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Abstract

This paper analyses the transient heat transfer across multi-layer floors subjected to multiple heat sources. The formulation that is

proposed to solve this problem uses analytical expressions handling both conduction and convection phenomena. The Green’s

functions (analytical expressions) for the layered formation are established by imposing the continuity of temperatures and heat

fluxes at the medium interfaces between the various layers. The heat field inside a layer is obtained by adding the contribution of the

direct heat incident field, generated as in an unbounded medium, to the heat produced by a set of virtual surface heat sources, that

take into account the presence of the interfaces.

The technique used to deal with the unsteady state conditions consists of first computing the solution in the frequency domain and

then applying (fast) inverse Fourier transforms into space-time.

r 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

The interior comfort of a dwelling is a fundamental
issue in building physics, and it depends on the
building’s envelope. In order to better understand the
thermal performance of the construction elements used
throughout the building envelope, it is increasingly
important to develop more accurate models to evaluate
it. Thermal behaviour depends largely on unsteady state
conditions, and so the formulations for studying those
systems should contemplate the transient heat phenom-
ena. In general, multi-layer construction elements
are used to ensure that all the functional requirements
are met.

The heat transfer in multi-layer problems is a subject
that has been quite widely researched. Several publica-
tions can be found in the literature: Özisik has written a
e front matter r 2005 Elsevier Ltd. All rights reserved.

ildenv.2005.05.012

ing author. Tel.: +351 239 797 191;

97 190.

ess: nasimoes@dec.uc.pt (N. Simões).
book [1] including a review of one-dimensional compo-
site media, referring to orthogonal expansions and
Green’s functions; Monte [2] analysed the transient heat
conduction of multi-layer composite slabs, applying the
method of separation of variables to the heat conduc-
tion partial differential equation. A frequency-domain
regression method was developed by Wang and Chen [3]
to compute the heat flow for a one-dimensional multi-
layer model. Many other earlier works describe transient
heat transfer problems in composite layers, such as that
by Haji-Sheikh et al. [4] and Sun and Wichman [5].
Haji-Sheikh et al. presented different types of Green’s
functions that are solutions of the heat conduction
diffusion equation in multi-dimensional, multi-layer
bodies for different boundary conditions, calculating
eigenvalues, while Sun and Wichman used an eigenfunc-
tion expansion method to calculate the heat conduction
in a one-dimensional three layer slab.

The study of the transient heat transfer can be
handled either directly, in the time domain or in
a transform space domain. In the time-marching
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approach the solution is assessed step by step at
consecutive time intervals after an initially specified
state has been assumed (see [6–8]). One approach widely
used to overcome some of the disadvantages of the
single-step time-marching schemes is the Laplace trans-
form [9,10]. The Laplace transform employs a numerical
transform inversion to calculate the physical variables in
the real space, after the solution has been obtained for a
sequence of values of the transform parameter. The
major drawback of Laplace transforms is that accuracy
is lost in the inversion process, which magnifies small
truncation errors [11]. Davies [12] has published a work
using a time domain analysis to study the transient heat
flow in a multi-layer wall, while Chen et al. [13] uses
Laplace transforms to calculate transient heat flow
through multi-layer spherical structures. In this work,
however, we propose a different approach, that needs
the knowledge of Green’s functions (analytical expres-
sions) for a layered formation and the implementation
of a frequency domain transform. This approach has
been proposed and verified by the authors in a previous
work (see [14]).

The search for Green’s functions has been object of
research over the years because these expressions are
both useful by themselves and can be used as benchmark
solutions [15]. These fundamental solutions can also be
incorporated into numerical tools such as the Boundary
Element Method (BEM) to solve more general problems
(see [16]).

The Green’s functions for calculating the transient
heat transfer wave field in layered formations subjected
to multiple heat sources are given below. The proposed
fundamental solutions relate the heat field variables
(heat fluxes or temperatures) along the domain caused
by the energy generated by sources placed elsewhere in
the media, in the presence of both conduction and
convection phenomena. These expressions allow the
heat field inside a layered medium to be computed,
without the discretization of the interior domain. The
problem is formulated in the frequency domain using
time Fourier transforms.

