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Abstract

This paper presents analytical Green’s functions for the transient heat transfer phenomena by conduction, for an unbounded medium, half-

space, slab and layered formation when subjected to a point heat source. The transient heat responses generated by a spherical heat source

are computed as Bessel integrals, following the transformations proposed by Sommerfeld [Sommerfeld A. Mechanics of deformable bodies.

New York: Academic Press; 1950; Ewing WM, Jardetzky WS, Press F. Elastic waves in layered media. New York: McGraw-Hill; 1957].

The integrals can be modelled as discrete summations, assuming a set of sources equally spaced along the vertical direction. The expressions

presented here allow the heat field inside a layered formation to be computed without fully discretizing the interior domain or boundary interfaces.

The final Green’s functions describe the conduction phenomenon throughout the domain, for a half-space and a slab. They can be expressed as

the sum of the heat source and the surface terms. The surface terms need to satisfy the boundary conditions at the surfaces, which can be of two

types: null normal fluxes or null temperatures. The Green’s functions for a layered formation are obtained by adding the heat source terms and a set

of surface terms, generated within each solid layer and at each interface. These surface terms are defined so as to guarantee the required boundary

conditions, which are: continuity of temperatures and normal heat fluxes between layers.

This formulation is verified by comparing the frequency responses obtained from the proposed approach with those where a double-space

Fourier transformation along the horizontal directions [Tadeu A, António J, Simões N. 2.5D Green’s functions in the frequency domain for heat

conduction problems in unbounded, half-space, slab and layered media. CMES: Computer Model Eng Sci 2004;6(1):43–58] is used. In addition,

time domain solutions were compared with the analytical solutions that are known for the case of an unbounded medium, a half-space and a slab.

q 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

This work presents Green’s functions for calculating the

three-dimensional transient heat transfer by conduction in the

presence of an unbounded, half-space, slab and multi-layer

formations when heated by a point source. The problem is

formulated in the frequency domain using time Fourier

transforms. The proposed technique allows the use of any

amplitude time evolution of the heat source. The proposed

fundamental solutions relate the heat field variables (fluxes or

temperatures) at some position in the domain caused by a heat

source placed elsewhere in the media.

This work extends the previous work carried out by the

authors to define the heat conduction response of layered solid
0955-7997/$ - see front matter q 2006 Elsevier Ltd. All rights reserved.
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media subjected to a spatially sinusoidal harmonic heat line

source [3]. The technique described in that paper requires the

knowledge of the Green’s functions for the unbounded media.

They are developed by first applying a time Fourier transform

to the time diffusion equation for a heat point source and then a

dual spatial Fourier transform to the resulting Helmholtz

equation, along the two horizontal directions (x and z), in the

frequency domain. So these functions are written first as a

superposition of cylindrical heat waves along one horizontal

direction (z) and then as a superposition of heat plane sources.

The Green’s functions for a layered formation were

formulated as the sum of the heat source terms equal to those

in the full-space and the surface terms required to satisfy the

boundary conditions at the interfaces, i.e. continuity of

temperatures and normal heat fluxes between layers, and

null normal fluxes or null temperatures at the outer surface.

The total heat field was found by adding the heat source terms,

equal to those in the unbounded space, to the sets of surface

terms arising within each layer and at each interface.
Engineering Analysis with Boundary Elements 30 (2006) 338–349
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In the work described here, the heat diffusion generated by a

spherical heat source is computed as a Bessel integral,

following the transformations proposed by Sommerfeld [1,2]

in his study on the propagation of elastic waves. The resulting

integrals are made discrete, assuming the existence of a set of

sources equally spaced along the vertical direction.

In the presence of a layered formation, the heat diffusion

within each layer is modelled using, at the two layer interfaces,

surface terms that are similar to the source, with unknown

amplitudes a priori. The amplitudes of these surface terms are

defined by prescribing the existing boundary conditions at the

solid interfaces (i.e. continuity of temperatures and normal heat

fluxes between layers, and null normal fluxes or null

temperatures at the outer surfaces).

These Green’s functions are useful in themselves. However,

they can also be incorporated into boundary element method

(BEM) or method of fundamental solutions (MFS) algorithms

to model the heat diffusion across layered media containing

three-dimensional heterogeneities, without the discretization of

the flat horizontal interfaces. The present Green’s functions

require much less computational effort than the earlier ones.

However, it should be noted that the previously developed

Green’s functions, which require a dual spatial Fourier

transform, are more suitable for solving layered media

containing cylindrical heterogeneities.

This paper first presents the three-dimensional solution of a

point heat diffusion source in an unbounded medium,

explaining the mathematical manipulation required to obtain

the solution as a Bessel integral in the frequency domain. The

procedure to retrieve the time domain solutions is also given.

This methodology is verified by comparing the results obtained

with the exact time solutions.

This paper then goes on to describe the formulation for a

point heat load applied to a half-space, a slab, a slab over a half-

space medium and a layered formation. The continuity of

temperature and heat fluxes need to be established between two

neighbouring layers, while null temperatures or null heat fluxes

may be prescribed along an external interface of the boundary.

