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Abstract

In this paper, the traction boundary element method (TBEM) and the boundary element method (BEM), formulated in the frequency domain,

are combined so as to evaluate the 3D scattered wave field generated by 2D fluid-filled thin inclusions. This model overcomes the thin-body

difficulty posed when the classical BEM is applied. The inclusion may exhibit arbitrary geometry and orientation, and may have null thickness.

The singular and hypersingular integrals that appear during the model’s implementation are computed analytically, which overcomes one of the

drawbacks of this formulation. Different source types such as plane, cylindrical and spherical sources, may excite the medium. The results

provided by the proposed model are verified against responses provided by analytical models derived for a cylindrical circular fluid-filled

borehole.

The performance of the proposed model is illustrated by solving the cases of a flat fluid-filled fracture with small thickness and a fluid-filled S-

shaped inclusion, modelled with both small and null thickness, all of which are buried in an unbounded elastic medium. Time and frequency

responses are presented when spherical pulses with a Ricker wavelet time evolution strikes the cracked medium. To avoid the aliasing phenomena

in the time domain, complex frequencies are used. The effect of these complex frequencies is removed by rescaling the time responses obtained by

first applying an inverse Fourier transformation to the frequency domain computations. The numerical results are analysed and a selection of

snapshots from different computer animations is given. This makes it possible to understand the time evolution of the wave propagation around

and through the fluid-filled inclusion.

q 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

It is essential to fully understand how waves propagate from

the source to the receiver if the signals recorded during seismic

testing can themselves be understood. The relative contribution

of the many wave propagation modes that may be excited by

the source determines the complexity of the wave patterns

recorded at the receivers. This contribution depends on the

distance from the source to the receiver, the dominant

frequency of the pulse, the material characteristics of the

geologic formation, the type of source and the presence of

fractures (cracks) [1–3]. Cracks are very important in several

fields, such as determining the integrity of construction

elements (in many engineering applications), and detecting
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and defining delamination in slabs and pavements using non-

destructive evaluation techniques [4–8].

Various numerical methods have been used to study wave

scattering by inclusions and thin heterogeneities, since

analytical solutions are only known for simple problems

[9,10]. The finite difference method (FDM) [11–16], the finite

element method (FEM) [17–19], the boundary integral

approach [20], the boundary element method (BEM) [21,22]

and hybrid methods [23–25] are some of the techniques most

often used.

In an unbounded medium the BEM is particularly efficient

since it automatically satisfies the far field conditions, it can

easily handle irregular geometries and only requires the

discretization of the material interfaces, which is an advantage

over other numerical techniques such as the FDM and the

FEM. However, the BEM degenerates when thin or even null-

thickness inclusions occur.

Pointer et al. [7] proposed an indirect boundary element

formulation to simulate the seismic wave field scattered from

an arbitrary number of fractures that are either empty or contain
Engineering Analysis with Boundary Elements 30 (2006) 176–193
www.elsevier.com/locate/enganabound

http://www.elsevier.com/locate/enganabound


A. Tadeu et al. / Engineering Analysis with Boundary Elements 30 (2006) 176–193 177
elastic or fluid material. The traction boundary integral

equation method is a different technique that handles the

thin-body difficulty [26–29]. The appearance of hypersingular

integrals is one of the difficulties posed by these formulations.

Different attempts have been made to overcome this difficulty

[30–33]. The traction boundary element method (TBEM) was

used by Prosper [34] and Prosper and Kausel [35] to model the

scattering of waves by flat and horizontal empty cracks of zero

thickness in elastic media. An indirect approach was proposed

for the analytical evaluation of integrals with hypersingular

kernels for plane-strain cases in the 2D problem.

Most of the work published refers to the cases of 2D and, in

some cases, 3D geometries and where the crack is assumed to

be empty (free stress field). In real life, the crack may be either

empty or it may be filled with fluid or elastic material, which

determines a distinct dynamic behaviour.

This work solves the case of a crack whose geometry does

not change along one direction (2D) while the source exhibits

a 3D nature. This geometry is commonly referred to as a two-

and-a-half-dimensional problem (2-1/2D). The solution is

obtained after applying a spatial Fourier transform along the

direction in which the geometry remains constant. This

procedure allows the 3D solution to be computed as a

summation of 2D solutions for different spatial wavenumbers.

Furthermore, the crack is assumed to be filled with fluid,

which determines the continuity of normal displacements and

normal tractions, and null tangential stresses along the

boundary of the crack. The crack may have a small or even

null thickness.

The problem is solved using a mixed formulation involving

the application of both the TBEM and the BEM: one of the

formulations is used for the upper surface of the crack while

the other models its lower surface. As noted above, the use

of the TBEM leads to the integration of hypersingular kernels.

In the work described in this paper, these hypersingular kernels

are evaluated analytically using an indirect approach, which is

accomplished by defining the dynamic equilibrium of semi-

cylinders above the boundary elements, discretizing the crack.

It represents an extension of the work by Prosper and Kausel

[35], when they defined the behaviour of a 2D dimensional flat

and horizontal crack. The combination of the displacement

BEM and the traction BEM is commonly referred to as the

‘Dual Boundary Element Method’ [36–38].

In this paper, the 3D problem is defined and its solution

described, and the boundary element formulations (BEM,

TBEM and TBEMCBEM) are presented. Then the numerical

solutions are verified against analytical solutions known for the

case of a cylindrical circular fluid-filled borehole. The

procedure for finding time signatures is outlined. The paper

ends with an illustration of the applicability of the proposed

technique to simulate the 3D wave propagation in the vicinity

of fluid-filled thin inclusions.

2. Problem formulation

An unbounded homogeneous isotropic elastic medium, with

no intrinsic attenuation, hosts a 2D fluid–filled inclusion.
The hosting medium has density r and allows shear wave and

compressional wave velocities of b and a, respectively.