This work extends the authors’ earlier work on the
definition of the conduction phenomenon within layered
solid media (see [14,17]). The problem is now solved
with the convection phenomenon being incorporated
and considering multiple cylindrical heat sources. As in
the previous work, the technique requires knowing the
Green’s functions for the case of a spatially sinusoidal,
harmonic heat line source placed in an unbounded
medium. The Green’s functions for a layered formation
are formulated as the sum of the heat source terms equal
to those in the full-space and the surface terms required
to satisfy the boundary conditions at the interfaces, i.e.
continuity of temperatures and normal fluxes between
layers. The total heat field is found by adding the heat
source terms equal to those in the unbounded space to
that set of surface terms, arising within each layer and at
each interface.

This paper first formulates the three-dimensional
problem and presents the Green’s function for a
sinusoidal heat line source applied in an unbounded
medium. A brief description of the mathematical
manipulation is given. Then, the Green’s functions for
a multi-layer formation, ensuring the continuity of
temperatures and heat fluxes at the various interfaces,
are established. Finally, the applicability of this for-
mulation is illustrated by using it to analyse the heat
propagation within a multi-layer floor subjected to
several heat sources. Different simulations are studied,
taking the convection phenomenon and the presence of
an insulating layer into account.
2. Three-dimensional problem formulation and Green’s

functions in an unbounded medium

The transient convection-conduction heat transfer
across homogeneous media, assuming null initial con-
ditions, is expressed by the equation
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where V x, V y and V z are the velocity components in the
direction x, y and z respectively, t is time, Tðt; x; y; zÞ is
temperature, K ¼ k=ðrcÞ is the thermal diffusivity, k is
the thermal conductivity, r is the density and c is the
specific heat. It is presumed that the thermal properties
and convection velocities along the x; y and z directions
remain constant. Applying a Fourier transform in the
time domain, one obtains an equation that differs from
the Helmholtz equation by the inclusion of a convective
term,
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and o is the frequency. The fundamental
solution (Green’s functions) of Eq. (2) for a heat point
source in an unbounded medium, located at ð0; 0; 0Þ, can
be expressed as
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The full three-dimensional problem can be mathemati-
cally manipulated if the geometry of the problem
remains constant along one direction. Assuming that
the geometry does not vary along the z direction, the
problem can be expressed as a summation of two-
dimensional solutions with different spatial wavenum-
bers kz [18] by means of the application of a Fourier
transform along that direction. Considering that a
spatially sinusoidal harmonic heat line source is applied
at the point ð0; 0Þ along the z direction (see Fig. 1),
subject to convection velocities V x;V y and V z, the
application of a spatial Fourier transformation to
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along the z direction, leads to
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where H0ð Þ are Hankel functions of the second kind

and order 0, and r0 ¼
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The full three-dimensional solution is then retrieved
by means of an inverse Fourier transform along the kz

domain. This inverse Fourier transformation can be
expressed as a discrete summation if we assume the
existence of an infinite set of virtual sources, equally
spaced at Lz, along z, which enables the solution to be
obtained by solving a limited number of two-dimen-
sional problems,

T̂ðo;x; y; zÞ ¼
2p
L

XM
m¼�M

~Tðo;x; y; kzmÞ e
�ikzmz (6)

with kzm being the axial wavenumber given by
kzm ¼ ð2p=LzÞm. The distance Lz is chosen so as
to prevent spatial contamination from the virtual
sources [19].
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Fig. 1. Spatially harmonic varying line load.
The application of a spatial Fourier transformation
along the z direction in Eq. (2) leads to the following
equation:
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when V z ¼ 0. The fundamental solution of this equation
is given by Eq. (5) ascribing Vz ¼ 0.

Note that the problem can be approached as a
continuous superposition of heat plane effects: Eq. (5)
may be substituted by the expression,
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with ðImðnÞp0Þ, and the integration is performed with
respect to the horizontal wave number (kx) along the x

direction.
The integral in the above equation can be transformed

into a summation if an infinite number of such sources
are distributed along the x direction, at equal intervals
Lx. Each individual heat source is simulated, ensuring
that the distance separating it from its neighbours is
large enough to prevent the virtual loads from
contaminating the heat responses; the simulation of a
system using multiple heat sources is obtained by
ascribing the exact distance between these virtual loads.
Therefore, Eq. (8) can then be expressed as
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with ðImðnnÞp0Þ, kxn ¼ ð2p=LxÞn, which can in turn be
approximated by a finite sum of equations (N). Note
that kz ¼ 0 corresponds to the two-dimensional case.

