. The dynamic process does not end here, since the energy in the
receiver room is also transmitted to the source room, where it can be observed as a
weak area source, exciting additional modes. The results in Fig. 5a corroborate this
interpretation: at receiver 1, the sound pressure level field exhibits enhanced peaks in
the vicinity of the first excited modes [f10 ¼ f01 ¼ 56:67 Hz, f11 ¼ 80:14 Hz,
f02 ¼ f20 ¼ 113:33 Hz, f12 ¼ f21 ¼ 126:71 Hz and f22 ¼ 160:28 Hz]. The modes
[f03 ¼ f30 ¼ 170:0 Hz and f13 ¼ f31 ¼ 179:2 Hz] are not excited in the source room
since the pressure load is placed over a nodal line of these stationary modes (0.5 m
away from the neighbouring boundaries of the source room). These are clearly seen
in the sound pressure level responses registered in the second room, which corre-
spond to the excitation of these modes; small peaks in the neighbourhood of these
later modes occur in the responses for the first room, caused by energy being
transmitted from the second room to the first.
Other dips of sound insulation are still visible in the vicinity of specific frequencies

not associated with the normal modes of the rooms. These dips are generated by the
vibration of the wall, and change according to its thickness. The response confirmed
that this first peak appears in the vicinity of the first eigenmode of the structural
system, labeled F1 in Fig. 5 (f=83.0 Hz). To better illustrate this phenomenon, Fig. 6
displays the real part of the displacement of the mid plane of the wall, which exhibits
symmetric behavior in relation to its mid height.
Fig. 5b displays the sound insulation estimated by receivers 1 and 2. As expected,

low insulation is registered in the vicinity of the eigenmodes of the room. Fig. 5b
also includes the response obtained when the wall is infinite and bounded by air
media on both faces. These solutions were previously obtained analytically, taking
into account the air-solid interaction, and can be found in Tadeu et al. [45,46].
Analysis of this figure shows that the computed sound pressure level difference

between the registered sound pressure level at the receivers 1 and 2 indicates pro-
nounced dips and troughs not predicted by the analytical model. The discrepancies
between the results obtained by the two models, are particularly important at very
low frequencies, where the BEM solution predicts higher insulation results than
those anticipated by the analytical model.
The contribution of the coincidence effect [47], which is associated with propaga-

tion of waves along the wall, in the results provided by Model 1, is not well-defined.
The analytical solution obtained for a wall of infinite extent agrees with this inter-
pretation. It can be seen that the dip related to the coincidence effect is not sharp,
but appears as a smooth change in the frequency domain at around 200 Hz. Its
contribution to the response thus confirms that there is not a pronounced dip
associated with the coincidence effect.
Notice, that the coincidence effect phenomenon results from the movement of the

wall panel caused when it is struck by inclined sound waves with a wavelength that
equals that of the wall bending waves. When the contribution of the air to the
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movement of the wall is not considered, the frequency associated with the
coincidence effect is given by

! ¼
�a

sin


� �2
ffiffiffiffiffiffi
�h

D

r
ð6Þ

where 
 is the angle of incidence of the sound, h is the thickness of the panel,
! ¼ 2� f, D ¼ h3E

� �
= 12 1� �2

� �� �
, E is the Young’s modulus (N/m2), � is Poisson’s

ratio and � is the density of the panel’s material (kg/m3). The critical frequency
corresponds to the case when 
 is equal to 90	, which leads to a value of 185.1 Hz.
The analytical model that takes the coupling between the air and the solid into
account predicts higher values.
Fig. 5c displays the average sound insulation calculated from the response com-

puted over a grid of 144 receivers, equally spaced 0.25 m apart along the vertical and
the horizontal directions, placed in each room (see Fig. 1). The resulting curve is
smoother than the pressure level difference calculated between receivers 1 and 2, and
approaches the results given by the analytical model, particularly for frequencies
above 50 Hz. However, the computed response is still highly dependent on the
excited modes of the rooms, revealing poor insulation in the vicinity of the corre-
sponding eigenfrequencies. As for receivers 1 and 2, the analytical model predicts
insulation lower than that computed by the BEM model at very low excitation
frequencies.
Fig. 7 displays the averaged sound insulation provided by a separating wall 0.10

