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Abstract

This paper implements a boundary element method (BEM) solution, formulated in the frequency domain, to simulate the

crosswell S wave surveying technique. In this technique, one fluid-filled borehole hosts the source, and the other the

receivers. The system is excited by a monopole or a dipole source placed near the first wall of the borehole wall, while the

pressure field is recorded in the second borehole. The three-dimensional solution is computed as a summation of 2.5D

solutions for different axial wave numbers. This model is used to assess the influence of the distance between boreholes and

the material properties of the medium on the pressure field generated in the second borehole. Slow and fast formations are

both simulated. It was found that the responses recorded the contribution of the non-dispersive body waves (the dilatational

(P) and shear (S) waves) as well as the effect of dispersive waves associated with different wave modes. The final time

solutions are thus intricate, exhibiting wave patterns that may make it difficult to interpret the arrival times of the refracted P

and S waves.
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1. Introduction

Measurement of the pressure inside a fluid-filled

borehole, generated by a source either on the

ground surface or in another borehole, is an

essential part of several geophysical and seismic

prospecting techniques (Albright and Johnson,

1990; Krohn, 1992; Toksöz et al., 1992). The
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interpretation of the signals recorded during the

course of certain seismic testing techniques requires

a full understanding of how the waves propagate

from the source to the receiver. The complexity of

the wave patterns recorded at the receivers depends

on the relative participation of the many wave

propagation modes that may be excited by the

source. This contribution is a function of the

distance from the source, the dominant frequency

of the pulse, the material characteristics of the

formation, the position of the tool relative to the

axis of the borehole, the existence of casing, and

the distance between boreholes (in the case of
ics 56 (2004) 231–245
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crosswell seismic surveys). The ratio between the

shear velocity b of the solid medium and the

dilatational wave velocity of the fluid af defines

two distinct behaviors for wave propagation—when

bNaf the medium is said to be a fast formation;

otherwise, it is called a slow formation.

Different numerical methods have been used to

obtain the solution of wave propagation across and

within fluid-filled boreholes. The finite difference

method (Stephen et al., 1985; Randall, 1991; Leslie

and Randall, 1992; Yoon and McMechan, 1992;

Cheng et al., 1995; Peng and Toksöz, 1995), the

boundary integral approach (Bouchon and Schmitt,

1989), the boundary element method (Bouchon, 1993;

Dong et al., 1995) and hybrid methods (White and

Sengbush, 1963; Ben-Menahem and Kostek, 1990; De

Hoop et al., 1994) are among the techniques most

often used.

Peng et al. (1996) made use of both the borehole

coupling theory and the global matrix formulation

for computing synthetic seismograms in a layered

medium. The global matrix formulation is used to

calculate the stress field at the borehole location.

Borehole coupling theory is then employed to obtain

the pressure in the borehole fluid. No discretization

along the borehole is required in this model, and the

method gives results for open, cased and partially

filled boreholes. The influence of the casing on the

propagation of waves along fluid filled boreholes

was also studied by Gibson and Peng (1994),

Winbow (1991), Peng et al. (1994), and Gibson

(1994).
The boundary element method (BEM) is a suitable

tool for analyzing wave propagation in the vicinity of

a borehole in a homogeneous isotropic formation,

because it automatically satisfies the far-field con-

ditions. The method was used by Bouchon (1993) in

an infinitely long borehole placed in layered isotropic

media. Dong et al. (1995) broadened the scope of

Bouchon’s work by incorporating transversely iso-

tropic layers and by including the effect of casing and

cement in the formation. Their work used an indirect

boundary element method to model source radiation

from open and cased boreholes in layered, trans-

versely isotropic media.

This work uses the BEM to model the crosswell

seismic prospecting technique, using two fluid-

filled boreholes. One of the boreholes hosts a

monopole or a dipole source, while the receivers

are placed in the second borehole. The BEM

model has been implemented and developed with-

out any simplification, taking into account the full

coupling between the solid and the fluid. The

methodology extends the analyses previously per-

formed by the authors (Tadeu et al., 2002). The

methodology has been validated by solving the

case of a single borehole, for which analytical

solutions are known.

In the next section, the problem is defined and the

BEM solutions in the frequency domain are given.

