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Abstract

Generalized beam theory—GBT—is among the most adequate tools for the analysis of
thin-walled prismatic elements. It enables the analysis of the distortion of the element cross-
section and local buckling of individual walls in a unified manner that incorporates the
results from classical bending theory. The basis of this theory was developed in the 1960s by
Schardt for first and second order elastic behaviour of thin-walled members.

Open and closed thin-walled members present the distinctive difference of the unknown
shear flow that characterizes the latter. More specifically, shear strains must follow an elas-
ticity law, as opposed to the simplifying assumptions for open cross-sections.

It is the purpose of the present paper to present a unified energy formulation for the non-
linear analysis of both open and closed sections in the framework of GBT, able to deal with
all modal interaction phenomena between local plate behaviour, distortional behaviour and
the more classical global (flexural, torsional and flexural-torsional) response. Finally, an
application to the stability analysis of a compressed thin-walled column is presented and
discussed.
© 2004 Elsevier Ltd. All rights reserved.
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Nomenclature

la generalized coordinate (degree of freedom) i

A total potential energy

b plate width

B transverse bending stiffness matrix

C warping stiffness matrix

D torsion stiffness matrix

E Young modulus

F force in the cross-section plane

f displacement normal to the cross-section perimeter

1 displacement normal to the cross-section perimeter of the plate’s
initial node

fe displacement normal to the cross-section perimeter of the plate’s end
node

fs displacement along the cross-section perimeter

5 displacement normal to the cross-section perimeter of plate’s midpoint

fa rotation in the cross-section plane of the plate’s chord

G shear modulus

TH (i, j) term of the Hessian matrix for the total potential energy

Hy Hessian matrix for the total potential energy evaluated along the fun-
damental path

L length of a member

M bending moment

nuyp  humber of modes of deformation

P axial force

q distributed load

‘q sliding coordinate i

t plate thickness

u(s) longitudinal (warping) displacement

U; internal strain energy

v displacement in Oy direction

V(x)  amplitude modal function

V vector containing the amplitude modal functions for all modes of

deformation

displacement in Oz direction

total potential energy in the W-formulation
normal extension

shear distortion

non-linear stiffness term

Poisson coefficient

potential of the external loading

normal stress
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T shear stress

) denotes differentiation along the perimeter coordinate s

() denotes differentiation along the longitudinal coordinate x

i) (i, j) term of a matrix

i) denotes mode of deformation i

()o indicates non-linear term related to the normal longitudinal
membrane stresses

( )su  indicates non-linear term related to shear membrane stresses

1. Introduction
1.1. Generalities

In recent years, the use of very slender thin-walled cross-section members has
become increasingly common, due to its high stiffness/weight ratio. Extensive
application of these members is found, in practice, in cold-formed members for
lightweight structures [1,2] or in box girder bridges [3]. The high slenderness that
characterizes these members implies a great susceptibility to various instability
phenomena [4]. In fact, in addition to the usual global instability phenomena (flex-
ural, torsional or flexural-torsional buckling or lateral torsional buckling), related
to the deformation of the member axis combined exclusively with rigid-body
displacement of the cross-sections, distortional and local plate instability phenom-
ena are now a potential problem.

Thin-walled closed cross-section members present the distinctive feature of a
higher torsional stiffness when compared to their open cross-section counterparts.
This increase in torsional stiffness is associated with a constant shear flow around
the cross-section that does not exist in open sections subjected to torsion. To deal
with this additional complexity, the theory of thin-walled closed section members,
as developed by von Karman and Christensen [5], relaxes the well-known Vlasov’s
[6] assumption of negligible membrane shear distortion. Classically [5], the usual
strategy to determine this statically indeterminate shear flow is to consider the
existence of two shear flows: the main shear flow obtained through a constitutive
relation, and a secondary shear flow obtained by equilibrium, considering the vari-
ation along the length of the membrane longitudinal normal stresses, which is,
usually, much smaller than the first one and will be neglected in setting up the
global member equilibrium.

Generalized beam theory—GBT—is a whole theory devoted to the analysis of
thin-walled prismatic members, developed since the 1960s by Schardt and his
co-workers [4,7-11] at the Technical University of Darmstadt, in Germany, and
has been widely applied to study the behaviour of cold formed members [1,12,13].
It can be regarded as a fusion between the classical Vlasov’s theory for thin-walled
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members [6] and the folded plate theory [14-16], and is an alternative to the
classical finite strip [3] and finite element methods. It enables the analysis of thin-
walled prismatic members with the allowance of cross-section distortion and local
plate behaviour, in a one-dimensional formulation through the linear combination
of pre-established deformation patterns—the modes of deformation. Regarding the
application of GBT for closed cross-sections, it is noted that an additional basic
mode of deformation must be added to take into account the main shear flow
around the cross-section, as well as its corresponding shear distortion, full details
being given in [11].

