
Transportation Research Part B 41 (2007) 756–771

www.elsevier.com/locate/trb
An improved solution algorithm for the constrained
shortest path problem

Luis Santos a, João Coutinho-Rodrigues b, John R. Current c,*

a Superior Institute Bissaya Barreto, Bencanta, 3040 Coimbra, Portugal
b Department of Civil Engineering, Faculty of Sciences and Technology, Polo II, University of Coimbra, 3030 Coimbra, Portugal

c Department of Management Sciences, The Fisher College of Business, The Ohio State University, 632 Fisher Hall,

2100 Neil Avenue, Columbus, OH 43210-1144, USA

Received 11 November 2004; accepted 4 December 2006
Abstract

The shortest path problem is one of the classic network problems. The objective of this problem is to identify the least
cost path through a network from a pre-determined starting node to a pre-determined terminus node. It has many practical
applications and can be solved optimally via efficient algorithms. Numerous modifications of the problem exist. In general,
these are more difficult to solve. One of these modified versions includes an additional constraint that establishes an upper
limit on the sum of some other arc cost (e.g., travel time) for the path. In this paper, a new optimal algorithm for this
constrained shortest path problem is introduced. Extensive computational tests are presented which compare the algorithm
to the two most commonly used algorithms to solve it. The results indicate that the new algorithm can solve optimally very
large problem instances and is generally superior to the previous ones in terms of solution time and computer memory
requirements. This is particularly true for the problem instances that are most difficult to solve. That is, those on large
networks and/or where the additional constraint is most constraining.
� 2007 Elsevier Ltd. All rights reserved.

Keywords: Network routing; Constrained shortest path problem; Exact algorithms
1. Introduction

The Shortest Path (SP) problem is one of the oldest and most widely used problems in network optimiza-
tion (Dijkstra, 1959; Dantzig, 1960; Floyd, 1962). The objective of the SP problem is to identify the least cost
path (or route) through a network from a pre-determined starting node to a pre-determined terminus node.
The SP problem is one of the relatively few network optimization problems for which exact, polynomial time
solution algorithms exist (e.g., see Magnanti and Wong, 1984; Evans and Minieka, 1992; Daskin, 1995).
0191-2615/$ - see front matter � 2007 Elsevier Ltd. All rights reserved.

doi:10.1016/j.trb.2006.12.001

* Corresponding author. Tel.: +1 614 292 3166; fax: +1 614 292 1272.
E-mail addresses: lsantos@dec.uc.pt (L. Santos), coutinho@dec.uc.pt (J. Coutinho-Rodrigues), current.1@osu.edu (J.R. Current).

mailto:lsantos@dec.uc.pt
mailto:coutinho@dec.uc.pt
mailto:current.1@osu.edu

L. Santos et al. / Transportation Research Part B 41 (2007) 756–771 757
Various ‘‘constrained’’ versions of the basic SP problem exist. For example, the path may be constrained to
include specific nodes, or be constrained to include a specific number of nodes (e.g., see Deo and Pang, 1984),
or include nodes within a pre-specified ‘‘covering’’ distance of every node in the network (Current et al., 1984;
Current et al., 1994). In general, the term ‘‘constrained shortest path problem’’ (cSP) refers to the constrained
problem in Handler and Zang (1980) that includes one additional constraint that establishes an upper limit on
the sum of some other arc cost (e.g., travel time) for the path. Unfortunately, the addition of such constraints
to the SP problem generally results in a problem that belongs to the set of problems known as NP-hard (e.g.,
see Garey and Johnson, 1979).

In this article, we introduce an improved exact algorithm for the cSP as defined in Handler and Zang
(1980). Although this problem is NP-hard, we demonstrate that very large problem instances (40000 nodes
and 800 000 arcs) can be solved in reasonable time. We compare this new algorithm’s results and solution
times to the Lagrangian relaxation and the k-shortest path approaches presented in Handler and Zang
(1980). The results of these tests indicate that the proposed algorithm can solve large problems in reasonable
time and has advantages over the other methods in terms of solution time and computer memory
requirements.

2. Mathematical formulation of the cSP problem

Consider a directed graph,G = (N,A) where N = {1,2, . . .,n} represents the set of nodes and A = {(i, j): i,
j 2 N, i 5 j} represents the set of m directed arcs. Two, non-negative weights cij and tij are associated with each
arc (i, j). These weights may represent, for example, the length (or cost) and the travel time associated with the
respective arc. Label the origin node, 1, and the destination node, n.

Given these definitions, the cSP problem may be formulated as a binary integer program as follows:
min
X
ði;jÞ2A

cijxij ð1Þ

subject to
X

j

xij �
X

k

xki ¼
1 if i ¼ 1;

0 if i ¼ 2; . . . ; n� 1;

�1 if i ¼ n;

8><
>:

ð2Þ

X
ði;jÞ2A

tijxij 6 T ð3Þ

xij 2 f0; 1g; ði; jÞ 2 A; ð4Þ
where xij are binary variables associated with each arc (i, j). If arc (i, j) is included in the optimal path, then
xij = 1; otherwise xij = 0. The parameter, T, represents the maximum value allowed for the sum of the tij

arc weights. For example, T could represent the maximum allowable time to transverse the path. The shortest
path problem is formulated by (1), (2), and (4). As noted before, this problem can be solved optimally in poly-
nomial time. Unfortunately the addition of constraint (3) results in a problem that belongs to the set on NP-
hard problems (Garey and Johnson, 1979).

3. Existing solution algorithms for the cSP problem

Handler and Zang (1980) proposed two methods to solve the cSP problem. One requires solving a k-Short-
est Path (kSP) problem and the other is based upon Lagrangian relaxation. Other approaches (e.g., Johsch,
1966, which is based on dynamic programming), have been proposed. However, the Handler and Zang
Lagrangian relaxation-based method is generally considered the most efficient.

3.1. Algorithm 1: k-Shortest path method

This algorithm was introduced in Handler and Zang (1980). It identifies the optimal solution to the cSP by
solving a k-Shortest Path (kSP) problem. The objective of the kSP is to identify k paths from the origin node to

758 L. Santos et al. / Transportation Research Part B 41 (2007) 756–771
the destination node. These k paths are sorted by ascending length from the shortest to the kth shortest. In
essence, Algorithm 1 evaluates successive shortest paths, sorted by (5), until the first path that is feasible to
constraint (3) is obtained.