or 0.20 m thick inserted in Models 1 and 2. The average values have been computed
along the same grid of 144 receivers placed in each room. Fig. 7a shows the results
obtained by Model 1. The features of the responses do not appear to change sig-
nificantly as the thickness of the wall changes. The insulation dips still occur in the
vicinity of the eigenmodes of the dynamic system. As expected, the highest average
sound insulation is obtained when the wall is 0.20 m thick. However, the results do

Fig. 6. Horizontal displacements of the mid plane of a vertical wall, 0.10 m thick, inserted in Model 1,
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not show a constant increase in sound insulation as we move from a wall 0.10 m
thick to a wall 0.20 m thick, oscillating markedly throughout the frequency domain.
Notice that the analytical model responses included in this figure follow the trend of
the insulation variation registered by Model 1.
Fig. 7b presents the results obtained for Model 2, where the separating wall/bar-

rier is loosely connected to the ceiling, with a gap of 0.05 m between the ceiling and
the top of the wall. Dips of sound insulation for walls 0.10 and 0.20 m thick still
occur in the vicinity of the eigenmodes of the rooms. Frequency shifts in the position
of the eigenmodes of the rooms are found when we move from Model 1 to Model 2.
As before, additional dips in sound insulation are still found in the vicinity of spe-
cific frequencies associated with the vibration of the wall (the first modes are labelled
F2 in the plots). The sound insulation provided by the 0.20 m thick wall is still better
than that given by the wall 0.10 m thick. However, the increase in sound insulation
is small compared with that in Model 1 when doubling thickness.
Comparing the results of Models 1 and 2 (Figs. 7a and b), Model 2 clearly gives a

much lower average sound insulation than Model 1, particularly at very low fre-
quencies. The results thus indicate that the wall-ceiling gap plays an important role
in the sound insulation provided by the separating wall.
To better understand the contribution of the movement of the separating wall on

the definition of sound insulation, an additional simulation was performed with a
BEM model that assumes the existence of rigid wall boundaries. The BEM code has
been previously used by the authors to define the acoustic scattering of a three-
dimensional sound pressure source by an infinitely long rigid barrier in the vicinity
of a tall building [48]. Fig. 7c plots the insulation curves provided by the two models
when the separating wall is 0.20 m thick. Analysis of the results confirms that the
responses are similar except in the vicinity of the frequencies associated with the
eigenmodes related to the movement of the elastic separating wall. This again
explains that the drop of sound insulation from Model 1 to Model 2 is mainly due to
the sound travelling through the gap. As mentioned above, the sound insulation
provided by the 0.20 m thick wall/barrier is slightly better that that provided by the
wall/barrier 0.10 m thick. This behaviour is only explained by the differences in the
horizontal length of the gap.
The horizontal displacements of the dividing wall have been calculated to help

understand the sound transmission mechanisms through the separating wall. Fig. 8
shows the real part of the computed horizontal mid-plane wall displacements for
both models and for the two wall thicknesses. The results for excitation frequencies
of 10.0 and 150.0 Hz, are displayed. The horizontal wall displacements of Model 2
exhibit much larger displacements than those of the Model 1, which means that far
more energy passes through the separating wall/barrier. It can also be observed that
the horizontal wall displacements of the thinner wall/barrier, in the case of the
Model 2, are not always greater than those for the thicker wall/barrier (see
Fig. 8b). This behaviour again shows that the difference in sound insulation that
is given by a wall/barrier 0.10 m thick from that by one that is 0.20 m thick is
mainly due to the passage of the sound waves through the gap between the wall
and ceiling.
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Fig. 7. Average sound insulation (kz ¼ 0 rad=m): (a) elastic BEM response of walls 0.10 m and 0.20 m

thick inserted in Model 1 versus the analytical solution for an infinite extent walls; (b) Elastic BEM

response of walls 0.10 and 0.20 m thick inserted in Model 2 (air gap of 0.05 m); (c) Rigid versus elastic