After computing the heat field in the frequency
domain, the spatial-temporal response is calculated by
applying numerical inverse fast Fourier transforms in
kz, kx and in the frequency domain (o). The time
variation of the source can be easily defined or changed,
which allows the modelling of the appropriate heat
power conditions. To prevent interference from aliasing
phenomena, the computations are performed using
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complex frequencies with a small imaginary part of the
form oc ¼ o� iZ (with Z ¼ 0:7Do, and Do being the
frequency step). In the time domain, this effect is
removed by rescaling the response with an exponential
window of the form eZ t.
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Fig. 2. Temperature distribution along a line of 40 receivers placed in

an unbounded medium, at different times (350, 450, 550 and 650h) in

the presence of a cylindrical (d ¼ 2) unit heat source.

Fig. 3. Geometry of the problem for a multi-layer system bounded by

two semi-infinite media (media 0 and mþ 1).
2.1. Verification of the solution

The exact solution of the transient conduction-
convection heat transfer for an unbounded medium
subjected to a three, two or one-dimensional unit heat
source is well known (see [20]). Assuming that a unit
heat source, applied at time t ¼ t0, is placed at point
ð0; 0; 0Þ, the exact time domain solution of the tempera-
ture at ðx; y; zÞ, considering both conduction and
convection phenomena, is given by

Tðt;x; y; zÞ ¼
eð�ð�tVxþxÞ2�ð�tVyþyÞ2�ð�tV zþzÞ2Þ=4Kt

rcð4pKtÞd=2
,

if t4t0 ð10Þ

where t ¼ t� t0; the parameter d can be 3, 2 or 1
depending on whether the problem is three, two or one-
dimensional, respectively.

The performance of the formulation stated above
is evaluated in the calculation of the heat field in
a homogeneous unbounded medium with thermal
properties that allow k ¼ 1:4Wm�1 �C�1, c ¼

880:0 JKg�1 �C�1 and r ¼ 2300Kgm�3. The convection
velocities applied in the x, y and z direction were equal
to 1� 10�6 m s�1. If a cylindrical (d ¼ 2) unit heat
source placed at (x0 ¼ 0:0m, y0 ¼ 0:0m, z0 ¼ 0:0m) is
excited at t ¼ 277:8 h, the responses at different times
(350, 450, 550 and 650 h) calculated along a line of 40
receivers placed from ðx ¼ �1:5; y ¼ 0:35 z ¼ 0:0Þ to
ðx ¼ 1:5; y ¼ 0:35; z ¼ 0:0Þ, are those given in Fig. 2. In
this figure, the solid lines represent the exact time
solution given by Eq. (10) while the marks show the
response obtained using the proposed Green’s functions.
A good agreement was achieved between these two
solutions. As we have assigned a convection velocity in
the x direction, it should be noted that the temperature
response along the line of receivers is not symmetrical.

The calculations were first performed in the frequency
domain, in the frequency range ½0; 1024� 10�7 Hz�, with
an increment of Do ¼ 10�7 Hz, which defines a time
window of 2777:8 h.
3. Green’s functions in a layered formation

This section establishes the Green’s functions for a
layered formation, using the continuity of temperatures
and heat fluxes as boundary conditions at the interfaces
between layers.
Consider a set of m homogeneous plane layers of
infinite extent bounded by two flat, semi-infinite, media
(see Fig. 3). The top semi-infinite medium has been
called medium 0, while the bottom semi-infinite medium
is taken to be medium mþ 1. Different material thermal
properties, vertical convection velocities and thicknesses
can be ascribed to each layer. These convection
velocities are perpendicular to the layer’s plane. Note
that convection phenomenon is modelled assuming that
its origin coincides with the heat source. Assuming that
the multi-layer is subjected to a spatially sinusoidal heat
source placed in medium 1, the heat field at any position
is computed taking into account both the surface heat
terms generated at each interface and the contribution
of the heat source term (incident field).
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For the layer j, the heat surface terms on the upper
and lower interfaces can be expressed as
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0 and hl is the thickness of the layer l. Meanwhile, Kj ¼

kj=ðrjcjÞ is the thermal diffusivity in the medium j (kj, rj

and cj represent the thermal conductivity, the density
and the specific heat of the material in the medium, j,
respectively). The heat surface terms produced at
interfaces 1 and mþ 1, governing the heat that
propagates through the top and bottom semi-infinite
media, are respectively expressed by
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The system of equations is assembled, imposing the
continuity of temperatures and heat fluxes along the
mþ 1 interfaces between layers. 2ðmþ 1Þ equations
are achieved, taking into account the contribution of
the surface terms and the involvement of the incident
field. All the terms are organized according to the form
F a ¼ b
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The resolution of the system of equations allows