A Cartesian coordinate system is used with the z-axis being

aligned along the direction in which the geometry of the

inclusion remains constant. The inclusion is assumed to be

filled with an inviscid fluid with density rf, where the

compressional waves propagate with a velocity of af. A

dilatational point source, placed in the host medium at position

(xs, ys, zs) and oscillating with frequency u, emits an incident

field that can be expressed by the dilatational potential f,

finc Z
Aeiðu=aÞðatK

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxKxsÞ

2CðyKysÞ
2CðzKzsÞ

2
p

Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxKxsÞ

2 C ðyKysÞ
2 C ðzKzsÞ

2
p ; (1)

where the subscript inc represents the direct incident field, A

the wave amplitude and iZ
ffiffiffiffiffiffi
K1

p
.

In the problems where the geometry remains constant along

one direction, the 3D solution may be computed after applying a

Fourier transformation along that direction. Thus the 3D

solution is expressed as an integration of 2D problems. This

integration becomes discrete if a set of virtual sources is placed

at equal distances apart along the z direction [39]. Each of these

2D problems is solved for a specific wavenumber

kaZ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðu2=a2ÞKk2

zm

p
, with Im(ka)!0, where kzmZ(2p/Lvs)m,

(mZ0,1,.,M), is the axial (in the z direction) wavenumber, and

Lvs is the distance between virtual point sources equally spaced

along z. The incident field is expressed at (x, y) by

f̂incðu; x; y; kzÞ Z
KiA

2
H0ðka

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxKxsÞ

2 C ðyKysÞ
2

q
Þ; (2)

in which Hn(.) are second Hankel functions of order n. The

distance Lvs must be sufficiently large to prevent the virtual

sources from contributing to the response. It should be noted that

kzZ0 corresponds to the pure 2D case.
3. Different boundary integral formulations

3.1. Boundary element formulation (BEM formulation)

Considering a homogeneous elastic medium of infinite

extent, containing a fluid-filled inclusion bounded by a surface

S, and subjected to spatially sinusoidal harmonic line loads

placed in the host solid medium at xs, with spatial wavenumber

kz, the boundary integral equations can be constructed by

applying the reciprocity theorem, leading to:

– along the boundary, in the exterior domain (elastic medium)

cijuiðx0;uÞ Z

ð
S

t1ðx; nn;uÞGi1ðx; x0;uÞds

K

ð
S

ujðx;uÞHijðx; nn; x0;uÞds

Cuinc
i ðxs; x0;uÞ; (3)
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– along the boundary, in the interior domain (fluid medium)

cfpðx0;uÞZ

ð
S

qðx;nn;uÞGfðx;x0;uÞds

K

ð
S

pðx;uÞHfðx;nn;x0;uÞds: (4)

In Eq. (3), i, jZ1, 2 stand for the normal and tangential

directions relative to the inclusion surface, respectively, while

i, jZ3 refer to the z direction. Hij(x, nn, x0, u) are the tractions

in direction j at x (on the boundary S) due to a unit point force

in direction i at x0 (the collocation point), while Gi1(x, x0, u)

are the displacements (Green’s functions) in the normal

direction at x (on the boundary S) due to a unit point force in

the direction i at x0 (the collocation point). uj(x, u) are the

displacements in direction j at x, while t1(x, nn, u) are

the tractions in the normal direction at x. uinc
i ðxs;x0;uÞ is the

displacement incident field at x0 along direction i. The

coefficient cij is equal to dij/2, where dij is the Kronecker

delta when the boundary is smooth. The vector nnZ(cos qn,

sin qn) is the unit outward normal at the boundary at x. In

Eq. (4), Gf(x, x0, u) and Hf(x, nn, x0, u) are, respectively,

the fundamental solutions (Green’s functions) for the pressure

p(x, u) and pressure gradient q(x, nn, u) at x due to a virtual

point pressure load at x0. The factor cf is a constant defined by

the shape of the boundary, taking the value 1/2 if x02S and S is

smooth.

The compatibility between pressure gradients and displace-

ments is obtained using the relation u1ZKð1=ru2Þðvp=vnnÞ,

while the normal pressure corresponds to normal tractions. The

boundary conditions applied along the solid–fluid interface

prescribe continuity of normal displacements and normal

tractions and null tangential stresses.

The required Green’s functions for loads and displacements

in the x, y and z directions, in the solid medium, are given in

Tadeu and Kausel [40]. The derivatives of these Green’s

functions give the following tractions along the x, y and z

directions, in the solid medium,

Hrx Z 2m
a2

2b2

vGrx

vx
C

a2

2b2
K1

� �
vGry

vy
C

vGrz

vz

� �� �
cos qn

Cm
vGry

vx
C

vGrx

vy

� �
sin qn

Hry Z2m
a2

2b2
K1

� �
vGrx

vx
C

vGrz

vz

� �
C

a2

2b2

vGry

vy

� �
sin qn

Cm
vGry

vx
C

vGrx

vy

� �
cos qn ð5Þ

Hrz Z m
vGrx

vz
C

vGrz

vx

� �
cos qn Cm

vGry

vz
C

vGrz

vy

� �
sin qn;

with HrtZHrt(x, nn, x0, u), GrtZGrt(x, x0, u) and r, tZx, y, z.

These expressions can be combined to obtain Hij(x, nn, x0, u) in

the normal and tangential directions. In these equations mZrb2.
The required 2-1/2D Green’s functions for pressure and

pressure gradients in Cartesian co-ordinates are those for an

unbounded fluid medium,

Gfðx; x0;uÞ Z
i

4
H0ðkafrÞ

Hfðx; nn; x0;uÞ Z
Ki

4
kafH1ðkafrÞ

vr

vnn

; (6)

in which kaf Z
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðu2=a2

f ÞKk2
z

p
, with Imðkaf

Þ!0, and

rZ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxKx0Þ

2C ðyKy0Þ
2

p
.

The evaluation of these integral equations for an arbitrary

cross-section requires the discretization of both the boundary

and boundary values. By successively applying the virtual load

to each node on the boundary, a system of linear equations

relating nodal tractions (and pressures) and normal displace-

ments (and pressure gradients) is obtained, and these can be

solved for the normal tractions and nodal displacements.