Algorithm 1 can be summarized as follows.
Let X = bxij: (i, j) 2 Ac be a vector whose components are, xij for all (i, j), and let Y be the set of vectors X

satisfying the set of Eqs. (2) and (4). Define the following for any X 2 Y:
f1ðX Þ ¼
X
ði;jÞ2A

cijxij ð5Þ
and
f2ðX Þ ¼
X
ði;jÞ2A

tijxij: ð6Þ
An optimal solution to the cSP may be attained by applying an algorithm that solves kSP with (5) as the
objective function until it identifies the first path Xk 2 Y such that f2(Xk) 6 T (Handler and Zang, 1980).

The procedure is presented graphically in Fig. 1 where the solutions, Xk 2 Y, are represented by points in a
two-dimension space. The horizontal axis represents f1(X) and the vertical axis represents f2(X). Therefore, the
coordinates of each solution are. In the example presented in Fig. 1 the optimal solution is X4, which is
obtained in the 4th iteration of the algorithm (i.e., k = 4).

Unfortunately, the computational complexity of kSP problem increases with k. Several algorithms have
been developed to solve the kSP problem (e.g., Dreyfus, 1969; Martins, 1984; Azevedo et al., 1993). The main
disadvantage of Algorithm 1 is that the kSP algorithm may require a large value for k before a feasible solu-
tion to the cSP is obtained. As a consequence, the required computer time and memory may be unacceptable
for many real-world problems.

3.2. Algorithm 2: Lagrangian relaxation method

Due to the computational complexity of the kSP based algorithm, Handler and Zang (1980) introduced a
Lagrangian relaxation approach to solve the cSP. Their approach may be summarized as follows.

Given the previous definitions, define the following function for any X 2 Y:
f3ðX Þ ¼
X
ði;jÞ2A

tijxij � T : ð7Þ
The cSP problem may now be stated as:
f � ¼ f1ðX �Þ ¼ min
X2Y

f1ðX Þ ð8Þ

s:t: f 3ðX Þ 6 0; ð9Þ
where X* represents the optimal solution and f* is the optimum value for the objective function.
3X

4X

3X

2X
1X

2f

T

1f

search direction

Fig. 1. kSP-based search approach.

 A 2f

1+iC

iC

1f

O
B

T

Fig. 2. Lagrangian relaxation algorithm 1st step.

L. Santos et al. / Transportation Research Part B 41 (2007) 756–771 759
The technique relaxes constraint (9). Therefore, for any u 2 R and X 2 Y, the Lagrangian function is
defined by
Lðu;X Þ ¼ f1ðX Þ þ uf3ðX Þ ð10Þ
and
LðuÞ ¼ min
X2Y

Lðu;X Þ: ð11Þ
From (8) and (10), the following property is true:
LðuÞ 6 f � 8 u P 0: ð12Þ

As a consequence, a lower bound for the objective function of the primal problem may be attained by solv-

ing the following dual problem:
L� ¼ Lðu�Þ ¼ max
uP0

LðuÞ: ð13Þ
Although the dual problem is convex, the primal problem is not. Consequently, L* < f*.
The details of Algorithm 2 are not presented here as the computational results presented in this article uti-

lize a procedure identical to that presented in Handler and Zang (1980). However, the algorithm may be sum-
marized as follows. The procedure begins by solving two shortest path problems to identify two solutions, A
and B, that minimize respectively (5) and (6). It continues by identifying optimal solutions to (10) with new
values of u. The initial value of u is ðf1ðBÞ � f1ðAÞÞ=ðf2ðAÞ � f2ðBÞÞ. This phase stops when the two closest
solutions to the line defined by f2(X) = T are identified (e.g., Ci and Ci+1 in Fig. 2). The first phase only iden-
tifies solutions on the convex hull of the cSP problem (represented by the curve in Fig. 2).

Given that the primal problem is not convex, the dual problem (13) may not identify the optimal solution to
the primal problem. Consequently, Algorithm 2 invokes a k-shortest path solution procedure to identify any
‘‘non-convex’’ feasible solutions (i.e., any that may exist between Ci and Ci+1 in Fig. 2). This second phase
identifies the best (if any exist) solution in the ‘‘duality gap’’ between Ci and Ci+1 by solving a kSP problem
whose objective function is defined by (10) using the final value of u from the previous phase of the algorithm
(i.e., the search direction is orthogonal to CiCiþ1).

4. New solution algorithm for the cSP problem

A new optimal solution algorithm for the cSP is introduced in this section. This algorithm utilizes a kSP
algorithm in a manner similar to Algorithm 1. The primary difference is the way in which the k-shortest paths
are sorted (i.e., the evaluation/ranking of Xk 2 Y). The underlying concept of the new approach is to define a
more efficient search direction for the kSP problem that considers the two network costs involved (ci,j and ti,j)
as well as the relative importance (i.e., ‘‘tightness’’) of the additional constraint (3).

760 L. Santos et al. / Transportation Research Part B 41 (2007) 756–771
In Algorithm 1, the Xk 2 Y are sorted by the value of f1(X). Hypothetical results of this approach are shown
in Fig. 1. The new algorithm sorts the Xk 2 Y by an evaluation/ranking of the paths that considers both f1(X)
and f2(X). It does this by ranking the paths by f4(X) defined in (14).
f4ðX Þ ¼ f1ðX Þ þ wf2ðX Þ: ð14Þ

