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Abstract

Current design codes for fire resistance of structures are based on isolated member tests subjected to standard fire conditions. Such

tests do not reflect the behaviour of a complete building under either normal temperature or fire conditions. Many aspects of behaviour

occur due to the interaction between members and cannot be predicted or observed in tests of isolated elements. Performance of real

structures subject to real fires is often much better than that predicted from standard tests due to structural continuity and the provision

of alternative load paths.

This paper reports on the results of a collaborative research project (Tensile membrane action and robustness of structural steel joints

under natural fire, European Community FP5 project HPRI—CV 5535) involving the following institutions: Czech Technical University

(Czech Republic), University of Coimbra (Portugal), Slovak Technical University (Slovak Republic) and Building Research

Establishment (United Kingdom). It consists of an experimental programme to investigate the global structural behaviour of a

compartment on the 8-storey steel–concrete composite frame building at the Cardington laboratory during a BRE large-scale fire test,

aimed at the examination of the temperature development within the various structural elements, the corresponding (dynamic)

distribution of internal forces and the behaviour of the composite slab, beams, columns and connections.

r 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Significant developments have been made in analysing
the behaviour of steel-framed structures under fire condi-
tions in the last 10 years. Due to the high cost of full-scale
fire tests and size limitations of existing furnaces, these
studies are based on the observation of real fires and on
tests performed on isolated elements subjected to standard
fire regimes, which serve as reference heating, but do not
model the natural fire. However, the failure of the World
Trade Centre on 11th September 2001 and, in particular, of
building WTC7, alerted the engineering profession to the
e front matter r 2006 Elsevier Ltd. All rights reserved.
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possibility of connection failure under fire conditions.
Many aspects of behaviour occur due to the interaction
between members and cannot be predicted or observed
from isolated tests, such as global or local failure of the
structure, stresses and deformations due to the restraint to
thermal expansion by the adjacent structure, redistribution
of internal forces, etc. Moreover, isolated tests do not
reflect the behaviour of a complete structure.
Unlike the standard fire curve a natural fire is

characterized by three phases: a growing phase, a full
developed phase and a decay phase. It is necessary to
evaluate not only the effect on the structural resistance
during the heating phase, but also the high cooling strains
in the joint induced by distortional deformation of the
heated elements during the decay phase.
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Table 1

Summary of full-scale fire tests

Authors Year Objectives

Pettersson et al. [2] 1976 Gas time–temperature in different fire compartments. Data in a form readily accessible to the

practising engineer.

Witteveen et al. [3] 1977 The first reported test to assess structural behaviour under fire conditions. The stability of braced and

unbraced frame at elevated temperature was studied.

Kruppa [4] 1981 Behaviour of external steel columns in a fire compartment.

Genes [5] 1982 Large-scale fire test on a compartment designed to simulate two floors of a 20-storey building, in

order to assess the performance of protected beams.

Latham et al. [6] 1985 Steel time–temperature curves for unprotected structural steelwork for several sections exposed in a

large fire compartment; variation of the fire load, the ventilation conditions and the thermal

properties of the enclosing surfaces.

Rubert and Schaumann [7] 1986 Tested a series of quarter-to-half scale fire tests on steel sub-assemblies under fire in order to obtain

the failure temperature of the heated steel members.

Anon [8] 1986 Fire behaviour of steel and composite construction.

Cooke and Latham [9] 1987 First test on a full-size loaded steel frame subjected to a natural fire using wooden cribs. This test

showed that the performance of the frame was better than that of the individual elements as a result of

the connection continuity that may be exploited to provide increased fire resistance of the beam.

Thomas et al. [10] 1992 Performance of light hazard sprinkler systems in real compartments. Structural behaviour of an

unprotected composite structure.

