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Abstract

The so-called 3-factor formula is one of the most commonly employed general formulae to estimate the elastic critical moment of steel beams
prone to lateral-torsional buckling. This work extends its domain of application to I-section cantilevers (i) with equal or unequal flanges, (ii) fully
built-in or free to warp at the support and (iii) acted on by uniformly distributed or concentrated tip loads (applied either at the shear centre or at
one of the flanges). The paper includes (i) a discussion of the theoretical basis of elastic lateral-torsional buckling, (ii) the description of the main
steps involved in posing the buckling problem in a non-dimensional form over a fixed reference domain, features that are particularly convenient
for the purpose of this work, (iii) the numerical results of a parametric study, obtained by the Rayleigh–Ritz method, and (iv) their use for the
development of approximate analytical expressions for the C1,C2 and C3 factors appearing in the aforementioned formula.
c© 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

According to virtually all the design codes currently
employed in the steel construction industry (e.g., [1–4]), the
load carrying capacity of laterally unsupported beams bent
in their stiffer principal plane is estimated on the basis of
their (i) cross-sectional (direct stresses) and (ii) elastic lateral-
torsional buckling (LTB) resistances—therefore, designers
must have easy access to reliable methods for computing
the elastic critical moment or load of a given beam. Of
course, this calculation can be carried out by means of a
number of numerical techniques, which basically involve the
approximation of either (i) the individual terms in the governing
differential equations (e.g., finite difference methods) or (ii)
the function spaces associated with an underlying variational
principle (e.g., finite element methods). However, until user-
friendly software packages implementing such numerical
procedures become widely available to practitioners, simplified
methods such as design charts and approximate formulae will
retain their popularity and continue to be extensively used.
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One of the most commonly employed general formulae
to estimate elastic critical moments (Mcr) is the so-called
3-factor formula, which was included in the ENV version
of Eurocode 3 [5]—the recently completed EN version of
this design standard [1] provides no information concerning
the determination of Mcr. In theory, this formula should be
applicable to uniform beams (or beam segments) subjected
to major axis bending, exhibiting doubly or singly symmetric
cross-sections (with the proviso that the cross-sections are
symmetric with respect to the minor central axis) and arbitrary
support and loading conditions. But some situations are
currently not covered, most notably the case of cantilevers,
which are free to twist and deflect laterally at one end—
information about the factors that must be introduced in the
formula is rather scarce and/or incomplete. In a 1960 review
article, Clark and Hill [6] presented lower and upper bounds for
the C1 factor applicable to cantilevers restrained from warping
at the fixed end and acted on by a uniform load or by a
point load applied at the tip—in the latter case, a C2 factor
was also proposed. Moreover, C1 and C2 factors for these
two types of loading were also published by Galéa [7] and
Baláz and Koleková [8], but the warping restraint condition
at the support was not specified. However, the authors did
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not find in the literature any proposal for the C3 factor, a
fact that automatically rules out the possibility of dealing with
singly symmetric cantilevers. At this point, a word of caution is
required: there are slight differences in the formulae developed
by the above authors—for instance, none of the formulae
proposed by Clark and Hill or Galéa contain an effective
length factor kw, unlike the formula included in [5] and also
considered by Baláz and Koleková.

Over the years, a fair amount of research work has been
devoted to develop approximate formulae to assess the buckling
behaviour of I-beams. In the following paragraphs, a brief
state-of-the-art survey on this subject is presented, focusing
specifically on cantilevers.

The elastic LTB of equal-flanged I-section cantilevers
built-in at the support and under shear centre loading was
investigated by Timoshenko [9] (point load at the tip) and by
Poley [10] (uniform load). In the 70s, Nethercot [11] extended
these early works by considering the effects of (i) top flange
loading, (ii) the type of restraint condition at the tip and (iii)
the continuity between overhanging and internal segments—in
addition, this author proposed a set of effective length factors
to estimate Mcr. On the other hand, Trahair [12] developed
approximate formulae to estimate the elastic buckling capacity
of built-in cantilevers and of overhanging segments free to
warp at the support, without any interaction with the internal
segments—he also proposed a simplified method to account for
the interaction between adjacent segments and studied the effect
of the presence of an elastic torsional restraint at the support.
However, the above studies were restricted to doubly symmetric
I-section members—note that the elastic critical moment of
doubly symmetric cantilevers free to warp at the support can
also be estimated by a single factor formula included in a
recently published design guide [13]. By applying curve fitting
techniques to a collection of finite element results, Doswell [14]
proposed an improvement of the approximate Mcr formula
included in the current AISC specification [3]—this proposal
takes explicitly into account, through individual coefficients,
the effects of (i) the bending moment diagram (two loading
case are analysed: tip load and uniform load), (ii) the level of
load application (only the cases of shear centre and top flange
loading are considered) and (iii) the effect of top flange bracing
(either continuous bracing or a discrete bracing at the free end).
Once more, only equal-flanged I-sections were dealt with and
the cantilevers are always assumed to be fully built-in at the
support.

The elastic LTB of singly symmetric I-section cantilevers
fully built-in at the support and acted on by a tip load or
a uniform load was studied by Anderson and Trahair [15],
Roberts and Burt [16] and Wang and Kitipornchai [17], who
provided tables, charts and/or approximate expressions to
calculate elastic critical moments/loads. Moreover, the effect of
intermediate restraints was investigated by Wang et al. [18].

This paper attempts to fill-in two of the insufficiencies
identified in the above studies, by (i) examining the influence
of the warping restraint condition on the elastic LTB of
singly symmetric cantilevers and (ii) extending the domain of
application of the 3-factor formula to I-section cantilevers (ii1)
Fig. 1. (a) Undeformed singly symmetric I-section cantilever and external
loads. (b) Schematic representation of the warping conditions at the fixed end.

with equal or unequal flanges, (ii2) fully built-in or free to
warp at the support and (ii3) acted by uniform or tip loads
(applied at one of the flanges or at the shear centre), thus making
available to practitioners a reliable and useful design tool. The
paper includes a discussion of the theoretical basis of elastic
LTB, as well as the description of the main steps involved in
posing the buckling problem in a non-dimensional form over
a fixed reference domain—a particularly adequate setting for
the systematic development of approximate buckling formulae.
This approach, which has its roots in dimensional analysis,
differs significantly from the one proposed by Attard [19],
who has non-dimensionalised a general expression for Mcr
written in terms of an assumed mode shape. Finally, note that
preliminary and partial versions of this work were reported
in [20–22].