It is the purpose of this paper to present a unified energy formulation for (open
and closed) thin-walled sections that is able to deal with geometrical non-linear
analysis, covering, in particular, bifurcational and post-bifurcational behaviour.
More specifically, the following aspects are addressed in detail: (i) derivation of a
common consistent energy formulation for open and closed cross-sections, (ii)
highlight the differences between these two cross-sectional types and (iii) illus-
tration of its application to the stability behaviour of open and closed section
columns.

1.2. The basic concepts of generalized beam theory

The key concepts behind GBT consist of (i) the characterization of the behav-
iour of the prismatic members (evaluation of displacements and stresses) through a
linear combination of predefined modes of deformation and (ii) algebraic diag-
onalization using an orthogonalization procedure of the modes of deformation to
obtain the cross-sectional properties.

To illustrate the first aspect, the longitudinal displacements (warping functions)
and the cross-section displacements normal to the walls are given by, respectively,

nMD

u(rs) = S Fuls) -+ (x) (1)
k=1

S =3 () 4V ) )
k=1

where ¥u(s) and *f(s) denote the warping function and the cross-section displace-
ments normal to the walls for mode of deformation k, respectively, and K77(x) is
the corresponding amplitude, nyp being the total number of modes of deformatio-
n. The remaining displacements, usually specified at the cross-sectional nodes, are
described with similar expressions and related using kinematic compatibility rela-
tions, full details being found in [9].

To illustrate the second aspect, it is useful to recall Vlasov’s theory for thin-wal-
led prismatic members [6], where off-diagonal terms of the member equilibrium
equations matrices become zero whenever the cross-section geometric properties
are determined with reference to the cross-section principal coordinates. Since GBT
is a generalization of Vlasov’s theory, it is expectable that a similar phenomenon
occurs. Starting with a set of nyp linear equilibrium equations in each of the nyp
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basic modes of deformation shown in Egs. (1) and (2), generically represented by
(terms related to the external loads not represented)

CV'"' —DV" + BV =0, (3)

where C, D and B represent the appropriate stiffness matrices [11], Schardt orig-
inally proposed an algebraic procedure to diagonalize matrices C, D and B by
establishing a set of three consecutive eigenvalue and eigenvector problems. In gen-
eral, it is impossible to set into diagonal form all the three matrices but in certain
cases, some off-diagonal terms may be neglected [11]. Also, diagonalizing two
matrices of the equilibrium system will make the subsequent calculus much easier
and gives physical meaning to the generalized geometric properties. After these three
steps, all geometrical properties are obtained, making no resource of determining
the centre of gravity, the principal axes and the shear centre of the cross-section.
This gives elegance to the GBT procedure and also a mathematical meaning to the
calculus of the geometrical properties through the cross-section principal coordinates
in the classical theory.

2. Energy formulation
2.1. Introduction and basic assumptions

Consider a continuous, non-branched, thin-walled cross-section consisting of npp
main walls of longitudinally constant thickness ¢, , and width b, ,, rigidly connected
at their end nodes, typically shown in Fig. 1. It is further assumed that two con-
secutive main walls make a non-zero continuity angle Aa;, so that the number of
principal nodes is nyp = npp + 1 for an open section, and nyp = npp for a closed
one. Following Schardt [11], and with reference to Fig. 1, two coordinate systems
are defined: (i) a local coordinate system s, s, x for each wall » and (ii) a global
coordinate system, x y z with its origin on node 1. Displacements associated with
global and local axes are defined in Table 1 and Fig. 2.

Fig. 1. Generic thin-walled cross-section.
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Table 1
Definition of the relevant displacements
Axes Displace- Displacement Displacement of Displacement of wall r
t f node r idpoint of wall r
men ot noder fmdpomt o watty Initial node  End node
Global x u U,
axes y v v,
z w w,
Local s Is Ssr
axes 5 S Sar Sor Ser
Rotation in Jor

O s 5 plane

Membrane and bending strains are denoted by

&y = sy + sf (4a)
g =M + &8 (4b)
y =" +9%, (4¢)

while stresses and stress resultants are defined in Fig. 3.

In the framework of GBT, and in addition to the usual assumptions of elastic
behaviour and small displacement plate bending behaviour of the cross-sectional
walls, the following specific assumptions are considered [11]:

(1) negligible membrane transverse strain;
(i1) negligible membrane shear distortion, only for open cross-sections.

Fig. 2. Cross-section displacements in local coordinates.
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Fig. 3. Definition of stresses and bending stress resultants.

