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Abstract

In this work, the authors use analytical solutions to assess the airborne sound and impact insu-
lation provided by homogeneous partitions that are infinite along their plane. The algorithm uses
Green’s functions, derived on the basis of previous work by the authors on the prediction of airborne
sound insulation provided by single and double panels. The model is now extended to handle mul-
tilayer systems, allowing the simulation of three-dimensional loads applied in both the acoustic and
solid media.

The model is validated against experimental results and compared with simplified expressions for
single, double and triple panels. The results provided by the analytical model were found to provide a
good agreement with the experimental results, except in the vicinity of the coincidence effect in the
presence of thicker panels.

The applicability of the proposed tool is then illustrated by analyzing the acoustic behavior pro-
vided by single layers and by a suspended ceiling. Different variables are studied, such as the mass,
the stiffness of the layers, the position and direction of the load within the elastic medium and the
presence of porous material in the fluid layers. It was found that the model is able to simulate the
acoustic phenomena involved in single and multilayer systems.
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1. Introduction

The transmission of airborne sound energy through a single separation element depends
on several variables, such as the frequency of sound incident on the element, the physical
properties of the panel (mass, internal damping, elasticity modulus, Poisson’s ratio), the
connections with the surrounding structure and the vibration eigenmodes of the element.
The prediction of the physical phenomena regarding wave propagation is quite complex,
and this has led to several simplified models such as the theoretical Mass Law, which
assumes the element behaves like a group of infinite juxtaposed masses with independent
displacement and null damping forces. Sewell [1] and Sharp [2] have proposed other sim-
plified models for the frequencies below, in the vicinity of and above the coincidence effect
to predict the airborne sound insulation provided by single panels.

But predicting the dynamic behavior of a multilayer system turns out to be more com-
plex. Different simplified approaches have been proposed over the years. London [3] pre-
dicted the sound insulation provided by double walls. In this model the double wall is
excited by plane waves at frequencies below the critical frequency and the mass is con-
trolled to disregard panel resonance. The equation proposed by London takes into
account the effect of the resonance which occurs within the air gap. Beranek [4] later per-
formed some mathematical manipulations in order to consider mass–air–mass resonance.
The effect of an air gap filled with a porous sound-absorbing material has been simulated
by other authors [5].

Fringuellino et al. [6] calculated the transmission loss in multi-layered walls using a sim-
plified approach based on the prior knowledge of the characteristic impedance of each
material layer. Bolton et al. [7] described a theory for multi-dimensional wave propagation
in elastic porous material, based on Biot’s theory, and used it to predict the airborne sound
insulation provided by foam-lined panels. When aluminium double-panel structures lined
with polyurethane foam were studied, the results provided by their models were found to
be good when compared with experimental results.

It is also important to predict the impact sound insulation provided by partitions at the
design stage. The development of a prediction model has to take the excitation and the
sound transmission system into account. In dwellings, the sources of annoyance can be
footsteps or the impact of dropped objects. To evaluate the impact sound level experimen-
tally, a standardized tapping machine, as described in the ISO standards, is used.
Although this machine does not simulate real footsteps, the test results yield important
information concerning the dynamic behavior of the floor. Several authors have addressed
the problem of the excitation source, where the interaction at the interfaces between the
hammer and the floor has to be considered. Cremer [8] has derived an impact source spec-
trum caused by the tapping machine acting on homogeneous floors of high impedance. He
assumes that the impact is perfectly elastic and the results were proved to be satisfactory
for several frequencies. Vér [9] derived a complete description of the force spectrum and
impact level provided by the tapping machine on hard surfaces. He also considered the
improvement in insulation provided by the use of elastic surface layers or by floating floors
with high-impedance surfaces.

Although the final response provided by the loads that act in the acoustic or in the elas-
tic medium differs, the dynamic behavior of partitions may present similarities. Heckl et al.
[10] found a relation between the airborne and impact sound insulation provided by
partitions.



A. Tadeu et al. / Applied Acoustics 68 (2007) 17–42 19
In this work, the authors propose an analytical model to assess the acoustic behavior of
single or multilayer partitions, infinite along their plane, dividing an infinite acoustic med-
ium. The formulation of a set of analytical solutions for calculating the acoustic insulation
provided by single and double walls when submitted to incident pressure fields has been
presented in earlier work [11–13]. This paper generalizes that model to solve structures
with an arbitrary number of elastic and acoustic layers, also allowing the application of
three-dimensional impact loads. Thus, the proposed model can be used to predict the
acoustic behavior of a broader range of acoustic systems than other models found in
the literature. In addition, it overcomes certain restrictions, such as the type and position
of the load, the number of layers and the assumption of the existence of incident plane
waves. However, the model described here does not take into account the presence of
flanking transmissions or sound bridges, since it assumes that the panels are uniform lay-
ers of infinite extent, without mechanical fixings.

The present model defines a set of potentials in each layer that are combined so as to
verify the boundary conditions and to predict the three-dimensional airborne and impact
sound insulation (vertically and horizontally) provided by either a single structural layer
or by a multilayer system. A point load is first represented by a summation of two-dimen-
sional linear loads after the application of a Fourier transformation along the z direction
(2.5D problem). Each linear load is in turn modeled as a superposition of plane sources
following the application of an additional Fourier transformation in the x direction.

The following section outlines the analytical 3D and 2.5D formulations used to predict
airborne and impact sound insulation. The analytical formulation is then validated with
experimental results and compared with simplified expressions referenced in the literature
review. For this, the airborne sound insulation provided by single and double panels is dis-
cussed, after which the impact sound insulation provided by a single panel and by a float-
ing layer system is examined. Finally, the applicability of the model is determined by
assessing the acoustic behavior provided by a single structural layer excited by point loads
and by a suspended ceiling.