The required integrations are performed in closed form

when the element to be integrated is the loaded element

[41,42], while numerical integration, using a Gaussian

quadrature scheme, applies when the element to be integrated

is not the loaded one.
3.2. Traction boundary element formulation (TBEM

formulation)

The BEM formulation described above degenerates in the

presence of a thin fluid-filled inclusion. To overcome this

difficulty the traction boundary element method (TBEM) can

be formulated [34,35], leading to the following equations:

– along the boundary, in the exterior domain (elastic medium)

ci1t1ðx0; nn;uÞCai1uiðx0;uÞ

Z

ð
S

t1ðx; nn;uÞ �Gi1ðx; nn; x0;uÞds

K

ð
S

ujðx;uÞ �Hijðx; nn; x0;uÞds C �uinc
i ðxs; x0; nn;uÞ; (7)

– along the boundary, in the interior domain (fluid medium)

afpðx0;uÞCcfqðx0; nn;uÞ

Z

ð
S

qðx; nn;uÞ �Gfðx; nn; x0;uÞds

K

ð
S

pðx;uÞ �Hfðx; nn; x0;uÞds: (8)

In Eq. (7), i, jZ1, 2 stand for the normal and tangential

directions relative to the inclusion surface, respectively, and i,

jZ3 refer to the z direction. These equations can be seen as

resulting from the application of dipoles (dynamic doublets).

As noted by Guiggiani [43] the coefficients ai1 and af are zero
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for piecewise straight boundary elements and ci1 is equal to 1/2,

when the boundary is smooth and iZ1, and cf is a constant

defined as above. �Gi1ðx; nn; x0;uÞ and �Hijðx; nn; x0;uÞ

are defined after the application of the traction operator to

Gi1(x, x0, u) and Hij(x, nn, x0, u). This can be seen as the

combination of the derivatives of Eq. (3), in order to x, y and z,

so as to obtain stresses �Gi1ðx; nn; x0;uÞ and �Hijðx; nn; x0;uÞ.

Along the boundary element, at x, where the unit outward

normal is defined by nnZ(cos qn, sin qn), and after the

equilibrium of stresses, the following equations are expressed

for x, y and z generated by loads also applied along x, y and z

directions:

�Gxr Z 2m
a2

2b2

vGxr

vx
C

a2

2b2
K1

� �
vGyr

vy
C

vGzr

vz

� �� �
cos q0

Cm
vGyr

vx
C

vGxr

vy

� �
sin q0

�Gyr Z 2m
a2

2b2
K1

� �
vGxr

vx
C

vGzr

vz

� �
C

a2

2b2

vGyr

vy

� �
sin q0

Cm
vGyr

vx
C

vGxr

vy

� �
cos q0

�Gzr Z m
vGxr

vz
C

vGzr

vx

� �
cos q0 Cm

vGyr

vz
C

vGzr

vy

� �
sin q0 (9)

and

�Hxr Z 2m
a2

2b2

vHxr

vx
C

a2

2b2
K1

� �
vHyr

vy
C

vHzr

vz

� �� �
cos q0

Cm
vHyr

vx
C

vHxr

vy

� �
sin q0

�Hyr Z 2m
a2

2b2
K1

� �
vHxr

vx
C

vHzr

vz

� �
C

a2

2b2

vHyr

vy

� �
sin q0

Cm
vHyr

vx
C

vHxr

vy

� �
cos q0

�Hzr Z m
vHxr

vz
C

vHzr

vx

� �
cos q0 Cm

vHyr

vz
C

vHzr

vy

� �
sin q0;

(10)

with n0Z(cos q0, sin q0) defining the unit outward normal at x0

(the collocation point), �Gtr Z �Gtrðx; nn; x0;uÞ, GtrZGtr(x,

x0,u), �Htr Z �Htrðx; nn; x0;uÞ, HtrZHtr(x, nn, x0,u) and r, tZ
x, y, z.

As for �Gtr and �Htr, the incident field component (stresses) is

obtained by analogous expressions:

�uinc
x Z 2m

a2

2b2

vuinc
x

vx
C

a2

2b2
K1

� �
vuinc

y

vy
C

vuinc
z

vz

� �� �
cos q0

Cm
vuinc

y

vx
C

vuinc
x

vy

� �
sin q0
�uinc
y Z2m

a2

2b2
K1

� �
vuinc

x

vx
C

vuinc
z

vz

� �
C

a2

2b2

vuinc
y

vy

� �
sin q0

Cm
vuinc

y

vx
C

vuinc
x

vy

� �
cos q0 ð11Þ

�uinc
z Z m

vuinc
x

vz
C

vuinc
z

vx

� �
cos q0 Cm

vuinc
y

vz
C

vuinc
z

vy

� �
sin q0;

with �uinc
r Z �uinc

r ðxs; x0; nn;uÞ; uinc
r Zuinc

r ðxs; x0;uÞ, and rZx, y, z.

The previous expressions can be combined so as to obtain
�Gi1ðx; nn; x0;uÞ; �Hijðx; nn; x0;uÞ and �uinc

i ðxs; x0; nn;uÞ, in the

normal and tangential directions.

The required 2-1/2D Green’s functions in the fluid medium

are now defined as:

�Gfðx; nn; x0;uÞ Z
i

4
kafH1ðkafrÞ

vr

vx

vx

vn0

C
vr

vy

vy

vn0

� �

�Hfðx; nn; x0;uÞ

Z
i

4
kaf KkafH2ðkafrÞ

vr

vx

� �2 vx

vnn

C
vr

vx

vr

vy

vy

vnn

� �	

C
H1ðkafrÞ

r

vx

vnn

� �

vx

vn0

C
i

4
kaf KkafH2ðkafrÞ

vr

vx

vr

vy

vx

vnn

�
C

vr

vy

� �2 vy

vnn

	 �

C
H1ðkafrÞ

r

vy

vnn

� �

vy

vn0

: (12)

The solutions of these Eqs. (7) and (8) are defined, as before, by

discretizing the boundary into N straight constant boundary

elements with the collocation points located at the center of the

elements. This leads to a set of integrations, which are

performed using a Gaussian quadrature scheme when the

element to be integrated is not the loaded element. When the

element to be integrated is the loaded one, hypersingular

integrals are defined, which are evaluated through an indirect

approach described below.

