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Abstract

The optimisation of the steel area and the steel localisation in a T-beam under bending is carried out in the present work. The
expressions giving the equilibrium of a singly or doubly reinforced T-section in the different stages defined by the non-linear
behaviour of steel and concrete are derived ones. The ultimate material behaviour is defined according to the design codes such
as EC2 and Model Code 1990. The purpose of this work is to obtain the analytical optimal design of the reinforcement of a T-
section, in terms of the ultimate design. In the last section the expressions developed are applied to examples and design abacus
are delivered. A comparison is made with current practice method as indicated in CEB.

(0 2003 Elsevier Science Ltd. All rights reserved.
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1. Introduction the dimensions of the sections within serviceability con-
ditions and then optimising the steel area and location
Methods based on optimality criteria can be applied in the ultimate limit design within a non-linear analysis,
to reinforced concrete structures in order to obtain the appears to be a good solution. As a matter of fact, the
minimum cost design. The costs to be minimised are design code$6,7] suggest that non-linear analysis can
generally divided into those of concrete, steel and be replaced by linear analysis with redistribution of the
formwork. This means that they include one or more of moments and the design of the reinforced concrete mem-
the following variables: the geometry of the section of bers being made for the critical sections, where the bend-
beams and columns; the area and topology of the steeing moment and shear attain their maximum value. The
reinforcement. Methods based on this kind of analysis optimisation of the reinforcement in a section is
are found in referencg4—5]. Nevertheless, these optim- developed within this context.
isations consider a linear elastic analysis of the global The optimal design of the critical sections is known
structure. This type of linear analysis is relevant for the only for rectangular sections. For other geometries,
serviceability limit state design and it is important for research has been made in terms of the biaxial interac-
the definitive dimensions of the sections. In terms of the tion diagramg8-10]. These diagrams attempt to make
ultimate limit design of concrete structures, this analysis an optimisation by a trial and error procedure. The
is not correct due to the non-linear behaviour of importance of the development of the optimal design of
reinforced concrete. T-sections is due to the fact that it is currently a fre-
Considering design variables such as section dimen-quently used section in common structures. Another rel-
sions, steel area and topology at the same time, the nonevant aspect is that the methodology used can be
linear optimisation of reinforced concrete structures is a extended to other sections and included in the computer
very complex and yet to be solved problem. Optimising codes with minimum programming.
The design variables considered in the optimisation of
the reinforced beam with a T-section are the steel area
" Corresponding author. Tel+351-239-797-100: fax+351-239- and the st_eel localisation, eithe_r_in_the tensior_1 or in the
797-123. compression zones. The equilibrium equations of a
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as defined by the non-linear behaviour of the concrete
and the steel, are developed for this purpose.

The examples presented consist of the optimisation of
the reinforcement of a T-section for different geometric
definitions. The results are compared with the design
obtained in current practice methods such as the one
indicated in CEB [11].

2. Ultimate design of reinforced concrete section
under bending

2.1. Geometry of the T-section

The T-section geometry of the reinforced concrete
structure is defined by the following parameters, as
shown in Fig. 1: lower steel areain the tensile zone, A,
upper steel area near the compression zone, A'g, the
flange depth, h; ; the effective flange width, b; the web
width, b,; the distance from the centroid of the
reinforcement to opposite face of the section, d; the con-
crete cover, a.

In the present work, the design variable in the optimis-
ation process is the ratio A’ /A, since, for a given total
area of reinforcement A; + A, the objective function is
to maximise the bending moment. As a matter of fact,
for a given bending moment, the global area of
reinforcement is only a function of the ratio A'g /A,
which, for this reason, is the only design variable in
terms of the limit state design of the section. The cover
of stedl is not considered as a design variable because
it is fixed, in each case, by durability conditions. The
equations are developed as a function of the non-dimen-
sional variables a/d, b, /b and h /d.