BEM response of a wall 0.20 m thick inserted in Model 2 (air gap of 0.05 m).
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The largest average sound insulation difference given by the results from Models 1
and 2, occurs in the vicinity of the eigenmodes associated with the vibration of the
separating wall. Fig. 9 displays the real part of the calculated horizontal wall
displacements, for both models, in the vicinity of the first vibration eigenmode of
the wall in Model 2, when the wall is 0.10 and 0.20 m thick. As expected, much lar-
ger displacements are registered for the wall in Model 2 than in Model 1, which
contribute to the big sound insulation difference between Models 1 and 2 in the
vicinity of these frequencies.
An additional simulation has been performed to assess the importance of the

rooms’ surface conditions, where concrete is replaced by cork (� ¼ 431 m=s,
� ¼ 283 m=s, � ¼ 140 kg=m3 and � ¼ 0:15 [42]). Fig. 10 presents the sound insula-
tion of the 0.20 m wall placed in Models 1 and 2 (0.05 m gap). The results show that
the dips related to the modal behaviour of the rooms are not as sharp as those dis-
played before. This behaviour is explained by the amount of energy that is now
transmitted through the boundaries of the rooms, given that cork is not as rigid as
concrete. The drop in sound insulation between Model 1 and Model 2 is not as

Fig. 8. Horizontal displacements of the mid plane of separating walls, 0.10 and 0.20 m thick, inserted in

Models 1 and 2 (air gap of 0.05 m) generated by a 2D source (kz ¼ 0 rad=m): (a) 10.0 Hz; (b) 150.0 Hz.
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pronounced as before. Fig. 10 also includes the sound insulation predicted by the
analytical model, which suggests that it is closer to the results given by Model 1.

4.2. Incidence of cylindrical waves of kz6¼0 rad/m

A wall 0.20 m thick is used to illustrate how the acoustic insulation changes when
a wall panel is subjected to the incidence of cylindrical waves with different spatial
sinusoidal variation along the axis of the room. In the example given, an apparent
velocity of c=400.0 m/s is chosen. This apparent wave velocity corresponds to
waves reaching the surface of the rooms with an inclination of 58.2	 in relation to
the z direction of the surface.

Fig. 9. Horizontal displacements of the mid plane of separating walls inserted in Models 1 and 2 (air gap

of 0.05 m) when subject to a 2D source (kz ¼ 0 rad=m): (a) wall 0.10 m thick at 31.0 Hz; (b) wall 0.20 m

thick at 40.0 Hz.

Fig. 10. Responses obtained when the source 2D (kz ¼ 0 rad=m) is excited in Models 1 and 2 (air gap of

0.05 m) with a wall 0.20 m thick, when the material properties of cork have been attributed to the

boundaries of the rooms. The analytical solution for a wall of infinite extent is also included.
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Fig. 11 displays the response of the two models. The main features of the results
are the same as those described above. When the wall is perfectly connected to the
ceiling (Model 1), the dips in the sound pressure insulation occur at very well defined
frequency positions, which coincide with the eigenmodes of a room with dimensions
3:0sin 31:8ð Þ ¼ 1:58 m [f10 ¼ f10 ¼ 107:57 Hz and f11 ¼ 152:13 Hz]. This happens
because the travel distance (L1) in this domain is smaller, since it corresponds to the
projection of the initial vertical path (d1) on the inclined path, leading to a distance
L1 ¼ d1sin arccos �a=cð Þ½ � (see Fig. 4).
As before, particularly at low frequencies, Model 2 predicts lower sound insula-

tion than Model 1. It can also be seen that dips of insulation associated with the
eigenmodes of the room in Model 2 occur in the vicinity of the eigenmodes of the
rooms in Model 1, but with a small frequency shift. The comparison of the present
results with those provided when the source is two-dimensional (kz=0 rad/m) shows
that the insulation provided by the walls is greater when kz 6¼0 rad/m in the presence
of Model 1.