Since the final system of equations is established assuming

the normal, tangential and z directions in relation to the

boundary element, the integrations along the loaded element

are independent of its orientation. The integrations can

therefore be performed for a horizontal boundary element,

for which cos qnZcos q0Z0 and sin qnZsin q0Z1.0. These

integrations are obtained using an indirect approach, which

consists of defining the dynamic equilibrium of an isolated

semi-cylinder defined above the boundary of each boundary

element. Their derivation can be found in the Appendix A.
3.3. Dual BEM (TBEMCBEM) formulation

The two formulations can be combined so as to solve the

above problems, and the case of a thin fluid-filled inclusion.

Part of the boundary surface is loaded with monopole loads
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Fig. 1. Circular cylindrical fluid-filled inclusion in an unbounded elastic

medium: geometry, source (O) and receivers’ (R1 and R2) positions.
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(BEM), while the remaining part is loaded with dipoles

(TBEM), which is known as the Dual BEM formulation.

When the thin fluid-filled inclusion has a fluid layer

thickness tending to zero, the solution requires the implemen-

tation of a modified formulation, assuming a thin inclusion that

is able to guarantee continuity of normal displacements and

normal tractions, but where there are no tangential stresses.

In this case, the system of equations to solve the problem is

built writing Eqs. (3) and (7) along the boundary of the thin

inclusion, in the elastic medium, and the following settings

ascribed: the normal displacements on the two surfaces of the

inclusion are equal; the tractions on the two surfaces of

the inclusion are opposite but have the same amplitude; and

the tangential tractions are zero.

4. Verification of the BEM formulations

The boundary element formulations already presented, are

verified through comparison with known analytical solutions.

Consider a circular fluid-filled cylindrical inclusion, placed in a

homogeneous elastic medium and subjected to a point

dilatational load placed in this solid medium. The solution of

this problem can be defined in a circular cylindrical coordinate

system (r, q, z) and evaluated in closed form using the

separation of variables method [9,44].

The host elastic medium is unbounded and homogeneous,

and exhibits a mass density of 2140 kg/m3, a dilatational wave

speed of 2696.5 m/s and a shear wave speed of 1451.7 m/s. The

fluid filling the inclusion, with density rfZ1000 kg/m3,

exhibits a pressure wave velocity afZ1500 m/s. The point

harmonic load is located at O (0.0, K0.125, 0.0 m) and two

receivers are placed at R1 (0.0, K0.075, 0.0 m) and R2

(K0.025, 0.0, 0.0 m), as shown in Fig. 1.

The x-, y- and z-components of displacements and the

pressure response have been evaluated for both receivers in

the frequency range from 2000 to 64000 Hz, for an axial

wavenumber kzZ25 rad/m. The numerical responses in terms

of displacements in the x, y and z directions, obtained by the

three boundary element formulations (BEM, TBEM and

TBEMCBEM, also referred to as the Dual BEM), are

compared with the analytical results in Fig. 2. In the Dual

BEM model, the upper half part is modelled using monopole

loads (BEM solution) while the lower half part is discretized

using dipole loads (TBEM solution). The plots give the real

and imaginary parts of the responses, with the analytical

solutions being represented by solid and dashed lines,

respectively, while the marked points correspond to the

three different BEM results. The numerical responses, in

terms of displacement amplitudes and pressure amplitude,

show a very close agreement with the analytical results, for

receivers R1 and R2.

5. Time responses

Solutions in the time domain are obtained after the

responses in the frequency domain have been computed.

Time signatures are calculated by simulating a source with a
time evolution given by a Ricker pulse. This pulse decays

rapidly in the time and frequency domains, and has the

advantages of requiring less computational effort and easily

permitting the interpretation of the time signals. The time-

dependent excitation is expressed as

uðtÞ Z Að1K2t2ÞeKt2

; (13)

where A is the amplitude, tZ ðtKtsÞ=to, t refers to time, ts is

the time at which the maximum occurs, while pt0 is the

characteristic period of the wavelet. Its Fourier transform is

given by:

UðuÞ Z A½2
ffiffiffiffi
p

p
toeKiuts�U2eKU2

; (14)

in which UZuto/2.

Complex frequencies with a small imaginary part of the

form ucZu–ih are used to avoid the aliasing phenomena and

to minimize the contribution of the periodic virtual sources.

hZ0.7 Du (with Du being the increment of frequency) was

chosen as the imaginary part of the angular frequency, to

attenuate the wraparound by a factor of e0.7DuTZ81, i.e. 38 dB

(with TZ1/Du being the time window). This value of h is

commonly used in wave propagation analysis. The use of a

larger value would introduce loss of accuracy in the response,

and it should not be much smaller because the aim is to achieve

a maximum reduction in the contribution of the aliasing

phenomena [45]. In the time domain, this procedure is taken

into account by applying an exponential window eht to the

response.
6. Numerical applications

Three different 2D inclusions, namely a flat fluid-filled

fracture with small thickness and a fluid-filled S-shaped

inclusion, modelled as having small and null thickness, and

placed in a uniform elastic unbounded medium, are presented

below to illustrate the capabilities of the proposed

formulations.
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The host elastic medium is the same for all calculations. It

permits a dilatational wave velocity of 2696.5 m/s and a shear

wave velocity of 1451.7 m/s. In the fluid-filled inclusions, the

fluid enables a wave propagation velocity of 1500 m/s. The 3D

dilatational point load excites the elastic media, placed at point

O (0.0, 0.0 m), as in Figs. 3, 5 and 7.