The underlying assumption of Algorithm 3 is that the kSP search will be more efficient (i.e., identify the

optimal solution to the cSP with a lower value of k) if the search direction is orthogonal to the tangent of
the convex hull of the cSP solution set where f2(X) = T. Unfortunately, the convex hull of the cSP solution
set is unknown in advance of solving the kSP problem. Consequently, w is defined to approximate this direc-
tion. To accomplish this, we first identify the solutions which minimize f1(X) and f2(X). As was the case in
Algorithm 2, these solutions are obtained by solving two SP problems and are labeled A and B, respectively.
Given these solutions, we define w as:
w ¼
ð1� ffiffiffi

p
p Þ½f1ðBÞ � f1ðAÞ�ffiffiffi
p
p ½f2ðAÞ � f2ðBÞ�

; ð15Þ
where,
p ¼ T � f2ðBÞ
f2ðAÞ � f2ðBÞ

: ð16Þ
The parameter, p, is a problem specific ratio that measures the ‘‘tightness’’ of constraint (3) such that
0 < p < 1. The more constraining (or ‘‘tight’’) the value of T in constraint (3), the lower the value of p will
be (e.g., see Fig. 3). Fig. 3 demonstrates the desired search direction if we knew the convex hull of the cSP
solution set. If p is small, the kSP should put a heavier weight on f2(X) and if p is large, the search should
put a heavier weight on f1(X). The different kSP search directions for the various values of T shown in
Fig. 3, result in the identification of feasible solutions to constraint (3) (i.e., under T in Fig. 3) at lower values
of k. Consequently, a kSP algorithm using these weights will identify the optimal solution in fewer iterations of
the algorithm than will the search direction used in Algorithm 1.

The weighting scheme generated by (15) approximates the desired search weight. If p is small (i.e., con-
straint (3) is tight) then (14) will result in a larger weight on f2(X) in the kSP procedure. If p is large, then
(14) will result in a smaller weight on f2(X).

The computational results presented in the next section indicate that the underlying assumption of Algo-
rithm 3 is valid and that the value or w selected is effective. This is especially true for problems with low values
of p where constraint (3) is ‘‘tighter’’.
O B

 A

T

 search direction for 010p .=

O B

 A

T

 search direction for 250p .=

O B

 A

T
 search direction for 60p .=

O B

 A
T

 search direction for 90p .=

2f 2f

2f
2f

1f 1f

1f 1f

Fig. 3. Relationship of the search direction to the value of p.

L. Santos et al. / Transportation Research Part B 41 (2007) 756–771 761
Recall that Algorithm 1 terminates when it identifies the first Xk 2 Y such that f2(X) 6 T. This is not the
case with Algorithm 3 as the first such Xk may not be optimal to the cSP. The search procedure and stopping
rule for Algorithm 3 are first described graphically and then more formal descriptions are given.

From the definitions given above of solutions A and B, no feasible solutions exist to the left of OA and
below OB in Figs. 4–6. Solutions A and B are now used to calculate the values for p and w using (16) and
(15), respectively. The kSP problem for k = 1 is now solved with (14) as the objective function. This results
in solution X1 shown in Fig. 4. This is a feasible solution; however, it may not be the optimal cSP solution.
Consequently, it is stored as a candidate to be the optimal solution. If a better solution, say Xi exists (i.e.,
f1(Xi) < f1(X1) and f2(Xi) 6 T) then it will be located inside the shaded triangle in Fig. 4.
1f

3r

3X

O
B

 A
2f

T

 search direction

2X ′

Fig. 6. New approach based on the kSP evaluation (stopping condition).

O B

A

1X

2f

T

1f

 search direction

Fig. 4. Approach based on the new kSP evaluation (1st iteration).

2r

2X

O
B

 A
2f

T

1f

 search direction

2X ′

Fig. 5. Approach based on the new kSP evaluation (2nd iteration).

762 L. Santos et al. / Transportation Research Part B 41 (2007) 756–771
The k = 2 path in now identified. It is labeled X2 in Fig. 5. As f2(X2) 6 T it is a feasible solution to the cSP
problem. It is in the shaded area of Fig. 4; therefore, f1(X2) < f1(X1) and it replaces X1 as the candidate to be
the optimal solution to the cSP problem. If a feasible solution, say Xi, exists such that f1(Xi) < f1(X2), then it
must be located in the shaded triangle in Fig. 5.

Algorithm 3 continues in this manner by setting k = k + 1 at each iteration until the stopping condition is
satisfied. The stopping condition is based upon the value of the search direction (represented by the dashed
line segment, rk, in Figs. 5 and 6) and X 0j. Every time that the candidate to the optimal solution, Xj, is updated,
a new ‘‘stopping point’’ ðX 0jÞ is identified. The coordinates for this point are f1(Xj) and T. The algorithm ter-
minates when the line rk (which is a mapping of the search direction function (14) that includes Xk) intercepts
the line f2(X) = T to the right of the current ‘‘stopping point’’, ðX 0jÞ. When this occurs, Xj is the optimal solu-
tion to the cSP as no solution Xi exists where f1(Xi) < f1(Xj) and f2(Xi) 6 T (i.e., in the shaded area of Figs. 4–
6). This is demonstrated in the example in Fig. 6 where the line rk (k = 3) intercepts the line f2(X) = T to the
right of the current ‘‘stopping solution’’ (i.e., X 02). Consequently, the optimal solution to this cSP is X2.

A more formal statement of Algorithm 3 follows. Let SP(a,b) and kSP(a,b), respectively represent the short-
est path and the k-shortest path between the origin node and the destination node, calculated by considering the
costs associated with the arcs being (acij + btij). Let BS denote the best cSP problem solution evaluated so far
and S* denote the optimal cSP problem solution. Given these definitions, Algorithm 3 may be stated as follows:

A SP (1, 0)
B SP (0,1)
Case 1: If (T P f2(A)) then
S* A
Case 2: If (T < f2(B)) then

Infeasible problem
Case 3: If (T = f2(B)) then

BS B
k 1
X kSP (0,1)
While (T = f2(X))
If (f1(X) < f1(BS)) Then

BS X

End If

k k + 1
X kSP (0,1)

End While

S* BS
End if

Case 4: If (T < f2(A) and T > f2(B)) then

w ¼
ð1� ffiffiffi

p
p Þ½f1ðBÞ � f1ðAÞ�ffiffiffi
p
p ½f2ðAÞ � f2ðBÞ�

BS B
k 1
X kSP (1,w)
While ((w(f2(X) � T) + f1(X)) < f1(BS))
If (f2(X) 6 T and f1(X) < f1(BS)) Then
BS X

End If

k k + 1
X kSP (1, w)

End While

S* BS

End if

L. Santos et al. / Transportation Research Part B 41 (2007) 756–771 763
5. Computational comparisons of the solution algorithms