The full set of expressions is corroborated by comparing its

frequency solutions with those provided by the previous

formulation that requires a double spatial Fourier transform.

Time solutions are verified in the case of a half-space and a

slab, for which analytical solutions are known, by using an

image model approach (see Carslaw and Jaeger [4]).
2. 3D problem formulation and Green’s functions in an

unbounded medium

The transient heat transfer by conduction in the x, y and z

directions is expressed by the equation

v2

vx2
C

v2

vy2
C

v2

vz2

� �
T Z

1

K

vT

vt
; (1)

in which t is time, T(t,x,y,z) is temperature, KZk/(rc) is the

thermal diffusivity, k is the thermal conductivity, r is the

density and c is the specific heat. The application of a Fourier
transformation in the time domain to Eq. (1) gives the equation
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Kiu

K

r !2 !
T̂ðu; x; y; zÞZ 0; (2)

where iZ
ffiffiffiffiffiffi
K1

p
and u is the frequency. For a heat point

source, applied at (x0,y0,z0) in an unbounded medium, of the

form pðu; x; y; z; tÞZdðxKx0ÞdðyKy0ÞdðzKz0Þe
iðutÞ, where

d(xKx0), d(yKy0) and d(zKz0) are Dirac-delta functions, the

fundamental solution of Eq. (2) can be expressed as

T̂ fðu; x; y; zÞZ
eKi

ffiffiffiffiffiffiffiffiffiffiffi
Kðiu=KÞ

p
r0

2kr0

(3)

with r0Z
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxKx0Þ

2C ðyKy0Þ
2C ðzKz0Þ

2
p

.

This solution can be expressed as a Bessel integral,

following the transformations proposed by Sommerfeld [1,2]

T̂ fðu; x; y; zÞZ
Ki

2k

ðN
0

J0ðkyrÞ
ky eKi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Kðiu=KÞKk2

y

p
jyKy0jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Kiu
K
Kk2

y

q dky; (4)

where J0( ) are Bessel functions of order 0, ky is the

vertical wavenumber along the y direction and

rZ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxKx0Þ

2C ðzKz0Þ
2

p
.

This integral can be expressed as a discrete sum if we

assume the existence of virtual sources, equally spaced at Ly,

along the vertical direction y,

T̂ fðu; x; y; zÞZ
Kip

Lyk

XN
nZ1

J0ðknrÞ
kn
nn

eKinnjyKy0j (5)

with nnZ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Kðiu=KÞKk2

n

p
, knZ(2p/Ly)n. The distance Ly is

chosen so as to prevent spatial contamination from the virtual

sources, i.e. it must not be too small [5].
2.1. Responses in the time domain

The heat in the spatial–temporal domain is calculated by

applying a numerical inverse fast Fourier transform in the

frequency domain. The computations are performed using

complex frequencies with a small imaginary part of the form

ucZuKih (with hZ0.7 Du, and Du being the frequency step)

to prevent interference from aliasing phenomena. In the time

domain, this effect is removed by rescaling the response with

an exponential window of the form eht [6]. The time variation

of the source can be arbitrary. The time Fourier transformation

of the source heat field defines the frequency domain to

be computed. The response may need to be computed from

0.0 Hz up to very high frequencies. However, as the heat

responses decay very rapidly as the frequency increases, we

may set an upper limit on the frequency for which the solution

is required.
2.2. Verification of the solution

The formulation described above was implemented and

used to compute the heat field in an unbounded medium. In

order to verify this formulation, the solution is verified in both

the frequency and time domains. In the frequency domain, this

verification is performed against solutions obtained using
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a double-space Fourier transformation along the horizontal

directions (2.5D formulation). In the case of the time domain

solutions, the responses are compared with those provided by

analytical responses. When the heat source is applied at point

(X0, Y0, Z0) at time tZt0, the exact temperature evolution at

(x,y,z) is given by the expression

Tðt; x; y; zÞZ
eKððxKx0Þ

2CðyKy0Þ
2CðzKz0Þ

2Þ=4Kt

rcð4pKtÞ3=2
; if tO t0; (6)

where tZtKt0 (see Carslaw and Jaeger [4] and Banerjee [7]).

In the verification procedure, a homogeneous unbounded

medium, with thermal properties that took kZ1.4 W mK1 8CK1,

cZ880 J kgK1 8CK1 and rZ2300 kg mK3, was excited at

tZ0.0 s by a unit heat source placed at xZ0.0 m, yZ1.0 m.

The heat responses generated by a spherical unit heat source

were calculated for three different receivers: Rec. 1, Rec. 2 and

Rec. 3, placed, respectively, at (0.2,0.5,0.0) m, (0.2,0.5,0.5) m

and (0.2,0.5,1.0) m.