2.2. Strain—displacement relations

Using (') and ()’ to denote differentiation with respect to s and x, respectively,
the bending strain—displacement relations follow the usual linear formulation and
are given by

CBii—azf 7%74(]'1(1/// (5 )
by — SW = 2 S a
762 MD .
sf:—sa—ézkz;—skka (5b)
82f nMD .
B _ g _ _ nkgk st
Vo= =255~ J; P (5¢)

For a stability analysis, it is necessary to include the relevant non-linear terms
in the membrane strain—displacement relations. From Fig. 4, the longitudinal

du ou

+—ds+—db
" os ’ dx Y\.-*‘}l\

D,

LA
I os e Jx s

K ox . B2 \/’
xu Ji'ﬂu"‘;idxy‘f/V
X

v

. af, af,
af [+ ds+—2dx
s gy . ‘
i £+ 5 X s dx

Fig. 4. Membrane displacements of the thin plate ds x dx.
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membrane strain is given, in general, by:

A,B, — A, B, AN AL A
M _ _ e il ICALNN
“ T T AB \/<1+8x) +<8x ox L (6)

Expanding Eq. (6) in Taylor series and neglecting higher-order terms yields:

ou 1/9f\* 1/8f\°
M _ Y7 I A _ -
b 8x+2<6x> +2<ax)

— Z{kukV”—F;nZM]i[(kfslfy‘kalf)kV,lV/]}- (7)
k=1 =1

Analogously, for closed cross-section members only, from the definition of mem-
brane shear distortion,

1= <A(B141C1) — <(BrA2C), (8)
given that
T
<(B14:Cy) = Erad, 9)

and noting that by definition of scalar product of two vectors, A;Bz and A;Cz, the
angle <](B,A4,C,) may be determined as a function of the displacements of 4, B
and C, the membrane shear distortion is given by:

Ou'\ Ou afs\ ofs  of of
o <1+a>a+<”a)a+$a
Vox = —arceos Tt o o T o .
ou s u s
¢ (1+50) +(50) () V (5) (%) ()
(10)
Expanding in Taylor series and neglecting higher-order terms leads to:
ou Ofy Of of Ou ou JOfs Of;
oM _ 7 s T T s IS
' = s Tox Tox 05 Tox 05 T ox Os (1)

Finally, introducing the assumption of a negligible 1st order transverse mem-
brane strain,

%,

~ 12
s >0 (12)
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the membrane shear distortion of Eq. (11) is obtained:
NIMD "MD

ou Ofy, 9Of Of Oudu ML, p
M _ 77 o rmem k kg\kpt kgl pk y,11
y‘vx_8s+8x+8x 8s+5'x8s ;(u—l—ﬁ)V—I—;;ffVV

nMD MD

+ ZZku/uk V//l %8 (13)
k=1 I=1

2.3. Constitutive relations

The stress—strain relations are split into bending effects,

B E B B E R il e
T2 (8x+ﬂ8x):mz—s(7'V +uf ') (14a)
i=1
B E B B E o L.
95 = 1— 2 (85 +'u8x) 1= 12 Z =5V 4+ wf'v") (14b)
i—1
nMD ..
=Gyl = -2G) §f'V'. (14c)
i=1
and membrane effects (Eq. (15b) holds only for closed cross-section members):
nMD nMD
Gx M EZ i lVl/ 4= Z jf + l,f]f V/j V/] (lSa)
AMD MD nMD NMD
T =G = Z i+ 1) V'+ZZ’fff’V’fV+ZZ Wil vy
=1 j= i=1 j=
(15b)

2.4. Strain energy
From the classical definition of strain energy,
U~—JLJ lMsM—i—l +1 8+1 8—|—1 v |dA4 dx (16)
r 04 Zo-x X 2 Tox Vsx ZGY). 20- 2Tsx/\x ’

the bending terms are obtained by introducing Egs. (5) and (14) into Eq. (16),
yielding:

MD "MD IMD "MD
ZZEJ lkcBlV/lkV// dX-‘rZZ J lkD V/kV/ dx
=1 k=1 1 k=1
1 nMD NMD = nMD "MD L
+ 5 J lkD Vk V// d + ZZJ lkD lV/lk V dx
Neia
+5 JO kByky dx, (17)



1504 P. Simdo, L.S. da Silva |/ Thin-Walled Structures 42 (2004) 1495-1517

where
e B _ L 12(?3 )szf ds (18a)
kp, = L%ﬁlfkf ds (18b)
“Dur = [ T as (184)
“p | i o (13)