the unknown amplitudes of the surface terms in
each interface (Ab
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be computed. The heat field for each layer formation
is then obtained by adding these surface terms
(generated heat field) to the contribution of the incident
field, leading to the following equations:
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medium j ðja1Þ
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bottom semi-infinite medium (medium mþ 1)
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Note that if the heat source is placed in another layer,
the matrix F remains the same, while the independent
terms of b are different. However, as the equations can
be easily manipulated to consider another position for
the source, they are not included here.

The responses in the time domain are calculated by
means of a numerical inverse fast Fourier transform in
kz, kx and o, as explained above.
Fig. 4. Geometry of the problem for a layer bounded by two semi-

infinite media.

Table 1

Material’s thermal properties for verification of the Green’s functions

Intermediate layer (medium 1)

Thermal conductivity ðWm�1 �C�1Þ k1 ¼ 1:4

Density ðkgm�3Þ r1 ¼ 2300:0

Specific heat ðJ kg�1 �C�1Þ c1 ¼ 880:0
4. Green’s functions verification

The accuracy of this layered problem formulation was
verified by comparing its results with those obtained
using a BEM. This technique entails high computational
costs, as is well known, since boundary meshing is
required. To better simulate the layer interfaces, the
boundary is discretized with a large number of elements
distributed along as much of the surface as necessary.
The methodology that is adopted to delimit the
interfaces’ discretization involves introducing an ima-
ginary part to the frequencies, oc ¼ o� iZ (with
Z ¼ 0:7Do), which introduces damping.
Bottom medium (medium 2) Top medium (medium 0)

k2 ¼ 63:9 k0 ¼ 63:9

r2 ¼ 7832:0 r0 ¼ 7832:0

c2 ¼ 434:0 c0 ¼ 434:0
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Fig. 5. Real and imaginary parts of the responses for a layer bounded

by two semi-infinite media: (a) Receiver 1 and (b) Receiver 2.
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The verification procedure is performed calculating
the temperature field generated by a heat source placed
in a flat layer, 3:0m thick, bounded by two semi-infinite
media (see Fig. 4). The convection velocities, in the y

direction, applied to the three media were 5� 10�7, 8�
10�7 and 1� 10�6 m s�1 for the top medium, inter-
mediate layer and bottom medium, respectively. The
material’s thermal properties used are presented in
Table 1.

The calculations have been computed for 32 frequen-
cies starting from 0Hz, assuming a frequency increment
of Do ¼ 10�7 Hz and a single value of kz equal to
0:4 radm�1. The responses were calculated for two
receivers placed in two different media when a heat
point source was located at (x ¼ 0:0m; y ¼ 1:0m ).
Fig. 5 displays the real and imaginary parts of the
response at receiver 1 (x ¼ 0:2m; y ¼ 0:5m) and receiver
2 (x ¼ 0:2m; y ¼ 3:5m), placed in mediums 1 and 2,
respectively. The imaginary part of the frequency was
set to Z ¼ 0:7Do. The solid lines represent the analytical
responses, while the marked points correspond to the
Fig. 6. Schematic illustration of the problem’s geometries: Model 1 (a), Mode

source (d).

Table 2

Materials’ thermal properties of the application examples

Thermal conductivity, k ðWm�1 �C�1Þ

Air 0.0267

Water 0.606

Cement mortar 0.72

Concrete 1.4

Polystyrene 0.027

Soil 0.52
BEM solution. The square and the round marks
designate the real and imaginary parts of the responses,
respectively. As can be seen, these two solutions seem to
be in very close agreement, and equally good results
were obtained from tests in which heat sources and
receivers were situated at different points.
5. Applications

The applicability of the formulation presented above
is now illustrated. The heat propagation through a floor
(0:32m thick), composed by several flat infinite layers
bounded by two semi-infinite media, is computed for
different cases. The incorporation of the convection
phenomenon and the presence of an insulating layer and
its position are analysed.