The calculations in this case, and in all examples

presented below for other cases, were first performed in the

frequency range [0.0, 1024.0!10K7] Hz with an increment of

DuZ1!10K7 Hz, which defines a time window of TZ
2777.8 h. Complex frequencies of the form ucZuKi0.7Du
have been used to avoid the aliasing phenomenon. The spatial

period has been set as LyZ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ky=ðrcDf Þ

p
. Fig. 1(a)–(c) displays

the responses in the frequency domain at the receivers Rec. 1, 2

and 3 for the first 320 frequencies: the solid lines identify the

responses using the proposed Green’s functions, while the
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Fig. 1. Unbounded medium: frequency responses at receivers Rec. 1 (a), Rec. 2 (b) a

Temperature curves at receivers Rec. 1, Rec. 2 and Rec. 3.
marks show the response obtained using a double-space

Fourier transformation along the horizontal directions (2.5D

Green’s functions formulation). Fig. 1(d) illustrates the good

agreement between the exact time solution calculated given by

Eq. (6), represented by solid lines, and the response obtained

using the proposed Green’s functions, symbolized by marks,

for the same three receivers. The mean errors shown in

Fig. 1(d) obtained from the average of the difference between

the proposed solutions and the analytical time domain solutions

for these three receivers are, respectively, 6.66!10K12,

6.46!10K12 and 6.30!10K12 8C.
3. Green’s functions in a half-space

In this section, a semi-infinite medium bounded by a surface

with null heat fluxes or null temperatures is considered. The

required Green’s functions of the proposed formulation for a

half-space can be expressed as the sum of the surface terms

and the source terms. The surface terms need to satisfy the

boundary condition of the surface (null heat fluxes or null

temperatures), while the source terms are equal to those

presented for the infinite unbounded medium. The

surface terms for a heat source located at (x0,y0,z0) can be

expressed by

T̂1ðu; x; y; zÞZ
Kip

Lyk

XN
nZ1

An

kn
nn

J0ðknrÞe
Kinnjyj: (7)
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nd Rec. 3 (c) for a spherical unit heat source applied at point (0.0,1.0,0.0) m. (d)
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An is the unknown coefficient to be computed, so that the

heat field produced simultaneously by the source

T̂ incðu; x; y; zÞZ
Kip

Lyk

XN
nZ1

J0ðknrÞ
kn
nn

eKinnjyKy0j

 !
;

and surface terms should produce T̂1ðu; x; y; zÞZ0 or vT̂1ðu;

x; y; zÞ=vyZ0 at yZ0.

The computation of the unknown coefficient is obtained for

each value of n. These coefficients are given below for the two

cases of null heat fluxes and null temperatures at the surface

yZ0.

Null normal flux at yZ0

An Z eKinny0 :

Null temperature at yZ0

An ZKeKinny0 : (8)

Replacing these coefficients in Eq. (7), we may compute the

heat terms associated with the surface.

Null normal flux at yZ0

T̂1ðu; x; y; zÞZ
Kip

Lyk

XN
nZ1

kn
nn

J0ðknrÞe
KinnjyCy0j:

Null temperature at yZ0

T̂1ðu; x; y; zÞZ
ip

Lyk

XN
nZ1

kn
nn

J0ðknrÞe
KinnjyCy0j: (9)

The final fundamental solutions for a half-space are given

by adding these terms, the source and the surface terms, which

leads to:

Null normal flux at yZ0

T̂ðu; x; y; zÞZ
Kip

Lyk

XN
nZ1

kn
nn

J0ðknrÞðe
Kinnjyj CeKinnjyCy0jÞ: (10)

Null temperature at yZ0

T̂ðu; x; y; zÞZ
Kip

Lyk

XN
nZ1

kn
nn

J0ðknrÞðe
KinnjyjKeKinnjyCy0jÞ: (11)

The final heat field in the time domain is calculated by

applying a numerical inverse fast Fourier transform in the

frequency domain.

The time domain solution can also be obtained using the

image model technique. In this approach, the solution can be

achieved by superposing the heat field generated by virtual

sources with positive or negative polarity in such a way as to

simulate null temperatures or null heat fluxes at the surface.

Null normal flux at yZ0

Tðt; x; y; zÞZ
eðKr0=4KtÞ CeðKr1=4KtÞ

rcð4pKtÞ3=2
:

Null temperature at yZ0

Tðt; x; y; zÞZ
eðKr0=4KtÞKeðKr1=4KtÞ

rcð4pKtÞ3=2
(12)

in which tZtKt0, r0Z ðxKx0Þ
2C ðyKy0Þ

2C ðzKz0Þ
2 and

r1Z ðxKx0Þ
2C ðyCy0Þ

2C ðzKz0Þ
2.
3.1. Verification of the solution

The solutions derived before [3], using a double space

Fourier transformation along the horizontal directions (2.5D

formulation), which entails higher computational costs, are used

to verify the response in the frequency domain. The time domain

solutions are also evaluated using the image model technique.

The verification of the solution is illustrated for a

homogeneous half-space medium with thermal material proper-

ties that take kZ1.4 W mK1 8CK1, cZ880.0 J kgK1 8CK1 and

rZ230 kg mK3. This structure is excited at (0.0,1.0,0.0) m by

a point heat source. Fig. 2 gives the total amplitudes (source

and surface terms summation) in the frequency domain

obtained at the receivers Rec. 1 and Rec. 2, placed at

(0.2,0.5,0.0) m and (0.2,0.5,0.5) m, for both null normal flux

and null temperatures at yZ0, in the frequency range [0.0,

320.0!10K7] Hz. In this plot, the real and imaginary parts of

the response are given: solid lines represent the results provided

by the proposed solutions, while the marks correspond to the

2.5D formulation solutions. These results show that the

responses are similar.