Then, the BEM models are used to assess how the

distance between the two boreholes and the elastic

formation properties influences the propagation of

different wave modes.
2. Problem formulation

An unbounded homogeneous isotropic elastic medium, without intrinsic attenuation, with density q, where a

shear wave and a compressional wave propagate with velocity b and a, respectively, hosts two boreholes. A

Cartesian coordinate system is centered on the axis of the borehole hosting the source, with the z-axis being aligned

along its axis. The boreholes are assumed to be filled with an inviscid fluid with density qf, where the

compressional waves propagate with a velocity of af . A dilatational point source, placed in one of the boreholes at

position x0, y0, z0, oscillating with a frequency x, disturbs the fluid, emitting an incident field that can be expressed

by the dilatational potential /,

/inc ¼
�
� a2f

x2kf

�
Ae

i x
af

af t�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x�x0ð Þ2þ y�y0ð Þ2 z�z0ð Þ2

p� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x� x0ð Þ2 þ y� y0ð Þ2 z� z0ð Þ2

q ð1Þ

where A is the amplitude and kf is the fluid Lamé constant.
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As the geometry of the problem does not vary along the z direction, the three-dimensional solution is

commonly computed as a summation of two-dimensional problems, following the Fourier transformation of the

problem in the z direction. This summation is rendered discrete if there is a set of virtual sources, equally spaced

along the z direction, (Bouchon and Aki, 1977). The resulting discrete two-dimensional problems are solved for a

varying sequence of radial wave numbers kaf ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

a2
f

� k2zm

q
;with Im kafb0; where kzm ¼ 2p

L
m is the axial

(longitudinal) wave number (m=0,�1, +1. . .), and L is the distance between virtual point sources equally spaced

along z. The incident field is expressed by the potential

/̂/inc x; x; y; kzð Þ ¼
�
� a2f

x2kf

�
� iA

2
H

2ð Þ
0

�
kaf

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x� x0ð Þ2 þ y� y0ð Þ2

q �
ð2Þ

in which H 2ð Þ
n ð N Þ are second Hankel functions of order n. The distance L must be sufficiently large to

avoid the contribution of the virtual sources to the response. The 2.5D incident pressure field is given

by
� iA

2
H

2ð Þ
0

�
kaf

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x� x0ð Þ2 þ y� y0ð Þ2

q �
.

The BEM is ideally suited to solve this problem, since it automatically takes into account the far-field

conditions, requiring only the discretization of the boundary of the two boreholes. The BEM equations needed to

solve this problem are well-known (Beskos, 1997; Tadeu et al., 2002) and are thus not fully described here. The

authors have used a similar technique for evaluating the three-dimensional wavefield elicited by monopole sources

in the vicinity of fluid-filled irregular boreholes (Tadeu and Santos, 2001).

It is enough to state that the application of the method in the frequency domain requires the evaluation of the

integrals along the appropriately discretized boundary of the borehole

H
sð Þkl

ij ¼
Z
Cl

H
sð Þ

ij xk ; xl; nlð ÞdCl i; j ¼ 1; 2; 3ð Þ H
fð Þkl

f 1 ¼
Z
Cl

H
fð Þ

f 1 xk ; xl; nlð ÞdCl

G
sð Þkl
ij ¼

Z
Cl

G
sð Þ
ij xk ; xlð ÞdCl i ¼ 1; 2; 3; j ¼ 1ð Þ G

fð Þkl
f 1 ¼

Z
Cl

G
fð Þ

f 1 xk ; xlð ÞdCl

ð3Þ

In these equations, H
sð Þ

ij xk ; xl; nlð Þ and G
sð Þ
ij xk ; xlð Þ are, respectively, the Green’s tensor for traction and

displacement components in the elastic medium, at the point xl in direction j, originated by a concentrated load

acting at the source point xk in direction i; H
fð Þ

f 1 xk ; xl; nlð Þ are the components of the Green’s tensor for pressure in

the fluid medium, at the point xl, due to a pressure load placed at the source point xk; G
fð Þ

f 1 xk ; xlð Þ are the

components of the Green’s tensor for displacement in the fluid medium, at point xl in the normal direction, caused

by a pressure load acting at the source point xk; nl is the unit outward normal for the lth boundary segment Cl; the

subscripts i, j=1,2,3 refer to the normal, tangential and z directions, respectively. These equations are appropriately

transformed from the Cartesian coordinate system (x, y, z) to the tangential and normal directions of the boundary

element, using standard vector transformation operators.