The simulations were computed by the Dual BEM model,

with the upper part of the inclusion’s surface being discretized

by the TBEM formulation and the lower part by the BEM

formulation. An appropriate number of boundary elements was

selected, defined at each frequency by the relation between the

wavelength (l)and the length of the boundary elements (L), and

set at 10. All results were obtained by performing the

computations in the frequency domain, in the range (2000,

256000 Hz), and time responses were determined after

applying an inverse Fourier transformation with the source

time evolution modelled by a Ricker pulse with a characteristic

frequency of 75,000 Hz. A time window of 0.5 ms is

determined by a frequency increment of 2000 Hz.
X

O (0.0,0.0)

Grid of receivers

(–0.15 m,–0.05 m)(0.15 m,–0.05 m)

Fig. 3. Fluid-filled 5 mm thick horizontal inclusion: geometry and source and

receivers’ positions at xy plane.
6.1. Fluid-filled 5 mm thick horizontal inclusion

The first example simulates a fluid-filled thin inclusion

which is 5 mm thick. It is a horizontal heterogeneity with its

extremities being modeled as semi-circumferences, as shown
in Fig. 3. The minimum number of boundary elements used

was 240, at 2000 Hz, 40 of which were used in the

discretization of the two extremities.

Time responses were evaluated in three grids of receivers

placed in the host medium along three orthogonal planes:

xZK0.15 m, yZ0.25 m and zZ0 m (see Fig. 4). The receivers

are evenly spaced at 0.003 m along the x and y directions and

0.005 m along the z direction.



Fig. 4. Elastic scattering by a fluid-filled 5 mm thick horizontal inclusion in an unbounded medium: x-component, ux, y-component, uy, and z-component, uz,

displacements at different time instants.
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The numerical results obtained for the wave propagation in

the vicinity and through the inclusion are presented by time

sequential 3D snapshots of displacements in the x, y and z

directions (Fig. 4). The small thickness of the inclusion allowed

the pressure responses to be calculated in the receivers placed

inside the inclusion, but they are not displayed in that figure.

Thus, only the displacements in the host elastic medium, which

correspond to the scattering around the inclusion, are plotted in

Fig. 4. This displacement field corresponds to the incident field

produced by the 3D point source plus the scattered field
generated by the thin inclusion in the unbounded medium.

A gray scale is used, with the lighter and darker shades

corresponding respectively to higher and lower displacement

amplitude values.

At tZ0.025 ms, the waves excited by the dilatational

source can be observed propagating in the elastic medium but

they have not reached the fluid-filled inclusion. x- and

y-component displacements are observed in the vertical plane

at zZ0 m. The z-component is null, as that is the plane of the

point source (in fact, it is a plane of symmetry). When



Fig. 6. Elastic scattering by a fluid-filled 1 mm thick S-shaped inclusion in an u

displacements at different time instants.
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Fig. 5. Fluid-filled 1 mm thick S-shaped inclusion: geometry and source and

receivers’ positions at xy plane.
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the incident pulses hit the inclusion, they are partly reflected

back as P- and S-waves, and some propagate into the fluid

medium as P-waves. These waves generate multiple

reflections on the inclusion’s upper and lower surfaces.

Whenever these waves reach the inclusion’s surface, they are

reflected back as P-waves in fluid, and simultaneously P- and

S-waves are generated that propagate away from the

inclusion in the elastic medium. Besides these body waves,

guided waves are generated, thus verifying the boundary

conditions. At time tZ0.060 ms, the waves have just hit the

inclusion and the first reflections on its lower surface are just

becoming visible. The P-waves that pass through the fluid (ux

and uy) are in their initial development stages in the elastic

medium as P- and S-waves and only denote an amplitude

attenuation and a time delay in relation to the direct incident

field. For all displacement components, the propagation of the

incident pulse along the z direction also starts to be visible at

this time instant on plane xZK0.15 m.
nbounded medium. x-component, ux, y-component, uy, and z-component, uz,
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Fig. 7. Null-thickness fluid-filled S-shaped inclusion: geometry and source and

receivers’ positions at xy plane.
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In the third and fourth sets of snapshots (tZ0.085 and

0.110 ms), the reflected (as P- and S-waves) and diffracted

waves on the inclusion’s surface are well developed. The

pulses that passed through the fluid medium have already

reached the horizontal plane at yZ0.25 m at tZ0.110 ms. At
Fig. 8. Elastic scattering by a null-thickness fluid-filled S-shaped inclusion in an

displacements at different time instants.
later instants (tZ0.170 ms), the reflected waves continue

propagating through the unbounded medium, and a wave

pattern caused by the multiple reflections on both the upper

and lower parts of the thin element is observed in the upper

grid of receivers (plane yZ0.25 m) as it propagates along the

z direction. These results clearly illustrate the 3D behavior of

the wave scattering in the neighborhood of the fluid-filled

heterogeneity.
6.2. Fluid-filled 1 mm thick S-shaped inclusion

The second example models the time evolution of the wave

scattered by an S-shaped thin inclusion which is 1 mm thick.

This thickness is maintained along the length of the inclusion,

whose extremities are represented by 1 mm diameter semi-

circumferences (see Fig. 5 for general geometry definition and

zoom on the extremities). For the first frequency evaluated, 340

boundary elements discretized the entire boundary of the thin

fluid-filled inclusion.