In addition, the results in the time domain provided by the

proposed formulation are compared with those obtained

directly in the time domain using the image model technique,

at three different receivers (see Fig. 3). This figure shows

similar results for the image model technique solutions, which

are plotted with solid lines, and the proposed formulation

results, represented by marks. The mean errors of the results

shown in Fig. 3, obtained from the average of the difference

between the proposed solutions and the analytical time domain

solutions for these three receivers, are listed in Table 1.
4. Green’s functions in a slab formation

For a slab structure with thickness h, the Green’s functions

can be found taking into account the null heat fluxes or null

temperatures prescribed at each surface. They can be expressed

by adding the surface and source terms, which are equal to

those in the full-space.

Three scenarios can be considered: null heat fluxes at the top

and bottom interfaces (Case I); null temperatures in both

surface boundaries (Case II), and different conditions at each

surface (Case III). At the top and bottom interfaces, surface

terms can be generated and expressed in a form similar to that

of the source term.

Top surface medium

T̂1ðu; x; y; zÞZ
Kip

Lyk

XN
nZ1
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n
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nn

J0ðknrÞe
Kinnjyj:

Bottom surface medium

T̂2ðu; x; y; zÞZ
Kip

Lyk

XN
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n

kn
nn

J0ðknrÞe
KinnjyKhj: (13)

At
n and Ab

n are as yet unknown coefficients to be determined

by imposing the appropriate boundary conditions, so that the

field originated simultaneously by the source and the surface
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Fig. 3. Temperature curves for a half-space formation at receivers Rec. 1, Rec. 2 and Rec. 3, when a heat source is applied at point (0.0,1.0,0.0) m: (a) null normal

flux at yZ0; (b) null temperature at yZ0.
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Fig. 2. Real and imaginary parts of the response for a half-space formation, when a heat source is applied at point (0.0,1.0,0.0) m: (a) Receiver 1 for null normal flux

at yZ0; (b) Receiver 2 for null normal flux at yZ0; (c) Receiver 1 for null temperature at yZ0; (d) Receiver 2 for null temperature at yZ0.

Table 1

Time domain mean errors for a half-space formation

Null normal flux at yZ0 Null temperature at yZ0

Rec. 1 1.27!10K11 8C 8.89!10K13 8C

Rec. 2 1.22!10K11 8C 4.15!10K13 8C

Rec. 3 1.25!10K11 8C 4.03!10K13 8C
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terms guarantees null heat fluxes or null temperatures at yZ0

and h.

This problem formulation leads to a system of two equations

in the two unknown constants for each value of n.

Case I: null heat fluxes at the top and bottom surfaces

Kinn inn eKinnh

Kinn eKinnh inn

" #
At
n

Ab
n

" #
Z

Kinn eKinny0

inn eKinnjhKy0j

" #
: (14)

Case II: null temperatures at the top and bottom surfaces

1 eKinnh

eKinnh 1

" #
At
n

Ab
n

" #
Z

KeKinny0

KeKinnjhKy0j

" #
: (15)
Case III: null heat fluxes at the top surface and null

temperatures at the bottom surface

Kinn inn eKinnh

eKinnh 1

� �
At
n

Ab
n

" #
Z

Kinn eKinny0

KeKinnjhKy0j

" #
: (16)

Once this system of equations has been solved, the

amplitude of the surface terms has been fully defined, and
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the heat in the slab can thus be found. The final expressions for

the Green’s functions are then derived from the sum of the

source terms and the surface terms originated in the two slab

surfaces, which leads to the following expressions

T̂ðu; x; y; zÞZ
eKi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðKðiu=KÞÞ

p
r0

2kr0

C
Kip

Lyk

XN
nZ1

J0ðknrÞ
kn
nn

!ðAt
n eKinnjyj CAb

n eKinnjyKhjÞ: (17)

Once again, the heat field in the time domain can be

calculated from a numerical inverse fast Fourier transform

applied in the frequency domain.

In addition, the time solution can be achieved by super-

posing the heat field generated by virtual sources with positive

or negative polarity (image model technique), and located to

ensure the desired boundary conditions. For a slab, the image

model technique needs a set of virtual sources to be placed in

such a way as to simulate null temperatures or null heat fluxes

at the surfaces.