The top semi-infinite layer of the multi-layer system is
assumed to be a fluid (water or air), allowing a vertical
convection velocity of 5e�6 m s�1, while the bottom
semi-infinite layer is considered to be soil. The upper
l 2 (b) and Model 3 (c). Time evolution of the power emitted by the heat

Density, rðkgm�3Þ Specific heat, c ðJ kg�1 �C�1Þ

1.177 1005.0

998.0 4181.0

1860.0 780.0

2300.0 880.0

55.0 1210.0

2050.0 1840.0
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solid layer, 0.07 m thick, is made of cement mortar. The
remaining layers, placed between the cement mortar
layer and the soil, may be modelled as concrete and
thermal insulating material. Three different geometries
are modelled: Model 1 only considers a concrete layer
Fig. 7. Temperature distribution across the multi-layer floor at t ¼ 5 and 10

Model 1, when the fluid is water with convection velocity; (c) Model 2, when

fluid is water with convection velocity.
with a thickness of 0:25m; in Model 2 an insulating
layer (extruded polystyrene), 0:02m thick, is located
below the concrete layer, which is 0:23m thick, while in
Model 3 the insulating material is positioned above the
concrete layer. The models’ geometries are shown in
h. (a) Model 1, when the fluid is water without convection velocity; (b)

the fluid is water with convection velocity and (d) Model 3, when the
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Fig. 6, while the materials’ thermal properties are listed
in Table 2.

The layered floors are subjected to the heat generated
by several spatially sinusoidal harmonic heat line
sources placed inside the cement mortar layer at equal
distances of 0:3m apart (Lx ¼ 0:3m). These sources
start emitting energy at t � 0:76 h, as shown in Fig. 6(d).
Their power is increased linearly from 0.0 to 1000:0W,
reaching maximum power at t � 3:46 h. This value is
maintained for a period of t � 2:72 h. The power is then
reduced linearly to 0:0W, which occurs at t � 8:89 h.
The heat fields are computed over a fine grid of receivers
in the frequency range of ½0:0; 128:0e�5 Hz�, with a
frequency increment of 1:0e�5 Hz, which establishes a
time period of 27:78 h. The calculations have been
performed for a grid of receivers, placed at 0:01m
intervals along the x direction, and at 0:08m along the y

direction. In order to study the performance of each
constructive system, the temperatures for the three
models have been plotted across the full domain at
different times (snapshots) and also at specific receivers
for the complete time window.

Fig. 7 shows a sequence of snapshots of the
results obtained at different times, t ¼ 5 and t ¼ 10 h,
when the fluid medium is filled with water. These
figures display the temperature field as isothermal
contour plots. Notice that all the receivers register a
null temperature at the beginning of the process, to
Fig. 8. Temperature distribution across the multi-layer floor, at t ¼ 5 and 10

(b) conduction and convection phenomena.
conform with the initial conditions defined for the
present problem.

Fig. 7(a) and (b) give the results for Model 1, when
the fluid is assumed to be water. In subheading (a) the
convection phenomenon through the water medium is
not modelled, while in Fig. 7(b) a vertical convection
velocity of 5e�6 m s�1 is ascribed to the water medium.
These results show perceptible amplitude differences
between the two cases. In both cases it can be seen that
the energy spreads faster through the concrete layer,
which is in accordance with its higher diffusivity (K). At
time t ¼ 5 h the contour configuration between the two
cases is very similar, but higher temperatures can be
already found along the top semi-infinite medium in the
presence of the convection phenomenon, since the heat
propagates more rapidly. At time t ¼ 10 h the source
power is no longer emitting energy, but the energy
continues to propagate through the full domain of
receivers. The temperature increases for the receivers
located further away from the source, while a tempera-
ture fall is registered at the receivers closer to the heat
sources. This behaviour occurs while the energy is
achieving equilibrium throughout the full domain. The
heat field that can be observed immediately below
the concrete layer is very similar for the two situations
(Fig. 7(a) and (b) at t ¼ 10 h).

The responses presented in Fig. 7(c) and (d) corre-
sponding to Models 2 and 3, respectively, assume both
h, for Model 1, when the fluid is air: (a) conduction phenomenon and
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conduction and convection phenomena. These models
have been set to describe the heat field changes when
there is an insulating layer. The introduction of an
insulating layer, 0:02m thick, between the soil and the
concrete insulating (Model 2) layer allows a slight
temperature rise in the concrete layer and, as expected,
lower temperatures in the soil medium, as shown in Fig.
7(c). A considerable thermal gradient is noted across the
thermal insulating layer, due to the low thermal
conductivity of this material.

