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Abstract

This paper analyses the wave scattering generated by point pressure loads in the vicinity of infinite fluid-
filled circular pipelines submerged in a homogeneous fluid medium. The pipeline has a constant cross-
section and is modelled as a homogeneous elastic material. The three-dimensional (3-D) response is
formulated in the frequency domain, and is obtained as a discrete summation of the 2-D solutions found for
different axial wavenumbers. Time solutions are computed by means of inverse Fourier transforms.
Complex frequencies are used to avoid aliasing phenomena.

The main focus of the paper is on the dynamic analysis of the stresses generated inside and at the surface
of the pipeline by a point pressure load placed in the surrounding medium. Different positions of both the
source and the receivers are considered. The effect of the relation of the wall thickness to the radius of the
pipeline is also studied.
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

The vibration of shell and tubular structures has been studied using different approaches in
order to identify features of wave propagation and to detect and identify submerged structures,
the presence of cracks and structural imperfections. Analytical methods are applicable only to
simpler geometries, while more general numerical methods, such as the finite element method and
the boundary element method, allow the study of a wider range of geometric configurations.

Liu and Qu [1] provided some guidelines on using guided waves to detect radial cracks in
annular structural components, such as those found in ageing helicopters. The inner surface of the
annular structure is assumed to be traction free while the outer surface is subject to a
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time-dependent transient excitation. They used the method of eigenfunction expansion to analyze
the propagation of transient waves generated at transducers with different incidence angles in a
circular annulus. With this method, the contributions of the different eigenmodes are separated,
allowing the ones making the more important contributions to the response to be identified.

Chung and Lee [2] analyzed how the behaviour of axisymmetric shell structures changes when
small imperfections are introduced. They proposed the use of a new conical ring element to be
used in connection with the finite element method. This element accounted for the possible effects
of slight local deviations from the pure axisymmetric form. This method was applied to the
vibration analysis of a bell.

The study of wave propagation in circular cylindrical shells that are either filled with, or
submerged in, a fluid requires the use of models that take into account the coupling between the
solid and the fluid media.

Different models have been proposed by many researchers to solve this type of problem.
Veksler et al. [3] studied the features of wave scattering by submerged elastic circular cylindrical
shells, filled with air, when struck by plane harmonic acoustic waves. Their work used the
standard resonance scattering theory to study the modal resonances. Their investigation was
focused on the generation of bending waves, presenting a set of dispersion curves for shells with
different relative thicknesses. They concluded that these waves could be generated when the
relative thickness of the shell is not too great, and that the dispersion curves of their phase velocity
are limited by the dispersion curve of the free bending modes, when the density of the host fluid
tends to zero.

Work by Bao et al. [4] analyzed the existence of various types of circumferential waves and the
repulsion of their dispersion curves for the case of a thin elastic circular cylindrical shell
submerged in one fluid and filled with another fluid. Their study was based on an analytical
calculation of the partial-wave resonances in the acoustic scattering amplitude of a normally
incident plane wave.

Recently, Maze et al. [5] studied the various guided acoustic circumferential modes found in a
water-filled tube. They showed, theoretically and experimentally, the presence of structure waves
inside a water-filled thin walled tube in vacuum. The values of the group velocities for the first two
coupled modes calculated by the authors were in excellent agreement with experimental results.
The results were interesting in the context of the physics of acoustic waves in fluid loaded
structures and may be applied in liquid level detection.

This paper examines the three-dimensional wave propagation in a fluid-filled pipeline solid
structure, submerged in a continuous homogeneous fluid medium. The full coupling between the
external fluid, the elastic material and the internal fluid is taken into account. The pipeline is
assumed to have a constant cross-section and is modelled as a homogeneous elastic material.

Since the geometry of the problem does not change along the axis of the pipeline ðzÞ and to
avoid the full three-dimensional computation, the problem is first Fourier transformed along this
axis, which allows the solution to be defined in a frequency vs. axial wavenumber domain. An
inverse Fourier transform is subsequently performed along the same direction to find the three-
dimensional solution in the frequency domain. Assuming the existence of a set of virtual sources,
equally spaced along the z direction, the resulting Fourier transform becomes discrete. This
procedure allows the authors to obtain the three-dimensional (3-D) responses in the frequency
domain as a discrete summation of the 2-D solutions for different axial wavenumbers [6]. Each of
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the 2-D problems is solved analytically. This model is then employed to compute stresses in the
elastic material of a submerged fluid-filled pipeline, and to analyze their dependence on the
excitation of the different normal modes. To better understand the behaviour of the dynamic
system, time domain responses are also obtained by applying inverse Fourier transforms in the
frequency domain. The wave propagation features identified in the present paper should be useful
in the development of non-destructive testing and imaging methods.