Cardington Laboratory 1993–2003 See y2.3 of this paper.
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In order to address these issues, and to improve the
knowledge of the structural integrity of structures under
fire conditions, it is the objective of this paper to report on
the results of a collaborative research project (Tensile
membrane action and robustness of structural steel joints
under natural fire, European Community FP5 project
HPRI—CV 5535) involving the following institutions:
Czech Technical University (Czech Republic), University
of Coimbra (Portugal), Slovak Technical University
(Slovak Republic) and Building Research Establishment
(United Kingdom). It consists of an experimental pro-
gramme to investigate the global structural behaviour of a
compartment on the 8-storey steel–concrete composite
frame building at Cardington Laboratory during a BRE
large-scale fire test on January 16, 2003, aimed at the
examination of the temperature development within the
various structural elements, the corresponding (dynamic)
distribution of internal forces and the behaviour of the
composite slab, beams, columns and connections.
2. Experimental research on the fire performance of

structures

2.1. Full-scale fire tests

Over the years many isolated member tests have been
carried out in several institutions. However, investigations
involving full-scale tests under natural fire are limited. The
development of the Cardington Laboratory of the Building
Research Establishment (BRE) has provided the opportu-
nity to carry out several research projects that included
full-scale fire tests. A complete state-of-art description of
the experimental observations can be found in Wang [1], a
brief summary being presented in Table 1.
2.2. The Cardington Laboratory

The Cardington Laboratory is a unique worldwide
facility for the advancement of the understanding of
whole-building performance. Most aspects of a building’s
lifecycle, from fabrication to fire resistance and explosions
through to demolition, can be investigated on real
buildings. This facility is located at Cardington, Bed-
fordshire, UK and consists of a former airship hangar with
dimensions 48m� 65m� 250m. It is used by industrial
organizations, universities and research institutes, govern-
ment departments and agencies. The BRE’s Cardington
Laboratory comprises three experimental buildings: a six-
storey timber structure, a seven-storey concrete structure
and an eight-storey steel structure.
The steel test structure was built in 1993. It is a steel

framed construction using composite concrete slabs sup-
ported by steel decking in composite action with the steel
beams. It has eight storeys (33m) and is five bays wide
(5� 9 ¼ 45m) by three bays deep (6+9+6 ¼ 21m) in
plan, see Fig. 1. The structure was built as non-sway with a
central lift shaft and two end staircases providing the
necessary resistance against lateral wind loads. The main
steel frame was designed for gravity loads, the connections
consisting of flexible end plates for beam-to-column
connections and fin plates for beam-to-beam connections
were designed to transmit vertical shear loads. The building
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Fig. 1. The Cardington fire tests on steel structure.

Table 2

Fire test on steel structure in Cardington Laboratory [15]

No. Test Fire compartment Load

Size, (m) Area (m2) Fire Mechanical (%)

1 One beam heated by gas 8� 3 24 Gas 30

2 One frame heated by gas 21� 2.5 53 Gas 30

3 Corner compartment 9� 6 54 40 kg/m2 of wood cribs 30

4 Corner compartment 10� 7 70 45 kg/m2 of wood cribs 30

5 Large compartment 21� 18 342 40 kg/m2 of wood cribs 30

6 Office—Demonstration 18� 9 136 45 kg/m2 of wood cribs 30

7 Structural integrity 11 x7 77 40 kg/m2 of wood cribs 56
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simulates a real commercial office in the Bedford area and
all the elements were verified according to British
Standards and checked for compliance with the provisions
of the Structural Eurocodes.

The building was designed for a dead load of 3.65 kN/m2

and an imposed load of 3.5 kN/m2, see [11]. The floor
construction is of steel deck and light-weight in situ
concrete composite floor, incorporating an anti-crack mesh
of 142mm2/m in both directions. The floor slab has an
overall depth of 130mm and the steel decking has a trough
depth of 60mm.

2.3. Fire tests at Cardington Laboratory

Seven large-scale fire tests at various positions within the
experimental building were conducted; see Fig. 1 and Table
2 [12]. The main objective of the compartment fire tests was
to assess the behaviour of structural elements with real
restraint under a natural fire.