2. Theoretical background

2.1. Problem statement

We consider a prismatic cantilever with a doubly or singly
symmetric I-section (i.e. equal or unequal flanges) and length
l, as the one shown in Fig. 1(a). It is convenient to introduce
a fixed rectangular right-handed Cartesian reference system
such that, in the undeformed configuration, (i) the longitudinal
centroidal axis of the beam coincides with the x-axis, (ii) y and
z are the cross-section major and minor central axes and (iii)
the top flange corresponds to negative z values (see Fig. 1(a))—
thus, y = 0 is a symmetry plane for the undeformed member.
The end cross-sections are initially contained in the planes x =

0 and x = l and the locus of shear centres is the straight-line
segment defined by {(x, y, z) ∈ R3

: x ∈ [0, l], y = 0, z = zS}.
With no loss of generality, we assume that x = 0 corresponds
to the fixed end section, where the lateral deflections (along
y), minor axis rotations (about z) and torsional rotations (about
the shear centre axis) are prevented and warping is either fully
restrained or completely free—these two warping conditions at
the fixed end are schematically represented in Fig. 1(b) and will
be subsequently identified by the acronyms NW and FW, which
stand for No Warping and Free Warping, respectively.

The cantilever is made of a Saint–Venant/Kirchhoff
material [23], with Young modulus E and shear modulus G.
It is deemed to be subjected to the conservative transverse
loads depicted in Fig. 1(a) – a uniform load q = qk and a
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tip load Q = Qk, where k is the unit vector directed along
the z-axis −, both with the same direction and initially acting
on the plane y = 0. Their magnitudes q , Q are assumed to
be proportional to a single factor λ (therefore, we may write
q = q0λ and Q = Q0λ, where q0, Q0 are non-negative
reference magnitudes defining the loading profile) and their
conservative character is ensured by the fact that they follow
the beam deformation, always remaining parallel to the z-axis.
For convenience, we also assume throughout this section that
q0 and Q0 are strictly positive.

It is well-known that such a cantilever is prone to lateral-
torsional buckling, a bifurcation-type of instability (from the
Latin word bifurcus—‘with two branches’) where (i) the
fundamental path corresponds to equilibrium configurations
(parameterised by λ) that are symmetric with respect to the
plane y = 0 (i.e. the cantilever is subjected solely to major
axis bending) and (ii) the buckled states are associated with
non-symmetric configurations—the cantilever deflects laterally,
along y, and twists. This phenomenon is an obvious instance
of symmetry breaking. However, not all symmetry is lost:
given any possible buckled state, its reflection upon the plane
y = 0 is also a possible buckled state—i.e. instability breaks
the symmetry of the equilibrium configuration, but not the
symmetry of the solution set.

In this section, we aim at formulating the problem
of identifying the bifurcation points along the cantilever’s
fundamental path in a way that is well suited for the
systematic development of approximate buckling formulae. In
order to linearise the problem, we neglect the pre-buckling
flexural deflections, thus assuming that the cantilever remains
straight up until the onset of buckling—in design, it is
prudent to disregard the beneficial effect of pre-buckling
deflections because (i) it may be significantly reduced, or
even fully removed, by any pre-cambering of the member
and (ii) it depends heavily on the actual conditions of lateral
restraint [24]. Moreover, the analysis is carried out under the
assumption of small strains.

2.2. Mathematical modelling

Using Vlassov’s classical thin-walled beam theory hypothe-
ses [25] – the cross-sections do not deform in their own plane
and the shear strains on the mid-surface are negligible −, it is
possible to show that the second variation, from a given funda-
mental state, of the cantilever total potential energy Π is defined
by (e.g., [26])

δ2Π =
E Iz

2

∫ l

0
v2
,xx dx +

G It

2

∫ l

0
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E Iw
2

∫ l

0
φ2
,xx dx

+
1
2

∫ l

0
M f

y (2v,xxφ + βyφ
2
,x )dx +

1
2
(zq − zS)q

×

∫ l

0
φ2dx +

1
2
(zQ − zS)Qφ(l)2, (1)

where (i) v(x) and φ(x) are variations of V (x, λ) (shear
centre displacement along y) and Φ(x, λ) (rotation about the
undeformed shear centre axis), which are independent from λ
(recall that V and Φ are both identically zero in the fundamental
state), (ii) Iz, It and Iw are standard geometrical properties
of the undeformed cross-section, (iii) βy is a cross-sectional
asymmetry property, defined by

βy =
1
Iy

∫
A

z( y2
+ z2)dA − 2zS, (2)

(iv) M f
y denotes the bending moment distribution in the

fundamental state, given by

M f
y (x, λ) = −

(
1
2

q0 (l − x)2 + Q0 (l − x)
)
λ

= M f
y0(x)λ, (3)

where M f
y0 is a function of x alone and denotes the bending

moment diagram caused by the reference loads q0k and Q0k,
and (v) zq and zQ identify the point of load application—
see Fig. 1(a). In the sequel, we exclude the limiting cases of
T, inverted T and narrow rectangular cross-sections, so as to
ensure that Iw 6= 0.

In order to completely define the functional δ2Π , it is
necessary to specify the class of admissible functions v and
φ. There are two properties that must be characterised: (i) the
smoothness required of these functions and (ii) the boundary
conditions they must satisfy. The integrals in (1) only make
sense if v and φ are square-integrable in (0, l) and possess
square-integrable first and second derivatives. In addition, the
admissible functions v and φ must satisfy the homogeneous
form of the essential (Dirichlet) boundary conditions, i.e.

v(0) = 0 v,x (0) = 0 φ(0) = 0 φ, x (0) = 0, (4)

the last one applying only if warping is prevented at the fixed
end section (NW). The real-valued functions fulfilling the above
requirements are termed kinematically admissible.