The x-, y- and z-components of the displacements around the

inclusion are displayed in Fig. 6, after computation at the grids

of receivers corresponding to planes xZK0.20 m, yZ0.30 m

and zZ0 m. The 3D perspectives shown in this figure display the

total displacement fields in the host elastic medium at different

time instants from tZ0.070 to 0.200 ms. The same gray scale

described above is adopted in these plots.
unbounded medium. x-component, ux, y-component, uy, and z-component, uz,
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At the initial time instants, since the incident wave field

is the same as in the previous example, a very similar

behavior of the waves excited by the 3D source is obtained

(but not presented in Fig. 6). However, the wave scattering

becomes more complex after reaching the S-shaped thin

inclusion. As the incident waves reach the fluid-filled

inclusion, they are reflected as P- and S-waves and

transmitted to the opposite side of the inclusion after

passing through the fluid medium as P-waves. In relation to

the undisturbed incident wave field, amplitude attenuation is

observed but the time delay for the wave front is less

significant than in the previous case. Multiple wave

reflections inside the thin inclusion still exhibit a similar

behavior to that already described for the horizontal

inclusion. The geometry of the S-shaped heterogeneity

causes the reflected energy to remain trapped at the concave

part facing the source point, and generates a complex wave

field pattern which is most evident at tZ0.135 and

0.200 ms.

Note that this method is able to correctly describe the

stress singularity at the tips of the thin inclusion assuming

that the crack keeps its geometry in the presence of wave

propagation. If this method were applied to the definition of

the crack growth, as required in fracture mechanics, it

would need to be modified.
6.3. Null-thickness fluid-filled S-shaped inclusion

The last numerical example corresponds to a problem whose

geometry is similar to the previous case; however, the

thickness of the inclusion tends to zero. It is a very thin

fluid-filled inclusion, which has been modelled by implement-

ing a TBEMCBEM formulation, which, for a null-thickness

inclusion, prescribes null tangential stresses along its bound-

ary. The surface being discretized is loaded with the TBEM

and the BEM formulations in its upper and lower parts,

respectively, and these are, in fact, defined by coincident lines.

The geometry of the problem and the source point location are

outlined in Fig. 7.

Some plots, corresponding to different time instants in

the simulation of the wave propagation after the source

starts emitting at tZ0.0 ms, are shown in Fig. 8. The wave

field pattern observed is very similar to the previous

numerical example. However, the wave amplitude attenu-

ation and the wave front time delay are not perceptible,

since the inclusion has no thickness. For the same reason,

there are no multiple reflections inside the previous

inclusions, so the transmitted wave field is simpler. It is

also visible that the amplitude of the P-waves being

reflected back by the null-thickness inclusion is smaller

than that amplitude registered in the previous 1 mm thick

case. The reflected waves still concentrate at the concave

part of the heterogeneity facing the source point, where they

generate a complex wave field pattern most evident at plane

zZ0 m.
7. Conclusions

This paper has proposed different boundary element

formulations for studying wave propagation in the vicinity of

thin, or even null-thickness, fluid-filled inclusions, since the

classical direct boundary element method (BEM) fails in these

situations. A traction boundary element formulation (TBEM)

and a mixed formulation that combines the BEM and the

TBEM (known as the Dual BEM formulation) were success-

fully verified against known analytical solutions for the case of

fluid-filled circular cylindrical inclusions, and they also

compare very well with the BEM results for those cases. To

overcome the problems that arise when applying the TBEM

and the TBEMCBEM formulations, which lead to integrals

with hypersingular kernels, an indirect approach for perform-

ing those integrations analytically is suggested.

Two-and-a-half-dimensional problems are addressed in this

work, where 3D solutions are computed by summing 2D

solutions for different spatial wavenumbers, after applying a

spatial Fourier transformation along the direction in which the

geometry of the problem does not change. This procedure

allows the computation of the 3D solution without having to

discretize the domain along the third dimension (the z

direction). This represents a substantial decrease in compu-

tational costs, in terms of both computer storage memory and

CPU effort.

The results for the different numerical applications

presented here demonstrate that the proposed methodology is

able to evaluate the scattered fields in the presence of thin fluid-

filled inclusions embedded in unbounded homogeneous elastic

media. The results correspond to the inclusions’ various

geometries, namely, to a thin horizontal inclusion 5 mm thick

and to two S-shaped inclusions, one a 1 mm thick inclusion and

the other an inclusion whose thickness tends to zero. The

presence of the fluid filling the inclusions changes the

undisturbed wave pattern in an unbounded medium consider-

ably, demonstrating the interaction between the solid and the

fluid media.
Appendix A. Hypersingular integrations

A.1. Hypersingular integrations resulting from Eq. (7), applied

in the exterior domain (elastic medium)

Along a horizontal element, the normal, tangential and z

directions correspond to the y, x and z directions, respectively.

Therefore, from Eq. (10),
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Fig. 9. Dynamic equilibrium of a semi-cylinder defined above the boundary

element for the integration of vHxx/vx, vHxy/vx and vHxz/vx.
Fig. 11. Dynamic equilibrium of a semi-cylinder defined above the boundary

element for the integration of vHzx/vz, vHzy/vz and vHzz/vz.
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The indirect approach used to evaluate the hypersingular

integrals corresponds to the dynamic equilibrium of an isolated

semi-cylinder defined above the boundary element as

illustrated in Figs. 9–15.
A.1.1. Load along the normal direction

The resultants along the horizontal, vertical and z directions

are given by:
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The definition of the terms vHxx/vx, vHxy/vx and vHxz/vx can

be written as:

vHxx

vx
Z �sy;x

xx cos q C �sy;x
yx sin q (A7)
Fig. 10. Dynamic equilibrium of a semi-cylinder defined above the boundary

element for the integration of vHyx/vy, vHyy/vy and vHyz/vy.
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and can be seen as the application of a dipole load and an

inertial load defined as shown in Fig. 9.

The dynamic equilibrium of this semi-cylinder in Fig. 9

(with volume V) is determined by computing the resulting

components of the forces defined along the surface of the

cylinder Ssc and of the inertial load in the volume defined by the
Fig. 12. Dynamic equilibrium of a semi-cylinder defined above the boundary

element for the integration of vHyx/vx, vHyy/vx and vHyz/vx.



Fig. 13. Dynamic equilibrium of a semi-cylinder defined above the boundary element for the integration of vHxx/vy, vHxy/vy and vHxz/vy.