The required two-and-a-half dimensional fundamental solution (Green’s functions) and stress functions in

Cartesian coordinates, for the elastic and fluid media, are described in Tadeu and Kausel (2000).

The boundary conditions prescribed at the solid–fluid interface are the continuity of normal displacements and

stresses, and null tangential stresses. The imposition of these conditions leads to a system of equations that can be

solved for the nodal solid displacements and fluid pressures. The required integrations in Eq. (3) are achieved

using Gaussian quadrature when the element to be integrated is not the loaded element. For the loaded element, the

existing singular integrals are carried out in closed form (Tadeu et al., 1999a,b).

Solutions in the time domain are computed after the response in the frequency domain has been obtained. The

required Fourier transformations are carried out by discrete summations over wave numbers and frequencies,

which is equivalent to adding periodic sources at spatial intervals L=2p/Dkz (on the z-axis), and temporal intervals
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T=2p/Dx, where Dkz and Dx are the wave number and frequency increments, respectively (Bouchon and Aki,

1977). As mentioned above, the spatial separation L must be large enough to prevent contamination of the

response by the periodic sources. In other words, the response given by the fictitious sources must appear at times

later than T. Complex frequencies with a small imaginary part of the form xc=x�ig are used, mainly to avoid the

aliasing phenomena. We chose g=0.7Dx as the imaginary part of the angular frequency, to attenuate the

wraparound by a factor of e0.7DxT, i.e., 38 dB. This technique also leads to a significant attenuation, or even the

virtual elimination, of the periodic sources. In the time domain, this procedure is taken into account by applying an

exponential window egt to the response (Kausel, 1992).

Solutions in the time domain are computed by modeling a source with a time evolution given by a Ricker

pulse.
3. Validation of the BEM algorithm

The BEM code was validated by solving the case

of a cylindrical circular cavity (radius 0.1016 m),

filled with an inviscid fluid and placed in a fast

formation with properties as listed in Table 1.

This system is subjected to a spatial harmonic line

source, kz=2.0 rad/m, applied to the axis of the

borehole. In this case, the same fluid-filled circular

borehole hosts the source and the receivers. The

geometry of the borehole is regular, and this allows

the solution to be obtained in closed form. These

solutions are well-known and can be found in the

literature (see Pao and Mow, 1973 and Tadeu et al.,

2001).

The response is calculated at a receiver placed in

the fluid medium close to the borehole wall (see Fig.

1a). Computations are performed in the frequency

range 40.0–20480.0 Hz.

In the BEM code, the number of elements varies

with the frequency, assuming the ratio of the wave-

length of the incident waves to the length of the

boundary elements to be at least 28.0. However, a

minimum of 120 boundary elements is used to

discretize the inclusion.

Fig. 1b displays the scattered field calculated when

the borehole is modeled with constant boundary
Table 1

Formation properties

Compressional wave

velocity (m/s)

Shear wave

velocity (m/s)

Density

(kg/m3)

Fast formation a=4208 b=2656 q=2140
Slow formation a=2630 b=1416 q=2250
Fluid af =1500 – qf=1000
elements. Analysis of the results confirms a good

agreement between the two solutions.
4. Numerical applications

Different crosswell S wave simulations are

performed to understand how the distance between

the two boreholes and the elastic formation proper-

ties influence the propagation of different wave

types. Dipole and monopole sources are used. The

dipole source is built up from a combination of two

monopole sources of opposite sign and weight, 1/2,

placed close together in the same horizontal plane

(Kurkjian and Shu-Kong, 1986), as shown in Fig.

2. The distance between the monopole sources is

set to d=0.01 m. The sources are close to the

borehole wall (Fig. 3a and b). Two lines of 601

receivers are equally spaced (0.05 m) along the z

direction, from z=0.0 to z=30.0 m, one on the axis

of the borehole (receiver line R1), and the other

close to the borehole wall (receiver line R2), which

is placed in the same azimuth direction as the

source (see Fig. 3c). The plane z=0.0 m passes

through the source. The geometry of the crosswell

model, including the source location, the receiver

locations, the distances between the wells and the

orientation of the coordinate system is illustrated in

Fig. 3d.

The examples provided in this work consider

fluid-filled boreholes (radius 0.1016 m) placed

inside a fast or slow formation, as studied by

Ellefsen (1990), with the properties listed in Table 1.