The next section of this work describes briefly the formulation of the three-dimensional
problem. A brief description of the analytical solutions used to calculate the frequency domain
responses is then presented, followed by an explanation of the process used to compute time
domain results. Finally, a set of numerical applications is presented to show the behaviour of an
infinite pipeline subjected to the effect of a point source placed in different positions. The response
is calculated at receivers placed in the solid material of the pipeline, and for pipelines with
different thicknesses.

2. 3-D problem formulation

In the absence of body forces, and disregarding the effects of the mean fluid flow velocity, the
displacement equation of motion in an infinite 3-D elastic homogeneous medium can be written,
in the frequency domain [7,8], as

ðlþ 2mÞ=ð= � uÞ � m=� ð=� uÞ ¼ �o2ru; ð1Þ

where u is the displacement vector, m is the shear modulus, l the Lam!e constant, r the density of
the medium and o the frequency of excitation.

In order to solve this elastic equation, one can separate the displacement vector into different
components, corresponding to one dilatational ðfÞ and two shear (c and w) (vertically polarized,
SV and horizontally polarized, SH) components, which satisfy the scalar equations
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p
; a2 ¼ ðlþ 2mÞ=r; b2 ¼ m=r;

a and b being the dilatational and the shear wave velocities respectively.
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In the case of an inviscid compressible fluid medium, no shear stresses are allowed, and so only
dilatational waves can exist. For this case, the system is reduced to a single scalar equation

=2 þ
o2

a2
f

 !
ff ðo; r; y; zÞ ¼ 0; ð3Þ

where ff is the velocity potential and af is the wave propagation velocity in the fluid.
In many cases, the analysis of 3-D problems can be computationally demanding, and it is often

advisable to express the full 3-D problem as a summation of simpler 2-D solutions, when the
geometry of the problem remains constant along one direction ðzÞ: This is achieved by applying a
Fourier transformation along that direction, and expressing the solution as a summation of 2-D
solutions, with different spatial wavenumbers kz [9]. The application of a spatial Fourier
transformation along the z direction to Eqs. (2) and (3) leads to the following equations:
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The full three-dimensional solution is then obtained by applying an inverse Fourier transform
along the z direction. If we assume the existence of virtual sources spaced at equal intervals, L;
along z; this inverse Fourier transformation becomes a discrete summation, which allows the
solution to be obtained by solving a limited number of two-dimensional problems.

fðo; r; y; zÞ ¼
2p
L

XM
m¼�M

#fðo; r; y; kzmÞ e�ikzmz;

cðo; r; y; zÞ ¼
2p
L

XM
m¼�M

#cðo; r; y; kzmÞ e�ikzmz;

wðo; r; y; zÞ ¼
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#ff ðo; r; y; kzmÞ e�ikzmz ð7Þ
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with kzm being the axial wavenumber given by kzm ¼ ð2p=LÞm: The distance L must be sufficiently
large to avoid spatial contamination from the virtual sources [10]. A similar procedure has been
used by the authors to analyze wave propagation inside seismic prospecting boreholes [11] and the
outdoor propagation of sound waves in the presence of obstacles [12].

3. Analytical solution

Consider a fluid-filled pipeline defined by the internal and external radii, rA and rB; respectively,
submerged in an inviscid compressible homogeneous fluid medium, as illustrated in Fig. 1. This
pipeline is assumed to be illuminated by a harmonic dilatational source placed in the exterior fluid
medium. The waves generated by this source propagate and hit the surface of the submerged pipe.
After striking the external surface of the pipeline, part of the incident energy is reflected back into
the exterior fluid medium, and the remaining energy is transmitted into the solid material, in the
form of propagating body and guided waves. These waves continue to propagate and they
eventually strike the inner surface of the pipe. Here, a similar phenomenon may occur, with part
of the energy being transmitted to the inner fluid and the rest being reflected back to the elastic
medium. This process will be repeated until all the energy is dissipated.