2.2. Constitutive laws

The ultimate design of reinforced concrete sections
under bending moment is defined in terms of non-linear
congtitutive laws of the concrete and the steel. The
stress—strain equation for concrete used in the design
codes is defined by a parabola followed by a constant

- | [aI hf

Fig. 1. Geometry of the doubly reinforced T-section.
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Fig. 2. Design stress-strain diagrams.

value, usualy caled parabola—rectangle law and rep-
resented in Fig. 2(a). The maximum stress is equal to
0.85f , where f is the design strength of the concrete
under compression. It is considered that concrete in ulti-
mate design does not stand for tensile stresses. The equ-
ation for the parabola is function of the concrete defor-
mation &, as follows;

o, = 850f 4(e.—250e2)for £.=0.002 Q)

The design stress—strain law for steel is elastic-per-
fectly plastic with a maximum value fy4 , which is the
design value for the strength of steel, equal in tension
and compression. This law is represented in Fig. 2(b).
The steel has initial elastic behaviour with the elasticity
modulus E.. The elastic domain is valid until the
maximum design stress fqq iS reached, corresponding to
the maximum elastic strain &g

2.3. Rupture conditions

The limit design means that rupture is considered
when the strains in the section reach maximum values,
which are different for concrete and steel. Concrete is
considered to crush at &, = 0.35%. The steel rupture
under compression is limited to 0.35% due to the crush
of the concrete, and to 1% under tension. These con-
ditions are represented in Fig. 3, where the section before
deformation is represented by the vertica line and after

(a) 24< 3,5%0 (b) 250
2.=3,
wa] ST T et
2% wd 2%h0
) |, positive positive
S | deformation 0% deformation

2, = 10%0 £, < 10%0

Rupture by the steel; Rupture by the concrete;

Fig. 3. Rupture of the section.
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Fig. 4. (a) T-section; (b) stresses in concrete; (c) resulting load in concrete.

Table 1
Values of m,
f f
0<eg <X =2
Es Es
m, Es's 1

f

syd

deformation by the inclined line. In both ruptures, by the
steel [Fig. 3(a) and by the concrete [Fig. 3(b)], the neu-
tral axis is located at the distance ad from the upper
zone, and « is given by:

Ec
€&

2

The parabola—rectangle transition is located at the dis-
tance o'd from the upper zone and corresponds to the
concrete strain £, = 0.2%.

In the Fig. 3, the strain in upper reinforcement, €', is
also indicated, and is computed by:

£s= (ec—es)(a—:) 3)

The stresses in the concrete under compression, corre-
sponding to the strains represented in Fig. 3, are indi-
cated in Fig. 4(b). The stresses upon the steel in the
upper reinforcement of the compression zone are termed
m, and are detailed in Table 1. The stresses upon the
steel in the lower reinforcement of the tensile zone, are
termed m, and are presented in Table 2.

Table 2
Vaues of m,
0<—6<fid fsy—d<—e<1%
s— Es Es s
m, Ess -1

fsyd

2.4. Resulting load in the concrete

The resulting load in concrete, Fy , is obtained by the
integration of the stresses in the concrete, that is the
second degree Eq. (1), called parabola, and the constant
value, caled rectangle. These stresses may be applied
either in the flange or in the web. Considering the vari-
ation of neutral axis ad and the flange depth h;, the rup-
ture conditions are aso variable. The consideration of
all possihilities originates the several cases described in
Fig. 5.

The value of the resulting load, in each case i, is
denoted by Fi, and the distance to the upper edge of the
section by X ' . The load in concrete can be written in
non-dimensiona form, F‘Cdr -+ defined by the following
expression:

i _ iCd
Clred fbd (4)

The value of al F,_, and X' are given in Appendix A.
There are VIII cases to be considered. In cases | and

Il rupture occurs in steel and concrete which has a stress

CASE : I 11 0 2%,

3520

_Zz %o

3528

P 2%a

102 Egyd

Fig. 5. Different cases considered in the computation of the
resulting load.
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g. lower than 0.2% (see Fig. 5). In cases II1-V rupture
is also in the steel but concrete strain &, is larger than
0.2%. In cases VI-VIII rupture is in concrete with strain
equal to 0.35%. The cases can also be grouped in terms
of the flange depth. Cases I, Ill, and VI can be caled
the cases for high flange depth. The neutral axis is in
the flange and the section is equivalent to a rectangular
section in terms of the rupture condition. Cases|lI, V and
VIII can be related by the fact that the flange depth is
small. Cases IV and VII are intermediate to the others
and correspond to medium depth flange.

2.5. Equilibrium equations in the section

The equilibrium eguations of all the loads acting on
the section, when zero axial force is applied and a bend-
ing moment is imposed, establishes the expressions (5)
and (8). The first one is:

) A
b T AWM +wm, =0 (5)
T As

where m, and m, were previously defined (Tables 1 and

2), w is the percentile of the lower reinforcement, calcu-
lated, through:

— Asfsyd
bd fy

Considering a bending moment Mg, applied to the sec-
tion and the reduced bending moment as:

Mg

(6)

" @iy @
the second equilibrium condition is written as:

: Xi A a

ICdred( 1 _d> + ASW<1_d> m—u = 0 (8)

It must be remarked that there are as many equations as
the number of cases denoted in Fig. 5.