According to Trefftz’s criterion [27,28] – for a critical
appraisal of this criterion, together with a brief historical
account and references to its application, the interested reader is
referred to [29] –, the variational form of the buckling problem
can be stated as follows:

Problem A (Variational Form). Find real scalars λ and
kinematically admissible functions v, φ 6= 0 rendering δ2Π
stationary, i.e. satisfying the variational condition

δ (δ2Π ) = 0. (5)

Applying standard Calculus of Variations techniques [30],
we obtain the classical or strong form of Problem A, which
may be phrased as follows:

Problem A (Strong Form). Find λ ∈ R and real-valued
functions v, φ ∈ C4([0, l]), with v, φ 6= 0, satisfying the
differential equations

E Izv,xxxx +

(
M f

y0φ
)
,xx
λ = 0 (6)

(M f
y0v,xx + q0(zq − zS)φ − βy(M

f
y0φ,x ),x )λ− G Itφ,xx

+ E Iwφ,xxxx = 0 (7)
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in (0, l) (Euler–Lagrange equations of δ2Π ) and the boundary
conditions

v(0) = 0 Q0φ(l)λ+ E Izv,xxx (l) = 0 (8)
v,x (0) = 0 E Izv,xx (l) = 0 (9)
φ(0) = 0 (zQ − zS)Q0φ(l)λ+ G Itφ,x (l)

− E Iwφ,xxx (l) = 0 (10)
φ,x (0) = 0 (NW) or E Iwφ,xx (0) = 0 (FW)

E Iwφ,xx (l) = 0. (11)

Due to the regularity of the data – constant mechanical and
geometrical properties and M f

y0 ∈ C∞([0, l]) –, the strong and
variational forms of the problem are equivalent.

From a mathematical viewpoint, Problem A is an
eigenvalue problem—the elastic bifurcation load factors and
the corresponding buckling modes are its eigenvalues and
eigenfunctions. Given the self-adjoint character of this problem,
all eigenvalues are real and the eigenfunctions may be taken to
be real [31,32]—this is the mathematical justification for having
formulated Problem A in terms of real scalars and real function
spaces, in line with its physical nature. The lowest positive
eigenvalue is termed elastic critical load factor and denoted by
λcr—accordingly, the corresponding buckling mode (vcr, φcr)

is labelled critical as well. We also speak of the elastic critical
moment, defined as

Mcr = |M f
y (x, λcr)|max = (1/2q0l2

+ Q0l)λcr

= −M f
y0(0)λcr.

Integrating twice the field equation (6), together with the
natural (Neumann) boundary conditions (82)–(92), we are led
to the conclusion that v,xx and φ are related by the equation

v,xx = −
M f

y0

E Iz
φλ. (12)

This equation can be viewed as a holonomic kinematical
constraint [33], which can be used to eliminate v and write the
buckling problem in terms of a single unknown field φ. Indeed,
the incorporation of (12) into (7) yields

−
M f 2

y0

E Iz
φλ2

+ (q0(zq − zS)φ − βy(M
f

y0φ,x ),x )λ

− G Itφ,xx + E Iwφ,xxxx = 0 (13)

and Problem A may then be replaced by the following one,
which takes on the form of a quadratic eigenvalue problem:

Problem B (Strong Form). Find λ ∈ R and φ ∈ C4([0, l]),
with φ 6= 0, satisfying the field equation (13) and the boundary
conditions (10) and (11).

It is obvious that a variational characterisation can be given for
Problem B: it suffices to introduce (12) into (1) and to consider
again Eq. (5). If required, v can be obtained through the
mere integration of Eq. (12) subjected to the initial conditions
(81)–(91).
2.3. Equivalent scaled problems

By an appropriate change of variable and subsequent scaling
of the functions v and φ, Problems A and B may be transformed
into equivalent ones, posed in a fixed reference domain
(i.e. independent of the cantilever length l) and written in a non-
dimensional form—this is most convenient because it enables
a general and systematic representation of the cantilever LTB
behaviour.

Since the interval [0, 1] is taken as the fixed reference
domain, the associated change of variable is defined by the
stretch ξ : [0, l] → [0, 1], ξ = x/ l. Moreover, we introduce
the scaled non-dimensional functions v : [0, 1] → R, v(ξ) =√

E Iz/(G It )v(ξ l)/ l and φ : [0, 1] → R, φ(ξ) = φ(ξ l). Then,
the strong form of the scaled versions of Problems A and B may
be stated as follows:

Problem C (Strong Form). Find λ ∈ R and v, φ ∈ C4([0, 1]),
with v, φ 6= 0, satisfying the differential equations

v,ξξξξ + (µ
f
0 φ),ξξλ = 0 (14)

(µ
f
0 v,ξξ + 2εqγqφ − δy(µ

f
0 φ,ξ ),ξ )λ− φ,ξξ

+
K 2

π2 φ,ξξξξ = 0 (15)

in (0, 1) and the boundary conditions

v(0) = 0 γQφ(1)λ+ v,ξξξ (1) = 0 (16)
v,ξ (0) = 0 v,ξξ (1) = 0 (17)

φ(0) = 0 εQγQφ(1)λ+ φ,ξ (1)−
K 2

π2 φ,ξξξ (1) = 0 (18)

φ,ξ (0) = 0 (NW) or φ,ξξ (0) = 0 (FW) φ,ξξ (1) = 0,(19)

where

µ
f
0 (ξ) =

l
√

E IzG It
M f

y0(ξ l)

= −(1 − ξ)((1 − ξ)γq + γQ) (20)

and

γq =
q0l3

2
√

E IzG It
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Q0l2
√

E IzG It
K =

π

l

√
E Iw
G It

(21)

δy =
βy

l

√
E Iz

G It
εq =

zq − zS

l

√
E Iz

G It

εQ =
zQ − zS

l

√
E Iz

G It
(22)

are non-dimensional parameters, very much identical to the
ones proposed by Anderson and Trahair [15].

Problem D (Strong Form). Find λ ∈ R and φ ∈ C4([0, 1]),
with φ 6= 0, satisfying the differential equation

−µ
f 2
0 φλ2

+ (2εqγqφ − δy(µ
f
0 φ,ξ ),ξ )λ− φ,ξξ

+
K 2

π2 φ,ξξξξ = 0 (23)
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in (0, 1) and the boundary conditions

φ(0) = 0 εQγQφ(1)λ+ φ,ξ (1)−
K 2

π2 φ,ξξξ (1) = 0 (24)

φ,ξ (0) = 0 (NW) or φ,ξξ (0) = 0 (FW) φ,ξξ (1) = 0. (25)

Again, it is readily seen that an equivalent variational
characterisation can be provided for Problems C and D. For
instance, (14) and (15), (162), (172), (182), (192) and (191) (the
last one only if the fixed end section is free to warp—FW) are
the Euler–Lagrange equations and natural boundary conditions
related to the vanishing of the first variation of the functional
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∫ 1
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2
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∫ 1

0
φ

2dξ

+
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2
εQγQφ(1)2

)
λ, (26)

whose admissible arguments v, φ (i) lie in the space of square-
integrable functions in (0, 1) with equally square-integrable first
and second derivatives and (ii) satisfy (161), (171), (181) and,
when warping is prevented at the fixed end section (NW), also
(191)—note that

δ2Π =
l

G It
δ2Π . (27)

Once λcr has been obtained, the elastic critical moment is
given simply by

Mcr =

√
E IzG It

l
(γq + γQ)λcr. (28)

From either of the above two problems, we conclude that
“cantilever families” sharing the same (i) K , δy, εq , εQ and
q0l/Q0 values and (ii) warping restraint condition at the
fixed end (NW or FW) exhibit identical values of γqλ or
γQλ at buckling. In other words, the cantilevers belonging to
such “families” are similar, as far as the LTB behaviour is
concerned—thus, γqλcr or γQλcr can be written as functions
of K , δy , εq , εQ and q0l/Q0.