Analogously, the membrane contribution, which includes all non-linear terms, is
obtained by introducing Egs. (7), (13) and (15) into Eq. (16), giving:

nMDnMD nMDnMD
UM = ZZ JlkCMlV//kV//dx+ZZ JlkD R
i=1 k= i=1 k=

nMDnMDnMD
i V//k V/l V' dx 4= ZZZJ Ko3 i V/j V/k 7" dx
i=1 j=1 k=1

20 2

nMDnMDnMDJ
i=1 k=11[=1

nMD MD "MD

A VIVEYTY dx 4= ZZZJ lesin' V*V'V dx

nMD MD "MD ""MD
J UM
i=1 k=1 1[=1

DD

i=1 j=1 k=1 I=1

EYDRI RS

i=1 k=1 I=1

nMD MD "MD ""MD

+= ZZZZ W s VIVEV'TY dx
i=1 j=1k=11=171L

”MD nMD "MD IMD

) ZZZZ Micsus' VIVEV"YV dx
i=1 j=1k=11=1YL

nMD nMD "MD PMD

+= ZZZZ WK VIVEVTY dxe
i=1 j=1 k=11=171L

”MD nMD "MD IMD

535S e

i=1 j=1k=11=1"1L

nMD MD "MD

V/k V//l 7 dx+— ZZZJ KSHa iyt Vk V' dx

i=1 j=1 k=1

WWIyky"Y dx

”MD nMD MD 1"MD

#5555 e

11,1k111L

iy yty’ dx, (19)
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where the following coefficients relate to the longitudinal membrane stress

kcM — | Efv*uds (1storder term) (20a)
e = | Eou(“41f+11)ds (200)
s = | ECu(fIfet Ff)ds (200)
Wicgs= | LA PS) (L), (20d)

while the following arise uniquely for closed sections from the membrane shear
flow contribution:

Dy :J,G.t' (‘a+f,) - (Fie4+-*£;)ds (1st order term) (21a)
il Gt (ut'f;)-'f -*f ds (21b)
Miesms=| G-t (u+'f;) ' Fu ds (21e)
sy = G t-'fIf - (“a+",)ds (21d)
UleSHSZJ G-t If If Kf ds (21e)
N J G-1-1f I i Fuds (21f)

e g :J G-t-iudic- (i) ds (21g)
- J G-t-'uJi-'f *f ds (21h)
ijkIKSH9:J G-t-iudilikuds. (21i)

2.5. Energy potential of external loading

The potential of the external loading is given, in general, by

nMD INT NMD IINT
J ZZ{q}i Vl +qu Wr}kV dX+J ZZ{ er Ur}kV/ dx
Lig=1r=1 =1r=1
nMD
+Px W _ 4> (R E) Y| 2MY| _ EMRY| L (22)

k=2
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where ¢, ,(x), ¢.,(x) and g, .x) denote general longitudinally distributed loads
applied at node r in the y, z and x directions, respectively, P denotes an axial force
applied at x = xj, F is a concentrated force in the cross-section plane applied at
X = x and with vertical and horizontal components F, and F.. 2M and *M denote
the components of an applied bending moment at x = x3 with respect to the princi-
pal cross-section axes.

2.6. Total potential energy function

Combining Egs. (17), (19) and (22) yields the total potential energy function:

nMDnMD i .
A= ZZ J lkCM+lkCB)lVl/kV// dx
i=1 k=
nMDnMDl ) ) ) lnMDnMD L. )
+ZZ§J (*Dy +*Ds) V'V’ dx+§ZZJ kDY VRV dx
i=1 k=1<J0 i=1 k=1
NMD NMD AMD "MD
ZZZJ KDy V'Y dx—l—ZZZJ kB YKy dx
i=1 k=1 i=1 k=1
1 NMD "MD "MD nMD nMD "MD ik X .
+ZZZZJI SRy gt b ZZZJ W YUY dy
i=1 k=1 I=1 i=1 j=1 k=1
nMD nMD MD "MD nMI) IMD "MD .
DD D | M VIV dvets zzzj ! VYV dx
i=1 j=1 k=1 I=1 i=1 k=1 I=1
nMD nMD "MD nMD IMD “MD
323 3| M VPV ax 3y 3| P vIVY ds
i=1 k=1 I=1 i=1 j=1 k=1

”MD nMD "MD MD
4= ZZZZJ e s VIVEYV'TYV dx
i=1 j=1 k=1 I=1
1 AMD MD "MD "MD . i i
_,’__ZZZZJ uleSH6zV/_1 Vk V/// V' dx
2 i=1 j=1 k=1/=17L

1 nMD MD MD nMD NMD NMD MD
+7zzzj ks VI VRV dx b L ZZZZJ e VTR Y A
i=1 j=1 k=1"L 11]1A111L