2. Analytical solution formulation

The analytical solutions are derived in the frequency domain for a multilayer system,
infinite along the x and z directions, dividing an infinite acoustic medium (see Fig. 1). This
system can combine several elastic and fluid layers with different thicknesses hj

(j = 1,2, . . . ,n identifies the number of the layers).
The material properties and the wave velocities allowed in each individual panel are

defined as in Table 1.

2.1. Formulation of the 3D problem

Consider the above-defined model to be excited by a point load, acting within one of its
layers. For the case of point pressure loads acting in a fluid layer at (x0,y0,z0), the incident
pressure wave field can be expressed by

rfullðx; x; y; zÞ ¼ Aeix
cj cjt�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx�x0Þ2þðy�y0Þ2þðz�z0Þ2
p� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� x0Þ2 þ ðy � y0Þ

2 þ ðz� z0Þ2
q ð1Þ
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Fig. 1. Geometry of the problem.

Table 1
Material properties and wave velocities allowed in each individual panel

Fluid medium Elastic medium

Density qj
f Density qj

Lamé constant kj
f Young’s modulus Ej

Dilatational wave velocity cj ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
kj

f =q
j
f

q
Poisson’s ratio mj

Compressional wave velocity cj
L ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ejð1�mjÞ

qjð1�2mjÞð1þmjÞ

q
Shear wave velocity cj

S ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Ej

2qjð1þmjÞ

q
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in which A is the wave amplitude and i ¼
ffiffiffiffiffiffiffi
�1
p

and x is the frequency of excitation.
Assuming that the geometry of the problem does not change along the z direction, when
a Fourier transformation is applied along that direction [11], which is held to have an infi-
nite number of virtual sources placed along it at equal intervals, L, then the incident pres-
sure wave field, rfull(x,x,y,z), can be computed as a summation of two-dimensional
sources,

rfullðx; x; y; zÞ ¼ 2p
L

X1
m¼�1

r̂fullðx; x; y; kzÞe�ikzz; ð2Þ

where

r̂fullðx; x; y; kzÞ ¼
�iA

2
H ð2Þ0 kj

c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� x0Þ2 þ ðy � y0Þ

2
q� �

e�ikzz ð3Þ

in which kj
c ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2=ðcjÞ2 � k2

z

q
(with Imkj

c < 0), kz is the spatial wavenumber along the z

direction kz ¼ 2p
L m

� �
and H ð2Þn ð. . .Þ are second Hankel functions of order n.

This equation converges and can be approximated by a finite sum of terms. The dis-
tance L needs to be large enough to avoid spatial contamination. The use of complex fre-
quencies further reduces the influence of the neighbouring fictitious sources.

Using this technique, the scattered field caused by a point pressure load in the presence
of the layered system can likewise be obtained as a discrete summation of 2D harmonic
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line loads, with different values of kz. This problem is often referred to in the literature as a
2.5D problem, because the geometry is 2D and the source is 3D. The same procedure can
be applied to point loads acting in the x and y directions, in a solid medium, allowing those
problems to be solved as discrete summations of simpler 2.5D problems [11].

2.2. Formulation of the 2.5D problems

In this work, a generalization of the technique proposed by Tadeu et al. [11–13] is per-
formed in order to handle multilayer systems and the application of impact loads. The ref-
erenced authors derived a procedure to calculate the pressure field generated by a single
panel, based on knowing the solid layer displacement potentials and the pressure poten-
tials due to excitation by a spatially varying harmonic line load. In that method the poten-
tials are written as a superposition of plane waves, by means of a discrete wavenumber
representation (after applying a Fourier transform in the x direction). The integrals of
the expressions are then transformed into a discrete summation by assuming an infinite
number of plane sources distributed along the x direction at equal intervals, Lx. It is then
possible to compute the 2.5D response of the system as a summation of the effects of the
defined plane sources. After computing the solutions for a full sequence of 2.5D problems
with varying values of kz, the full 3D field generated by point loads can be determined as a
discrete summation of these 2.5D problems.

A multilayer system consists of a combination of solid and fluid layers. Thus, to achieve
the solution provided by this system a set of dilatational and shear potentials generated at
each solid/fluid interface (interface a and b) must be defined. In a fluid layer (see Fig. 2a)
the full description of the pressure field requires the knowledge of one dilatational poten-
tial at each interface, while in the solid layer (see Fig. 2b and c) the displacement field is
computed by making use of one dilatational and two shear displacement potentials at each
interface, which depend on the orientation of the applied load. Table 2 lists the full set of
potentials.

In the expressions listed in Table 2 the coefficients correspond to: Ea;j
f ¼ e�imj

nf jy�ya;jj;

Eb;j
f ¼ e�imj

nf jy�yb;jj; mj
nf ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðkj

pf
Þ2 � k2

z � k2
n

q
, where Imðmj

nf Þ 6 0; kj
pf
¼ x=cj; ya,j and yb,j are

the y coordinates of the interfaces a and b which define the layer j using the coordinate
system according to Fig. 1; Ea;j

b ¼ e�imj
njy�ya;jj; Eb;j

b ¼ e�imj
njy�yb;jj; Ea;j

c ¼ e�icj
njy�ya;jj;

Eb;j
c ¼ e�icj

njy�yb;jj; cj
n ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðkj

sÞ
2 � k2

z � k2
n

q
; kj

s ¼ x=cj
S ; mj

n ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðkj

pÞ
2 � k2

z � k2
n

q
, with

Imðmj
nÞ 6 0; kj

p ¼ x=cj
L; Ej

a ¼ 1
2qjx2Lx

; Ed ¼ e�iknðx�x0Þ; kn ¼ 2p
Lx

n and (x,y) defining the coordi-
nates of a point inside the layer j. The coefficients Ax;Sj

n ; . . . ; F x;Sj
n , Ay;Sj

n ; . . . ; F y;Sj
n , GF j

n , and
H F j

n are unknowns which are determined by solving a system of equations defined for
the specific multilayer problem. This system can be written by combining individual sys-
tems of equations that are established for each layer. Each individual system of equations
is built by deriving the potentials in Table 2 in order to write the stresses and displacements
at the surfaces according to the layer and the source applied. The individual systems of
equations are fully described in Appendix 1. The final system of equations can then be
written by combining these individual systems for each layer and prescribing the boundary
conditions:

� at the solid/fluid interfaces: the continuity of normal displacements and stresses and
null tangential stresses (corresponding to 4 equations);
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Fig. 2. Definition of potentials, stresses and displacements at the interfaces: (a) fluid layer; (b) solid layer when
load acts in the x direction; (c) solid layer when load acts in the y direction.
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� at the elastic/elastic interfaces: the continuity of displacements and stresses (corre-
sponding to 6 equations);
� at the fluid/fluid interfaces: the continuity of normal displacements and pressures (cor-

responding to 2 equations).