The goal of the computational testing was to compare the three algorithms on two criteria: solution time
and computer memory requirements. The three algorithms were encoded and tested on 180 randomly gener-
ated networks of various sizes. Algorithm 1 requires solving the k-shortest path problem and Algorithms 2 and
3 require solving the k-shortest path problem as well as solving shortest path problems. Several algorithms
have been developed to solve these problems optimally. For example, Cherkassky et al. (1996) have imple-
mented and compared 17 variations of various shortest path algorithms using experimental networks. Zhan
and Noon (1998) have implemented and compared 15 of those 17 algorithms using real networks. These com-
parisons indicate that when negative arc costs exist, the Bellman-Ford-Moore algorithm (Bellman, 1958; Ford
and Fulkerson, 1962; Moore, 1959) is the most efficient; and when they do not exist, the Dijkstra (1959) algo-
rithm is the most efficient. Given that the test networks used in this research do not contain negative arcs, the
tests reported in this paper solve the shortest path problems via Dial’s (1969) implementation of the Dijkstra
algorithm. Some adaptations were made to the original algorithm in order to assign real numbers for the arc
costs (e.g., algorithms 2 and 3 assign acij + btij to arc costs).

Various solution algorithms have also been developed for the k-shortest path problem (e.g., Dreyfus, 1969;
Martins, 1984). Azevedo et al. (1993) compare these algorithms and present a new one. They prove that the
new algorithm is computationally more efficient than the previous ones in terms of solution time. The
improved version of this kSP solution algorithm (Azevedo et al., 1994) was used in testing the three algorithms
in this article.

One hundred and eighty networks were randomly generated. There were 18 different network sizes based
upon the number of nodes and arcs in the networks. Specifically, the networks contained 10000 nodes,
20000 nodes, or 40000 nodes. For each one of these three ‘‘node sizes’’, there were six possible ‘‘number of
arcs’’. For the 10000 node problems, these were 15 000; 25000; 50000; 100000; 150 000; and 200 000 arcs.
For the 20000 node problems, these were 30000; 50000; 100 000; 200000; 300 000 and 400000 arcs. For the
40000 node problems, these were 60000; 100000; 200000; 400000; 600 000; and 800000 arcs. For each of these
18 network sizes, 10 random networks were generated. Consequently, 180 networks were generated randomly.
Each of these networks contains at least one Hamiltonian cycle. This guarantees that the network is connected
and that there exists at least one path from each node to every other node in the network. The values of ti,j and
ci,j for each arc (i, j) are uniformly distributed random integers in the range [1,500]. The number of arcs inci-
dent to each node is a uniformly distributed random integer in the range [1, # of nodes-1]; where # of
nodes = 10000; 20000; or 40000 depending on the problem set. The direction of each arc was also determined
randomly.

In addition, a value for T (i.e., the RHS of constraint (3)) was needed for each problem. The relative value
of T may greatly influence the difficulty of solving the problem (and therefore the relative efficiency of a par-
ticular solution algorithm). For example, if T is relatively large, then the kSP solution for k = 1 might be opti-
mal to the cSP. However, if T is relatively ‘‘tight’’, then it may require a very high value of k to identify the
optimal cSP solution. As a consequence, T is an important problem input used to determine various param-
eters used in Algorithm 3. These parameters include w (15) and p (16) used to determine the kSP search direc-
tion (14). To evaluate the influence of T on the efficiency of the three algorithms, each of the 180 networks was
solved for five values of T. These values were determined for each randomly generated network by ‘‘reverse-
engineering’’. That is, 5 values of p were selected (p = 0.1,0.2, 0.4,0.6, and 0.8) and these values and the appro-
priate network values were then used in (16) to determine five values of T for the various networks. The tests
were executed on a Pentium III @ 1 GHz with 512 K RAM.

Results of the 900 test problems are summarized in Tables 1–5. The average and maximum solution time of
the 10 problems for each particular network size and p value are presented in columns 3–5. Algorithm 1 solves
a kSP algorithm only for each test problem. Algorithm 2 solves a varying number of shortest path problems
(at least 2, to determinate A and B) and a kSP algorithm for each test problem. Algorithm 3 solves 2 shortest
path problems (to determine A and B) and a kSP algorithm for each test problem. The average and maximum
values of k used by the kSP algorithms and the number of shortest path problems solved (in Algorithms 2 and
3) are presented in columns 7, 9, 10, 12 and 13. Again, these represent the average or maximum value for the
10 random networks for each given network size and p value.

Table 1
Computational results for p = 0.1

Nodes
(#n)

Arcs
(#m)

Average computer time (s) Number of SP problems solved and/or k-paths identified

Alg. 1
(Av/max)

Alg. 2
(Av/max)

Alg. 3
(Av/max)

Alg. 1 Alg. 2 Alg. 3

#NOpt #k

(Av/max)
#n + #m

(max)
#SP
(Av/max)

#k

(Av/max)
#n + #m

(max)
#SP #k

(Av/max)
#n + #m

(max)

10000 15000 0.2/0.2 0.9/1.1 0.6/0.7 0 28.0/188 42185 3.7/5 2.4/4 25344 2 1.5/2 25211
25000 1.3/7.6 1.2/1.7 0.7/0.7 1 14600.1/102 625 6300343 4.1/6 3.4/8 35421 2 3.8/10 35483
50000 6.4/15.2 2.1/2.5 1.1/1.1 4 82861.3/200412 13041969 4.8/6 3.5/9 60548 2 3.1/12 60684

100000 20.8/24.4 3.3/3.9 1.8/1.8 9 193867.9/226577 23096315 5.1/6 4.3/9 110682 2 8.1/44 113444
150000 33.1/34.9 4.8/5.6 2.5/4.5 10 208271.4/233557 34423347 5.8/7 6.4/11 160998 2 6.0/14 161464
200000 41.9/44.2 6.1/7.7 2.7/2.8 10 216208.5/246065 41995831 6.1/8 12.9/70 217715 2 28.0/222 234555

20000 30000 0.4/0.4 1.6/2.0 1.2/1.2 0 13.6/60 56478 3.1/4 2/2 50293 2 1.1/2 50258
50000 0.5/0.8 2.7/3.5 1.5/1.5 0 484.2/4006 330087 4.4/6 2.6/4 70250 2 1.6/4 70243