1 AMD MD MD "MD . i X
+§ZZZZJ N A
i1 =1 k=1 I=1

NMD INT
- J SO {yr () v g () w0, }¥V dx
Li=1r=1

_J fi{_q"'*r(x)ku’}kl/l dx—Px IV/“(:‘(
Li=1=1 o

nMD
a Z (kV;Fy + kW?FZ)k V|x:xl _2M2 V|x:x; _3M3 V‘
k=2

(23)

x=x3"
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3. Application of the Rayleigh—Ritz method to compressed columns
3.1. Introduction

In order to apply the general formulation derived above, the Rayleigh-Ritz
method [17] will be used by approximating the modal amplitude functions “¥(x) by
a set of coordinate functions *¥(x), as shown in Eq. (24):

k V(x) ~ kalk Vi (x) + kazk VQ(X) + ka3k V3 (x) + ..., (24)

where the coordinate functions “¥7(x) must respect the kinematic boundary con-
ditions and the coordinates “a; are the unknowns of the problem. Concentrating, in
this paper, on an application to an open or closed simply supported compressed
column with flexible end plates, a suitable and usual approximation consists of
sinusoidal amplitude functions given by:

23
mode I: 'V(x) =~ a4 (25a)
remaining modes: *V(x) ~ *a sinn—Lx fork=2,...,nup, (25b)

4 and *a being the unknown degrees of freedom. It is noted that the approxi-

mation function for the first mode of deformation is not sinusoidal in order to
allow for constant axial force along the length of the member. Note that other
boundary conditions or different loading cases follow identical procedures, given
an adequate choice of amplitude functions. For this particular case of a com-
pressed column, the potential of the external loads is simply given by

N=Px'V| (26)

x=L’

so that substitution of Eq. (25) into the total potential energy function (23) and
integration along the length yields:

nMD NMD 'MD AIMD 'MD
A=A, a+A111a2+ZA,, +ZZA,] a/a—i—zz Ay aa’a+A11U1 2’a’a)
i= i=2 j=2 i#j i=2 j=2
IMD "MD "MD o o AMD 1MD /'MD "'MD o
+ ZZZ (Aijk’a’akaJrAly'kla’a’aka) JrZZZZAijk/’a’akala. (27)
i=2 j=2 k=2 i=2 j=2 k=21=2
where
23
A] - —Pm (283)
10
An=—'C (28b)

4
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11:4 2 2

L.
M B ii ii (i ii
A= 5 (CM4+ICP) + B+ 4L(D 1 +D5) 4L(D2+ 'Dar) (28¢c)
Aji :71:_2 (”Dl —&—”D3) _1‘[_2(”1)2 +”D2T) (28d)
it 4L 4L
V5 . w2\/5 . L
Avy =7 (Mo + " o3) =57 (Moesis +Vicsin) (28¢)
3 _ )
Aje = —m(ljkkaz + 7 143) +i(”kicsm + e sms)
ik ijk
33 ("resms + " ksm) (28f)
57'(2 .
A= Fl']"Ksm (28g)
2nv/5 1k 2m°V/5 Lijk ijlk
Avjjk = 32 (” KsH6) _W< Freso+ " 1csmo) (28h)
¢ kil n’ il Yo ®
Ajipy = Kl 4 i - i - U ) 28i
Y +16L KSHS 1613 SHO ~ TG L3 KSH9 (281)

with 7,j,k,/>2. It is noted that, in the case of a compressed column, all terms in ¥/

Ksys vanish upon integration.
3.2. Equilibrium equations

Differentiating the total potential energy function (27) with respect to the several
degrees of freedom yields the equilibrium equations of the system [18]. Specifically,
for i = 1, yields

94 AMD fIMD NIMD IMD #MD
8—_A]+2A“ a+ZZ A],, a’a+2A”,j aa’a +ZZZAI’/k a’a a=0,
i=2 j=2 i=2 j=2 k=2

(29)

while for the remaining degrees of freedom (i > 2),

aA MD nMD
= 24if a+> (Ap+AiYa+> [(Aig+Ay) da+ (A + Any) ' a¥al
2 =2
/L%/ J
nMD "MD . X
+ ZZ ik + Ajige + Akji)’aka + (A + Ay + Alkji)la]aka}
Jj=2 k=

NMD "MD "MD

+ ZZZ[ ikt + Ajit + A + Ay Y d*d'a) = 0. (30)
==
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Eq. (29) can be solved with respect to 'a, giving

L —A; — ZHMD ZnMD Alijl ZnMD ZnMD ZnMD Alz]k i da (31)
o 2A11 —|—2ZHMD ZHMDA“U da

or, in the case of an open cross-section,

_Al ZnMD ZnMD Aly
1(1 = 2A11 ) (32)

because of the inexistence of a shear flow.
3.3. Pre-buckling solution and sliding coordinate transformation
Egs. (29) and (30) yield a pre-buckling (fundamental) solution defined by