3. Minimum area of the reinforcement
3.1. Objective function

The optimisation problems concern the achievement
of the best solution for a given objective function
satisfying certain conditions.

Currently, the design is made for the most stressed
section that delimits the cross section dimensions and
the amount of steel. Optimisation of the steel area, in
a predefined cross section, is similar to computing the
minimum rate of steel. In practice, the computation of
different rates with different locations, using design
tables, approaches the optimal solution by trial. For the
designer, the purpose is to establish the expression giv-

ing the maximum resistant bending moment, function of
the area and location of the reinforcement with the
relation A' JA..

In the present problem the system of Egs (5) and (8)
are the equilibrium equations of the section. Substituting
into these expressions the definitions of Fi; o X, m, and
m,, they become perfectly defined in terms of the vari-

ables o Zgzbt;f;yd and can be written respectively in
cd
the form:
Ashra b fyq
v g( Asddbwfcd) ®
Ashra b fyq
"= f( Asddbwfcd) (10

In practical terms, the purpose is to maximise the bend-
ing moment i, EQ. (10), with the constraint defined by

Eq. (9).
3.2. Design variables

The variables defining the position of the steel in the
section are used in the optimisation process in the
present work. Thisis the ratio of steel areas A; /A.. The
total area of reinforcement is given by the sum A; and
A, and is considered in the constrain Eqg. (9). In non-
dimensional terms, it is defined by w;, that is the percen-
tile reinforcement given by:

A5+Asfsyd As
WS Tl (”As) (1)

This total reinforcement can also be written in function
of al variables, by using Eq. (9):

_ As Ashiab fsyd)
O RNEC AT 2
The arguments a and in Egs (9) and (10) are not
considered design variables since a is usually imposed

d
by durability and other construction requirements. The

foya
strength ratio .= is a known value after the choice of

f(:d

. b
the materials. The geometry parameters% and b, can
be used as design variables in the case of shape optimis-
ation of the section.
After eliminating the described constant parameters,
Egs (12) and (10) become respectively:

_ As As
- (l y As> g(“’&) (13)
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N
=f o, — 14
u ( A (14)
Choosing 1 as the objective function and w, as an
imposed variable, Eq. (13) can be solved in terms of
o, that is:
N
oa=h|—= 15
(As =
The value « is turned into the objective function, Eg.
(14), that becomes:

)
=flhl | 16
“ ( (As A (10
This equation shows that, in the present work, there is
only one design variable, A; /A, but the objective func-
tion is defined as a piecewise function, giving as many
different expressions as the cases of Fig. 5. As the con-

stant characteristics of the arguments are accepted,

a
d’
b h fya . . _
—, — and -, the analytical optimal solution is aways
bw d 1:cd

written in terms of those arguments.
3.3. Optimal neutral axis depth

In the present work, the choice of the formula for the
mathematical optimisation problem does not allow the
calculus of the sensibilities due to the characteristic dis-
continuity of the objective function. The optimal solution
is obtained by considering an increment of the design
variable A' JA,, that isdA’ JA,, giving the following value
of the objective function:

As dA;,)A; dA;>
*=flhl =+ ——|~+ 17
“ ( (As AJAT A an
The function has a stationary value since a maximum or

a minimum point exists and Egs (16) and (17) should
be equal when dA' /A, approaches zero, such as:

Ay A dA's) As dA's)

(N Y AR a8
K—»O

This equation is solved for each of the cases in Fig. 5,

giving for high flange depth (cases I, Il and VI) the
optimal value of neutral axis depth, o* , given by:

119 a
o = 198(1 + d) (19)
With this optimal value, the minimum flange depth
available for these cases I, Il and VI can be estab-
lished by:

b 19, . 2
dza = 198<l+d) (20)

The optimal solution obtained from Eq. (18), for the
cases of small flange depth (cases 11, V and VIII), is the
same value o* of expression (19). The limit value of the

h
flange depth, Ef is obtained by imposing the limits of
these cases, as shown in Fig. 6, and becomes:
he 17 a

For the intermediate values of the flange depth, corre-
sponding to cases IV and VII, the optimal solution can
not be obtained analytically through Eq. (18) in function
of the parameters. The computation of the optimal neu-
tral axis depth using Eq. (18) is possible only when dis-
crete values of the different parameters are imposed. For
this reason an approximate solution for cases IV and VI
is proposed in section 3.6.