The first test performed in Cardington was a restrained
beam test involving a single 305� 165� 40UB composite
beam section supporting the seventh floor of the building
[13]. A gas-fired furnace was used to heat the beam to
approximately 900 1C. The second test, a plane frame test,
involved heating a series of beams and columns across the
full width of the building. Again, a gas-fired furnace was
used to heat the steelwork to approximately 800 1C. The
third test, the British Steel corner compartment test was the
first natural fire carried out in the Cardington Laboratory,
representing a typical office fire (timber cribs were used to
provide a fire load of 45 kg/m2). In this test, both the
perimeter beams and the columns were fire protected with
the internal beam unprotected. Load bearing concrete
blocks were used for the compartment walls. The fourth
test, the BRE corner compartment test also used timber
cribs to provide a fire load of 40 kg/m2. The compartment
walls were constructed using fire-resistant board and the
northern boundary was formed by constructing double-
glazed aluminium screens. All columns were protected up
to and including the connections. It was observed that the
fire development was largely influenced by the lack of
oxygen in the compartment [14]. The fifth test was the
largest compartment test in the world. The compartment
was designed to represent a modern open-plan office
(18m� 21m). The compartment was bounded by fire-
resistant walls. The main aim of this test was to investigate
the ability of a large area of composite slab to support
the applied load once the main beams had failed.
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Table 3

Summary of results from major fire tests in the Cardington laboratory [16]

No. Org. Floor Time (min) to max. atmosphere temp. Maximum temperature (1C) Measured deformations (mm)

Gas Steel Maximal Residual

1 BSa 7 170 913 875 232 113

2 BS 4 125 820 800 445 265

3 BS 3 114 1000 903 269 160

4 BREb 2 75 1020 950 325 425

5 BRE 3 70 — 691 557 481

6 BS 2 40 1150 1060 610 —

7 ČVUTc 4 55 1108 1088 41000 925

aBS, British Steel (now Corus).
bBRE, Building Research Establishment.
cČVUT, collaborative research proposed by Czech Technical University.
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Sandbags 5th floor
Fire compartment 4th floor

Fig. 2. Sandbags on the 5th floor.
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Consequently, all the beams had no fire protection and all
columns were fire protected. Again, the ventilation condi-
tions governed the fire severity. In the demonstration test
(sixth test), unlike in the previous tests, real furniture
(desks, chairs, filling cabinets, computer terminals, etc.)
were used to provide the fire load. The ventilation was
provided by windows and blank openings. The beams were
unprotected while the columns were protected. This test
was characterized by a rapid rise in temperature represent-
ing a severe fire scenario. The principal results of these tests
are summarized in Table 3 [16], where, for ease of
comparison, the 7th test was also included.

3. Structural integrity test program

3.1. Fire compartment

The fire test was carried out in a centrally located
compartment of the building (Fig. 1), enclosing a plan area
of 11m� 7m on the 4th floor [16], after 4 months of
preparation. The identification of the compartment is
illustrated in Fig. 2.

The mechanical load was simulated using sandbags, each
weighing 1100 kg. Fig. 2 illustrates the loaded area on the
5th floor. In addition to the self-weight of the structure,
sandbags were used to represent the following mechanical
loadings: the remaining permanent actions, 100% of
variable permanent actions and 56% of live actions. The
mechanical load was designed to reach the local collapse of
the floor at the peak temperature, based on analytical and
FE simulations [17].
The fire load was provided by 40 kg/m2 of wooden cribs

(moisture contentso14%) covering the compartment floor
area (Fig. 3). The fire compartment was bounded with
three layers of plasterboard (15mm+12.5mm+15mm)
with a thermal conductivity around 0.19–0.24W/mK. In
the external wall (gridline 1) the plasterboard was fixed to a
1.5m high brick wall. An opening 1.27m high and 9m long
simulated an open window to ventilate the compartment
and to allow the observation of the behaviour of the
various elements. Preliminary calculations of the complex
simulation of fire development predicted a short and hot
fire [16].
The columns, external joints and connected beam (1.0m

from the joints only) were fire protected to prevent
global structural instability (Fig. 4). The material protec-
tion used was 15mm of Cafco300 vermiculite-cement
spray, with a thermal conductivity of 0.078W/mK at room
temperature.