Fig. 14. Dynamic equilibrium of a semi-cylinder defined above the boundary

element for the integration of vHyx/vz, vHyy/vz and vHyz/vz.
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boundary element SBE and the surface of the cylinder Ssc:ð
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where L corresponds to the length of the boundary element;

ð
SBE

vHxy

vx
dSBE Z

ð
SSC

ð �sy;x
yy sin q C �sy;x

xy cos qÞdSSCK

ð
V

r
v €Gxy

vx
dV

Z

ðp

0

ð �sy;x
yy sin q C �sy;x

xy cos qÞ
L

2
dq

Cru2

ðp

0

ðL=2

0

vGxy

vx
rdr dq

Z
i

2
kaH1 ka

L

2

� �
1K

2b2

a2

� ��

K
4

Lk2
s

c2

L

2

� �
K

L

3

k2
z

k2
s

c2

L

2

� ��
;

(A9)

with

kb Z
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2=b2Kk2

z

q
;

ks Z u=b and cnðL=2Þ Z kn
bHnðkbðL=2ÞÞKkn

aHnðkaðL=2ÞÞ;

ð
SBE

vHxz

vx
dSBE Z

ð
SSC

ð �sy;x
xz cos q C �sy;x

yz sin qÞdSSC

Z

ðp

0

ð �sy;x
xz cos q C �sy;x

yz sin qÞ
L

2
dq

Z
KkzpL

8k2
s

k3
bH1 kb

L

2

� �
Kk3

aH1 ka

L

2

� ��

K
1

2
kbk2

s H1 kb

L

2

� ��
:

(A10)
The terms vHyx/vy, vHyy/vy and vHyz/vy are defined by:
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Fig. 15. Dynamic equilibrium of a semi-cylinder defined above the boundary

element for the integration of vHzx/vy, vHzy/vy and vHzz/vy.
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and can be taken as the application of a dipole load and an

inertial load defined as in Fig. 10.

The dynamic equilibrium of this semi-cylinder in Fig. 10

(with volume V) is expressed by the computation of the

resulting components of the forces acting along the surface

of the cylinder Ssc and of the inertial load in the volume

limited by the boundary element SBE and the surface of the

cylinder Ssc:
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with kZka or kZkb, and Sn(.) are Struve functions of

order n.
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The definition of the derivatives vHzx/vz, vHzy/vz and

vHzz/vz can be given by:
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and can be interpreted as the application of a dipole load

and an inertial load as described in Fig. 11.

The evaluation of the resulting components of the forces

found along the surface of the cylinder Ssc and of the inertial
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load in the volume defined by the boundary element SBE and

the surface of the cylinder Ssc expresses the dynamic

equilibrium of that semi-cylinder in Fig. 11 (with volume V):ð
SBE

vHzx

vz
dSBE Z

ð
SSC

ð �sy;z
xx cos q C �sy;z

yx sin qÞdSSC

Z

ðp

0

ð �sy;z
xx cos q C �sy;z

yx sin qÞ
L

2
dq Z 0; ðA16)

ð
SBE

vHzy

vz
dSBE Z

ð
SSC

ð �sy;z
yy sin q C �sy;z

xy cos qÞdSSC K

ð
V

r
v €Gzy

vz
dV

Z

ðp

0

ð �sy;z
yy sin q C �sy;z

xy cos qÞ
L

2
dq

Cru2

ðp

0

ðL=2

0
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rdr dq

Z i
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2
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2
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; ðA17)

ð
SBE

vHzz

vz
dSBE Z

ð
SSC

ð �sy;z
xz cos q C �sy;z

yz sin qÞdSSC

Z

ðp

0

ð �sy;z
xz cos q C �sy;z

yz sin qÞ
L

2
dq

Z
KkzpL

8k2
s

2k2
z c1

L

2

� �
Kkbk2

s H1 kb

L

2

� �� �
: ðA18)
A.1.2. Load along the tangential direction

Along the horizontal, vertical and z directions, the resultants

are defined by:

�Hxx Z m
vHyx

vx
C

vHxx

vy

� �
ðhorizontal resultantÞ (A19)

�Hxy Z m
vHyy

vx
C

vHxy

vy

� �
ðvertical resultantÞ (A20)

�Hxz Z m
vHyz

vx
C

vHxz

vy

� �
ðz resultantÞ (A21)
The terms vHyx/vx, vHyy/vx and vHyz/vx can be written as

follows:

vHyx

vx
Z �sx;x

xx cos q C �sx;x
yx sin q

vHyy

vx
Z �sx;x

yy sin q C �sx;x
xy cos q

vHyz

vx
Z �sx;x

xz cos q C �sx;x
yz sin q; (A22)

with

�sx;x
xx Z 2m

a2

2b2

v2Gyx

vxvx
C

a2

2b2
K1

� �
v2Gyy

vxvy
C

v2Gyz

vxvz

� �� �
;

�sx;x
yx Z m

v2Gyy

vxvx
C

v2Gyx

vxvy

� �
;

�sx;x
yy Z 2m

a2

2b2
K1

� �
v2Gyx

vxvx
C

v2Gyz

vxvz

� �
C

a2

2b2

v2Gyy

vxvy

� �
;

�sx;x
xy Z m

v2Gyy

vxvx
C

v2Gyx

vxvy

� �
;

�sx;x
xz Z m

v2Gyx

vxvz
C

v2Gyz

vxvx

� �
;

�sx;x
yz Z m

v2Gyy

vxvz
C

v2Gyz

vxvy

� �
;

and can be taken as the application of a dipole load and an

inertial load given as in Fig. 12.