Frequency and time results are displayed. The

results obtained with a fast formation are analyzed

next.



Fig. 1. Validation of the BEM algorithm: (a) geometry; (b) pressure

response. In this figure, the solid line represents the analytical

solution, and the marks illustrate the BEM solution.

Fig. 2. Dipole sources.
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4.1. Fast formation

In the simulations selected, the responses are

computed in the frequency range (40–20480 Hz),

with a frequency increment of 40 Hz, defining the

time signatures up to T=1/40 Hz=25 ms. The spatial

distance between the virtual sources along the z

direction is set at L=4Ta=420.8 m. The pressure time

responses are obtained by modeling a spherical

dilatational Ricker pulse source with a characteristic

frequency of 6000 Hz.

The number of boundary elements used to model

each borehole varies with the excitation frequency.

The ratio of the wavelength of the incident waves to

the length of the boundary elements is greater than

28.0. A minimum of 120 boundary elements is used to

discretize each borehole.

Figs. 4 and 5 display the results obtained at

receiver lines R1 and R2, respectively, when the two

boreholes are separated by 20.0 and the monopole

source is excited close to the borehole wall. Both the

time responses and their Fourier spectra representa-

tions are included, for a better visual distinction of the
different wave types. The amplitude of the wavefield

in the frequency vs. axial-wave number domain in fact

allows easier recognition, identification, and physical

interpretation of the different wave components, as

they occupy specific sub-domains, according to their

phase wave velocity.

Of the various waves excited by the source, two are

non-dispersive body waves, namely, the dilatational

(P) and shear (S) waves. The waves begin as

dilatational waves in the fluid. As they reach the

cylinder boundary, they are refracted into the for-

mation as P or S waves, which are in turn refracted

back into the fluid as P waves.

In addition, there are various types of guided

waves—the normal modes—propagating along the

interface between the fluid and solid: axisymmetric

modes and modes with some azimuth variation.

Certain modes, however, are excited only if the source

excitation frequency exceeds the cutoff (or resonant)

frequencies of the cylinder. The amplitude of these

guided waves decays as they travel away from the

borehole.

The position of these normal modes can be

evaluated from the dispersion equation, which is

derived by solving the wave equation for waves in

the fluid and the solid and then by matching the

boundary conditions at the fluid–solid interface. This

yields a system of equations of the form [K
PP
]

[X
P
]=[0

P
]. The response is other than zero if the

determinant |K
PP
| is set to be zero. The solution of the

resulting equation gives the required position of



Fig. 3. Position of the sources and receivers: (a) monopole source; (b) dipole source; (c) receivers; (d) the geometry of the crosswell

model, including the source location, the receiver locations, the distances between the wells and the orientation of the coordinate

system.
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these normal modes. All normal modes exhibit

phase velocities lower than the S wave velocity of

the formation.

As the non-dispersive (P) and shear (S) body

waves reach the second borehole, they are refracted

into the fluid of the second borehole, producing a

complex wavefield that also involves the formation of

additional guided waves.

The Fourier spectra are presented using a gray

scale, ranging from white to black with increasing

pressure amplitude. Lines associated with the P wave

and S wave velocities of the formation, and the P

wave velocity of the fluid have been included. These

lines delineate the boundaries between normal modes,

leaky modes and borehole resonances. Enhanced

responses are visible for phase velocities larger than

the S wave velocity, which corresponds to low values

of the determinant |K
PP
| but with an imaginary

component. These modes are called leaky modes

throughout this work. Their behavior follows the same

trends as the pure normal modes, producing pressure
oscillations within the borehole fluid, of the same type

as the pure normal modes. The phase velocity does

not represent the speed of energy transport, which is

less than the shear wave velocity. The energy transport

velocity or group velocities can be calculated numeri-

cally with the formula U=dx/dkz.

The modes in the Fourier spectra are identified

by a pair of numbers. The first number is the

azimuth order, which indicates the variation of the

mode with the azimuth, while the second is the

radial order that supplies the variation of the mode

with radial distance. Modes excited in the first

borehole and with azimuthal variation may exhibit

pressure values other than zero on the axis of the

second borehole. However, their contribution is

small when compared with the response generated

by the excitation of the modes of the receiver

borehole. The scale used in the plots does not allow

all the modes excited to be identified easily, and

this is particularly true of those with very low

amplitudes.