3.1. The incident wave field

The three-dimensional incident field for a point pressure source placed at ðx0; 0; 0Þ can be
expressed by means of the velocity potential f; which must satisfy Eq. (3). A solution for this
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equation, as in [7], is

ff incðo; rÞ ¼
Aeiðo=af Þðaf t�r0Þ

r0
; with r0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx � x0Þ

2 þ y2 þ z2

q
; ð8Þ

where the subscript inc denotes the incident field, A is the wave amplitude, a1 is the pressure wave
velocity allowed in the exterior fluid medium, r0 defines the distance between the source and the
receiver and i ¼

ffiffiffiffiffiffiffi
�1

p
: The application of a Fourier transformation along the z direction, allows

the incident field to be expressed as a summation of 2-D sources, with different spatial
wavenumbers

ff incðo; r; y; zÞ ¼
2p
L
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q
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f
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s
ðIm kaf o0Þ;

where Hð2Þ
n ðyÞ represents the second Hankel functions of order n; and L is the distance between

virtual point sources equally spaced along z:
Using Graff’s addition theorem [13], this field can be expressed in terms of waves centred on the

axis of the pipeline, leading to the following expressions in cylindrical co-ordinates:
If the source is in Fluid 1 and ror0

finc ¼ �
i

2
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If the source is in Fluid 2 and r > r0

finc ¼ �
i

2

XN
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ð�1ÞnenJnðkaf 2
r0ÞHð2Þ
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in which r0 is the distance from the source to the axis of the pipeline, JnðyÞ are Bessel functions of
order n; af 1 and af 2 are the pressure wave velocities for the outer and inner fluid, respectively, and

en ¼
1
2

if n ¼ 0;

1 if na0:

(

3.2. The scattered wave field in the outer fluid

The wavefield generated in the exterior fluid medium (Fluid 1) depends on waves coming from
the external surface of the pipeline, which propagate away from it. The Hankel functions of order
n [7], Hð1Þ;ð2Þ

n ðkrÞ cosðnyÞ; satisfy Eq. (5), representing cylindrical waves when combined with the
implicit factor e�iot: It may be found that Hð1Þ

n ðkrÞ cosðnyÞ refers to converging or incoming waves,
while Hð2Þ

n ðkrÞ cosðnyÞ corresponds to diverging or outgoing waves. So, when a cylindrical co-
ordinate system is centred on the axis of the pipeline (see Fig. 1), the outgoing waves can be
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defined using the following velocity potential:

f1 ¼
XN
n¼0

Að1Þ
n Hð2Þ

n ðkaf 1
rÞ cosðnyÞ; ð12Þ

where Að1Þ
n is an unknown potential amplitude.

3.3. The scattered wave field in the solid material

Two distinct groups of waves exist inside the elastic material of the pipeline, corresponding to
waves generated at the external surface and travelling inwards, and to waves generated at the
internal surface of the pipe that travel outwards. Using the co-ordinate system described above,
each of these groups can be described by one dilatational and two shear potentials, as in Eqs. (4).
For the waves generated at the external boundary, the corresponding potentials are equivalent to
standing wavefields inside a circular cylinder, resulting from the sum of the incoming and
outgoing waves [7], leading to the definition of the following potentials, which satisfy Eqs. (4):

f2 ¼
XN
n¼0

Að2Þ
n JnðkarÞ cosðnyÞ;

c2 ¼
XN
n¼0

Að3Þ
n JnðkbrÞ sinðnyÞ;

w2 ¼
XN
n¼0

Að4Þ
n JnðkbrÞ cosðnyÞ; ð13Þ

where

ka ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o2

a2
� k2

zm

s
; kb ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o2

b2
� k2

zm

s

and Að2Þ
n ; Að3Þ

n and Að4Þ
n are unknown potential amplitudes.