1y, — A
F 241,

iaF:O fori:2,...,nMD. (33)

In order to simplify further calculations, it is worth applying a sliding coordinate
transformation [18,19]

la="ap+'q, i=1,...,nup (34)
to yield a trivial fundamental solution
ig=0, i=1,...,nvp. (35)

The resulting total potential energy function, now denoted by W, is given by

AMD MD
W=W,+Wn'q + ZZ(szl(/q + W' d'd g+ W' 'd q)
i=2 j=2
NMD "MD "MD Dk L i IMD "MD MD "MD
I DI (Wildd g+ Wi ddd a) + DY 3D (Wid'dd'q
=2 j=2 k=2 i=2 j=2 k=2 I=2
(36)
where
A2
Wy=—-—1 37
0 i, (37a)
Wi = An (37b)
. A2 A;
ifi=j, Wi=Ai+Ani—m — Auis—
W. — 44y, 24n (37¢)
J AZ A,‘

i gy Wi = Ay Ay g = A
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A4
Wi = Avj — jil 1 (37d)
Ay A
Wik = A — 2111:“ 1 (37¢)
Wi = Aujj (37f)
Wiy = Any (37g)
Wit = Ajjia- (37h)

Linear eigenvalue analysis

The critical loads of the compressed column are now easily evaluated by setting
to zero the determinant of the Hessian matrix of the total potential energy func-
tion, evaluated along the fundamental path of the system [18,19]:

2Wi 0 0 - 0
) 2W Wos+ Wz - W + Win2
det(Hp) = % = 2W33 = Wang + Wiz | =0
'q0q |
Symmetric :
ZI/I/”LN[]:)}/”VID

(38)

Analysing Eq. (38), the following conclusions can be drawn:

(1)

(i)

(iif)

the first row and the first column have all terms equal to zero with the excep-
tion of the term '' Hy, which is not dependant of P; so, when finding the roots
of the determinant Hp, only the submatrix formed by the last (nyp — 1) rows
and columns shall be considered;

for closed cross-sections, the terms Wy, for i = j and i # j, in the Ay1;;(43/443,)
part, contain a quadratic factor in P, which is dependent of coefficient ¥ gppo;
so, for closed section members only, if third order coefficients are taken into
account for the determination of the critical loads, a non-linear eigenvalue
problem will occur [20]—this fact will have a small influence for the value of the
critical loads, so in the example presented below, only second order terms will
be considered for the closed cross-section;

for open or closed cross-sections, the terms Wj;, for i =j and i # j, contain, in
general, a linear term in P in the part 4,;;(4;/2A11), so all coefficients for i,j > 2
will have a constant part and a linear part in P—thus, the eigenvalue problem is
established.

Regarding the first conclusion above, the eigenvalue—eigenvector problem will
have dimension (nvp — 1), since coordinate 'g will always be passive. From the
third conclusion, the shape of any term (i, j) of Hp, for any i,j > 2, is "Hy +7 H, P,
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and the generalized eigenvalue problem can be established in the form [21]:
(H0+P-H1)q=0, (39)

being the non-zero terms in the eigenvectors ¢, if properly normalized, regarded as
the “participation” of their relative mode of deformation in the overall buckling—
note that in this particular case, each coordinate ‘g is related to a specific mode of
deformation.

4. Example

In order to illustrate the use of the energy formulation in the context of GBT,
the stability analysis of a compressed thin-walled prismatic member with open or
closed cross-section is presented. The closed cross-section—case 1—consists of a
RHS 80 x 40 x 2 member while the open section—case 2—was chosen to have the
same height, width and cross-sectional area as and also to fulfil EC3—part 1.3
recommendations for lip slenderness [22]. Fig. 5 illustrates the cross-section
geometry and the nodal discretization for the chosen examples. The Young modu-
lus is £ =210 GPa and the Poisson ratio is ¢ = 0.3. The warping functions, the
cross-section displacements and the transverse bending moments are shown in
Figs. 6-8. For a compressive axial force P applied at one member end (see Fig. 9),
the potential of the external load is simply given by:

L 2V/5

=L~ 4an P. (40)

Op =P x'V|

Being both cases related to equal cross-section areas—that is equivalent to say,
in GBT notation, to equal values of 'C [11]—their fundamental paths become

@ ©® O ©) ©

I T
2 @
80 mm g
-2 — s
. <1_ mm l@ l@ ) <i_ 2.5 mm s T@
5 ©)
I I A
L — s <+
40 mm @ @ @ 40 mm @ @
. No‘dal‘ Nodal
discretization discretization
Case 1 Case 2

Fig. 5. Definition of cross-section dimensions and nodal discretization.
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Mode 1 Mode 2 Mode 3 Mode 1

Mode 4 Mode 5 Mode 6 Mode 4

AV

M M
Mode 7 Mode8  Mode 9 ode 8 ode 9

Case 1 Case 2

Fig. 6. Shape of the modal cross-section displacements.

equal and given by:
'ay =2.21832 x 107° x L3/? (41)

all other coordinates being equal to zero. Applying standard stability procedures
[18,19], the critical loads presented in Fig. 10 are obtained, together with the modal
participation coefficients.