It is worth pointing out that the same conclusion can be
reached through the use of Buckingham’s π -theorem [34],
which summarises the entire theory of dimensional analysis—
Buckingham himself did not rigorously prove the theorem
that bears his name, although he presented evidence making
its validity seem plausible (a proof of this theorem can be
found, for instance, in [35]). On the basis of a purely physical
(i.e. phenomenological) reasoning, the following unspecified
functional relationship, involving n = 9 quantities, may be
stated:

Mcr = f
(

E Iz,G It , E Iw, βy, l, (zq−zS), (zQ−zS),
q0l
Q0

)
.(29)

The rank of the associated dimensional matrix is r = 3
and Buckingham’s π -theorem asserts that (29) can be written
in terms of a complete set of n − r = 6 non-dimensional
parameters:

π1 = g(π2, π3, π4, π5, π6). (30)

There is an infinite number of different complete sets of non-
dimensional parameters. One possible choice is π1 = γqλcr
(or, alternatively, π1 = γQλcr), π2 = K , π3 = δy, π4 =

εq , π5 = εQ and π6 = q0l/Q0, which arises naturally during
the manipulation of the governing equations.

It should be stressed that, up to this point, the shape of
the cross-section has not yet been invoked in any of the
derivations. Thus, all the previous results are valid for thin-
walled cantilevers with arbitrary singly symmetric open cross-
sections under major axis bending.

Since the parameters K , δy, εq , εQ do not convey a clear
perception of the cantilever slenderness, asymmetry and load
position, we adopt a new set of non-dimensional parameters,
which (i) apply specifically to I-section beams and (ii) are
closely related to the geometrical and mechanical properties
governing their LTB behaviour. They are similar to the ones
proposed by Kitipornchai and Trahair [36] and given by

K =
π

l

√
E Izh2

S
4G It

ψ f =
Ib f − It f

Ib f + It f
ζq = 2

zq − zS

hS

ζQ = 2
zQ − zS

hS
,

(31)

where hS is the distance between the flange mid-lines and Ibf
and Itf are the moments of inertia, about the z-axis, of the
bottom and top flanges. It is worth noting that:

(i) The parameter ψ f (i1) is purely geometrical (i.e. inde-
pendent of the M f

y sign), unlike the ones defined in [5,
37], (i2) provides an easy-to-feel measure of the flange
asymmetry and (i3) varies from ψ f = −1 (T-section) to
ψ f = 1 (inverted T-section), with ψ f = 0 for an equal
flanged I-section. It is related to the warping constant Iw
through [36,37]

Iw = (1 − ψ2
f )Izh2

S/4 (32)

and may also be used to approximate βy by means of [37]

βy ≈{
−0.8ψ f hS if ψ f > 0 (i.e. favourable flange asymmetry)
−ψ f hS if ψ f < 0 (i.e. unfavourable flange asymmetry)

(33)

(note that βy obviously vanishes for an equal flanged
I-section). An assessment of the errors involved in the
approximation (33) and in the subsequent evaluation of
γqλcr and γQλcr is presented in an appendix at the end
of this paper.

(ii) In commonly used I-section cantilevers, the beam
parameter K ranges from 0.1 to 2.5 [17,36]. Low (high)
K values mean long (short) cantilevers and/or compact
(slender) cross-sections. Furthermore, one has K = K for
an equal flanged cantilever (ψ f = 0).

(iii) The load position parameters ζq and ζQ enable an easy
visualisation of the location of the load point of application
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along the cross-section height (or, to be exact, its location
in between the flange mid-lines). Typical values of these
parameters are (iii1) ζq(Q) = 0 (load applied at the shear
centre), (iii2) ζq(Q) = −(1 + ψ f ) (load applied at the top
flange centroid) and (iii3) ζq(Q) = 1 −ψ f (load applied at
the bottom flange centroid) [17].

(iv) Since the set {K , δy, εq , εQ} can be uniquely determined
from {K , ψ f , ζq , ζQ} by means of the expressions

K = K
√

1 − ψ2
f εq (Q) =

1
π

K ζq (Q) (34)

δy ≈


−

2 × 0.8
π

ψ f K if ψ f > 0

−
2
π
ψ f K if ψ f < 0,

(35)

the latter can also be used to write the governing equations
in non-dimensional form.

3. Numerical implementation

The application of a structure-preserving discretisation
method (such as the methods of Rayleigh–Ritz and Bubnov–
Galerkin) to Problem D generates an algebraic quadratic
eigenvalue problem of the form

(A + λB + λ2C)x = 0, (36)

where A, B and C are real symmetric matrices (of order n,
say)—A and C are positive and negative definite, respectively.
In the case of small-to-moderate n, the standard approach
to solve (36) numerically involves its linearisation, i.e. its
conversion into an equivalent linear generalised eigenproblem
by means of an augmentation procedure resembling the
reduction of a second-order linear differential equation to a
system of two first-order ones [38,39]. In practice, the most
commonly used linearisations involve one of the companion
forms[

0 N
−A −B

] [
x
u

]
= λ

[
N 0
0 C

] [
x
u

]
(37)

[
−A 0
0 N

] [
x
u

]
= λ

[
B C
N 0

] [
x
u

]
, (38)

where N is any non-singular n × n real matrix and u = λx.
This approach has two major drawbacks: (i) the dimension of
the linearised problem is twice that of the original quadratic one
and (ii) backward stability cannot always be guaranteed for the
quadratic problem, even if a backward stable algorithm is used
to solve the linearised problem [40].