Appendix 2 contains the definition of the final system of equations, assuming a set of
elastic (Sj with j = 1, . . . ,n) and fluid layers (Fj with j = 1, . . . ,n), according to the multi-
layer system defined in Fig. 1, in order to illustrate how the final system of equations is
built, assuming that a pressure load placed in Fluid 1 excites it.

The solution of this system will allow the unknown parameters to be determined and
the scattered field at each medium can be calculated according to:

� Pressure field rj at a point (x,y) in a fluid layer j:

rj ¼ � i

Lx

Xn¼þN

n¼�N

Ea;j
f

mj
nf

GF j
n

 !
Ed �

i

Lx

Xn¼þN

n¼�N

Eb;j
f

mj
nf

H F j
n

 !
Ed : ð4Þ

� Displacements ux;j
d (with d = x,y,z) at a point (x,y) in an elastic layer j when the load

acts in the x direction:



Table 2
Potentials generated at each layer

Fluid layer Elastic layer

Pressure load/load acting in the elastic medium Load acting in the x direction Load acting in the y direction/pressure load

Interface (a)

/a;j
f ¼ �

i

Lx

Xn¼þN

n¼�N

� cjð Þ2

x2kj
f

 !
Ea;j

f

mj
nf

GF j
n

" #
Ed /x;a;j ¼ Ei

a

Xn¼þN

n¼�N

kn

mj
n

Ea;j
b Ax;Sj

n

� �
Ed /y;a;j ¼ Ej

a

Xn¼þN

n¼�N

ðEa;j
b Ay;Sj

n ÞEd

–

wx;a;j
y ¼ Ej

akz

Xn¼þN

n¼�N

Ea;j
c

cj
n

Bx;Sj
n

� �
Ed wy;a;j

x ¼ Ej
akz

Xn¼þN

n¼�N

�Ea;j
c

cj
n

Cy;Sj
n

� �
Ed

–

wx;a;j
z ¼ �Ej

a

Xn¼þN

n¼�N

Ea;j
c Cx;Sj

n

� �
Ed wy;a;j

z ¼ Ej
a

Xn¼þN

n¼�N

kn

cj
n

Ea;j
c By;Sj

n

� �
Ed

Interface (b)

/b;j
f ¼ �

i

Lx

Xn¼þN

n¼�N

�ðcjÞ2

x2kj
f

 !
Eb;j

f

mj
nf

H F j
n

" #
Ed /x;b;j ¼ Ej

a

Xn¼þN

n¼�N

kn

mj
n

Eb;j
b Dx;Sj

n

� �
Ed /y;b;j ¼ �Ej

a

Xn¼þN

n¼�N
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n

� �
Ed

–
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akz
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n¼�N
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c

cj
n
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n

� �
Ed wy;b;j
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cj
n
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a
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ux;j
x ¼ Ej

a

Xn¼þN

n¼�N

�ik2
n

mj
n

Ea;j
b Ax;Sj

n � ik2
z

cj
n

Ea;j
c Bx;Sj

n � icj
nEa;j

c Cx;Sj
n

� �
Ed

þ Ej
a

Xn¼þN

n¼�N

�ik2
n

mj
n

Eb;j
b Dx;Sj

n � ik2
z

cj
n

Eb;j
c Ex;Sj

n � icj
nEb;j

c F x;Sj
n

� �
Ed ; ð5Þ

ux;j
y ¼ Ej

a

Xn¼þN

n¼�N

�iknEa;j
b Ax;Sj

n þ iknEa;j
c Cx;Sj

n

� �
Ed

� Ej
a

Xn¼þN

n¼�N

�iknEb;j
b Dx;Sj

n þ iknEb;j
c F x;Sj

n

� �
Ed ; ð6Þ

ux;j
z ¼ Ej

a

Xn¼þN

n¼�N

�ikzkn

mj
n

Ea;j
b Ax;Sj

n þ ikzkn

cj
n

Ea;j
c Bx;Sj

n

� �
Ed

þ Ej
a

Xn¼þN

n¼�N

�ikzkn

mj
n

Eb;j
b Dx;Sj

n þ ikzkn

cj
n

Eb;j
c Ex;Sj

n

� �
Ed : ð7Þ

� Displacements uy;j
d at a point (x,y) in an elastic layer j when the load acts in the y direc-

tion or in the fluid medium:

uy;j
x ¼ Ej

a

Xn¼þN

n¼�N

�iknEa;j
b Ay;Sj

n þ iknEa;j
c By;Sj

n

� �
Ed

� Ej
a

Xn¼þN

n¼�N

�iknEb;j
b Dy;Sj

n þ iknEb;j
c Ey;Sj

n

� �
Ed ; ð8Þ

uy;j
y ¼ Ej

a

Xn¼þN

n¼�N

�imj
nEa;j

b Ay;Sj
n � ik2

n

cj
n

Ea;j
c By;Sj

n � ik2
z

cj
n

Ea;j
c Cy;Sj

n

� �
Ed

þ Ej
a

Xn¼þN

n¼�N

�imj
nEb;j

b Dy;Sj
n � ik2

n

cj
n

Eb;j
c Ey;Sj

n � ik2
z

cj
n

Eb;j
c F y;Sj

n

� �
Ed ; ð9Þ

uy;j
z ¼ Ej

a

Xn¼þN

n¼�N

�ikzE
a;j
b Ay;Sj

n þ ikzEa;j
c Cy;Sj

n

� �
Ed

� Ej
a

Xn¼þN

n¼�N

�ikzE
b;j
b Dy;Sj

n þ ikzEb;j
c F y;Sj

n

� �
Ed : ð10Þ

The proposed methodology was verified with a boundary element method (BEM)
model that uses Green functions for an unbounded medium, requiring a large discretiza-
tion of the solid–fluid interfaces; this has limitations because a large amount of damping
has been introduced (not presented here).