3.2. Structural arrangement

The steel structure exposed to fire consists of two beam
sections (356� 171� 51 UB for the edge beams and the 6m
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Fig. 3. (a) internal view of the compartment; (b) external view of the compartment and (c) fire loading.
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primary beams and 305� 165� 40 UB for the internal
secondary beams) and two columns (305� 305� 198 UC
and 305� 305� 137 UC) as shown in Fig. 5. The joints
were a cruciform arrangement of a single column with
either three or four beams connected, respectively, to the
column flange or web. The composite behaviour was
achieved by a concrete slab over the beams cast on shear
studs. The measured sections geometry is presented in Fig.
6 and Table 4.

3.3. Laboratory equipment and instrumentation

The main requirements of the instrumentation were to
measure the temperature, the distribution of internal forces
and the deflected shape of the floor and of the main
structural elements. The instrumentation included thermo-
couples, strain gauges and displacement transducers. A
total of 133 thermocouples were used to monitor the
temperature in the connections and beams within the
compartment, the temperature distribution through the
slab and the atmosphere temperature within the compart-
ment. An additional 14 additional thermocouples were
used to monitor the temperature of the protected columns.
In order to measure the elements stresses and deforma-
tions, two different types of gauge were used: high
temperature ones and ambient temperature ones. In the
exposed and un-protected elements high-temperature strain
gauges were used. The number of these instruments (9) was
limited because of economic reasons, so these strain gauges
were used in the connections (fin plate and end plate—
minor axis) only (Fig. 7). In the protected columns and un-
exposed elements a total of 47 ambient strain gauges were
installed. Twenty five vertical displacement transducers
were installed directly above the 5th floor, in a square
mesh, to measure the deformation of the concrete slab, see
Fig. 8. Twelve additional transducers were used to measure
the horizontal movement of the columns and the Labora-
tory 10 video cameras and two thermo imaging
cameras recorded the fire and smoke development, the
structural deformations and the temperature distribution
with time.
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Table 4

Connections measured geometry

Connection Grid number hp (mm) wp (mm) tp (mm) e0 (mm) e1 (mm) p1 (mm) e2 (mm) g (mm) c (mm) aw (mm)

Fin plate D1.5 259 100 10 22 27 40 60 50 10 20 6

E1.5 260 100 10 25 25 40 60 50 9 20 7

End plate D2 maj 260 150 8 20 40 60 30 — — 6

D2min 262 140 8 25 40 60 30 — — 6

E2 maj 259 150 8 22 40 60 30 — — 6

E2min 259 140 8 25 40 60 30 — — 6

Bolts M20

Being: hp the height of the plate, wp the width of the plate, tp the thickness of the plate, e0 distance between the upper flange and the plate., e1 the end

distance from the centre of the fastener hole to the adjacent end of any part, measured in the direction of the load transfer, p1 the spacing between centres

of fasteners in a line in the direction of load transfer, e2 the edge distance from the centre of the fastener hole to the adjacent edge of any part, measured at

right angles to the direction of the load transfer, g gap between the web of the primary beam and secondary beam, c distance between the upper flange of

primary beam and secondary beam, aw the thickness of the weld on the beam web.

(a) (b) (c) (d)

High temperature strain gauges 

Fig. 7. Location of the high-temperature strain gauges: (a) D1.5; (b) E1.5; (c) D2; (d) E2.
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Fig. 8. Location of measurements on the slab, at 5th floor level.
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3.4. Mechanical properties of structure

Table 5 reproduces the material properties at ambient
temperature for the steel and concrete [11]. The actual
concrete strength was assessed during the experimental
preparation of the integrity test using non-destructive
testing [16], while the measured steel properties were
obtained during building construction.
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Table 5

Material properties of tested elements, [11] and [16]

Material Ultimate Stress (MPa) Yield Stress (MPa) Compressive Strength (MPa) Tensile Strength (MPa)

Nominal Measur Nominal Measur Nominal fc,k Measur fck, cube Nominal Measur

Steel

S275 430 469 275 303 — — — —

S355 510 544 355 396 — — — —

Plate

Grade 43 430 — 275 — — — — —

Bolts

8.8 800 869 640 — — — — —

Concrete

LW 35/40 — — — — 35 39,39 3.2 —

70,48

Reinforc.