The dynamic equilibrium of this semi-cylinder in Fig. 12

(with volume V) is given by the components of the forces found

along the surface of the cylinder Ssc and of the inertial load in

the volume defined by the boundary element SBE and the

surface of the cylinder Ssc:

ð
SBE

vHyx

vx
dSBE Z

ð
SSC

ð �sx;x
xx cos q C �sx;x

yx sin qÞdSSC K

ð
V

r
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dV
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ðp

0
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yx sin qÞ
L

2
dq
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(A23)
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ð
SBE

vHyy

vx
dSBE Z

ð
SSC

ð �sx;x
yy sin q C �sx;x

xy cos qÞdSSC

Z

ðp

0

ð �sx;x
yy sin q C �sx;x

xy cos qÞ
L

2
dq Z 0; (A24)

ð
SBE

vHyz

vx
dSBE Z

ð
SSC

ð �sx;x
xz cos q C �sx;x

yz sin qÞdSSC

Z

ðp

0

ð �sx;x
xz cos q C �sx;x

yz sin qÞ
L

2
dq Z 0: (A25)

The derivatives vHxx/vy, vHxy/vy and vHxz/vy can be defined

by:

vHxx

vy
Z �sx;y

xx cos q C �sx;y
yx sin q

vHxy

vy
Z �sx;y

yy sin q C �sx;y
xy cos q

vHxz

vy
Z �sx;y

xz cos q C �sx;y
yz sin q; (A26)

with

�sx;y
xx Z 2m

a2

2b2

v2Gxx

vyvx
C

a2

2b2
K1

� �
v2Gxy

vyvy
C

v2Gxz

vyvz

� �� �
;

�sx;y
yx Z m

v2Gyy

vyvx
C

v2Gxx

vyvy

� �
;

�sx;y
yy Z 2m

a2

2b2
K1

� �
v2Gxx

vyvx
C

v2Gxz

vyvz

� �
C

a2

2b2

v2Gxy

vyvy

� �
;

�sx;y
xy Z m

v2Gxy

vyvx
C

v2Gxx

vyvy

� �
;

�sx;y
xz Z m

v2Gxx

vyvz
C

v2Gxz

vyvx

� �
;

�sx;y
yz Z m

v2Gxy

vyvz
C

v2Gxz

vyvy

� �
;

and can be deduced as the application of a dipole load and an

inertial load illustrated in Fig. 13.

The dynamic equilibrium of this semi-cylinder in Fig. 13

(with volume V) is found by calculating the resulting

components of the forces defined along the surface of the

cylinder Ssc and of the inertial load in the volume defined by the
boundary element SBE and the surface of the cylinder Ssc:ð
SBE

vHxx

vy
dSBE Z

ð
SSC

ð �sx;y
xx cos q C �sx;y

yx sin qÞdSSC K

ð
V

r
v €Gxx

vy
dV
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0

ð �sx;y
xx cos q C �sx;y

yx sin qÞ
L

2
dq
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rdr dq
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2
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4

KkbH1 kb
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2

� �
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s Kk2
bÞH0 kb
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2
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(A27)

ð
SBE

vHxy

vy
dSBE Z

ð
SSC

ð �sx;y
yy sin q C �sx;y

xy cos qÞdSSC

Z

ðp

0

ð �sx;y
yy sin q C �sx;y

xy cos qÞ
L

2
dq Z 0; (A28)

ð
SBE

vHxz

vy
dSBE Z

ð
SSC

ð �sx;y
xz cos q C �sx;y

yz sin qÞdSSC

Z

ðp

0

ð �sx;y
xz cos q C �sx;y

yz sin qÞ
L

2
dq Z 0: (A29)
A.1.3. Load along the z direction

For the present load, the resultants along the three directions

(horizontal, vertical and z) can be written as:

�Hzx Z m
vHyx

vz
C

vHzx

vy

� �
ðhorizontal resultantÞ (A30)

�Hzy Z m
vHyy

vz
C

vHzy

vy

� �
ðvertical resutantÞ (A31)

�Hzz Z m
vHyz

vz
C

vHzz

vy

� �
ðz resultantÞ (A32)

The terms vHyx/vz, vHyy/vz and vHyz/vz can be expressed by:

vHyx

vz
Z �sz;z

xx cos q C �sz;z
yx sin q (A33)

vHyy

vz
Z �sz;z

yy sin q C �sz;z
xy cos q

vHyz

vz
Z �sz;z

xz cos q C �sz;z
yz sin q;

with



A. Tadeu et al. / Engineering Analysis with Boundary Elements 30 (2006) 176–193 191
�sz;z
xx Z 2m
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vzvx
C
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C
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vzvy

� �
;

and can be assumed as the result of the application of a dipole

load and an inertial load given in Fig. 14.

The dynamic equilibrium of this semi-cylinder in Fig. 14

(with volume V) is characterized by the evaluation of the

resulting components of the existing forces along the surface

of the cylinder Ssc and of the inertial load in the volume

defined by the boundary element SBE and the surface of the

cylinder Ssc:

ð
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vHyx

vz
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ð
SSC
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xx cos q C �sz;z

yx sin qÞdSSC
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0
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yx sin qÞ
L

2
dq Z 0; (A34)
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(A35)
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: (A36)

The definition of the terms vHzx/vy, vHzy/vy and vHzz/vy

can be written as:

vHzx

vy
Z �sz;y

xx cos q C �sz;y
yx sin q

vHzy

vy
Z �sz;y

yy sin q C �sz;y
xy cos q

vHzz

vy
Z �sz;y

xz cos q C �sz;y
yz sin q; (A37)

with
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C
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� �
;

and can be seen as the application of a dipole load and an

inertial load defined as in Fig. 15.

The dynamic equilibrium of this semi-cylinder in Fig. 15

(with volume V) is defined by computing the resulting

components of the forces defined along the surface of the

cylinder Ssc and of the inertial load in the volume defined by the

boundary element SBE and the surface of the cylinder Ssc:
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(A40)

The required integrations associated with �Gi1ðx;nn;x0;uÞ

are performed in closed form [41,42].
A.2. Hypersingular integrations resulting from Eq. (8), applied

in the interior domain (fluid medium)

When the element being integrated is the loaded one, the

following integral becomes hypersingular,

ð
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This integral can be evaluated analytically, using a similar

indirect procedure, which is defined by computing the dynamic

equilibrium of a semi-cylinder bounded by the boundary

element, and leading to:
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(A42)

The integral
ÐL=2
0
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rÞdr is evaluated as:
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