Case I: null heat fluxes at the top and bottom surfaces

Tðt; x; y; zÞZ
eKr0=4Kt

rcð4pKtÞ3=2

C
XNS
nZ1

eKr1=4Kt CeKr2=4Kt CeKr3=4Kt CeKr4=4Kt

rcð4pKtÞ3=2
:

(18)

Case II: null temperatures at the top and bottom surfaces

Tðt; x; y; zÞZ
eKr0=4Kt

rcð4pKtÞ3=2

C
XNS
nZ1

KeKr1=4KtKeKr2=4Kt CeKr3=4Kt CeKr4=4Kt

rcð4pKtÞ3=2
:

(19)

Case III: null heat fluxes at the top surface and null

temperatures at the bottom surface

Tðt; x; y; zÞZ
eKr0=4Kt

rcð4pKtÞ3=2

C
XNS
nZ1

ðK1ÞnK1 eKr1=4KtKeKr2=4KtKeKr3=4KtKeKr4=4Kt

rcð4pKtÞ3=2

(20)

in which tZtKt0, r0Z ðxKx0Þ
2C ðyKy0Þ

2C ðzKz0Þ
2, r1Z

ðxKx0Þ
2C ðyCy0C2hðnK1ÞÞ2C ðzKz0Þ

2, r2Z ðxKx0Þ
2C

ðyCy0K2hnÞ2C ðzKz0Þ
2, r3Z ðxKx0Þ

2C ðyKy0C2hnÞ2C
ðzKz0Þ

2 and r4Z ðxKx0Þ
2C ðyKy0K2hnÞ2C ðzKz0Þ

2.

4.1. Verification of the solution

The formulation described above for the slab formation was

used to compute the responses at a receiver placed in a slab

2.0 m thick. The frequency domain results for the three

boundary situations assumed were then compared with those

given by a 2.5D formulation [3] for two different receivers:

Rec. 1, placed at (0.2,0.5,0.0) m, and Rec. 2, localised at

(0.2,0.5,0.5) m. An additional verification is performed in the
time domain against the solutions provided by the image model

technique described above. In this verification procedure, the

medium properties remain the same as those assumed for the

half-space (kZ1.4 W mK1 8CK1, cZ880.0 J kgK1 8CK1 and

rZ2300.0 kg mK3). The slab is heated by a harmonic point

heat source applied at (0.0,1.0,0.0) m.

Fig. 4 shows the real and imaginary parts of the total

responses, given by the sum of the source and surface terms,

at the receivers Rec. 1 and Rec. 2 for the three different

cases described above. The solid lines represent the

proposed frequency responses, while the marked points

correspond to the 2.5D formulation solution [3]. The results

confirm that the solutions to the three cases are in very close

agreement.

Fig. 5 provides the time domain solutions calculated by the

proposed formulation and identified with marks. These are in

good agreement with the results obtained with the image model

technique and are plotted using solid lines. The calculations

were obtained at three different receivers for the three cases

with their different surface conditions. The mean errors of the

results shown in Fig. 5, obtained from the average of the

difference between the proposed solutions and the analytical

time domain solutions for these three receivers, are listed in

Table 2.
5. Green’s functions in a layered formation

The solutions for more complex structures, such as a layer

over a half-space, a layer bounded by two semi-infinite media

and a multi-layer can be established imposing the required

boundary conditions at the interfaces and at the free surface.
5.1. Layer over a half-space

Assuming the presence of a layer, h1 thick, over a half-space,

we may prescribe null temperature or null heat fluxes at the free

surface (top), while at the interface we need to satisfy the

continuity of temperature and normal heat fluxes. The solution

is again expressed as the sum of the source terms (the incident

field) equal to those in the full-space and the surface terms. At

the interfaces 1 and 2, surface terms are generated, which can be

expressed in a form analogous to that of the source term.

Layer interface 1

T̂11ðu; x; y; zÞZ
Kip

Lyk1

XN
nZ1

At
n1

kn
nn1

J0ðknrÞe
Kinn1jyj: (21)

Layer interface 2

T̂12ðu; x; y; zÞZ
Kip

Lyk1

XN
nZ1

Ab
n1

kn
nn1

J0ðknrÞe
Kinn1jyKh1j: (22)

Half-space (interface 2)

T̂21ðu; x; y; zÞZ
Kip

Lyk2

XN
nZ1

At
n2

kn
nn2

J0ðknrÞe
Kinn2jyKh1j; (23)

where nnjZ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Kðiu=KjÞKk2

n

q
with Im(nnj)%0 and h1 is the layer

thickness (jZ1 stands for the layer (medium 1), while jZ2
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Fig. 4. Real and imaginary parts of the responses for a slab formation at receivers Rec. 1 and Rec.2, when a heat source is applied at point (0.0,1.0,0.0) m: (a) Case I

(null heat flux at the top and bottom surfaces); (b) Case II (null temperature at the top and bottom surfaces); and (c) Case III (null temperature at the top surface and

null heat flux at the bottom surface).
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indicates the half-space (medium 2)). Meanwhile, KjZ(kj/rjcj)

is the thermal diffusivity in the medium j (kj, rj and cj are the

thermal conductivity, the density and the specific heat of the

material in the medium j, respectively).

The coefficients At
n1, Ab

n1 and At
n2 are as yet unknown. They

are defined in order to ensure the appropriate boundary

conditions: the field produced simultaneously by the source

and surface terms allows the continuity of heat fluxes and

temperatures at yZh1, and null heat fluxes (Case I) or null

temperatures (Case II) at yZ0.