A142 mesh: T6@200mm — — — — — — — —

Fig. 9. Compartment after fire, residual deformation 925mm, no local collapse of structure.
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4. Experimental observations

4.1. Fire development and compartment temperature

During the test the predicted local collapse of the
structure was not reached, see Fig. 9. Fig. 10 compares
the temperatures recorded in the compartment with the
parametric curve presented in Eurocode 1, Annex A [19].
The quantity of thermal load and the dimensions
of the opening on the facade wall were designed to
achieve a representative fire in the office building. The
maximum recorded compartment temperature near the
wall (2 250mm from D2) was 1107.8 1C after 54min,
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while the predicted temperature was 1078 1C in 53min,
see [16].

4.2. Temperature evolution in the structure

Measurements of the temperature in the mid-span beams
were taken on the bottom flange, on the web and on the
upper flange. A summary of the temperatures recorded in
the beams is presented in Fig. 11. The maximum recorded
steel temperature of 1087.5 1C occurred after 57min of fire,
on the bottom flange of beam DE2 in the middle of the
section. By calculation, using a step by step procedure for
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the heat transfer into the unprotected steel structure, see
[20, (Eq. 4.24)] and with the help of the time–temperature
curve measured on the compartment, a maximum steel
temperature of 1067 1C in 54min was predicted.
Measurements of the temperature in the connections

were taken on the beam adjacent to the connection, in the
plate and in the bolts. A summary of the temperatures
recorded in the connections is presented in Figs. 12–14.
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in the joints was slower. Using the thermal cameras it was
possible to observe this effect, see Fig. 15.

The maximum joint temperature was around 200 1C
lower than the maximum temperature of the beam. The
first bolt row from the top was significantly cooler than the
lower bolts, because of shielding by the adjacent slab and
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4.3. Behaviour of the structural members

The maximum deflections were not recorded by the
displacement transducers because its range was limited to
1000mm minus the initial offset. From the video
cameras on the 5th floor it is possible to recalculate a
maximum vertical displacement of about 1200mm. Fig. 17
shows the vertical displacement recorded in beams D1–E1,
D1/2–E1/2, D2–E2. Comparing the different secondary
beams, it is observed that during the heating phase, the
beam with a lower displacement is the beam near the
window, because of lower temperatures, while the beam
near the internal wall shows the biggest displacement.
In the cooling phase, both these beams partially
recovered.

Local buckling of the beam lower flange was one of the
main failure mechanisms. It is observed in the lower beam
Fig. 18. Local buckling o

Fig. 19. Beam w

Fig. 20. Plastic hinge in the unprotected beam cros
flange and web adjacent to the joints, see Fig. 18, the
concrete slab having restrained the upper flange. This local
buckling occurs during the heating phase after about
23min of fire (observed by thermo imaging camera), due to
the restraint to thermal elongation provided by the
adjacent cooler structure and the structural continuity of
the test frame. The heated lower flange of the beam is
unable to transmit the high normal forces generated in the
lower flange of the beam to the adjacent beams/columns
after closure of the gap in the lower part of the
connections. The beam could be assumed to behave as
‘simply supported’, allowing larger mid-span deflections to
develop. This phenomenon was numerically predicted by
Lamont and Usmani [21].
As temperature and the associated deformations in-

crease, shear buckling of the beam web was observed, see
Fig. 19.
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The formation of a plastic hinge in the beam cross-
section next to the protected zone was one of the main
observed mechanisms in the main beam D1/2, see Fig. 20.
This hinge is induced by distortional buckling during the
first stage of the heating phase, due to the restraint to
conn
Crac

(a)

(b)

(c)