Fig. 4. Spectra and time responses when two boreholes, placed in a fast formation, 20.0 m apart, are excited by a monopole source placed close

to the first borehole wall and registered at receiver line R1 located in the second borehole.
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To allow an easier interpretation of the different

modes excited, Fig. 6 plots the pressure computed

over a fine grid of receivers placed inside the

second borehole for frequency and axial wave

number values corresponding to the points marked

on the Fourier spectra results. The first axisymmetric

mode would be the tube wave or Stoneley wave

(0,0). However, this mode is not visible in the

second borehole. The first visible modes correspond

to those with an azimuthal variation. Some of the
modes with azimuthal variation are visible in the

responses recorded at the R1 line of receivers (Fig.

4). These modes increase in importance for the R2

receivers (Fig. 5).

The computed time responses exhibit a set of

strong pulses for waves traveling in the solid

formation with P and S body wave velocities. These

pulses are first generated by the interaction of the

formation with P waves in the first borehole, they then

travel through the elastic formation and eventually



Fig. 5. Spectra and time responses when two boreholes, placed in a fast formation, 20.0 m apart, are excited by a monopole source placed close

to the first borehole wall and registered at receiver line R2 located in the second borehole.
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suffer the effect of multi-reflections within the second

borehole. Analysis of the responses confirms that the

importance of the P waves decreases whereas the

contribution of the S waves grows as the distance

between the receiver and the z plane of the source

increases.

Additionally, the analysis of the time plots shows

that the responses for receivers placed in the

vicinity of z=0.0 m are not influenced by the

presence of guided waves. As the receiver is placed

farther away from z=0.0 m, the importance of these
guided waves increases, and this is particularly

noticeable for receivers placed in the vicinity of the

borehole wall. The responses obtained at the

receiver z=30.0 m exhibit this behavior, indicating

the arrival of waves traveling more slowly. The

individual contribution of the various guided modes

to the time responses is not easily distinguishable,

given that the group velocities of the different

modes are similar.

Analysis of the Fourier spectra responses con-

firms that the response decreases abruptly for axial



Fig. 6. Pressure response over a fine grid of receivers placed inside the second borehole in a fast formation, 20.0 m from the first borehole,

which contains a monopole source: (a) f=3040.0 Hz, kz=7.2 rad/m; (b) f=5784.0 Hz, kz=13.5 rad/m; (c) f=9339.0 Hz, kz=21.5 rad/m; (d)

f=12126.0 Hz, kz=26.1 rad/m; (e) f=15491.0 Hz, kz=34.5 rad/m; (f) f=16375.0 Hz, kz=38.6 rad/m; (g) f=17755.0 Hz, kz=36.0 rad/m; (h)

f=18560.0 Hz, kz=43.7 rad/m; (i) f=19895.0 Hz, kz=35.9 rad/m.
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wave numbers (kz) higher than those corresponding

to x/b. The frequency domain results obtained at

both receiver lines show the existence of different

wave modes propagating in the dynamic system.

These modes correspond to the guided and body

waves generated by the excitation source. Some of

these modes exhibit an azimuthal variation along

the borehole cross-section and thus may not be
recorded by specific receivers since they may be

positioned in a nodal line (see Fig. 6).

Fig. 7 shows the response obtained at the two

lines of receivers (R1 and R2) when the source

excited is a dipole placed in the vicinity of the

borehole wall. The responses evince features similar

to those obtained in the presence of a monopole

source. However, the amplitude of these responses



Fig. 7. Time responses when two boreholes, placed in a fast formation, 20.0 m apart, are excited by a dipole source placed close to the borehole

wall: (a) receiver line R1; (b) receiver line R2.
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decreases when the monopole is replaced by a

dipole source.

The results presented in Fig. 8 correspond to those

obtained at receiver line R2 when the boreholes are

10.0 and 40.0 m apart, in the presence of a monopole

source placed close to the borehole wall. As expected,

the amplitude of the responses is lower when the

distance between the boreholes is greater. The
responses display features similar to those observed

when the boreholes are 20.0 m apart. However, the

guided waves become more important as the distance

between boreholes diminishes (10.0 m), while they

lose importance when the distance is larger (40.0 m).

Notice that when the boreholes are separated by a

distance of 40.0 m, the importance of the guided waves

is slight, even for the receiver placed at z=30.0 m.