Fig. 7(d) displays the temperature distribution (iso-
thermals) for the case where the insulating layer is
located immediately below the source-containing layer.
This case exhibits higher temperatures throughout the
water medium, since the energy is not spreading so easily
to the concrete layer as in the other cases. A large
Conduction phenomenon 
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Fig. 9. Temperature curves for conduction alone and when both the conduc

Rec. 4, for the three models, when the fluid is assumed to be water: (a) Mod
thermal gradient is clearly visible between the top and
bottom interfaces of the insulating layer. Note that the
concrete layer is heat-protected by the presence of the
insulating layer. For example, at time t ¼ 10 h, close to
the sources, temperatures of 300 and 50 1C are registered
at the top and bottom interfaces, respectively. This
reveals the importance of the insulating layer’s position,
which determines the quantity of energy dissipated
wastefully. If the convection phenomenon for Models 2
and 3 is not taken into account (these plots are not
included here), the minimum temperature registered in
the water medium of Models 2 and 3, at t ¼ 5 h, was
0.25 1C, instead of 1 and 2.5 1C, registered when the
convection is modelled, as shown in Fig. 7(c) and (d).

Fig. 8 presents the snapshots displaying the tempera-
ture field for Model 1 when the fluid is air. Comparing
Conduction and convection phenomena 
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the results of this last case with those presented in
Fig. 7(a) and (b), it can be seen that much higher
temperatures are registered at the receivers placed in the
air medium. This effect is in accordance with the fact
that air allows a much higher diffusivity coefficient than
water. As time advances (t ¼ 10 h), the energy is still
propagating away from the source and a temperature
rise has been registered at the layers below the sources’
layer. However, it is interesting to note that the
temperature has fallen very quickly in the air medium,
confirming its higher diffusivity.

To better illustrate the temperature evolution over
time, the temperature curves computed at receivers Rec.
1 to Rec. 4, are shown in Fig. 9. The first two receivers
are placed abreast of the source power (x ¼ �0:45m) as
shown in Fig. 6, while receivers Rec. 3 and Rec. 4, are
located between heat sources (x ¼ �0:3m). In order to
obtain more information about the system’s behaviour,
the receivers Rec. 1 and Rec. 3 are inside the concrete
layer, while Recs. 2 and 4 are placed at the fluid medium
close to the heat source layer.

The temperatures at receivers Rec. 1 are always higher
than those found at Rec. 3, in the first part of the time
window. Looking at the figures related to the conduc-
tion-convection heat transfer results, we can see much
higher maximum amplitudes than for conduction alone.
In the conduction-convection models, the receivers Rec.
2 and Rec. 3 reach maximum temperatures significantly
higher than the other two receivers. This is because of
the presence of the convection velocity in the fluid
medium, which is a constant positive value in the y

direction. A similar behaviour is exhibited by Model 3
(see Fig. 9(c)) when only conduction is considered,
because of the insulating layer position.

Notice that the results are linear in relation to the heat
source power. Considering that each heat source only
generates 100W the maximum temperature reached by
Model 3 would be 26.56 1C, in spite of the 265.6 1C
obtained for the present case.

The presence of an insulating layer at the bottom of
the concrete layer and the absence of the convection
phenomenon are responsible for the particular results
registered in Fig. 9(b), where receiver Rec. 2 is not the
one to record the maximum temperature, unlike the rest
of temperature curves figures.
6. Final remarks

An approach for computing the transient heat
transfer by conduction and convection across a layered
medium has been described. This formulation proposes
to calculate the heat responses first in the frequency
domain. The methodology described requires the knowl-
edge of fundamental solutions or Green’s functions for a
layered formation, and these were established using the
continuity of temperatures and normal heat fluxes as
boundary conditions at the media interfaces between the
various layers. The heat field results for the multi-layer
system are achieved considering the contribution of heat
source (incident field) and heat surface terms (generated
heat field). The verification of the mathematical
formulation and the evaluation of the Green’s functions’
accuracy for the layered formation are given.

This technique seems to be suitable for studying a
multi-layer floor construction subjected to multiple heat
sources. The application results show that the presence
and position of an insulating layer are important
variables to be considered when studying radiant floor
heating. The convective phenomenon has also been
contemplated, representing an important contribution
for the response.
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