Therefore, we opted for the discretisation of Problem C,
leading directly to an algebraic linear generalised eigenproblem
of the form

Gx =
1
λ

Kx, (39)

where G and K are real symmetric matrices and K is
positive definite. Then, it is possible to perform the Cholesky
factorisation of K (K = LLT, where L stands for a lower
triangular matrix with positive diagonal entries) and reduce (39)
to the standard symmetric form

(L−1GL−T)y =
1
λ

y, (40)

where y = LTx. The standard problem (40) can be solved by the
symmetric QR algorithm (e.g., [41]) or any other eigensolver
for real symmetric matrices.

The discretisation scheme employed in this work is the
Rayleigh–Ritz method, named after Strutt, 3rd Baron Rayleigh,
and Ritz [42,43]—for a comprehensive analysis of the method
and a broad discussion of its application areas, see works by
Mikhlin [32,44]. The functions v and φ were approximated by
the sequences of linear combinations of coordinate functions

vn(ξ) =

n∑
k=1

a(n)k

[
1 − cos

(
(2k − 1)π

2
ξ

)]
n = 1, 2, . . . (41)

φn(ξ) =

n∑
k=1

b(n)k

[
1 − cos

(
(2k − 1)π

2
ξ

)]
n = 1, 2, . . . (NW) (42)

φn(ξ) = b(n)1 ξ +

n∑
k=2

b(n)k sin ((k − 1)πξ)

n = 1, 2, . . . (FW), (43)

where the superscript in the coefficients a(n)k , b(n)k stresses their
dependence on n. Since the same number n of terms is used
to approximate v and φ, one is led to a discrete problem
with 2n degrees of freedom—note also that (43) satisfies the
natural boundary condition (191). The numerical procedure was
continued until the relative differences between the buckling
capacities γqλcr or γQλcr computed with three consecutive
values of n did not exceed 0.1%—it was found that this criterion
could always be satisfied by considering up to nine terms
(n ≤ 9) in (41)–(43).

4. Parametric study

A parametric study was conducted to determine the non-
dimensional elastic buckling capacities γqλcr or γQλcr of
I-section cantilevers and the associated normalised buckling
mode shapes φcr as a function of the beam parameter K (0.1 ≤

K ≤ 2.5), for (i) selected values of the flange asymmetry
parameter ψ f (in the range −0.8 ≤ ψ f ≤ 0.8) and (ii) three
load positions (shear centre, top and bottom flange centroids).
The cantilevers were acted on by a uniform load or a tip load
(i.e. Q0 = 0 or q0 = 0)—the simultaneous application of the
two loads was not considered in this work. As discussed earlier,
warping at the fixed end section was either fully prevented (NW)
or completely free (FW).

The numerical results were compared with values reported
by (i) Wang and Kitipornchai [17], for cantilevers with no
warping at the fixed end and both equal and unequal flanges,
and by (ii) Trahair [12], for cantilevers free to warp at the fixed
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Fig. 2. Cantilevers acted on by a uniform load applied at the top flange centroid (ζq = −1 − Ψ f ): variation of γqλcr with K and Ψ f .

Fig. 3. Cantilevers acted on by a uniform load applied at the shear centre (ζq = 0): variation of γqλcr with K and Ψ f .
end and equal flanges—to the best of our knowledge, no Mcr
values for cantilevers with unequal flanges and free to warp
at the fixed end are available in the literature. An excellent
agreement was found in all cases.

Figs. 2–7 show plots of the elastic buckling capacities γqλcr

and γQλcr against the beam parameter K , for selected values of
the flange asymmetry parameterψ f and the three load positions
considered. These plots show that:

(i) As expected, the cantilevers restrained from warping at
the fixed end (NW) exhibit higher buckling capacities than
the ones that are free to warp at that section (FW). While
the difference is only marginal for very low values of K ,
it gradually increases with this parameter and becomes
substantial for high K values. This indicates that the
buckling capacity of a cantilever restrained from warping
at the support and having a high K depends, to a large
extent, on the warping torsion generated during buckling—
this effect is hardly mobilised in the absence of an external
warping restraint. On the other hand, the warping torsion is
not relevant in cantilevers with very low K , which implies
that the warping restraint at the support has little impact on
γqλcr or γQλcr.

(ii) Although the plots concerning cantilevers subjected to
uniform and tip loads display similar qualitative features,
the γqλcr values are always higher: for equal end values (at
ξ = 0 and ξ = 1), the magnitude of the non-dimensional
bending moment distribution |µ

f
0 (ξ)λ| associated with the

uniform load is smaller at any given interior point (0 <

ξ < 1).
(iii) The so-called Wagner’s effect [15,45], which may be

viewed as an increase (reduction) in the actual torsional
rigidity of the cross-sections when the compression
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Fig. 4. Cantilevers acted on by a uniform load applied at the bottom flange centroid (ζq = 1 − Ψ f ): variation of γqλcr with K and Ψ f .

Fig. 5. Cantilevers acted on by a tip load applied at the top flange centroid (ζQ = −1 − Ψ f ): variation of γQλcr with K and Ψ f .
flange is larger (smaller) than the tension one, is clearly
noticeable for the cantilevers loaded at the shear centre:
both γqλcr and γQλcr increase monotonically with ψ f .

(iv) In the cantilevers loaded at the top or bottom flange, the
variation of the buckling capacity with ψ f stems from
the interplay between (iv1) Wagner’s effect and (iv2)

the location of the point of load application relative to
the shear centre—recall that, for top or bottom flange
loading, the value of the parameters ζq and ζQ depends
on ψ f . This explains why, in some cases, this variation
is not monotonic (e.g., warping restrained cantilevers with
ψ f > 0 and bottom flange loading). It is also worth noting
that, for top flange loading and moderate-to-high K values,
the maximum buckling capacity occurs for sections with
equal (or nearly equal) flanges.
The critical buckling mode shapes φcr of cantilevers with
K = 1.0 and acted on by tip loads are shown in Figs. 8–10
(these shapes are normalised so that φcr max = 1)—since the
buckling mode shapes of the cantilevers subjected to uniform
loads are qualitatively similar, they are not presented here. The
most striking difference between the two graphs in each of
these figures concerns the shape of the critical modes near the
supported end—while the cantilevers prevented from warping
at the support (NW) display a considerable curvature, the ones
that are free to warp (FW) exhibit a linear ascending branch,
which is an immediate consequence of the natural boundary
condition φ,ξξ (0) = 0. It is also interesting to note that, in
the cases of shear centre and top flange loading, φcr increases
monotonically with ξ , so that the maximum torsional rotation
occurs at the cantilever free end. Conversely, for bottom flange
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Fig. 6. Cantilevers acted on by a tip load applied at the shear centre (ζQ = 0): variation of γQλcr with K and Ψ f .