100000 7.4/14.7 4.5/5.8 2.3/2.3 4 76272.7/158825 12278040 5.0/7 3.1/6 120350 2 4.2/14 120967
200000 24.7/25.4 7.0/8.1 3.7/3.8 10 185753.6/204781 23114979 5.0/6 4.3/11 220944 2 4.7/21 221626
300000 35.6/37.0 10.2/12.7 4.8/4.9 10 188919.2/210722 34831158 5.6/7 7.2/22 322404 2 8.3/31 323244
400000 43.4/43.8 12.5/14.6 5.9/5.9 10 182827.4/211594 41964396 5.7/7 7.2/23 423676 2 14.9/92 432826

40000 60000 0.8/0.8 3.7/4.0 2.4/2.4 0 45.8/214 124585 3.6/4 2.2/3 100385 2 1.7/3 100385
100000 1.0/1.1 5.3/7.1 3.0/3.1 0 463.8/2043 286024 4.3/6 3.2/5 140346 2 2.5/6 140447
200000 7.9/15.4 9.6/11.2 4.9/5.1 4 67850.7/160305 12287580 5.2/6 5.2/10 240708 2 4.9/10 240708
400000 25.9/27.3 15.9/20.4 7.7/7.8 10 165318.7/184661 23221549 5.3/7 8.2/34 442884 2 8.0/34 442884
600000 37.9/40.2 23.1/26.5 10.7/10.8 10 180591.8/192849 34079688 5.8/7 7.3/17 642222 2 20.5/164 658468
800000 46.2/46.9 27.0/32.4 13.0/13.3 10 165170.4/183976 41975266 5.6/7 8.9/32 844091 2 7.8/25 843241

Global average 18.6/21.1 7.9/9.5 3.9/4.1 107197/140192 16964203 4.9/6.2 5.2/15.6 233873 2.0 7.3/39.4 234103

764
L

.
S

a
n

to
s

et
a

l.
/

T
ra

n
sp

o
rta

tio
n

R
esea

rch
P

a
rt

B
4

1
(

2
0

0
7

)
7

5
6

–
7

7
1

Table 2
Computational results for p = 0.2

Nodes
(#n)

Arcs
(#m)

Average computer time (s) Number of SP problems solved and/or k-paths identified

Alg, 1
(Av/max)

Alg. 2
(Av/max)

Alg. 3
(Av/max)

Alg. 1 Alg. 2 Alg. 3

#NOpt #k

(Av/max)
#n + #m

(max)
#SP
(Av/max)

#k

(Av/max)
#n + #m

(max)
#SP #k

(Av/max)
#n + #m

(max)

10000 15000 0.2/0.2 0.9/1.2 0.6/0.6 0 27.5/188 42185 3.7/5 2.6/4 25344 2 3.2/5 25448
25000 0.3/0.5 1.2/1.5 0.7/0.7 0 511.7/4749 303665 4.1/5 2.8/6 35319 2 3.5/10 35526
50000 4.7/15.2 2.0/2.6 1.1/1.1 3 59825.2/200412 13041969 4.7/6 4.9/11 60699 2 4.7/14 60761

100000 20.8/24.4 3.4/3.8 1.8/1.8 9 193560.1/226577 23096315 5.1/6 7.2/16 111116 2 7.1/19 111272
150000 28.2/35.0 5.0/6.2 2.5/4.5 8 174741.5/233557 34423347 6.1/8 11.0/32 163073 2 10.6/54 165138
200000 38.0/43.4 5.9/7.0 2.7/2.8 9 195889.5/246065 41995831 5.8/7 7.5/32 213980 2 12.4/37 214507

20000 30000 0.4/0.4 1.6/2.0 1.2/1.2 0 13.6/60 56478 3.1/4 2.1/3 50374 2 2.3/5 50597
50000 0.5/0.8 2.7/3.5 1.5/1.5 0 451.7/4006 330087 4.4/6 3.8/11 70714 2 4.1/16 71041

100000 4.1/14.7 4.3/5.2 2.3/2.3 2 38281.5/158825 12278040 4.8/6 3.4/5 120286 2 4.2/17 121010
200000 17.6/25.0 6.9/8.1 3.7/3.8 6 129162.7/204781 22921261 5.0/6 6.6/14 221031 2 8.1/21 221713
300000 32.5/36.9 9.8/10.8 4.8/4.9 9 171834.5/210722 33816393 5.3/6 7.2/14 321429 2 6.0/13 321407
400000 40.3/50.9 12.9/15.1 5.9/5.9 9 166348.3/211594 41964396 5.9/7 7.7/18 422563 2 11.7/32 424538

40000 60000 0.8/0.8 3.8/4.8 2.4/2.4 0 23.4/80 109293 3.8/5 2.5/4 100504 2 2.8/7 100876
100000 1.0/1.1 5.2/6.1 3.0/3.1 0 328.0/2 043 286024 4.2/5 3.9/6 140394 2 4.0/6 140394
200000 5.2/15.4 9.7/11.4 4.9/5.1 2 39128.9/160305 12287580 5.2/6 5.1/11 240671 2 6.3/15 241088
400000 22.4/27.0 16.8/20.4 7.7/7.8 7 140264.4/184661 22707356 5.6/7 9.7/25 442162 2 12.4/54 444703
600000 29.4/38.5 21.8/25.0 10.7/10.9 7 135655.7/188822 34079688 5.3/6 6.6/17 642002 2 6.9/22 642809
800000 42.8/46.9 28.2/32.5 13.1/13.6 9 151757.3/183976 41975266 5.7/7 8.6/21 842716 2 13.5/38 845820

Global average 16.1/21.0 7.9/9.3 3.9/4.1 88767/134524 14493773 4.9/6.0 5.7/13.9 233893 2.0 6.9/21.4 234024

L
.

S
a

n
to

s
et

a
l.