Notice that in the present model the internal material loss is considered by using a com-
plex Young’s modulus and complex Lamé’s constants. The Young’s modulus is computed
as E = Er(1 + ig), where Er corresponds to the classic modulus and g is the loss factor. The
complex Lamé’s constants can be written in the same form as the Young’s modulus. Note
that in practical simulations the material damping is found to be much higher than that
defined by the internal damping.
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3. Validation of the analytical model

In this section the analytical model is validated by comparing the responses against
experimental results and simplified expressions. First the airborne sound insulation pro-
vided by single- and double-layered partitions is analyzed. Then the impact sound insula-
tion provided by a single panel and a concrete screed floating system is discussed.

All simulations performed in this section consider elastic layers made of concrete
(cL = 3500 m/s; cS = 2250 m/s; qs = 2500 kg/m3; gs = 4 · 10�3), glass (cL = 5750 m/s;
cS = 3450 m/s; qs = 2500 kg/m3; gs = 4 · 10�3) or steel (cL = 6000 m/s; cS = 3200 m/s;
qs = 7850 kg/m3; gs = 2 · 10�2). The layers divide a fluid medium which assumes the air
properties (q = 1.2 kg/m3 and c = 340 m/s). The models are excited by point sources
placed in the acoustic medium (Sf) at position (0.0 m; �2.0 m) or in the elastic medium
(Ss) acting in the y direction at position (0.0 m; 0.0 m) (see Fig. 3a).

Several numerical simulations were performed to define the position of the receivers in
the emitting and receiving media. It was found that the receivers should be placed in a line
over large distances so as to capture features related to the propagation of guided waves,
such as the coincidence effect. It was also concluded that good results were obtained for all
simulations performed using the line of receivers displayed in Fig. 3a (placed 2.0 m apart
in the acoustic media, on both sides of the panel). Similar results would be obtained for a
larger line of receivers.

The responses presented in this paper are calculated in the frequency domain, using that
set of receivers, for a frequency range of [10.0; 8192.0 Hz] with a frequency increment of
2.0 Hz.

3.1. Airborne sound insulation

The responses shown in this section refer to sound pressure level reduction. First the
sound pressure is computed at the line of receivers displayed as in Fig. 3a, placed in the
medium containing the source (to record the incident and reflected pressure field) and
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Fig. 3. Geometry of the simulations: (a) single structural layer with position of receivers and sources; (b)
structural layer with a suspended plaster ceiling.
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in the receiving medium. Then the sound pressure level reduction is calculated by means of
the difference between the ratio of the average of the sound pressure squared to the square
of the reference sound pressure in the medium containing the source and in the receiving
medium on a dB scale.

Fig. 4a shows the sound pressure level reduction provided by a single concrete layer
h1 = 0.20 m thick (see Fig. 3a). As expected, the sound pressure level reduction increases
as the frequency increases. The coincidence effect (labeled fc in the plot) is visible. This
effect is associated with the propagation of guided waves along the structural layer, leading
to increased movement of the panel and causing a drop in insulation. The propagation of
these guided waves is often analyzed without taking into account the solid–fluid interac-
tion. The mathematical development of these assumptions, not assuming the effects of
the shear and rotary inertia, leads to the following simplified equation [14]:
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Fig. 4. Sound pressure level reduction provided by a single concrete structural layer h1 = 0.20 m thick using the:
(a) analytical model (j); (b) analytical model (O), the mass law (�) and experimental result (s) in the 1/3 octave
band frequency domain.
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x ¼ c
sin /

ffiffiffiffiffiffiffiffiffi
qsh1

D

r
; ð11Þ

where qs is the density of the material (kg/m3), h1 is the thickness of the panel (m);
D ¼ h3

1E=½12ð1� t2Þ� with E and t being the Young’s modulus and the Poisson’s ratio,
respectively, and / is the incidence angle of the sound relative to a direction perpendicular
to the element. The critical frequency provided by the analytical response occurs at
100 Hz, while expression (11) predicts fc = 92.5 Hz. Notice that this value is for plane
waves traveling with an incidence of / = 90�, and the analytical response is calculated con-
sidering the incidence of a point load.

At higher frequencies, the curve is less smooth owing to the interaction between the
incident and directly-reflected wave fields, which occurs when the difference in the travel
paths is a multiple of the wavelength. Furthermore, at the end of the response a dip is
being formed which is associated with resonances inside the panel (labeled f1 in the plot)
that is close to f1 ¼ cL

2h1
¼ 3500

2�0:2
¼ 8750 Hz.

Fig. 4b displays the sound pressure level reduction provided by the concrete structural
panel h1 = 0.20 m thick, after performing an integration in the third octave band fre-
quency. The plot also displays an experimental result (obtained from the database of
the software Acoubat developed by CSTB [15]) and the curve provided by the mass
law. Analysis of the curves allows the conclusion that the analytical result is in very good
agreement with the experimental result throughout the frequency range, except for lower
frequencies. This difference is due to the coincidence effect, which is not seen in the exper-
imental result owing to the size of the specimen. Notice also that for lower frequencies the
result provided by the mass law also differs from the experimental result. In fact the ana-
lytical model behaves better in the lower frequencies than the mass law.