3.4. Ductility limitation

The position of neutral axis affects the deformation of
the steel, that can be in the elastic or in the plastic
domain. In the design of reinforced concrete, it is
important to guarantee a certain ductility. The condition
for the plasticity of the lower steel A,, defined by a limit
value of «, termed o, depends on the designed yield
strain eg,q4, that varies for each class of steel. This limit
for the plastic zone of the steel o, is the following:

7

% = 7+ 2000ey, (22)
The plastic limits ¢, Eq. (22), defined for three classes
of steel, namely S235, S400 and S500, are represented
in Fig. 7. The optimal value o* Eg. (19), is aso rep-
resented in Fig. 7. Since the condition of applicability
of ax istheyielding of steel A, asimposed in cases |-
VIII, the corresponding equation is only valid when it
satisfies the following inequality:

ar=a, (23)

T 0.35%

0.2%

Fig. 6. Limit zone for % in case VIII.
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Fig. 7. Optimal neutral axis depth: a* or o,

As aresult, for a given a/d, the optimum value for o
is either a* or ¢y, whichever the smaller value might be.

3.5. Optimal solution and design

The optimal solution of the design variable (AJ/A)*

is obtained by solving Eq. (15) in terms of A'JAs and
substituting in it a* or «, that is:
(2:) = h Y(o* or o) (29
For a small bending moment there is no reinforcement
in the compression zone, meaning that A’ = 0. The limit
value of the bending moment can be termed as economic
moment L, and is obtained by replacing o* or o, and
A’ /A, =0 into Eq. (14), which becomes:

Ue = f(a* or o) (25)

This value is relevant for the practical design of
reinforced concrete sections as well as for the optimal
area of reinforcement w;. The optimal area of reinforce-
ment is obtained by replacing the values a* and (Ay/
A)* in Eq. (13), that is:

ol () dewall])

If only the area A, is considered, the optimum percentile
lower reinforcement w*, EQ. (9), becomes:

* * A'S *
= g(a or ap,(As) ) (27)
3.6. Approximate solution in cases IV and VII

For the cases IV and VII the optimal solution is only
obtained if values for h; /d and b, /b are prescribed, pre-
venting a generally anaytical solution. In practica
terms, it may be relevant to have design expressions
since they have small errors. For this reason, the

approximate value considered in cases IV and VIl is o™,
Eq. (19), satisfying the following condition:

119 a
Oy = 198(1 + d)sap (28)

In order to determine the error introduced by the
approximate neutral axis depth o, in the optimal design
of the section, the computation of optimal neutral axis
depth o* was reached, according to section 3.3, for a
representative number of prescribed values of h/d and
b,/b and a/d. Replacing these optimal o* successively
in expressions (14) and (13), the corresponding percen-
tile of reinforcement w,oy Was found. The values of the
percentile of reinforcement Wy, obtained when o, is
considered in expressions (14) and (13), were also com-
puted. The error introduced in the optimal design was
evaluated by the following expression:

Wapro™Wred 4139 (29)

Wrea
Table 3 gives the values of this definition of error for
b/b, =2,3,4,5,6,7, 8,9, 10, with a/d = 0.05 and
hi/d varying from 0.28 to 0.37.

Table 4 exemplifies the errors that can be obtained by
the variation of parameter a/d. In Table 4, the values of
expression (23) are plotted for a/d = 0.04, 0.05, 0.06,
0.07, 0.08, 0.09, 0.1, with b/b,, = 4 and h;/d varying
from 0.27 to 0.41. The blank cells in Tables 3 and 4
correspond to the optimal value given by .

Other calculations, similar to the ones related above
were made, namely fixing the parameter b/b,, and com-
puting the error with variable h/d and a/d, as made in
Table 4. The results are missed out but they are always
less than 0.14%. This is the reason why expression (22)
was considered a good approximation to the optimal sol-
ution.

4. Examples

The optimal neutral axis depth and the corresponding
expressions of the design, obtained according to section
3.5, was found for a general T-section. The expressions
obtained in these computations are developed in Appen-
dix B and they are presented in Table 5, with their
respective limitations.