/
T

ra
n

sp
o

rta
tio

n
R

esea
rch

P
a

rt
B

4
1

(
2

0
0

7
)

7
5

6
–

7
7

1
765

Table 3
Computational results for p = 0.4

Nodes
(#n)

Arcs
(#m)

Average computer time (s) Number of SP problems solved and/or k-paths identified

Alg. 1
(Av/max)

Alg. 2
(Av/max)

Alg. 3
(Av/max)

Alg. 1 Alg. 2 Alg. 3

#NOpt #k

(Av/max)
#n + #m

(max)
#SP
(Av/max)

#k

(Av/max)
#n + #m

(max)
#SP #k

(Av/max)
#n + #m

(max)

10000 15000 0.2/0.2 0.9/1.2 0.6/0.6 0 7.2/26 27437 3.8/5 3.0/7 25605 2 2.7/6 25536
25000 0.2/0.3 1.2/1.5 0.7/0.7 0 25.4/178 45377 4.0/5 2.9/5 35278 2 3.0/9 35504
50000 1.8/12.2 2.0/2.2 1.1/1.1 1 20101.8/165989 10190307 4.5/5 4.2/8 60446 2 7.2/22 61075

100000 2.0/8.1 3.4/3.8 1.8/1.8 0 13864.8/73295 7178463 5.2/6 5.5/12 110974 2 7.0/24 111897
150000 11.0/35.0 4.8/5.3 2.5/4.5 3 65519.7/233557 34423347 5.6/6 6.1/16 161542 2 23.8/164 175287
200000 12.1/44.4 5.9/7.1 2.7/2.8 2 58616.3/246065 41993291 5.7/7 4.7/16 211977 2 7.4/21 212553

20000 30000 0.4/0.4 1.6/2.0 1.2/1.3 0 13.6/60 56478 3.1/4 2.4/6 50721 2 3.1/8 50934
50000 0.5/0.8 2.5/3.0 1.5/1.5 0 410.7/4006 330087 4.1/5 4.2/7 70521 2 4.7/12 70812

100000 0.8/1.2 4.3/5.5 2.3/2.4 0 677.6/4733 498171 4.6/6 3.6/9 120547 2 3.3/12 120775
200000 10.9/25.0 7.3/8.6 3.7/3.8 4 75822.5/204283 22921 261 5.2/6 6.6/14 221298 2 10.0/30 222676
300000 12.5/36.1 10.1/13.3 4.9/5.0 3 58715.1/186556 33516419 5.2/7 5.0/10 321259 2 4.1/10 321259
400000 15.0/43.8 14.0/16.8 5.9/6.0 3 60035.1/211594 41943601 6.0/7 4.0/9 421300 2 11.4/64 428990

40000 60000 0.8/0.8 3.8/4.8 2.4/2.4 0 13.2/80 109293 3.8/5 2.8/4 100522 2 3.0/6 100710
100000 1.0/1.0 5.3/6.4 3.0/3.2 0 47.6/308 160910 4.2/5 3.4/9 140589 2 3.7/14 140983
200000 1.7/2.3 9.8/11.8 4.9/5.0 0 1479.8/7235 864726 5.0/6 3.8/8 240492 2 4.2/10 240604
400000 7.1/26.3 16.8/19.4 7.8/8.0 1 30915.1/161634 22288272 5.4/6 6.5/12 441042 2 6.8/16 441231
600000 8.0/36.5 25.0/27.6 10.9/11.2 1 22905.9/170747 31862403 5.8/6 5.4/17 642072 2 6.1/13 641321
800000 9.3/46.7 32.7/39.2 13.4/14.0 1 19254.0/169378 41918173 6.1/7 3.2/4 840917 2 11.2/40 845137

Global average 5.3/17.8 8.4/10.0 4.0/4.2 23801/102207 4088667 4.9/5.8 4.3/9.6 233761 2.0 6.8/26.7 234012

766
L

.
S

a
n

to
s

et
a

l.
/

T
ra

n
sp

o
rta

tio
n

R
esea

rch
P

a
rt

B
4

1
(

2
0

0
7

)
7

5
6

–
7

7
1

Table 4
Computational results for p = 0.6

Nodes
(#n)

Arcs
(#m)

Average computer time (s) Number of SP problems solved and/or k-paths identified

Alg. 1
(Av/max)

Alg. 2
(Av/max)

Alg. 3
(Av/max)

Alg. 1 Alg. 2 Alg. 3

#NOpt #k

(Av/max)
#n + #m

(max)
#SP
(Av/max)

#k

(Av/max)
#n + #m

(max)
#SP #k

(Av/max)
#n + #m

(max)

10000 15000 0.2/0.2 0.9/1.2 0.6/0.6 0 7.1/26 27437 3.8/5 3.5/7 25605 2 3.8/10 25931
25000 0.2/0.3 1.2/1.5 0.7/0.7 0 6.4/28 36672 4.0/5 3.2/6 35341 2 3.4/9 35504
50000 1.6/12.1 2.0/2.2 1.1/1.1 1 16648.7/165989 10190307 4.4/5 4.1/10 60448 2 7.2/31 61587

100000 0.7/1.1 3.4/3.8 1.8/1.8 0 826.9/4589 550197 5.2/6 5.2/12 110851 2 5.5/14 111003
150000 3.5/19.7 4.9/6.3 2.6/4.7 0 16925.6/120885 18988958 5.7/7 7.1/16 161542 2 21.1/144 173865
200000 5.8/48.2 5.9/7.1 2.8/2.9 1 20355.2/200757 41993291 5.5/7 7.6/26 213773 2 12.9/38 214727

20000 30000 0.4/0.4 1.7/2.4 1.2/1.2 0 9.0/60 56478 3.2/5 2.8/5 50539 2 3.8/13 51403
50000 0.5/0.5 2.6/3.0 1.5/1.5 0 5.0/24 71691 4.2/5 3.1/6 70425 2 3.0/5 70401

100000 0.8/0.8 4.4/5.5 2.3/2.4 0 121.2/988 190313 4.7/6 4.3/11 120599 2 4.8/13 120848
200000 2.1/8.5 7.2/8.8 3.8/3.8 0 6 396.9/55892 6923700 5.0/6 3.9/9 220935 2 5.0/11 221139
300000 7.1/34.8 10.2/13.3 4.9/5.1 1 29558.3/186556 31714666 5.1/7 3.7/8 321133 2 4.9/12 321330
400000 2.7/5.2 13.2/18.0 6.0/6.1 0 2928.4/15400 3441454 5.6/8 3.0/4 420984 2 13.1/92 434176