Fig. 5 displays the sound pressure level reduction provided by a single concrete panel
h1 = 0.04 m thick (Fig. 5a), a steel panel h1 = 0.01 m thick (Fig. 5b) and a single glass
panel h1 = 0.004 m thick (Fig. 5c), using the analytical model and Lab results. The Lab
tests were performed in accordance with ISO 140-1 [16] in the acoustic chambers of the
Department of Civil Engineering’s Constructions Lab in the University of Coimbra
[17]. The acoustic chambers consist of an emitting room of 111 m3 and a receiving room
122 m3. The concrete and the glass panels tested in the chambers had an area of
1.25 · 1.50 m2. The measurements were performed in accordance with ISO 140-3 [18]
and the results are given in bands of 1/10 octave. The curve provided by the mass law
are included in the plots.

All the experimental results plotted in Fig. 5a–c are influenced by the stationary wave
field within the two chambers that creates dips and fluctuations at low frequencies. These
curves also show other dips related to the panel’s transverse movement. These are influ-
enced by the size of the panel and by the boundary conditions. Notice that the eigenmodes
related to the panel’s transverse movement and the stationary wave field created in the
rooms facing the panel are not taken into account by the analytical model. Comparisons
between the results provided by the mass law and the experimental results reveal differ-
ences between the curves. These differences become more pronounced as the frequency
increases, when the coincidence frequency (labeled fc in the plots) starts to influence the
responses.

A detailed analysis of Fig. 5a shows that the analytical response predicts a dip due to
the coincidence effect which is not seen in the experimental result. In fact the laboratory
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Fig. 5. Sound pressure level reduction using the analytical model (s) vs experimental results (d) vs the mass law
(h) provided by a: (a) single concrete layer h1 = 0.04 m thick; (b) single steel layer h1 = 0.01 m thick; (c) single
glass layer h1 = 0.004 m thick.
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test used a panel with an area of 1.25 · 1.50 m2. The panel tested was not large enough for
this phenomenon to be seen in the experimental response. At higher frequencies both
curves present a very good agreement. Analysis of Fig. 5b allows similar conclusions to
be drawn. When a glass panel is assumed (see Fig. 5c) the experimental curve exhibits
the presence of the coincidence effect. Here the response provided by the analytical model
shows an excellent agreement, even in the vicinity of the coincidence effect.

Fig. 6 exhibits the sound pressure level reduction provided by a double glazed panel
(4 + 4 mm sandwiching a 12 mm air layer). Fig. 6a plots the analytical response and the
curve provided by the London–Beranek method [4] obtained when the panel is subjected
to normally incident plane waves. Both curves predict a dip in the frequency associated
with the mass–air–mass resonance (labeled fres in the plots) occurring at low frequencies.

The mass–spring–mass resonance frequency is computed here using the simplified
expression:
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Fig. 6. Sound pressure level reduction provided by a double glazed panel (4 + 12 + 4): (a) responses provided by
the analytical model (s) vs London–Beranek method (,) for the incidence of plane waves; (b) responses provided
by the analytical model (j) vs experimental result (h) for the incidence of point pressure loads.
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fres ¼
1

2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K

1

m1

þ 1

m2

� �s
; ð12Þ

where K ¼ c2qf

h2
with c and qf being the dilatational wave velocity and the density of the air,

respectively; m1 and m2 are the mass of each layer (kg/m2) and h2 is the thickness of the air
gap. The resonance of the mass–air–mass system predicted using expression (12) leads to
fres = 244 Hz. This result is similar to that provided by the analytical model. Analysis of
the figure reveals very good agreement between the analytical solution and the curve pro-
vided by London–Beranek method.

Fig. 6b shows the analytical response provided by the double glazed panel when sub-
jected to a point pressure load, and the experimental result obtained by testing a panel
with an area of 1.25 · 1.50 m2 [17]. All the results show dips associated with the mass–
air–mass resonance and the coincidence effect. As before, the resonance effect inside the
air layer is not visible as it occurs outside the frequency domain used in the analysis. Again
the analytical result tends to show a good agreement with the experimental solution,
except at low frequencies, owing to the fluctuations related to the stationary field gener-
ated in the emitting and receiving rooms of the chamber. Notice that the dip associated
with the coincidence effect predicted by the analytical model is very similar with the exper-
imental result.

The results presented above did not take into account the existence of flanking trans-
mission through the side elements. In cases where this phenomenon may be relevant the
sound pressure reduction will be lower than that found by the analytical model. In these
situations, the contribution of flanking transmission can be calculated using the procedure
described in EN 12354-1 [19].
3.2. Impact sound pressure level

In this section the impact sound pressure level results provided by the analytical model
and by the experimental tests are discussed. The responses provided by the analytical
model are obtained by calculating the ratio of the average of the sound pressure squared
to the square of the reference sound pressure recorded at the receivers placed in the receiv-
ing medium, as shown in Fig. 3a.

Fig. 7 displays the results provided by a single concrete layer h1 = 0.20 m thick. Fig. 7a
shows the response provided by the analytical model simulating a theoretical impact from
a standard tapping machine. The results show that the sound level increases in the vicinity
of both the coincidence effect and the resonances inside the elastic layer (labeled as f1 in the
plot).

Fig. 7b plots the analytical and experimental results provided by the concrete layer
under the action of a standard tapping machine (obtained from the software Acoubat
developed by CSTB [15]). In order to compare our results with the experimental curve,
the amplitude of the impact load is defined in the frequency domain so as to model the
response provided by a standard tapping machine. The frequency spectrum of the impact
load is obtained from the approach followed by Cremer [8]. According to this author the
impact provided by the tapping machine (rate of the hammer strikes – 10 Hz) on a high
impedance structure, in the frequency domain, exhibits a constant amplitude of
8.859 N. The results are shown in the 1/3 octave frequency bands. The two curves in
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Fig. 7. Frequency domain responses provided by a single concrete structure h1 = 0.20 m thick: (a) impact sound
pressure level provided by the analytical model (d); (b) impact sound pressure level provided by the analytical
model (s) vs experimental results (,) in the 1/3 octave band frequency domain; (c) sum of sound pressure level
reduction and impact sound pressure level in the 1/3 octave band frequency domain (s analytical result; ,

experimental result; j Heckl and Rathe expression).
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the plot exhibit similar behavior, except at the lower frequencies. In fact the experimental
response provided by the concrete floors is not influenced by the coincidence effect that is
predicted by the analytical model.