Imposing the three stated boundary conditions for each

value of n, a system of three equations in the three unknown

coefficients is defined.
Case I: null heat fluxes at yZ0.

Kinn1 inn1 eKinn1h1 0

Kinn1 eKinn1h1 inn1 inn1

eKinn1h1 1 K
k1nn1

k2nn2

2
66664

3
77775

At
n1

Ab
n1

At
n2

2
64

3
75Z

b1

b2

b3

2
4

3
5;

(24)

where

b1ZKnn1 eKinn1y0 ,

b2Z inn1 eKinn1jh1Ky0j,

b3ZKeKinn1jh1Ky0j, when the source is in the layer (y0!h1),
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Fig. 5. Temperature curves for a slab formation at receivers Rec. 1 and Rec.2, when a heat source is applied at the point (0.0,1.0,0.0) m: (a) Case I (null heat flux at

the top and bottom surfaces); (b) Case II (null temperature at the top and bottom surfaces); and (c) Case III (null temperature at the top surface and null heat flux at

the bottom surface).

Table 2

Time domain mean errors for a slab formation

Case I Case II Case III

Rec. 1 3.16!10K11 8C 1.00!10K12 8C 8.33!10K13 8C

Rec. 2 3.13!10K11 8C 4.30!10K13 8C 1.81!10K13 8C

Rec. 3 3.05!10K11 8C 4.24!10K13 8C 1.70!10K13 8C
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while

b1Z0,

b2Z inn1 eKinn2jh1Ky0j,

b3Z ðk1nn1=k2nn2Þe
Kinn2jh1Ky0j, when the source is in the half-

space (y0Oh1).

Case II: null temperatures at yZ0.

1 eKinn1h1 0

Kinn1 eKinn1h1 inn1 inn1

eKinn1h1 1 K
k1nn1

k2nn2

2
66666664

3
77777775

At
n1

Ab
n1

At
n2

2
664

3
775Z

b1

b2

b3

2
64

3
75; (25)

where

b1ZKeKinn1y0 ,

b2Z inn1 eKinn1jh1Ky0j,

b3ZKeKinn1jh1Ky0j, when the source is in the layer (y0!h1),

while

b1Z0,

b2Z inn1 eKinn2jh1Ky0j,

b3Z ðk1nn1=k2nn2Þe
Kinn2jh1Ky0j, when the source is in the half-

space (y0Oh1).

The heat field produced within the two media results from

the contribution of both the surface terms generated at the

various interfaces and the source term.
y0!h1 (source in the medium 1)

T̂ðu; x; y; zÞZ
eKi

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Kðiu=K1Þ

p
r0

2k1r0

C
Kip

Lyk1

XN
nZ1

J0ðknrÞ
kn
nn1

!ðAt
n1 eKinn1jyjCAb

n1 eKinn1jyKhjÞ; if y!h1;

T̂ðu; x; y; zÞZ
Kip

Lyk2

XN
nZ1

At
n2

kn
nn2

J0ðknrÞe
Kinn2jyKh1j; if yOh1;

(26)

y0Oh1 (source in the medium 2)

T̂ðu;x;y;zÞZ
Kip

Lyk1

XN
nZ1

J0ðknrÞ
kn
nn1

ðAt
n1 eKinn1jyjCAb

n1 eKinn1jyKhjÞ;

if y!h1;

T̂ðu;x;y;zÞZ
eKi

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Kðiu=K2Þ

p
r0

2k2r0

C
Kip

Lyk2

!
XN
nZ1

At
n2

kn
nn2

J0ðknrÞe
Kinn2jyKh1j; if yOh1:

(27)
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5.2. Layer bounded by two semi-infinite media

For the case of the layer placed between two semi-infinite

media, the solution also needs to account for the continuity of

temperature and heat fluxes at interface 1, since heat

propagation also occurs through the top semi-infinite space

(medium 0), which can be expressed by

T̂02ðu; x; y; zÞZ
Kip

Lyk0

XN
nZ1

Ab
n0

kn
nn0

J0ðknrÞe
Kinn0jyj; (28)

where nn0Z
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Kðiu=K0ÞKk2

n

p
with Im(nn0)%0.

The surface terms produced in interfaces 1 and 2 in media 1

and 2 (bottom semi-infinite medium) are expressed in Eqs.

(21)–(23).

The coefficients Ab
n0, At

n1, Ab
n1 and At

n2 are defined by

respecting the continuity of heat fluxes and temperatures at yZ
h1 and 0. These surface conditions lead to the following system

of four equations when the heat source is placed within the layer

K1 K1 eKinn1h1 0

K
k1nn1

k0nn0

1 eKinn1h1 0

0 KeKinn1h1 1 1

0 eKinn1h1 1 K
k1nn1

k2nn2

2
6666666664

3
7777777775

Ab
n0

At
n1

Ab
n1

At
n2

2
6664

3
7775Z

b1

b2

b3

b4

2
664

3
775;

(29)

where

b1ZKeKinn1y0 ;

b2ZKeKinn1y0 ;

b3ZeKinn1jh1Ky0j;

b4ZKeKinn1jh1Ky0j, when the source is in the layer (0!y0!h1),

while

b1ZeKinn0jy0j,

b2ZKðk1nn1=k0nn0Þe
Kinn0jy0j,

b3Z0,

b4Z0, when the source is in the half-space (y0!h1),

and

b1Z0,

b2Z0,

b3ZeKinn2jh1Ky0j,

b4Z ðk1nn1=k2nn2Þe
Kinn2jh1Ky0j, when the source is in the half-

space (y0Oh1).