For the waves generated at the internal boundary, the corresponding potentials are equivalent
to diverging wavefields, which can be defined by the potentials

f3 ¼
XN
n¼0

Að5Þ
n Hð2Þ

n ðkarÞ cosðnyÞ;

c3 ¼
XN
n¼0

Að6Þ
n Hð2Þ

n ðkbrÞ sinðnyÞ;

w3 ¼
XN
n¼0

Að7Þ
n Hð2Þ

n ðkbrÞ cosðnyÞ; ð14Þ

where Að5Þ
n ; Að6Þ

n and Að7Þ
n are unknown potential amplitudes.
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3.4. The scattered wave field in the inner fluid

In the inner fluid (Fluid 2), the wavefield depends only on waves coming from the internal
surface of the pipeline, and thus only inward propagating waves are generated. The corresponding
velocity potential, which satisfies Eq. (5), is:

f4 ¼
XN
n¼0

Að8Þ
n Jnðkaf 2

rÞ cosðnyÞ; ð15Þ

where Að8Þ
n is an unknown potential amplitude.

The unknown coefficients Að jÞ
n ð j ¼ 1; 8Þ are determined by imposing the required boundary

conditions. For the present case, the boundary conditions are the continuity of normal
displacements and stresses and null tangential stresses on the two solid–fluid interfaces. A more
detailed explanation of the final equation system can be found in the appendix.

4. Time responses

The results (displacements and stresses) in the spatial-temporal domain can be calculated from
the frequency domain responses, by applying a numerical fast inverse Fourier transform in o: In
this process, a source with a temporal variation given by a Ricker pulse is modelled. The rapid
decay of this pulse in both the time and frequency domains reduces the computational effort, and
also makes it easier to interpret the time responses.

In the frequency domain, the Ricker wavelet function is defined by

UðoÞ ¼ A 2
ffiffiffi
p

p
toe

�iots

h i
O2e�O2

; ð16Þ

where A is the amplitude, O ¼ oto=2; ts is the time when the maximum occurs, while pto is the
characteristic period of the wavelet.

This procedure allows the definition of a total time window T ¼ 2p=Do ðDo being the
frequency step) for the time domain analysis. Pulses arriving at the receivers at times later than T
will appear again in the beginning of this window, generating the so-called aliasing phenomenon.
The contribution of these pulses can be greatly attenuated if the frequency axis is shifted slightly
downward, that is, by using complex frequencies with a small imaginary part of the form oc ¼
o� iZ (with Z ¼ 0:7Do) (e.g., Ref. [14]). For the analysis in the time domain, this shift must be
taken into account by rescaling the response using an exponential window eZt [15].

5. Numerical examples

A set of numerical examples is now presented, modelling an infinite circular pipeline with an
internal radius of 1:00 m and a wall thickness of either 0.03 or 0:10 m; submerged in a
homogeneous fluid medium. The fluid filling the pipeline is assumed to have the same properties
as the host medium, allowing a pressure wave propagation velocity of 1500 m=s; and exhibiting a
density of r ¼ 1000 kg=m3: The elastic material of the pipeline is steel, with a Poisson ratio of
n ¼ 0:3; a density of r ¼ 7850 kg=m3 and Young’s modulus E ¼ 210:6 GPa: These mechanical
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properties allow propagation velocities for the P and S waves of 6009 and 3212 m=s respectively.
Point pressure loads are placed in either the exterior or the interior fluid to excite the dynamic
system. Stresses in the elastic material are calculated at lines of five receivers placed along the z
direction, and positioned in the dynamic system as shown in Fig. 2.

All the computations were performed for frequencies ranging from 4.0 to 1024:0 Hz; with
increments of 4:0 Hz: This frequency step of 4:0 Hz determines a maximum analysis time of 0:25 s
for the time domain responses. The time domain responses presented are computed by means of
an inverse Fourier transformation, assuming the source generates a Ricker pulse with a central
frequency of 350:0 Hz:

As explained before, the response for each frequency is computed as a summation of simpler
2-D problems, each solved for an individual value of the axial wavenumber kz: The final solution
can be seen as the result of the contribution of different modes associated with the propagation of
different wave types. The different wave types in the frequency vs. axial-wavenumber domain are
more easily recognized and identified, as they occupy specific sub-domains, according to their
wave velocity. Both time and frequency vs. kz domain results are used to illustrate the main wave
features. The normal stresses srr are used to illustrate the main features of the responses. Similar
conclusions would be obtained by analyzing other stress distributions.