The results provided by the analytical model are also compared with the simplified
expression achieved by Heckl et al. [10], modified for 1/3 octave frequency bands,

Ln þ R ¼ 38þ 30 logðfmÞ; ð13Þ
where fm is the third octave band center frequency in Hz; R is the sound transmission loss
of an element, and Ln is the impact sound pressure level, defined as the sound level mea-
sured in the receiving room when a standard tapping machine is operating. This expression
assumes that the coincidence frequency is low and the surface is hard and has high input
impedance. According to the authors, this relation does not hold if there is a hole in the
element, which allows the waves produced by the pressure source and the impact sound
waves to travel along different path, or if the flanking transmission through the side walls
is dominant in relation to that occurring through the structural layer.

The sum of airborne and impact sound insulation is computed for the single concrete
layer and integrations in the 1/3 octave band frequency are performed. Responses pro-
vided by the analytical model, experimental results and expression (13) are plotted in
Fig. 7c. The results show that the two curves exhibit similar behavior. The good agreement
that is found between curves is related to the fact that the proposed model is based on the
assumption that the panels are of infinite extent, meaning that the results do not account
for flanking transmission.

Fig. 8 displays the analytical and experimental results provided by a floating concrete
screed layer. The model consists of a concrete layer 0.04 m thick resting on a resilient quilt
laid over a structural concrete layer, 0.14 m thick. The resilient quilt is marketed by Imper-
alum under the name Impersom [20], and the experimental result was obtained from a test
performed in the acoustic chambers of the National Laboratory of Civil Engineering,
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Fig. 8. Impact sound pressure level provided by a single concrete layer h1 = 0.14 m thick and by a concrete-screed
floating layer, in the 1/3 octave band frequency domain (s experimental result of the single concrete layer; h

experimental result of the concrete-screed floating layer; j analytical result of the single concrete layer; ,

analytical result of the concrete-screed floating layer).
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according to ISO 140-1 [16]. The specimen has an area of 10 m2 and the test was per-
formed following the procedure of ISO 140-8 [21]. The plot shows the impact sound level
provided by both the single concrete layer and by the concrete screed floating layer. Anal-
ysis of the responses shows that at low frequencies the analytical curves are influenced by
the coincidence effect, and so differences are found between these and the experimental
results. However at medium and high frequencies the curves exhibit good agreement.

When there is relevant flanking transmission the analytical results can be corrected
using the techniques described in EN 12354:2 [22].

4. Applicability of the analytical model

This section illustrates the applicability of the proposed model with a selection of results
provided by the analytical model for a single panel with varying materials and thicknesses
and a concrete structural layer with a suspended ceiling (see Fig. 3).

All simulations performed consider layers, made of concrete (properties given in the
previous section), ceramic material (cL = 2200 m/s; cS = 1350 m/s; qs = 1400 kg/m3; gs =
1.5 · 10�2) or plasterboard (cL = 2200 m/s; cS = 1250 m/s; qs = 820 kg/m3; gs = 3 ·
10�2). The load in the acoustic medium (Sf) is located, as before, at position (0.0 m;
�2.0 m), whereas in the elastic medium it can either act in the y (vertical load) or in the
x (horizontal load) directions, at different positions.

4.1. Acoustic behavior of a single panel

Fig. 9a shows the sound pressure level reduction provided by a single structural layer
made either of ceramic or concrete and assuming a thickness of h1 = 0.10 m or
h1 = 0.20 m. As expected, analysis of the curves reveals that insulation increases when
mass increases. When the stiffness of the element increases the critical frequency appears
at lower frequencies and the dip in insulation in the vicinity of this frequency is lower.

Fig. 9b and c displays the impact sound insulation when either vertical or horizontal
unit loads, Ss excite a concrete single panel with thickness h1 = 0.20 m. Notice that the
loads may act not perpendicularly to the plane of a structure, determined by the existence
of vertical and horizontal components. In the presence of certain mechanical equipment
the horizontal component may even be dominant. Thus, when the source is placed inside
the elastic medium the influence of the depth and the direction of the load on the impact
sound insulation are studied by considering four different loads at depths ys = 0.0 m,
ys = 0.05 m, ys = 0.10 m and ys = 0.15 m. For all the four loads, the horizontal position
is kept at xs = 0.0 m. When the load acts vertically (see Fig. 9b), the results show that
the sound level increases in the vicinity of both the coincidence effect and the resonances
inside the elastic layer. Comparing the curves obtained for different source depths, we see
that the source position does not seem to influence the responses. In fact, the only major
difference among the responses is found at high frequencies when the source is placed at
ys = 0.10 m (the middle of the layer), when some vibration modes of the layer are not
excited.

When a horizontally-acting impact load excites the panel (see Fig. 9c), the increase in
sound level in the vicinity of the coincidence effect occurs for all the source depths consid-
ered, except for ys = 0.10 m. When the source is placed at the surface, the resulting sound
level is higher than for the other source positions. In fact, the responses show that the
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Fig. 9. Frequency domain responses provided by a single structure: (a) sound pressure level reduction provided
by a single layer made of concrete with h1 = 0.10 m (,) and h1 = 0.20 m (d) and of ceramic with h1 = 0.10 m (s)
and h1 = 0.20 m (h); (b) impact sound pressure level provided by the single concrete layer h1 = 0.20 m thick,
when the source, placed at different depths ys, acts in the y direction; (c) impact sound pressure level provided by
the single concrete layer h1 = 0.20 m thick, when the source, placed at different source depths ys, acts in the x

direction (s ys = 0.00 m; h ys = 0.05 m; , ys = 0.10 m; d ys = 0.15 m).
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sound level in the receiving space is highly influenced by the source depth. When the depth
is ys = 0.10 m the influence of the propagating guided waves does not seem to be impor-
tant and the impact insulation appears to be much lower than that obtained for the other
positions. Moreover, sound level increases as frequency increases. Comparison with the
responses shown in Fig. 9b indicates that the contribution to impact sound insulation
of the source acting horizontally is lower than when the load acts vertically. When the load
acts horizontally more energy travels along the panel and less is radiated into the receiving
medium.