Fig. 7. Cantilevers acted on by a tip load applied at the bottom flange centroid (ζQ = 1 − Ψ f ): variation of γQλcr with K and Ψ f .
loading the critical mode shapes reach a maximum for ξ < 1
and then decrease towards the cantilever free end, a feature that
becomes gradually more significant as the value of the flange
asymmetry parameter ψ f diminishes.

5. Approximate formulae to estimate elastic critical
moments

5.1. The three-factor formula of Eurocode 3

One of the most well-known and widely employed formulae
to estimate elastic critical moments is the so-called 3-factor
formula, which was adopted by the ENV version of Eurocode 3
[5] and retained up until the “Stage 34” Draft of its EN
version [37]. It was subsequently set aside, without being
replaced (see [1,46])—for brief but illuminating accounts of the
origin and eventful past of this formula, the interested reader is
referred to [47,48]. The 3-factor formula, as it appeared in [5,
37], reads

Mcr = C1
π2 E Iz

(kz L)2

×

√( kz

kw

)2 Iw
Iz

+
(kz L)2 G It

π2 E Iz
+
(
C2zg − C3z j

)2
−
(
C2zg − C3z j

) .
(44)

Because of its long and widespread use (at least in Europe),
it was decided to adopt formula (44) and to extend its range of
application to cantilevers, by deriving appropriate Ci factors—
bearing this in mind, it is convenient to make some preliminary
observations:

(i) In [5,37], L is defined as the beam length between
consecutive laterally restrained cross-sections. When
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Fig. 8. Cantilevers (K = 1.0) acted on by a tip load applied at the top flange centroid (ζQ = −1 − Ψ f ): normalised critical mode shapes φcr .

Fig. 9. Cantilevers (K = 1.0) acted on by a tip load applied at the shear centre (ζQ = 0): normalised critical mode shapes φcr .
dealing with cantilevers, this definition has to be modified
and, therefore, we take L as the cantilever length—recall
that it was previously denoted in this paper by the lower
case letter l.

(ii) According to [5,37], the Ci factors depend only on
(ii1) the bending moment diagram and (ii2) the end
restraint conditions. However, it has been recognised by
several authors (e.g., [13,47,49]) that, except in a few
particular cases, these factors also depend on (ii1) the
beam parameter K , (ii2) the location of the point of load
application (C2,C3) and (ii3) the degree of cross-section
asymmetry with respect to the y-axis (C3).

(iii) The quantities kz and kw are effective length factors,
the former associated with the end rotations about the
z-axis and the latter with the end warping restraint. It
should be noticed that these factors (iii1) are not properly
defined (there is no direct relation to the distance between
inflection points of the critical buckling mode shape
{vcr, φcr}) and (iii2) do not fully account for the end
support conditions—indeed, when kz changes so do the Ci
factors. Thus, the values assigned to kz and kw should be
regarded as merely conventional.

(iv) For gravity loads, we define zg = −(zq(Q) − zS), which
means that one has zg > 0 for loads applied above the
shear centre and there is no need for any sign convention—
incidentally, the convention adopted in [37] is incorrect.
Moreover, it should be made clear that formula (44) is
not valid when the beam is subjected to transverse loads
applied at different levels (e.g., if one has zq 6= zQ).

(v) The cross-sectional property z j is defined as

z j = zS −
1

2Iy

∫
A

z(y2
+ z2)dA = −

βy

2
, (45)
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Fig. 10. Cantilevers (K = 1.0) acted on by a tip load applied at the bottom flange centroid (ζQ = 1 − Ψ f ): normalised critical mode shapes φcr .
Table 1
Cantilevers with warping prevented at the fixed end (NW)—C1 and C2 factors (L = l; kz = 2; kw = 1; 0.1 ≤ K ≤ 2.5)

C1 C2
Top flange loading Bottom flange loading

Point load 2.462/
√

1 + K 2
+ 2.383K/

√
1 + K 2 0.380 + 2.092K − 0.318K 2 0.512 + 0.370K − 0.033K 2

Uniform load 3.962/
√

1 + K 2
+ 5.531K/

√
1 + K 2 1.130 + 1.539K − 0.176K 2 1.049 + 0.234K − 0.020K 2
which means that, once again, no sign convention is
needed.

5.2. C1,C2 and C3 factors for cantilevers

The numerical results presented in Section 4 are now used to
develop approximate analytical expressions for C1, C2 and C3,
by adopting the following step-by-step strategy:

(i) Fixed values are assigned to the effective lengths factors:
kz = 2.0 (the most intuitive value, in view of the analogy
with column flexural buckling) and kw = 1.0.

(ii) Initially, only the cases corresponding to zg = z j = 0 (or,
equivalently, ζq(Q) = ψ f = 0—i.e. cantilevers with equal
flanges and loaded at the shear centre) are dealt with. Then,
the non-dimensional version of formula (44) reads

γq(Q)λcr =
π

2
C1

√
K

2
+ 1. (46)

For the NW case, Figs. 3 and 6 show that the variation of
the buckling capacity with K is practically linear. Thus,
straight lines are fitted to the γq(Q)λcr vs. K numerical
results—the approximate analytical expressions for C1,
shown in Table 1, stem from these fits.

For the FW case, on the other hand, a quadratic
polynomial is fitted to the γq(Q)λcr vs. K numerical
results, as shown in Table 3—it was found that, concerning
the statistical parameters qualifying the difference (or
distance) between the numerical and proposed values of
γq(Q)λcr, this approach yields more accurate estimates
than an alternative one that consists of fitting a polynomial
of the same degree to tabulated C1 vs. K data.

(iii) Next, the cases corresponding to z j = 0 and zg 6= 0
(i.e. cantilevers with equal flanges and loaded at the top
or bottom flange) are considered. The numerical results
given in Section 4 and the C1 approximations obtained in
the preceding step are used to evaluate C2 by means of the
expression

C2 =
4γ 2

q(Q)λ
2
cr − π2C2

1(1 + K
2
)

2πC1γq(Q)λcr K ζq(Q)
. (47)

Polynomials in K are then fitted to the tabulated C2 vs. K
values—see Tables 1 and 3.