40000 60000 0.8/0.8 3.8/4.8 2.4/2.4 0 9.5/80 109293 3.8/5 3.0/6 100725 2 3.7/17 102013
100000 1.0/1.0 5.2/6.4 3.1/3.2 0 36.0/308 160910 4.1/5 2.9/6 140461 2 3.0/8 140630
200000 1.6/1.6 9.7/11.8 5.0/5.1 0 46.9/286 264757 4.9/6 3.8/9 240666 2 4.8/9 240706
400000 2.6/2.8 16.3/20.1 8.0/8.2 0 215.7/1048 575336 5.0/6 4.7/11 440963 2 6.5/18 441834
600000 4.0/7.7 25.1/28.0 11.2/11.6 0 2376.2/20278 4356715 5.7/6 4.0/10 641109 2 10.9/54 646652
800000 8.6/46.6 32.6/39.3 13.8/14.4 1 16998.2/169378 41918173 5.8/7 4.5/16 842596 2 20.9/82 853058

Global average 2.4/10.7 8.4/10.2 4.0/4.3 6304/42955 1292850 4.8/5.9 4.1/9.9 233784 2.0 7.7/32.2 234189

L
.

S
a

n
to

s
et

a
l.

/
T

ra
n

sp
o

rta
tio

n
R

esea
rch

P
a

rt
B

4
1

(
2

0
0

7
)

7
5

6
–

7
7

1
767

Table 5
Computational results for p = 0.8

Nodes
(#n)

Arcs
(#m)

Average computer time (s) Number of SP problems solved and/or k-paths identified

Alg. 1
(Av/max)

Alg. 2
(Av/max)

Alg. 3
(Av/max)

Alg. 1 Alg. 2 Alg. 3

#NOpt #k

(Av/max)
#n + #m

(max)
#SP
(Av/max)

#k

(Av/max)
#n + #m

(max)
#SP #k

(Av/max)
#n + #m

(max)

10000 15000 0.2/0.2 0.9/1.2 0.6/0.6 0 5.9/26 27437 3.7/5 2.6/4 25416 2 4.2/14 26277
25000 0.2/0.3 1.2/1.5 0.7/0.7 0 3.7/15 35874 4.0/5 3.2/5 35 283 2 3.5/7 35391
50000 1.6/12.2 1.9/2.2 1.1/1.2 1 16601.8/165989 10190307 4.3/5 3.5/8 60426 2 34.8/321 76856

100000 0.6/0.6 3.4/3.8 1.8/1.9 0 23.7/161 126763 5.1/6 4.0/13 110901 2 3.2/9 110673
150000 0.8/1.2 5.0/6.2 2.8/4.9 0 277.0/2 526 515443 5.7/7 4.5/16 161533 2 7.1/26 162803
200000 5.7/48.1 5.9/6.6 2.8/2.9 1 20086.8/200757 41993291 5.4/6 5.0/16 212201 2 7.8/34 215092

20000 30000 0.4/0.4 1.7/2.4 1.2/1.2 0 8.8/60 56478 3.2/5 3.4/8 50854 2 5.5/29 53149
50000 0.5/0.5 2.6/3.1 1.5/1.6 0 3.4/17 71225 4.2/5 2.9/7 70471 2 2.9/10 70710

100000 0.8/0.8 4.4/5.5 2.4/2.4 0 17.2/93 127195 4.8/6 4.3/9 120478 2 4.4/8 120587
200000 1.3/1.7 7.3/8.9 3.9/4.7 0 477.1/3669 659600 5.0/6 5.4/13 221 053 2 5.7/19 221619
300000 5.2/34.9 10.0/12.4 5.0/5.2 1 19696.0/186556 31714666 5.0/6 4.3/10 321 215 2 11.1/57 328244
400000 2.1/2.3 13.0/17.0 6.2/6.3 0 114.0/1059 630496 5.4/7 4.3/9 421984 2 8.3/41 427429

40000 60000 0.8/0.8 3.8/4.8 2.4/2.4 0 9.2/80 109293 3.8/5 3.4/9 101042 2 5.6/35 104068
100000 1.0/1.0 5.2/6.4 3.1/3.2 0 35.4/308 160910 4.1/5 3.5/6 140461 2 3.7/7 140445
200000 1.6/1.6 9.5/11.0 5.1/5.2 0 41.5/286 264757 4.8/6 4.5/9 240610 2 4.7/10 240691
400000 2.6/2.7 16.3/20.3 8.3/8.4 0 36.4/144 458980 5.0/6 8.6/21 441707 2 5.8/11 441320
600000 3.8/6.3 25.4/29.4 11.7/12.0 0 1 331.4/13229 3065620 5.6/7 3.7/8 641036 2 6.4/32 644320
800000 4.3/4.3 31.8/36.1 14.4/14.9 0 3.6/21 845948 5.5/6 2.6/5 840833 2 11.2/53 849633

Global average 1.9/6.7 8.3/9.9 4.2/4.4 3265/31944 727767 4.7/5.8 4.1/9.8 233780 2.0 7.6/40.2 234126

768
L

.
S

a
n

to
s

et
a

l.
/

T
ra

n
sp

o
rta

tio
n

R
esea

rch
P

a
rt

B
4

1
(

2
0

0
7

)
7

5
6

–
7

7
1

L. Santos et al. / Transportation Research Part B 41 (2007) 756–771 769
The algorithm (Azevedo et al., 1994) used in these tests is the fastest known algorithm for the kSP problem.
However, it increases the network dimensions (i.e., adds nodes and arcs) as it solves the problem. As a result,
the number of nodes (#n), the number of arcs (#m), and computer memory requirements (measured as the
sum of #n + #m) increase as k increases. Due to constraints on computer RAM, the algorithm was terminated
if it had not identified the optimal solution before #n reached 2 000000, or #m reached 40000 000, in the aug-
mented network. These values were chosen as they approximate the upper limit of RAM capacity of the Pen-
tium III @ 1 GHz with 512 K RAM computer used to solve the test problems. Larger values for the
augmented network would require the use of ‘‘virtual’’ memory which would require the reading/writing of
data on a hard disk and result in excessive solution times.