4.2. Acoustic behavior of a concrete layer with a suspended ceiling

The last example analyses the dynamic responses of a suspended ceiling when por-
ous material partially or totally fills the air gap. The geometry is built using a 0.15 m
concrete structural layer with a suspended ceiling built with an air gap of h2 = 0.15 m
and a plasterboard layer 0.02 m thick (see Fig. 3b). Simulations with mineral wool
material with a density q = 50.00 kg/m3 inside the air layer are also considered, and
results when this material is taken to have thickness h3 = 0.00 m (empty air gap),
h3 = 0.15 m (filled air gap) and h3 = 0.02 m (filling lying against the plaster layer) are
discussed. The absorbing material is modeled by ascribing a complex air density, which
depends on the flow resistivity, on the porosity of the material and on a structure fac-
tor [5].

Simulations are performed using mineral wool with a density q = 50.00 kg/m3 (which
corresponds to a flow resistivity of 1000 kg/m3/s [5]).

Fig. 10 displays both the sound pressure level reduction (Fig. 10a) and the impact sound
pressure level (Fig. 10b) when there is no mineral wool layer present (h3 = 0.00 m – empty
air gap), and for h3 = 0.02 m and h3 = 0.15 m (fully-filled) thick mineral wool layers.
Responses obtained for a 0.15 m thick single concrete structural layer are used as a refer-
ence. As before the source acts in the acoustic medium at (0.0 m; �2.0 m) and in the elastic
medium in the y direction at (0.0 m; 0.0 m).

All results show a decrease in insulation in the vicinity of the critical frequency asso-
ciated with the propagation of guided waves along the concrete structural layer (labeled
fc in the plots). The frequency associated with the mass–air–mass resonance (labeled fres

in the plots) occurs at low frequencies and produces a fall in insulation. The resonance of
the mass–air–mass system predicted using expression (12) leads to fres = 38.1 Hz. This
result is similar to that provided by the analytical model. The propagation of guided
waves along the plaster layer does not seem to be important. The resonances excited
inside the air gap create a sharp dip in insulation at specific frequencies, labeled in the
plot as f1, f2, . . . , f6. These frequencies can be predicted by fm = cm/(2h2), m = 1,2, . . . ,
where h2 refers to the thickness of the air gap. According to the analytical model, they
lie at higher frequencies than those predicted by this expression. It should be noted that
the simplified expression assumes that the source only emits plane waves that travel per-
pendicularly to the panel. When the mineral wool quilt is placed inside the air layer, the
resonance effect inside the air gap and the coincidence effect are both attenuated, and
insulation improves in the vicinity of these frequencies. Notice that the insulation pro-
vided by the concrete structural layer with a suspended ceiling layer is much better than
that provided by a single 0.15 m concrete structural layer for the range of frequencies
analyzed.
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Fig. 10. Frequency domain responses provided by a suspended plaster ceiling lined with mineral wool
h3 = 0.00 m (s), h3 = 0.02 m (j) and h3 = 0.15 m (d) and by a single concrete layer h1 = 0.15 m (h): (a) sound
pressure level reduction; (b) impact sound pressure level when the source acts in the y direction.
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5. Conclusions

An analytical model, based on wave propagation theory for layered medium, has been
developed to predict the airborne and impact sound insulation provided by single and
multilayer systems of infinite extent, neglecting sound bridges and flanking transmission.
Responses are calculated in the frequency domain using point loads.

The model was validated by comparing the responses with experimental results and
with simplified formulas. This comparison was performed for airborne sound insulation
provided by single panels of varying thickness and double panels. A good agreement
between experimental and numerical results was found in the generality of the analyzed
partitions. Differences were found: at lower frequencies due to the stationary wave field
occurring inside the chambers and to the panels’ transverse modes; in the frequencies
defining the coincidence effect of thicker panels, which were related to the size of the tested
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panels. It was found that the results provided by the analytical model show a better agree-
ment with the experimental results than those provided by the mass law. Impact sound
insulation was also calculated for a single panel and a floating layer system and validation
was performed with experimental results. Again the analytical responses are quite similar
to the experimental ones. The major differences are located at the lower frequencies in the
vicinity of the coincidence effect.

The applicability of the analytical solutions to the prediction of the acoustic behavior of
a single structural layer and a suspended ceiling configuration was then discussed. It was
shown that the proposed model is able to capture all the physical acoustic phenomena
involved in the prediction of the acoustic behavior provided by single and multilayer sys-
tems of infinite extent, such as: the mass–air–mass resonance phenomena, the coincidence
effect associated with the propagation of guided waves of the individual panels, the reso-
nances excited inside the air gap and the effect of having the air layer filled with mineral
wool.
Appendix 1

This appendix lists the individual systems of equations that are established for each
layer.