The first model corresponds to a circular cylindrical pipeline with a wall 0:03 m thick. Fig. 3
gives both the frequency vs. kz response and the time domain responses at receivers R1, placed
close to the inner surface of the pipeline, when a point pressure load is excited at position O1, in
the centre of the pipeline. Results in the frequency vs. kz domain (Fig. 3a) are presented using a
grey scale, ranging from white to black as the amplitude of the stresses decreases. The frequency
domain results obtained at these receivers show the existence of different wave modes propagating
in the dynamic system. These modes correspond to the guided and body waves generated by the
excitation source. Some of these modes exhibit an azimuthal variation. In this work they are
referred to as ‘‘Ai’’, where i indicates the variation of the mode with azimuth.

Pulses associated with waves travelling in the fluid at a velocity of 1500 m=s are clearly visible
(identified by ‘‘F’’ in Fig. 3b). Additionally, two modes are excited (labelled in Fig. 3 as ‘‘A0’’ and
‘‘TP’’). The first mode is axisymmetric; it is dispersive and exhibits lower group and phase
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velocities than the fluid pressure wave velocity (‘‘A0’’). It seems to exist in the full frequency range.
The second mode appears to be only slightly dispersive. It exhibits higher propagation velocities
and is associated with waves that exist in thin plates and shells. According to Graff [16], this ‘‘thin
plate velocity’’ is given by

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E=ð1 � n2Þr

p
: The mechanical properties ascribed to the elastic

medium allow the ‘‘thin plate velocity’’ to be approximately 5429 m=s: The calculation using this
expression does not take into account the solid/fluid coupling, and thus there is a discrepancy
between this result and the group velocities observed in the results presented here ðE5200 m=sÞ:

The main features described can also be identified in the time domain responses of Fig. 3. The
first pulse arriving at the receivers corresponds to waves travelling at higher velocities (labelled
‘‘PTP’’). These waves are associated with the ‘‘TP’’ mode, and travel at a velocity of
approximately 5200 m=s: A second pulse can be detected in the time responses, corresponding
to waves travelling at the fluid velocity, and labelled ‘‘PF’’. There follows a set of pulses associated
with the ‘‘A0’’ normal mode (labelled ‘‘PA0’’). Since ‘‘A0’’ is a highly dispersive mode, its
contribution appears in the time response as a sequence of pulses that start to arrive after the
waves that travel at the pressure wave velocity of the fluid.

Fig. 4 gives both the frequency spectra and the time domain responses for the normal stresses
srr at receivers R1, R2 and R3, placed close to the inner surface of the pipeline, when a point
pressure load is excited at position O2, 1:5 m from the centre of the pipeline.

The response registered at receivers R1 (Fig. 4a), placed over the neutral axis of the system (the
horizontal line passing through the centre of the pipeline), indicates the existence of several types
of waves, which correspond to the body waves and waves associated with different normal modes
of the dynamic system.

Again, pulses associated with waves travelling in the fluid at a velocity of 1500 m=s; are clearly
visible (identified by ‘‘F’’ in the figure). Receivers placed at this position easily detect the two
modes described above (labelled in Fig. 4a as ‘‘TP’’ and ‘‘A0’’). Non-axisymmetric modes are also
excited here, corresponding to screw waves (identified as ‘‘A2’’), while there are no bending waves
(‘‘A1’’) since the receivers are over the neutral axis. These non-axisymmetric modes are also
dispersive. Other non-axisymmetric modes exist that correspond to modes of a higher azimuthal
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order (labelled ‘‘Ai’’). However, these are only visible at receivers placed away from the nodal line
of the mode. The R1 receivers only record the ‘‘A4’’ and ‘‘A6’’ modes for the frequency range
analyzed, and these exhibit weak amplitudes and well-defined cut-off frequencies.
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Fig. 4. Frequency and time domain responses due to a pressure load located at O2: (a) receivers R1; (b) receivers R2;

(c) receivers R3.
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The features described here for the frequency response can be observed in the time domain
responses, where the arrival times of the different waves can be identified. Again, it is possible to
identify the arrival times of the pulses associated with the ‘‘TP’’ (labelled ‘‘PTP’’) and ‘‘F’’
(labelled ‘‘PF’’) waves. Following these, a sequence of pulses (‘‘PA0’’) caused by the excitation of
the dispersive ‘‘A0’’ normal mode arrives at the receivers. The contribution of the screw waves
(‘‘PA2’’) and of the ‘‘A4’’ and ‘‘A6’’ modes is not clear in the time responses, since these normal
modes exhibit very low amplitudes compared with the ‘‘A0’’ and ‘‘TP’’ waves.