(iv) Finally, the cases associated with z j 6= 0 (i.e. cantilevers
with unequal flanges) lead to the C3 values, which
are obtained using the approximations for C1 and C2
developed earlier and the expression

C3 =
4γ 2

q(Q)λ
2
cr − π2C2

1 (1 + K
2
(1 − ψ2

f ))− 2πC1C2γq(Q)λcr K ζq(Q)

2π ×

{
0.8 if ψ f > 0

1.0 if ψ f < 0

}
× C1γq(Q)λcr Kψ f

.

(48)

Then, curve fitting techniques are again employed to
construct polynomials in K and ψ f matching the tabulated
C3, K and ψ f values as closely as possible—see Tables 2
and 4. It should be noted that the step function appearing
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Table 2
Cantilevers with warping prevented at the fixed end (NW)—C3 factor (L = l; kz = 2; kw = 1; 0.1 ≤ K ≤ 2.5; −0.8 ≤ ψ f ≤ 0.8, ψ f 6= 0)

Top flange loading 1.520 − 1.342ψ f − 0.010ψ2
f − 0.424ψ3

f + (0.162 + 2.419ψ f + 0.875ψ2
f + 0.400ψ3

f )K

+ (0.148 − 0.623ψ f − 0.216ψ2
f + 0.141ψ3

f )K
2

Point load Shear centre loading 1.808 − 0.944ψ f + 0.299ψ2
f − 0.061ψ3

f + (0.060 + 1.235ψ f − 0.574ψ2
f − 0.337ψ3

f )K

+ (0.128 − 0.409ψ f + 0.047ψ2
f + 0.237ψ3

f )K
2

Bottom flange loading 1.966 − 0.792ψ f + 0.139ψ2
f − 0.341ψ3

f + (0.061 + 0.549ψ f + 0.077ψ2
f − 0.206ψ3

f )K

+ (0.064 − 0.135ψ f − 0.050ψ2
f + 0.058ψ3

f )K
2

Top flange loading 2.441 − 1.589ψ f + 0.176ψ2
f − 0.658ψ3

f + (−0.412 + 2.442ψ f + 0.635ψ2
f +

0.261ψ3
f )K + (0.273 − 0.601ψ f − 0.140ψ2

f + 0.205ψ3
f )K

2

Uniform load Shear centre loading 2.609 − 1.801ψ f + 0.522ψ2
f + 0.461ψ3

f + (−0.445 + 2.251ψ f − 0.620ψ2
f −

1.443ψ3
f )K + (0.244 − 0.710ψ f + 0.044ψ2

f + 0.611ψ3
f )K

2

Bottom flange loading 2.793 − 1.235ψ f + 0.428ψ2
f − 0.630ψ3

f + (−0.492 + 1.008ψ f − 0.134ψ2
f −

0.095ψ3
f )K + (0.194 − 0.263ψ f − 0.003ψ2

f + 0.060ψ3
f )K

2

Table 3
Cantilevers free to warp at the fixed end (FW)—C1 and C2 factors (L = l; kz = 2; kw = 1; 0.1 ≤ K ≤ 2.5)

C1 C2
Top flange loading Bottom flange loading

Point load 2.437/
√

1 + K 2
+ 0.613K/

√
1 + K 2

− 0.105K 2
/

√
1 + K 2 0.409 + 1.444K + 0.070K 2 0.529 + 0.234K + 0.149K 2

Uniform load 3.840/
√

1 + K 2
+ 1.496K/

√
1 + K 2

− 0.247K 2
/

√
1 + K 2 0.987 + 1.420K + 0.165K 2 1.028 + 0.388K + 0.150K 2

Table 4
Cantilevers free to warp at the fixed end (FW)—C3 factor (L = l; kz = 2; kw = 1; 0.1 ≤ K ≤ 2.5; −0.8 ≤ ψ f ≤ 0.8, ψ f 6= 0)

Top flange loading 1.732 − 0.648ψ f − 0.062ψ2
f + 0.059ψ3

f + (0.066 + 1.539ψ f + 0.520ψ2
f − 0.032ψ3

f )K

+ (0.446 + 0.221ψ f − 0.037ψ2
f + 0.066ψ3

f )K
2

Point load Shear centre loading 2.021 + 0.361ψ f + 0.176ψ2
f − 0.655ψ3

f + (0.242 + 0.120ψ f − 0.426ψ2
f + 0.891ψ3

f )K

+ (0.337 + 0.052ψ f − 0.198ψ2
f − 0.099ψ3

f )K
2

Bottom flange loading 2.156 − 0.055ψ f + 0.101ψ2
f − 0.079ψ3

f + (0.435 + 0.168ψ f − 0.083ψ2
f − 0.077ψ3

f )K

+ (0.238 − 0.022ψ f − 0.011ψ2
f − 0.030ψ3

f )K
2

Top flange loading 2.669 − 0.815ψ f + 0.071ψ2
f − 0.066ψ3

f + (0.113 + 1.812ψ f + 0.359ψ2
f + 0.007ψ3

f )K

+ (0.499 + 0.289ψ f + 0.043ψ2
f + 0.081ψ3

f )K
2

Uniform load Shear centre loading 3.036 + 0.310ψ f + 0.306ψ2
f − 0.888ψ3

f + (0.066 + 0.036ψ f − 0.585ψ2
f + 1.180ψ3

f )K

+ (0.462 + 0.098ψ f − 0.227ψ2
f − 0.123ψ3

f )K
2

Bottom flange loading 3.277 − 0.350ψ f + 0.348ψ2
f − 0.263ψ3

f + (0.190 + 0.348ψ f − 0.195ψ2
f − 0.137ψ3

f )K

+ (0.395 − 0.071ψ f − 0.009ψ2
f + 0.009ψ3

f )K
2

in the denominator of (48) is obviously incompatible with
the smooth curves provided by continuous polynomials
over the whole domain (i.e. for −0.8 ≤ ψ f ≤ 0.8). This
problem is attenuated by the fact that one has C3 ≈ 0 in
the vicinity of the discontinuity (i.e. for ψ f ≈ 0) and its
effect on the accuracy of the proposed expressions is only
marginal.