The temperatures for the three media are then computed by

adding the contribution of the source terms to those associated

with the surface terms originated at the various interfaces. This

procedure produces the following expressions for the
temperatures in the three media

T̂ðu; x; y; zÞZ
Kip

Lyk0

XN
nZ1

Ab
n0

kn
nn0

J0ðknrÞe
Kinn0jyj; if y!0;

T̂ðu; x; y; zÞZ
eKi

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Kðiu=K1Þ

p
r0

2k1r0

C
Kip

Lyk1

XN
nZ1

J0ðknrÞ
kn
nn1

!ðAt
n1 eKinn1jyj CAb

n1 eKinn1jyKhjÞ; if 0!y!h1;

T̂ðu; x; y; zÞZ
Kip

Lyk2

XN
nZ1

At
n2

kn
nn2

J0ðknrÞe
Kinn2jyKh1j; if yOh1:

(30)

The derivation presented assumed that the heat source is

placed within the layer. However, the equations can be easily

manipulated to accommodate another position of the source.

5.3. Multi-layer

The Green’s functions for a multi-layer are established

using the required boundary conditions at all interfaces.

Consider a system built from a set of m plane layers of

infinite extent bounded by two flat, semi-infinite media, as

shown in Fig. 6. The top semi-infinite medium is called

medium 0, while the bottom semi-infinite medium is assumed

to be the medium mC1. The thermal material properties and

thickness of the various layers may differ. The system of

equations is achieved considering that the multi-layer is excited

by a heat source located in the first layer (medium 1). The heat

field is computed at some position in the domain, taking into

account both the surface heat terms generated at each interface

and the contribution of the heat source term.

For the layer j, the heat surface terms on the upper and lower

interfaces can be expressed as

T̂ j1ðu; x; y; zÞZ
Kip

Lykj

XN
nZ1

At
nj

kn
nnj

J0ðknrÞe
KinnjjyK

PjK1

lZ1

hlj

;

T̂ j2ðu; x; y; zÞZ
Kip

Lykj

XN
nZ1

Ab
nj

kn
nnj

J0ðknrÞe
KinnjjyK

Pj
lZ1

hlj

;

(31)

where nnjZ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðKiu=KjÞKk2

n

q
, with Im(nnj)%0 and h1 is the

thickness of the layer l. The heat surface terms produced at

interfaces 1 and mC1, which govern the heat that propagates

through the top and bottom semi-infinite media, are,

respectively, expressed by

T̂02ðu; x; y; zÞZ
Kip

Lyk0

XN
nZ1

Ab
n0

kn
nn0

J0ðknrÞe
Kinn0jyj; and

T̂ ðmC1Þ2ðu; x; y; zÞZ
Kip

LykðmC1Þ

!
XN
nZ1

At
nðmC1Þ

kn
nnðmC1Þ

J0ðknrÞe
KinnðmC1ÞjyK

Pm
lZ1

hlj

:

(32)

A system of 2(mC1) equations is derived, ensuring the

continuity of temperatures and heat fluxes along the mC1



Fig. 6. Geometry of the problem for a multi-layer bounded by two semi-infinite

media.
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interfaces between layers. Each equation takes into account the

contribution of the surface terms and the involvement of the

incident field. All the terms are organized according to the form

FaZb

1 1 KeKinn1h1 / 0 0 0

1

k0nn0

K
1

k1nn1

K
eKinn1h1

k1nn1

/ 0 0 0

0 KeKinn1h1 1 / 0 0 0

0
eKinn1h1

k1nn1

1

k1nn1

/ 0 0 0

/ / / / / / /

0 0 0 / 1 KeKinnmhm 0

0 0 0 / K
1

kmnnm
K

eKinnmhm

kmnnm
0

0 0 0 / KeKinnmhm 1 1

0 0 0 /
eKinnmhm

kmnnm

1

kmnnm
K

1

kðmC1ÞnnðmC1Þ

2
666666666666666666666666666666664

3
777777777777777777777777777777775

Ab
n0

At
n1

Ab
n1

/

At
nm

Ab
nm

At
nðmC1Þ

2
666666666666666664

3
777777777777777775

Z

eKinn1y0

1

k1nn1

eKinn1y0

eKinn1 jh1Ky0 j

K
1

k1nn1

eKinn1jh1Ky0 j

/

0

0

0

0

2
66666666666666666666666666666666664

3
77777777777777777777777777777777775

:

(33)
The resolution of the system gives the amplitude of the

surface terms in each interface. The temperature field for each

layer formation is obtained by adding these surface terms to the

contribution of the incident field, leading to the following

equations.