The results computed at receivers R2 are presented in Fig. 4b. The modes referred to earlier
(‘‘F’’, ‘‘A0’’ and ‘‘TP’’) are also detected at these receivers, as was expected. However, the screw
mode (‘‘A2’’) previously observed does not exist at this position, since it makes null contribution
for receivers placed over a line that passes through the centre of the pipeline and makes an angle
of 45	 with the horizontal axis. Since the receivers are not over the neutral axis, the bending waves
(‘‘A1’’) contribute to the response, appearing as a dispersive mode. At low frequencies these waves
exhibit group velocities closer to the pressure wave velocity in the fluid, while at high frequencies
the group velocity becomes slower. Modes of higher azimuthal order, namely the ‘‘A3’’, ‘‘A4’’ and
‘‘A5’’ modes, also contribute to the response, but with lower amplitudes. The time response also
reveals the existence of the bending mode (‘‘PA1’’). Due to its dispersive nature, it appears in the
responses as a pack of waves that start arriving after the waves associated with the pressure wave
velocity of the fluid, together with waves associated with the ‘‘A0’’ mode. Since these ‘‘A1’’ waves
reach group velocities below those of the ‘‘A0’’ mode, in the frequency range analyzed, they are
still visible after the last arrivals associated with the first axisymmetric mode. Due to their very low
amplitude, the contribution of higher order modes is not visible in the time response.

Fig. 4c shows the results computed at receivers R3. These receivers record the contribution of
both the axisymmetric and nonaxisymmetric modes. The axisymmetric (‘‘A0’’), bending (‘‘A1’’)
and screw modes (‘‘A2’’) can now be identified in the frequency response, together with all the
higher order modes identified before. The contribution of waves travelling with the fluid velocity
(‘‘F’’) and with the ‘‘thin plate velocity’’ (‘‘TP’’) is also clearly visible. Again, in the time response,
the pulses arriving at the receivers associated with the ‘‘TP’’ (‘‘PTP’’) and ‘‘F’’ (‘‘PF’’) modes can
be identified. However, the superposition of modes with slower velocities makes it difficult to fully
identify the contribution of each of the remaining modes to the time response.

The response of the same model has also been analyzed for receivers placed over the mid-
surface and close to the external boundary of the elastic material, assuming the source to be
placed at position O2. Fig. 5a illustrates the stresses srr calculated at receivers R4, placed on the
mid-surface of the pipeline and over the line connecting the source and the centre of the pipeline.
The responses registered at these receivers are more complex than the ones described before, since
the contribution of normal modes of higher azimuthal order is enhanced. Since their amplitude is
much higher than before, it is now easy to see that they exhibit well-defined cut-off frequencies.
The modes identified in this figure are the same as those found before at receivers R3,
corresponding to dispersive axisymmetric (‘‘A0’’), bending (‘‘A1’’), screw (‘‘A2’’), and normal
modes of higher order (‘‘A3’’, ‘‘A4’’, ‘‘A5’’ and ‘‘A6’’) that are generated in the dynamic system.
Very slow group velocities characterize all these later modes at low frequencies. Consequently, a
set of pulses appears at later times in the time domain responses. The high number of modes
excited with slower velocities means that it is not possible to distinguish their individual
contributions to the final response. When the receivers are placed close to the external surface
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(Fig. 5b), the normal modes of higher order become less important, and thus the response
approaches the one obtained for receivers R3. Analyzing the responses obtained at receivers 4 and 5,
it can be said that the contribution of the bending (‘‘A1’’) and screw (‘‘A2’’) modes to the response
appears to be less significant when the receiver is located further away from the surface of the
elastic material.