Fig. 8. Time responses at receiver line R2, when two boreholes, placed in a fast formation, are excited by a monopole source placed close to the

borehole wall: (a) boreholes 10.0 m apart; (b) boreholes 40.0 m apart.
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4.2. Slow formation

Figs. 9 and 10 display the time and Fourier spectra

results obtained at receiver lines R1 and R2, respec-

tively, when the two boreholes are 20.0 m apart and

placed in a slow formation, and the monopole source

is excited close to the borehole wall. The responses

are calculated in the frequency range (25 Hz, 12,800

Hz), with a frequency increment of 25 Hz, defining
time signatures up to T=1/25=40 ms. The frequency

increment was changed in relation to the previous

examples in the fast formation to allow a longer

observation time given the slower velocity of the

waves. The spatial distance between the virtual

sources along the z direction is set to L=4Ta=420.8
m. The source is modeled as a spherical dilatational

Ricker pulse with a dominant frequency of 4000 Hz.

The simulation of a pulse with a higher characteristic



Fig. 9. Spectra and time responses, when two boreholes, placed in a slow formation, 20.0 m apart, are excited by a monopole source placed close

to the first borehole wall, and registered at receiver line R1 located in the second borehole.
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frequency would require the computation of addi-

tional frequencies.

The spectra plots allow the identification of

different wave components, occupying specific

sub-domains, according to their wave velocities.

Again, it can be observed that the response

decreases rapidly for axial wave numbers (kz) in

excess of x/b. The modes in the Fourier spectra are

again identified by a pair of numbers. Fig. 11

illustrates the pressure response over a fine grid of

receivers placed inside the second borehole for the
modes marked in the Fourier spectra plot. Again,

there is no Stoneley wave (0,0). Some of the modes

with azimuthal variation are visible in the responses

recorded at the R1 line of receivers, placed in the

center of the borehole (Fig. 9). This is because the

axis of the second borehole is not the axisymmetric

axis of the dynamic system. However, these modes

are more important for the R2 than the R1 line of

receivers (Fig. 10).

The time plots clearly show the arrival of waves

traveling with P and S body wave velocities in the



Fig. 10. Spectra and time responses, when two boreholes, placed in a slow formation, 20.0 m apart, are excited by a monopole source placed

close to the first borehole wall, and registered at receiver line R2 located in the second borehole.
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solid formation. An additional pulse is also visible,

particularly for z=30.0 m. This mode can be identified

as a result of the propagation of conical waves

(Meredith et al., 1993; Samec, 1991, Rector and

Hardage, 1992). This wave is the three-dimensional,

axisymmetric space equivalent of a two-dimensional

head-wave. As observed for the fast formation, the

importance of the propagation of the guided waves

along the borehole is only significant for receivers

placed a long way from the z plane of the source.
Again, it is hard to evaluate the contribution of each

guided wave type from the time responses because

they are associated with similar group velocities.
5. Conclusions

This work describes a boundary element method

that was developed and implemented specifically to

evaluate the 3D wave field generated by a dilatational



Fig. 11. Pressure response over a fine grid of receivers placed inside the second borehole in a slow formation, 20.0 m from the first borehole,

which contains a monopole source: (a) f=1718.0 Hz, kz=7.6 rad/m; (b) f=4000.0 Hz, kz=17.7 rad/m; (c) f=7477.0 Hz, kz=32.9 rad/m; (d)

f=10082 Hz, kz=43.5 rad/m.
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point load, in a simulation of the crosswell surveying

technique.

The results given by the different simulations for

slow and fast formations and for different borehole

separations make it possible to conclude that the

responses include signals from non-dispersive waves

and waves produced by different modes. The

Stoneley wave does not feature in the various

computed responses because the distance separating

the boreholes is too great. The contribution of the

guided waves to the response is particularly impor-

tant for large axial distances. It was difficult to

separate the contribution to the response of each

guided mode, since they exhibit similar group

velocities.

When a dipole source is excited the results

obtained have features similar to the ones yielded by

a monopole source, besides the amplitude of the

signals. It was found that the responses recorded in the

presence of a dipole source have smaller amplitudes

than those computed for a monopole source.

When the distance between the two boreholes

increases, the amplitude of the response registered

for both the monopole and the dipole sources falls.
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