4.3. Sound insulation provided by an acoustic barrier separating two rooms

Using Model 2, the importance of the gap between the ceiling and the wall is
investigated by increasing the original gap to 0.20 m. The new model is named
Model 20. The average sound insulation computed for the three models when the
separating wall is 0.10 m thick and the source is excited in the frequency range from
1.0 to 800.0 Hz, is now given. Fig. 12 displays the computed BEM results when the
source emits cylindrical waves with an apparent wave velocity of c=1 m/s.
The acoustic insulation is generally lower than that predicted by the other models,

particularly at low frequencies. However, the insulation computed still exhibits dips
and peaks that are associated with the vibration eigenmodes of the two rooms. The
comparison of the results for the three different models shows that there is a big
drop in sound insulation when the connection of the wall to the ceiling is no longer
fixed, that is, when we move from Models 1 to 2. Once the connection between the

Fig. 11. Average sound insulation when the source, with a spatial sinusoidal variation along the z of

c=400.0 m/s, is excited in Models 1 and 2 with a separating wall 0.20 m thick.
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wall and the ceiling is loose, the size of the gap between the top of the separating
wall and the ceiling appears to have a relatively much smaller effect on the fall in
sound insulation.
Several simulations were performed for different wall thicknesses and for sources

emitting cylindrical waves with other apparent wave velocities. The results are not
plotted here, since the sound insulation features are similar to the ones above
described.

5. Conclusions

The boundary element method was formulated in earlier work [37] and imple-
mented to calculate the sound insulation provided by a wall separating two rooms,

Fig. 12. Average sound insulation when a 2D source (kz ¼ 0 rad=m), is excited in the presence of a

separating wall 0.10 m thick: (a) Elastic BEM response when the wall is inserted in Model 1 versus the

analytical solution for a wall of infinite extent; (b) Elastic BEM response when the wall is inserted in

Model 2 with an air gap of 0.05 m; (c) elastic BEM response when the wall is inserted in Model 20 with an

air gap of 0.20 m.
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at low frequencies. The model fully considers the dynamic coupling between the
fluid (air) and the solid walls and does not limit the thickness of the wall, as
Kirchhoff and Mindlin theories need to do.
Once validated, the model was used to define how the connection of a wall to the

ceiling affects the acoustic insulation provided by the wall. Two different wall con-
figurations, double-fixed, and barrier-type structure, were simulated. The responses
were computed for low frequency sources generating cylindrical waves with spatial
sinusoidal variation along the z direction.
The computed results show that the sound insulation provided by a wall is highly

dependent on the vibration modes excited in the rooms, and on the way the
separating wall is connected to the ceiling. A loose connection causes a substantial drop
in the acoustic insulation provided by the wall. This fall in acoustic insulation is largely
explained by the energy that travels through the gap between the barrier and the ceiling.
The improvement in acoustic insulation when the wall is thicker is much smaller for a
wall with a free end than for a wall with a fixed end to both floor and ceiling.
It should be noted that in real-life situations other variables would contribute to

the definition of the sound insulation provided by a separating wall or barrier: for
example, a wall along a third dimension would create a more complicated modal
behaviour of the rooms; a thickness restriction for the slabs and the walls would
create additional scattering phenomena that would reintroduce more energy to the
rooms, and additional dips from reflections associated with the modal response of
the structure. Even though these extra factors may occur, features similar to those
envisaged by the present model could also be expected to be present.