In case 1, the existence of three buckling regions is clearly perceptible. The first
region, where modes 6 and 5 are predominant, corresponds to the local plate buck-
ling zone, for lengths smaller than 400 mm. Then, as the member length increases,
the second region occurs, where modes 3 and 7 interact, this phenomenon being
related to global buckling—minor axis bending—influenced by buckling of the
compressed web, linked to the asymmetric distortional mode. Finally, for lengths
greater than about 1500 mm, the third region occurs, where global buckling mode
(minor axis bending) alone governs the behaviour of the member. It is important
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Mode 2 Mode 3 Mode 1 Mode 2

Mode 4 Mode 5 Mode 6 Mode 4 Mode 5 Mode 6

Mode 7 Mode 8 Mode 9 Mode 7 Mode 8 Mode 9
Case 1 Case 2

Fig. 7. Shape of the modal warping displacements.

to note that individual mode buckling loads for modes 4 and 5 are much greater
than the buckling loads for all modes, as can be observed in Fig. 11.

The buckling behaviour and the modal participation for case 2 are more com-
plex, due to the fact that this case deals with a monosymmetric open cross-section.
Four buckling regions can be identified. The first region is related to lengths
smaller than 100 mm and local plate buckling rules the column behaviour, with a
small influence of the lips buckling. In GBT notation, this fact is expressed by the
influence of mode 6 coupled with mode 9. Then, a second region occurs for lengths
up to 530 mm and mode 5 rules the buckling loads, corresponding to the sym-
metric distortional buckling zone. In the third region, for column lengths between
530 and 2100 mm, body modes 2, 4 and 6 rule the behaviour—in this zone, at first,
mode 6 (asymmetric distortional mode) governs the behaviour but smoothly major
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Mode 1 Mode 2 Mode 3 Mode 1 Mode 2 Mode 3

Mode 4 Mode 5 Mode 6

Mode 8 Mode 7 Mode 8 Mode 9

Case 1 Case 2

Fig. 8. Shape of the modal transverse bending diagrams.

axis bending (mode 2) takes the most relevant role. Then, for lengths higher than
2100 mm, minor axis bending starts suddenly to rule alone the behaviour of the
column.

Case 1 Case 2

Fig. 9. The compressed column.
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Fig. 10. Buckling loads and modal participations for cases 1 and 2.

Observing Fig. 12, it can be concluded that the buckling loads for the closed
cross-section are much greater for a lengths range between 250 and 1600 mm (in
the open section case, this lengths range corresponds to the 2nd and 3rd regions)
because, for these lengths, symmetric and asymmetric distortional buckling rule the
open section buckling loads behaviour and they are not present or not relevant for
the closed section case. However, the thickness of the open section is greater and
this fact implies a greater buckling load only for very small lengths, for those

P (kN)
50000

45000 — Mode 4

— Mode 5

40000

35000
30000
25000

L (mm)
500 1000 1500 2000 2500 3000 3500

Fig. 11. Single mode buckling loads for modes 4 and 5 for case 1.
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Fig. 12. All modes bifurcation loads for cases 1 and 2.

where local plate buckling is the most relevant buckling mode for the open and for
the closed sections.

5. Conclusions

A unified energy formulation for the analysis of the stability of open or closed
thin-walled cross-section members in the framework of GBT was presented. This
formulation highlights the specific differences between the two types of sections,
namely the presence of a shear flow for closed cross-section members and the need
to take into account the membrane shear distortion. Using a Rayleigh-Ritz
approach and sinusoidal approximations for the various modes of deformation, it
was possible to obtain solutions for the various bifurcation loads. Application to
the evaluation of the stability of a compressed column for two different cross-sec-
tion alternatives with constant area has shown a net gain in the buckling resistance
for the closed cross-section elements for the intermediate slenderness range.

Finally, the energy formulation is able to deal with the post-buckling behaviour
of thin-walled members, since it already includes the relevant non-linear terms, an
issue being currently actively pursued.