4.1. Abacus for optimal design

The developed expressions are applied in a T-section
for a/d = 0.1 with variable geometric definitions of
b/b,,:b/b,, equal 1/10, 1/8, 1/6, 1/4 and 1/2. The con-
sidered steel classes are S400 or S500. The values of the
economic reduced bending moment p are plotted in Fig.
8. Fig. 8 emphasises the limits of expressions (6a), (7a)
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Error for different values of h/d and b/b,,

b/b,h/d 2 3 4 5 6 7 8 9 10

0.28 0.000001 0.000003 0.000005 0.000007 0.000009 0.000011 0.000013 0.000015 0.000017
0.29 0.000021 0.000055 0.000089 0.000123 0.000156 0.000189 0.000221 0.000225 0.000280
0.30 0.000110 0.000278 0.000449 0.000616 0.000775 0.000927 0.001072 0.001210 0.001341
0.31 0.000346 0.000865 0.001385 0.001881 0.002347 0.002786 0.003198 0.003585 0.003950
0.32 0.000832 0.002059 0.003265 0.004396 0.005445 0.006416 0.007317 0.008155 0.008937
0.33 0.001689 0.004133 0.006496 0.008675 0.010668 0.012492 0.014165 0.015707 0.017133
0.34 0.003041 0.007374 0.011489 0.015228 0.018604 0.021660 0.024439 0.026977 0.029309
0.35 0.005020 0.012056 0.018629 0.024521 0.029782 0.034498 0.038751 0.042609 0.046129
0.36 0.007747 0.018428 0.028256 0.036956 0.044645 0.051479 0.057597 — —

0.37 0.011325 0.026694 0.040635 0.052836 0.063520 — — — —

0.38 0.015834 0.036997 0.055939 0.072348 —

0.39 0.021322 0.049409 0.074241 — —

0.40 0.027800 0.063917 0.095489 — —

0.41 0.035235 0.080418 — — —
Table 4
Error for different values of h/d and a/d

a/dh/d 0.04 0.05 0.06 0.07 0.08 0.09 0.10

0.27 0.000002 0.000000 0.000000 — — — —

0.28 0.000056 0.000029 0.000014 0.000010 0.000000 0.000000 -0.000000
0.29 0.000335 0.000226 0.000146 0.000089 0.000051 0.000026 0.000012
0.30 0.001121 0.000846 0.000624 0.000449 0.000313 0.000211 0.000135
0.31 0.002770 0.002230 0.001771 0.001385 0.001065 0.000802 0.000591
0.32 0.005680 0.004768 0.003966 0.003265 0.002589 0.002139 0.001697
0.33 0.010255 0.008868 0.007618 0.006496 0.005497 0.004612 0.003835
0.34 0.016752 0.014923 0.013130 0.011488 0.009995 0.008641 0.007421
0.35 0.025870 0.023285 0.020873 0.018629 0.016552 0.014636 0.012876
0.36 0.037498 0.034241 0.031160 0.028256 0.025529 0.022975 0.020594
0.37 0.051922 0.047990 0.044225 0.040634 0.037220 0.033983 —

0.38 0.069199 0.064629 0.060207 0.055940 0.051836 — —

0.39 0.089266 0.084143 0.079130 0.074241 0.069488 — —

0.40 0.111929 0.106387 0.100899 0.095488 — — —

0.41 0.136864 0.131085 0.125290 — — — —
Table 5
Resume of equations in Appendix B, for the different cases

Case of Fig. 5 I, Vv, VIl 1V, VII I, 11, VI

Optimal sol. o* o* o, o*

Equations (7a), (7h), (7¢) (8a), (8h), (8c) (9a), (9b), (9c) (6a), (6b), (6¢C)

Limit values

0< hf/dsg<l + g) g<1 + g) < h/d=a’ g<1 + g) < h/d=a, h/d > g<1 + g)

and (8a), given in Appendix B, depending on the depth
of neutral axis that changes with the values of h; /d. The
other involved variables, such as a/d; b, /b and steel
class lead to different curves.