Appendix A. The Green’s functions

A.1. Solid formation

Definitions:

l,  Lamé constants
� Mass density
� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lþ 2ð Þ=�

p
P wave velocity

� ¼
ffiffiffiffiffiffiffiffiffi
=�

p
S wave velocity

kp ¼ !=� ks ¼ !=�

k� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

p � k2
z

q
k� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

s � k2
z

p

A ¼
1

4i�!2
Amplitude

�i ¼
@r

@xi
¼

xi

r
i ¼ 1; 2 Direction cosines
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Hn� ¼ H 2ð Þ
n k�rð Þ Hn� ¼ H 2ð Þ

n k�r
� �

Hankel functions

Bn ¼ kn
�Hn� � kn

�Hn� Bn functions

Green’s functions for displacements

Gxx ¼ A k2
sH0� �

1

r
B1 þ �2

xB2

� �

Gyy ¼ A k2
sH0� �

1

r
B1 þ �2

yB2

� �

Gzz ¼ A k2
sH0� � k2

zB0

� �
Gxy ¼ Gyx ¼ �x�yAB2

Gxz ¼ Gzx ¼ ikz�xAB1

Gyz ¼ Gzy ¼ ikz�yAB1 ðA:1Þ

Volumetric strain (super-index=direction of load)

"l
Vol ¼ Gxl;x þ Gyl;y þ Gzl;z

¼ A
@

@xl
k2

sH0�

� �
þ B0;xlx þ B0;yly þ B0;zlz

� �

¼ A
@

@xl
k2

sH0� þ B0;xx þ B0;yy þ B0;zz

� �

¼ A
@

@xl
k2

sH0� þ r̂2B0

h i
ðA:2Þ

Note: H0�;l ¼ �k��lHl� H0�;z ¼ �ikzH0�

Strain components (tensor definition, not engineering)

"l
ij ¼

1

2
Gil;j þ Gjl;i

� �

¼
1

2
A �ilk

2
sH0�;j þ �jlk

2
sH0�;i þ B0;ilj þ B0;jli

� �

¼
1

2
k2

sA �ilH0�;j þ �jlH0�;i

� �
þ AB0;ijl ðA:3Þ
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(a) Strains for loads in the plane, l=x, y

"l
Vol ¼ �lA �k2

s k�H1� þ k2
zB1 þ

4

r
B2 � B3

� �

"l
xx ¼ �lA

2

r
B2 � k2

s k�H1�

� �
�xl þ

1

r
B2 � �2

xB3

� �

"l
yy ¼ �lA

2

r
B2 � k2

s k�H1�

� �
�yl þ

1

r
B2 � �2

yB3

� �

"l
zz ¼ �lk

2
zAB1

"l
xy ¼ A

1

r
B2 �

1

2
k2

s k�H1�

� �
�xl�y þ �yl�x

� �
� �x�y�lB3

� �

"l
xz ¼ ikzA

1

r
B1 �

1

2
k2

sH0�

� �
�xl � �x�lB2

� �

"l
yz ¼ ikzA

1

r
B1 �

1

2
k2

sH0�

� �
�yl � �y�lB2

� �
ðA:4Þ

(b) Strain for axial loads, l=z

"z
Vol¼ ikzA �k2

sH0� þ k2
zB0 þ

2

r
B1 � B2

� �

"z
xx ¼ ikzA

1

r
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� �

"z
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1

r
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� �

"z
zz ¼ ikzA �k2
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2
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� �

"z
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(c) Stresses

�l
ij ¼ l"l

Vol�ij þ 2"l
ij ðA:6Þ
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A.2. Fluid formation
Definitions:

la Lamé constant
�a Mass density
�a P wave velocity
kpa ¼ !=�a

k�a ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

pa � k2
z

q
Aa ¼

1
4i Amplitude

�i ¼
@r
@xi

¼ xi

r i ¼ 1; 2 Direction cosines

Hn�a ¼ H 2ð Þ
n k�arð Þ Hankel functions

Green’s functions for displacements

Gax ¼ �Aak�aH1�a�x ðA:7Þ
Gay ¼ �Aak�aH1�a�y

Stresses

Ha1 ¼ AalaH0�a �!2=�2
a

� �
ðA:8Þ
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