Fig. 22. Fracture of the end-plate along the w

D

D

Fig. 21. Buckling of column flang
thermal elongation provided by the adjacent protected
section. This behaviour is associated with the local loss of
stability in the bottom flange. Subsequently, during the
second stage of the heating phase, the beam rotates around
this point due to the large mid-span deflection.
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Crack in 
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elds, connections D2–D1; E2–E1, D2–C2.
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Fig. 24. Mesh of cracks in concrete slab.
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Fig. 23. Elongation of holes in the beam web in fin plate connection.
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Due to the end-plate loading, bending in the column
flange was observed in one of the major axis beam-to-
column joints, see Fig. 21. This behaviour results from the
small column flange thickness (t ¼ 21.4mm) and the small
distance between the bolts, the bolted end-plate behaving
as a welded joint. This behaviour was observed in both
columns flanges of the two beam-to-column joints (D2;
E2).

4.4. Behaviour of the connections

Fracture of the end-plate along the welds was observed,
caused by the horizontal tensile forces during cooling of the
connected beam under large rotations associated with
flexible end-plate joints, see Fig. 22. The fracture occurred
along one side of the connection only, while the other side
remained intact. After one side has fractured, the increased
flexibility allowed larger deformations without further
fracture. This behaviour was observed in both the major
axis beam-to-column joints (D2–D1; E2–E1) and the minor
axis beam-to-column joints (D2–C2).

The elongation of the holes in the beam web in the
tension/compression part of the fin plate connection is due
to the associated large rotations, see Fig. 23. The
elongation of the holes occurred on the web of connected
beam, while the fin-plate remained intact: the beam web
thickness (6mm) is smaller than the fin-plate (10mm);
again, the elongation of the holes of the beam web leads to
increased joint flexibility, allowing larger deformations
without further fracture.

4.5. Composite slab behaviour

Fracture in the concrete slab was observed, a large crack
propagating from the face of the column flange parallel to
the beam (D2–E2), see Fig. 24. This crack developed due to
the tension in the concrete slab, along the weak zone in the
composite beam–flange extremity. After the concrete
cracked, the joint stiffness gradually decreased. Secondary
cracks occurred perpendicular to, and continuous across,
the connections on both sides of the slab, see Fig. 25. The
maximum vertical displacement occurred along a line of
mesh reinforcement overlap (without adequate attach-
ment). This led to slippage of the mesh and the
corresponding behaviour of the slab was ‘‘de facto’’
without reinforcement.
The cameras above the fire compartment recorded loss

of the integrity limit state of the concrete slab after 54min.
The opening of the composite slab took place around
column E2 by a punching mechanism due to the tension in
the concrete slab in the edge compartment. Furthermore,
many tiny cracks were observed in different areas of the
concrete slab.

5. Conclusions

Collapse of structure was not reached, thus allowing to
demonstrate that the structure has adequate fire safety for
the fire load of 40 kg/m2 of wood cribs, which represents a
design fire load in a typical office building, coupled with a
mechanical load in excess of typical serviceability condi-
tions. The test results fully supported the concept of
unprotected beams and connections with protected col-
umns as a viable system for composite floors [18].
The local buckling of the lower flanges of beams was

observed after 23min of fire. Fracture of the end plates
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Fig. 25. Reinforcement mesh (a) slippage and cracking near to the column

D2, (b) largest crack/opening in the mid-span.
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occurred under cooling in the heat affected zones of welds
without losing the shear capacity of the connections. The
fin plate connections behaved in a ductile fashion due to
elongation of holes in bearing.

This test shows the conservatism of the Eurocode fire
design [19,20]. The calculated values show good and
conservative predictions of the temperature in the fire
compartment, the transfer of heat into the structure and
connections and the prediction of structural behaviour.

The detailed behaviour of the composite slab, connec-
tions and columns is currently being investigated to refine
the analytical and numerical prediction models, prelimin-
ary published results being available in [22,23]. Further
experimental tests on subassemblies using the boundary
conditions measured on the Cardington frame test are
currently being prepared to further explore the behaviour
of connections, columns and beams.
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