A second simulation was performed for a point source placed at position O3, 10:5 m away from
the axis of the pipeline. Fig. 6 presents the stresses computed at receivers R3, over the system’s
axis of symmetry and close to the internal wall of the pipeline. The response recorded at these
receivers is much simpler than the ones described previously. The different normal modes are still
excited, but now they exhibit much lower amplitudes. Thus, the response is dominated by the
waves travelling along the fluid and by those moving inside the pipeline wall with the so-called
‘‘thin plate velocity’’. In the time responses, this behaviour is even more evident, and only pulses
that correspond to those two types of waves are clearly visible. It can be seen that the amplitude of
the response registered at receivers placed further away from the plane containing the source
decreases faster than in the previous cases. The spreading of energy in the fluid media and the low
contribution of the guided modes explain this behaviour.
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Fig. 5. Frequency and time domain responses due to a pressure load located at O2: (a) receivers R4; (a) receivers R5.
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One last simulation was performed for a pipeline with a wall 0:10 m thick Fig. 7 presents the
results obtained at receivers R1, R2 and R3, for an excitation source placed at O2. The frequency
domain responses at all the receivers clearly indicate the contribution of different wave types, as
observed before for t ¼ 0:03 m: All receivers register the contribution of waves travelling
at the pressure wave velocity allowed by the fluid medium and at the so-called ‘‘thin-plate
velocity’’. An axisymmetric mode (‘‘A0’’) is also visible at the full set of receivers, existing for the
full frequency range. Furthermore, different non-axisymmetric modes are detected at each
receiver. As before, responses recorded at receivers R1 reveal the presence of screw waves (‘‘A2’’),
while bending (‘‘A1’’) and third order (‘‘A3’’) normal modes have a null contribution at these
receivers. By contrast, at receivers R2 bending waves are visible (‘‘A1’’) together with the normal
mode of third order (‘‘A3’’). Receivers R3 register the contribution of the three non-axisymmetric
normal modes described. Comparing these results with the corresponding ones in Fig. 3 we find
that there is a substantial change in the group and phase velocities of the different normal modes.
With the thicker wall, the bending and the screw wave group velocities seem to approach the
group velocity of the axisymmetric normal mode as the frequency increases. For low frequencies,
the group velocity of the bending mode even exceeds it. In general, it is possible to observe an
increase in the cut-off frequency of the higher normal modes, together with an increase in their
phase velocities, particularly for higher frequencies. This increase in velocities results in the time
responses showing that the slower pulses arrive earlier than before. One can also see that the
bending waves now start arriving before the pulse that travels at the pressure wave velocity of the
fluid.

6. Conclusions

The stresses generated in an infinite straight pipeline submerged in a homogeneous fluid
medium and subjected to the incidence of pressure waves generated by point source have been
analyzed. The section of the pipeline was assumed to be defined by two concentric circumferences,
and was modelled as an elastic material. The computations were performed in the frequency
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Fig. 6. Frequency and time domain response at receivers R3 due to a source placed at O3.
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domain using analytical solutions that take the full solid–fluid interaction into account. Time
domain responses were also calculated, allowing the main features of the wave propagation to be
identified.
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Fig. 7. Frequency and time domain response when the pipeline has a thickness of 0:10 m and a pressure load is located

at O2: (a) receivers R1; (b) receivers R2; (c) receivers R3.
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The influence of the position of the receiver on the final response registered was analyzed, and it
was found that the contribution of the different normal modes does depend on receiver position.
It can be said that the stresses registered at each point inside the elastic material of the pipeline are
strongly dependent on both the body waves generated and the stresses provided by the individual
contribution of the different guided wave modes at each position.

The different simulations showed that the amplitude of the excited normal modes is governed to
a great extent by the distance between the source and the pipeline. The contribution of the guided
waves decreases markedly when the source is placed further away from the pipeline. For this case,
however, the contributions of the waves associated both with waves travelling at the pressure
wave velocity of the fluid and with those moving in the pipeline wall at the so-called ‘‘thin plate
velocity’’ were still significant. The thickness of the pipeline cross-section was also found to
influence the properties of the modes excited in the system, particularly their velocity and cut-off
frequency. The dispersion wave velocities of the different modes were found to be influenced by
the presence of the fluids.

Appendix

The eight potentials defined give rise to a system of eight equations with eight unknowns, which
yields the coefficients AðiÞ

n ði ¼ 1;y; 8Þ: This system is built so as to allow the establishment of
boundary conditions of null tangential stresses and the continuity of normal displacements and
stresses in the solid–fluid interfaces:
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: :
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