Fig. 9(a) is an abacus giving the optimal total area of
reinforcement (A's + A) as a function of the applied
reduced bending moment u, and the ratio h;/d, for a/d
= 0.1 and b/b,, = 10. The distribution of this area of

steel between the upper and lower faces, is obtained
from Fig. 9(b)). Figs. 10-13, have the same interpret-
ation of Fig. 9, and correspond to the different values of
the geometric parameters and a/d=0.1. These figures are
resumed in Table 6 and cover some current sections per-
mitting the direct caculation from the figures or
employing linear interpolation. Design abacuses for
other values of a/d are in [12].
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Expressions employed:

4.2. Numerical results

7a) 8a) 6a)
0.357 p. . . . .
In this section a comparison is made between the
& . . . .
034 5% G design obtained in the present formulation and the
R approximated solutions given by CEB [11]. The percen-
0.25 RSy tile of total reinforcement, the amount of upper steel area
00“ /;'/ bwlb and the errors in percentile are detailed in Table 7.
02y .o L% seee 2 The percentile of error is calculated by:
° £ — — &
M A 2 Ref.[11] — mod €
0151 ,’;.-{:. —— 10 Error = [11] X 100
S mod €l
s ' .
0.1 -’{f" As can be observed in Table 7, the total area of
005 i reinforcement has a maximum difference of 2.05% when
T o compared with the CEB solution. Generally the differ-
' ‘ _ _ _ £/ ences in the distribution A'JA .. is dways larger with a
u 0.2 0.4 0.6 0.8 1 maximum of 10.4%. Although the differences for the
Fia 8. Economic . for a/d = 0.1 required reinforcement do not exceed 10.4% in the stud-
8.8 He o ied case, it seems that in repeated structures, such asin
prefabrication, this difference can be relevant in econ-
(a) (b)
o p= WoAL/AS
3 11
oa 14 09 / 08 0z 0.6
261%0c00s,,,
24 —-.____‘___. o°°°°°"°°°°°°°oooeeo¢¢oo<}ooeoo¢o%ooqo¢ 12 0.8 0.5
2.2 3. " e ———
2
. 1.0 g-:
161, .
1.4 0.8 02
12
. 0.1
1 vooo°°‘>¢°¢°¢° 0.6
DS ‘--"'-n ----- . R R T L T LT R R o e - 0
OB mme__TTTTmmemmssesssssssecsssmescoe 0.4
LS
02 , : : , 02
0 02 04 0E 08 1
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Fig.9. (@) Increasing in p with w, for b/b,=10 (b) p variation with A’JA ¢, for b/b,=10.
(@) (b)
A /A=
O = u ]
EE " 11
28] 14 09/ 08/ 07 0.6
26 °°°°°°°‘>oc 0.5
E ¢°°°°°°°°00f>¢o¢¢¢oo¢ooom}eo¢e}oom}ooe¢o 0.81 .
2{, o 1.2
0.4
067
1.0 03
08 0.2
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Fig. 10. (&) Increase in u with w , for b/b,, = 8; (b) u variation with A'JA ¢, for b/b,, = 8.
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Table 6
Resume of geometric definitions in Figs. 9-13

$400 S500 b/b,,

10 8 6 4 2
o, (%) (10b) (11a) (124) (13)
ALIA (9b) (10b) (11b) (12b) (13b)

omical terms. It can be emphasised that L-, |- and T-
sections are commonly used in buildings.

Since the solution obtained in this work is an exact
one, it can be noted that the errors in the CEB solution
have consequences in terms of: not satisfying the equi-
librium Egs (5) and (8); deviation of the neutral axis and
error in the rotation of the section at rupture.

5. Conclusion

In the present work a model is developed for the
optimisation of reinforced concrete T-sections, in ulti-
mate design, under bending moment. In the model, the
non-linear behaviour of concrete, with parabola—rec-
tangle law for compression and no tensile strength, and
elasto-plastic behaviour for steel are considered.

In this work, the equation of maximum value of the
bending moment considering only single reinforcement,
for T-section is obtained. The equations for the optimal
area of reinforcement and corresponding localisation are
also presented. These equations are expressed in terms
of the geometry and mechanical characteristics as indi-
cated in Appendices A and B. The equations are plotted
for current T-section geometric characteristics in Figs.
9-13, for S400 and S500 steel.

The comparison between the results obtained with the
optimal design and current practice methods (CEB
solution) is made. The advantages of the present model
are: the correct solution is economic when compared to
current practice solutions; the use of non-linear behav-
iour of the materials; the development of a methodology
that can be extended to other sections; the establishment
of the optimal design equations that can be implemented
in computer codes.
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Appendix A

The resulting reduced compressive force Fiy , in the

concrete and the location X' of the force F.,, indicated
in Fig. 4, are listed bellow, for the different cases (see
Fig. 5):
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