Top semi-infinite medium (medium 0)

T̂ðu; x; y; zÞZ
Kip

Lyk0

XN
nZ1

Ab
n0

kn
nn0

J0ðknrÞe
Kinn0jyj; if y!0;

layer 1 (source position)

T̂ðu; x; y; zÞZ
eKi

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Kðiu=K1Þ

p
r0

2k1r0

C
Kip

Lyk1

XN
nZ1

J0ðknrÞ
kn
nn1

!ðAt
n1 eKinn1jyjCAb

n1 eKinn1jyKh1jÞ; if 0!y!h1;

layer j (js1)

T̂ðu; x; y; zÞZ
Kip

Lykj

XN
nZ1

J0ðknrÞ

!
kn
nnj

At
nj e

KinnjjyK
PjK1

lZ1

hlj

CAb
nj e

KinnjjyK
Pj
lZ1

hlj

0
@

1
A;

if
XjK1

lZ1

hl!y!
Xj
lZ1

hl;

bottom semi-infinite medium (medium mC1)

T̂ðu; x; y; zÞZ
Kip

LykðmC1Þ

!
XN
nZ1

At
nðmC1Þ

kn
nnðmC1Þ

J0ðknrÞe
KinnðmC1ÞjyK

Pm
lZ1

hlj

:

(34)

Notice that when the position of the heat source is changed,

the matrix F remains the same, while the independent terms of

b are different. However, as the equations can be easily

manipulated to consider another position for the source, they

are not included here.
5.4. Verification of the solution

Next, the results are found for the three scenarios. First, a

flat layer, 2.0 m thick, is assumed to be bounded by one half-

space. Null heat fluxes or null temperatures are prescribed at

the top surface. Then, a flat layer, also 2.0 m thick, bounded by

two semi-infinite media, is used to evaluate the accuracy of the

proposed formulation. The thermal material properties used in

the intermediate layer are kZ1.4 W mK1 8CK1, cZ
880.0 J kgK1 8CK1 and rZ2300.0 kg mK3, while at the top

and bottom media they are kZ63.9 W mK1 8CK1, cZ
434.0 J kgK1 8CK1 and rZ7832.0 kg mK3.

The calculations have been performed in the frequency

domain from 0.0 to 320.0!10K7 Hz. The amplitude of the

response for four receivers placed in two different media was

computed for a heat point source applied at (0.0,1.0,0.0) m.

The real and imaginary parts of the full response at receivers
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Fig. 7. Null heat flux at yZ0 (Case I): real and imaginary parts of the responses for a layer over a half-space at different receivers: (a) Rec. 1; (b) Rec. 2; (c) Rec. 4;

(d) Rec. 5.
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Fig. 8. Null temperature at yZ0 (Case II): real and imaginary parts of the responses for a layer over a half-space at different receivers: (a) Rec. 1; (b) Rec. 2;

(c) Rec. 4; (d) Rec. 5.
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Fig. 9. Real and imaginary parts of the responses for a layer bounded by two semi-infinite media at different receivers: (a) Rec. 1; (b) Rec. 2; (c) Rec. 4; (d) Rec. 5.
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Rec. 1 (0.2,0.5,0.0) m, Rec. 2(0.2,0.5,0.5) m, Rec. 4

(0.2,2.5,0.0) m and Rec. 5 (0.2,2.5,0.5) m are displayed in

Figs. 7–9. The solid lines represent the analytical responses

computed using the proposed Green’s functions, while the

marked points correspond to the 2.5D formulation [3] solution.

As can be seen, these two solutions seem to be in very close

agreement, and equally good results were obtained from tests

in which heat sources and receivers were situated at different

points.

6. Conclusions

Three-dimensional Green’s functions for computing the

transient heat transfer by conduction in an unbounded medium,

half-space, slab and layered media have been presented. The

transient heat responses generated by a spherical heat source

were first obtained in the frequency domain. Time solutions

were then obtained after the application of an inverse Fourier

transform in the frequency domain.

The proposed analytical solutions were obtained after

writing the response of a spherical heat source as a sum of

Bessel integrals, assuming a set of sources equally spaced

along the vertical direction. The results for a layered formation

are obtained by adding the heat source term and the surface

terms required to satisfy the interface boundary conditions

(temperature and heat flux continuity).

The unbounded medium formulation was verified by

comparing its time responses with the exact known time

solution. In turn, the proposed analytical solutions used in the

half-space, slab systems and layered media formulation were
compared against the frequency responses obtained when a

double space Fourier transformation was applied along the

horizontal directions [3]. Therefore, the present formulation

involves less computational effort than the previous solution. In

addition, time responses provided by the proposed formulation

were compared with those provided by analytical solutions,

known for simpler cases such as the half-space and the slab

formations.

The proposed Green’s functions can be used as fundamental

solutions in BEM or MFS algorithms for solving layered

formations containing buried three-dimensional inclusions,

while the analytical solutions obtained before [3] are better

suited to resolving the case of layered formulations containing

cylindrical inclusions.
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