� Within the fluid layer:
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n
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� Within the elastic layer when the load acts along the y direction or in a fluid layer:

ry;a;j
yx

ry;a;j
yz

ry;a;j
yy

uy;a;j
x

uy;a;j
y

uy;a;j
z

2
666666664

3
777777775
¼ Ej

amy;Sj

ðk¼1;...;6;l¼1;...;6Þ

Ay;Sj
n

By;Sj
n

Cy;Sj
n

Dy;Sj
n

Ey;Sj
n

F y;Sj
n

2
666666664

3
777777775
; ðA1:3aÞ

ry;b;j
yx

ry;b;j
yz

ry;b;j
yy

uy;b;j
x

uy;b;j
y

uy;b;j
z

2
6666666664

3
7777777775
¼ Ej

amy;Sj

ðk¼7;...;12;l¼1;...;6Þ

Ay;Sj
n

By;Sj
n

Cy;Sj
n

Dy;Sj
n

Ey;Sj
n

F y;Sj
n

2
666666664

3
777777775
; ðA1:3bÞ



A. Tadeu et al. / Applied Acoustics 68 (2007) 17–42 39
where

my;Sj

ðk¼1;...;6;l¼1;...;6Þ

¼

�2ljmj
n lj �k2

n

cj
n
þcj

n

� �
�lj k2

z

cj
n

�2ljmj
nEj

bh lj �k2
n

cj
n
þcj

n

� �
Ej

ch �lj k2
z

cj
n
Ej

ch

�2ljmj
n �lj k2

n

cj
n

lj �k2
z

cj
n
þcj

n

� �
�2ljmj

nEj
bh �lj k2

n

cj
n
Ej

ch lj �k2
z

cj
n
þcj

n

� �
Ej

ch

�2lj m2
znþ

ðkj
sÞ2
2

� �
�2ljk2

n �2ljk2
z 2lj m2

znþ
ðkj

sÞ2
2

� �
Ej

bh 2ljk2
nEj

ch 2ljk2
z Ej

ch

�i i 0 iEj
bh �iEj

ch 0

�imj
n �ik2

n

cj
n

�ik2
z

cj
n

�imj
nEj

bh �i k2
n

cj
n
Ej

ch �ik2
z

cj
n
Ej

ch

�i 0 i iEj
bh 0 �iEj

ch

2
666666666666664

3
777777777777775

;

my;Sj

ðk¼7;...;12;l¼1;...;6Þ

¼

�2ljmj
nEj

bh lj �k2
n

cj
n
þcj

n

� �
Ej

ch �lj k2
z

cj
n
Ej

ch �2ljmj
n lj �k2

n
ci

n
þcj

n

� �
�lj k2

z

cj
n

�2ljmj
nEj

bh �lj k2
n

cj
n
Ej

ch lj �k2
z

cj
n
þcj

n

� �
Ej

ch �2ljmj
n �lj k2

n
ci

n
lj �k2

z

cj
n
þcj

n

� �

�2lj m2
znþ

kj
sð Þ2
2

� �
Ej

bh �2ljk2
nEj

ch �2ljk2
z Ej

ch 2lj m2
znþ

ðkj
sÞ2
2

� �
2ljk2

n 2ljk2
z

�iEj
bh iEj

ch 0 i �i 0

�imj
nEj

bh �i k2
n

cj
n
Ej

ch �ik2
z

cj
n
Ej

ch �imj
n �i k2

n

cj
n

�i k2
z

cj
n

�iEj
bh 0 iEj

ch i 0 �i

2
66666666666666664

3
77777777777777775

:

The incident field within the layer where the load is applied is given as:
� Load acting in the fluid layer:
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� Load acting in the x direction is placed in the elastic layer:
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� Load acting in the y direction is placed in the elastic layer:
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Appendix 2

The multilayer system defined in Fig. 1, built with a set of elastic (Sj with j = 1, . . . ,n)
and fluid layers (Fj with j = 1, . . . ,n), is used to illustrate how the final system of equations
is built, assuming that a pressure load placed in the Fluid 1 excites it. The final system of
equations is obtained by combining the individual systems of equations, defined in Appen-
dix 1, and prescribing the boundary conditions listed in Table A2.1.

The final system of equations takes the form:

AX ¼ B; ðA2:1Þ



Table A2.1
Boundary conditions at the interfaces

Interfaces Boundary conditions

a,S1 ra;S1
yx ¼ 0; ra;S1

yz ¼ 0; rb;F 1 � ra;S1
yy ¼ rinc;b;F 1

ub;F 1
y � ua;S1

y ¼ uinc;b;F 1
y

b,S1 or a,S2 rb;S1
yx ¼ ra;S2

yx ; rb;S1
yz ¼ ra;S2

yz ; rb;S1
yy ¼ ra;S2

yy

ub;S1
x ¼ ua;S2

x ; ub;S1
y ¼ ua;S2

y ; ub;S1
z ¼ ua;S2

z

b,S2 rb;S2
yx ¼ ra;S3

yx ; rb;S2
yz ¼ ra;S3

yz ; rb;S2
yy ¼ ra;S3

yy

ub;S2
x ¼ ua;S3

x ; ub;S2
y ¼ ua;S3

y ; ub;S2
z ¼ ua;S3

z

� � � � � �

a,Fn�1 rb;Sn�2
yx ¼ 0; rb;Sn�2

yz ¼ 0; rb;Sn�2
yy ¼ ra;F n�1

ub;Sn�2
y ¼ ua;F n�1

y

b,Fn�1 or a,Sn ra;Sn
yx ¼ 0; ra;Sn

yz ¼ 0; rb;F n�1 ¼ ra;Sn
yy

ub;F n�1
y ¼ ua;Sn

y

b,Sn rb;Sn
yx ¼ 0; rb;Sn

yz ¼ 0; rb;Sn
yy ¼ ra;F 2

ub;Sn
y ¼ ua;F 2

y
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where

A¼

0 �mS1

ðk¼1;l¼1;...;6Þ 0 � � � 0 0 0 0
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and

X ¼ H F 1
n AS1

n � � � F S1
n AS2

n � � � F S2
n � � � ASn�2

n � � � F Sn�2
n GF n�1

n H F n�1
n ASn

n � � � F Sn
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n

	 
T
:
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If the source is placed in Fluid 1, the incident field is

B ¼ 0 0 incF 1

f ðk¼3Þ incF 1

f ðk¼4Þ 0 � � � � � �
h iT

:
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