All the above curve fittings are performed using standard
linear least squares procedures—for a comprehensive and up-
to-date treatment of this topic, see [50]. Table 5 provides
a synopsis of the statistical parameters measuring the
quality (accuracy) of the estimates yielded by the proposed
expressions. The degree of the polynomials adopted in the
curve fitting process, which, for consistency, was kept the same
for similar cases, was selected in order to ensure a targeted
accuracy. In view of the plethora of possible accuracy measures,
we opted to aim at guaranteeing that the maximum absolute
value of the relative error never exceeds 5%, with the relative
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Table 5
Statistical parameters

Top flange loading Shear centre loading Bottom flange loading

NW

Point load

σerr 0.01068 0.00897 0.00792
err (%) 0.082 0.105 0.111
r2 0.99664 0.99985 0.99987
|err| (%) 0.808 0.655 0.531
max|err| (%) 4.021 3.365 3.687
(|err| > 2.5%) (%) 3 3 4

Uniform load

σerr 0.01144 0.01095 0.01018
err (%) 0.104 0.108 0.110
r2 0.99497 0.99984 0.99979
|err| (%) 0.845 0.802 0.720
max|err| (%) 5.226 3.809 3.901
(|err| > 2.5%) (%) 5 4 3

FW

Point load

σerr 0.01050 0.00718 0.01176
err (%) 0.060 0.081 0.081
r2 0.99896 0.99984 0.99961
|err| (%) 0.735 0.530 0.951
max|err| (%) 4.225 2.640 3.499
(|err| > 2.5%) (%) 4 2 5

Uniform load

σerr 0.01184 0.00905 0.01165
err (%) 0.084 0.098 0.108
r2 0.99832 0.99982 0.99975
|err| (%) 0.802 0.657 0.873
max|err| (%) 4.727 3.582 4.912
(|err| > 2.5%) (%) 7 4 5
error defined as

err =

(
γq(Q)λcr

)
num −

(
γq(Q)λcr

)
app(

γq(Q)λcr
)

num

(49)

(as shown in Table 5, this criterion is only violated once
and by a very minute margin). Table 5 includes (i) the
standard deviation σerr and mean value err of the relative error
distribution, (ii) the square of the correlation coefficient r
(also known as product-moment correlation coefficient or
Pearson’s correlation coefficient), (iii) the more significant,
from a practical viewpoint, mean of the absolute values of the
relative error |err|, (iv) the maximum absolute value of the
relative error and (v) the number of cases, in percentage, with
absolute values of the relative error greater than 2.5%—this
number is always rather small, with the majority of the cases
occurring for K ≈ 0.1).

6. Conclusions

The so-called 3-factor formula (included, for instance, in
the ENV version of Eurocode 3 [5]) is one of the most
commonly used general formulae to estimate elastic critical
moments in steel beams prone to LTB. In this paper, the
domain of application of this formula is extended to cantilevers,
by providing approximate analytical expressions to determine
the C1, C2 and C3 factors. The paper deals specifically with
I-section cantilevers (i) having equal or unequal flanges, (ii)
fully built-in or free to warp at the support and (iii) acted on by
uniformly distributed or concentrated tip loads (applied either
at the shear centre or at one of the flanges) and includes a
careful examination of the influence of the warping restraint
condition on the elastic LTB of singly symmetric cantilevers.
The estimates yielded by the proposed expressions are very
accurate: the differences with respect to the numerical (“exact”)
results only occasionally exceed 5%.

In summary, our approach consists of the following steps:

(i) write the governing equations in non-dimensional form
over a fixed reference domain and, in the process, identify
an adequate complete set of non-dimensional parameters;

(ii) implement numerically (i.e. discretise) the continuum
model stemming from the preceding step;

(iii) perform a parametric study, on the basis of the non-
dimensional parameters defined in step (i);

(iv) obtain approximate buckling formulae by fitting a
mathematical model to the results of the parametric study
using least squares techniques and qualify quantitatively
the accuracy of the proposed expressions.

The first step of this procedure is of fundamental importance,
since it enables a general and systematic representation of the
cantilever LTB behaviour, a deeper insight into the nature of
the phenomenon and a reduction in the number of parameters
appearing in the governing equations—this last feature bears
important consequences, as far as the time and effort that must
be put into the parametric study are concerned.

Appendix

The approximation of βy (in terms of ψ f and hS) given
by Eq. (33) is inherent to the results of the parametric study
concerning singly symmetric I-section cantilevers (Section 4)
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and, thus, also to the analytical expressions proposed for the C3
factor (Section 5.2).

To assess the accuracy of Eq. (33), a number of HEB and IPE
sections, having hS values varying between 166 mm and 484
mm, are made singly symmetric through the modification of
one of the flanges, either by reducing its width or by increasing
its thickness. The fillets are neglected (i.e. the cross-sections
are idealised as a combination of three thin rectangles). The
asymmetry parameter ψ f of the modified cross-sections falls
within the range 0.10 ≤ |ψ f | ≤ 0.95—small-to-moderate
|ψ f | values are associated with an increased flange thickness,
whereas moderate-to-large |ψ f | values correspond to a reduced
flange width. The approximate βy values yielded by Eq. (33)
were then compared with the exact ones, as defined by Eq. (2)—
this comparison shows that:

1. Eq. (33) always overestimates βy (if ψ f > 0, then βy,exact <

βy,app < 0, while 0 < βy, exact < βy,app if ψ f < 0). This
means that an approximate βy value invariably leads to an
underestimation of Mcr.

2. The relative errors (βy,app −βy,exact)/|βy,exact| are generally
below 15%, even if they occasionally reach almost 20%.
However, no obvious correlation appears to exist between
the value of |ψ f | and the magnitude of these relative errors.

At this point, what remains to be assessed is how an error
in βy affects the evaluation of Mcr. In order to obtain such
an assessment, we considered the worst-case scenario: a 20%
overestimation of βy , regardless of |ψ f |. It was found that:

(i) As expected, the impact of the βy error on Mcr grows with
|ψ f | and is more pronounced in the FW case, due to an
increased importance of the Wagner effect in the overall
buckling phenomenon.

(ii) Neither the loading nature (tip point load or uniformly
distributed load) nor its location (shear centre, top or
bottom flange) appear to influence the magnitude of the
Mcr errors significantly, at least in a consistent way.

(iii) As the beam parameter K increases, so does the impact
of the βy error on Mcr. In FW cantilevers with highly
asymmetric cross-sections – |ψ f | = 0.8 –, the βy error is
fully reflected on the evaluation of Mcr for K = 2.5. As K
decreases, this impact is slowly (but steadily) attenuated—
it does not exceed 10% for K ≤ 0.5.
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