Acknowledgements

Financial support from “PRODEP—Ac¢ao de Formagdo Avangada de
Docentes do Ensino Superior (Ministério da Educagdo)” for Pedro Simio is grate-
fully acknowledged.

References

[1] Davies JM. Recent research advances in cold-formed steel structures. Journal of Constructional
Steel Research 2000;55:267-88.
[2] Yu W-W. Cold-formed steel design. New York: John Wiley & Sons; 2000.



P. Simdo, L.S. da Silva /| Thin-Walled Structures 42 (2004) 1495-1517 1517

[3] Cheung YK. Finite strip method in structural analysis. Pergamon Press; 1976.

[4] Schardt R. Generalized beam theory—an adequate method for coupled stability problems. Thin-
Walled Structures 1994;19:161-80.

[5] von Karman T, Christensen NB. Methods of analysis for torsion with variable twist. Journal of the
Aeronautical Sciences (IT) 1944;April:110-24.

[6] Vlasov VZ. Thin walled elastic beams, 2nd ed. Washington: The National Science Foundation,
Department of Commerce; 1961.

[7] Schardt R. Eine Erweiterung der Technischen Biegetheorie zur Berechnung prismatischer
Faltwerke. Der Stahlbau 1966;35:161-71.

[8] Schardt R. Anwendung der Erweiterten Technischen Biegetheorie auf die Berechnung prismatischer
Faltwerke und Zylinderschalen nach Theorie I. und II. Ordnung. Proceedings of the IASS-Sym-
posium on Folded Plates and Prismatic Structures, Wien, vol. I. 1970.

[9] Miosga G. Vorwiegend ldngsbeanspruchte diinnwandige prismatische Stibe und Platten mit end-
lichen elastischen Verformungen. Dissertation D 17. Technische Hochschule Darmstadt, 1976.

[10] Méller R. Zur Berechnung prismatischer Strukturen mit beliebigem nicht formtreuem Querschnitt,
Bericht N. 2 des Institut fiir Statik der TH Darmstadt. Technische Hochschule Darmstadt, 1982.

[11] Schardt R. Verallgemeinerte Technische Biegetheorie. Berlin, Heidelberg: Springer Verlag; 1989.

[12] Davies JM, Leach P, Heinz D. Second-order generalised beam theory. Journal of Constructional
Steel Research 1994;31(2-3):221-41.

[13] Davies JM, Jiang C, Ungureanu V. Buckling mode interaction in cold formed steel columns and
beams. Proceedings of the 14th International Specialty Conference on Cold Formed Steel Struc-
tures, St. Louis, Missouri, USA, October 15-16. University of Missouri-Rolla. 1998, p. 53-67.

[14] Born J. Faltwerke—Ihre Theorie und Berechnung. Stuttgart: Verlag Konrad Wittwer; 1954.

[15] Girkmann K. Flachentragwerke. Wien: Springer-Verlag; 1959.

[16] Kolbrunner CF, Hajdin N. Diinnwandige Stibe—Band 2: Stibe mit deformierbaren Querschnitten,
Nicht-elastisches Verhalten diinnwandiger Stidbe. Berlin, Heidelberg: Springer-Verlag; 1975.

[17] Richards TH. Energy methods in stress analysis. Chichester: Ellis Horwood; 1977.

[18] Thompson JMT, Hunt G. A general theory of elastic stability. John Wiley & Sons; 1973.

[19] Thompson JMT, Hunt G. Elastic instability phenomena. John Wiley & Sons; 1984.

[20] Mirasso AE, Godoy LA. Iterative techniques for non-linear eigenvalue buckling problems. Com-
munications in Applied Numerical Methods 1992;8:311-7.

[21] Hangai Y, Kawamata S. Perturbation method in the analysis of geometrically nonlinear and stab-
ility problems. In: Oden JT, Clough RW, Yamamoto Y, editors. Advances in computational meth-
ods in structural mechanics and design. Huntsville (AL), USA: UAH Press; 1972, p. 473-89.

[22] European Committee for Standardization. EC 3—Eurocode 3, Design of steel structures, part 1.3—
general rules—supplementary rules for cold formed thin gauge members and sheeting. 1996.



	A unified energy formulation for the stability analysis of open and closed thin-walled members in the framework of the generali
	Introduction
	Generalities
	The basic concepts of generalized beam theory

	Energy formulation
	Introduction and basic assumptions
	Strain-displacement relations
	Constitutive relations
	Strain energy
	Energy potential of external loading
	Total potential energy function

	Application of the Rayleigh-Ritz method to compressed columns
	Introduction
	Equilibrium equations
	Pre-buckling solution and sliding coordinate transformation
	Linear eigenvalue analysis

	Example
	Conclusions
	References