This limit was reached only by Algorithm 1. The number of times that this occurred in Algorithm 1 for each
set of 10 random networks for a given network size and p value is presented in column 6 (#NOpt) of Tables 1–
5. The other results for Algorithm 1 (e.g., average solution time, average and maximum values of k) reported
in Tables 1–5 are, in effect, lower bounds for the problem sets which had one or more test problems terminated
before the optimal solution was identified because they exceeded the upper limit on computer memory.

An underlying assumption in the development of Algorithm 3 is that one can improve the efficiency of the
kSP solution approach (i.e., reduce the value of k needed to identify the optimal cSP solution) by redefining
the search direction (14) of the kSP algorithm according to the definitions given in (15) and (16). The results
presented in Tables 1–5 support the validity of this assumption. The average and maximum values of k for
Algorithm 3 were less then the corresponding values for Algorithm 1 in every problem category. For most
categories, the reductions were striking. For example, the ‘‘global averages’’ (i.e., for all 180 test problems)
for the average and maximum k values for p = 0.1 were 7.3 and 39.4, respectively for Algorithm 3 versus
107197 and 140192 for Algorithm 1.

Algorithm 3’s improved performance versus that of Algorithm 1 was most noticeable for the lower values
of p. This was expected for two reasons. First, constraint (3) is the ‘‘tightest’’ in these problems as T is rela-
tively lower. In this case, one would expect that higher values of k would be needed to identify the optimal
solution using Algorithm 1. Also, the difference between the search directions is greatest for the lower values
of p. Algorithm 3’s search direction is similar to Algorithm 1’s direction when p approaches 1.0.

A major advantage of Algorithm 3 over Algorithm 1 is that the reduced value of k greatly reduced the com-
puter memory required. For example, the average and maximum values of #n + #m for p = 0.1 were 234103
and 843 241 respectively for Algorithm 3 versus 16964203 and 41975 266 for Algorithm 1. Algorithm 1 failed
to identify the optimal solution due to the memory termination condition in 23% of the 900 test problems ver-
sus 0% for Algorithm 3. The termination condition was invoked most often for lower values of p (e.g., 57%
and 44% of the problems where p = 0.1 and 0.2, respectively).

It is difficult to compare the solution times of Algorithms 1 and 3 because Algorithm 1 terminated before it
identified the optimal solution in 23% of the problems. Algorithm 3 performed best vis-à-vis Algorithm 1 in
the larger problems sizes and those with the lowest values of p. These are the problem sets where Algorithm 1
most often did not identify the optimal solution. Had Algorithm 1 been allowed to run longer to identify the
optimal solution, the solution times would have been even greater. Given this caveat, the ratios of the ‘‘global
average’’ solution times (in seconds) for Algorithm 1/Algorithm 3 were: 4.77 (18.6/3.9) for p = 0.1, 4.13 (16.1/
3.9) for p = 0.2, 1.33 (5.3/4.0) for p = 0.4, 0.60 (2.4/4.0) for p = 0.6 and, 0.45 (1.9/4.2) for p = 0.8. The ratios
of the ‘‘global average’’ maximum solution times (in seconds) for Algorithm 1/Algorithm 3 were: 5.15 (21.1/
4.1) for p = 0.1, 5.12 (21.0/4.1) for p = 0.2, 4.24 (17.8/4.2) for p = 0.4, 2.49 (10.7/4.3) for p = 0.6 and, 1.52
(6.7/4.4) for p = 0.8. As these values demonstrate, Algorithm 3’s average worse case performance was better
than that of Algorithm 1 for every value of p.

Computer memory requirements were very similar for Algorithms 2 and 3. For example, the average and
maximum values of #n + #m for p = 0.1 were 234103 and 843241, respectively for Algorithm 3 versus 233873
and 844091 for Algorithm 2. Both of these Algorithms identified the optimal solution to every problem well
within the RAM termination values.

Regarding solution times, the ‘‘global average’’ solution times for Algorithm 3 were less than those of Algo-
rithm 2 for every network size and p value. The averages for both algorithms were fairly consistent across p

values as is demonstrated by the global averages. The ratios of the ‘‘global average’’ solution times (in sec-
onds) for Algorithm 2/Algorithm 3 were: 2.03 (7.9/3.9) for p = 0.1, 2.03 (7.9/3.9) for p = 0.2, 2.10 (8.4/4.0)

770 L. Santos et al. / Transportation Research Part B 41 (2007) 756–771
for p = 0.4, 2.10 (8.4/4.0) for p = 0.6, and 1.98 (8.3/4.2) for p = 0.8. The maximum solution times demonstrate
a similar pattern with Algorithm 2’s average maximum times and maximum times for all problems being
about double the values for Algorithm 3. For example, the ratios of the ‘‘global average’’ maximum solution
times (in seconds) for Algorithm 2/Algorithm 3 were: 2.32 (9.5/4.1) for p = 0.1, and 2.27 (9.3/4.1) for p = 0.2.
6. Summary and conclusions

The shortest path problem is a practical and frequently used network routing problem and numerous effi-
cient algorithms have been developed to solve it. Modifications to the shortest path problem are generally
more difficult to solve. The constrained shortest path (cSP) problem includes a constraint that establishes
an upper limit, say T, on the sum of some other arc weight (e.g., travel time). Handler and Zang (1980) pro-
posed two algorithms (Algorithms 1 and 2) to solve the problem optimally. In essence, these Algorithms iden-
tify the optimal solution via a directed search. Algorithm 1 does this by solving a k-Shortest Path (kSP)
problem with the same objective function, (1), as that of the underlying cSP problem. Algorithm 2’s search
is based upon a Lagrangian relaxation of the cSP with the search direction a linear combination, (10), of
the original objective function (1) and the additional constraint (3).

This paper introduces a new optimal algorithm (Algorithm 3) to solve the cSP problem. The motivation of
this research was to identify a more effective search direction. The underlying assumption of Algorithm 3 is
that the kSP search will be more efficient (i.e., identify the optimal solution to the cSP with a lower value
of k) if the search direction is orthogonal to the tangent of the convex hull of the cSP solution set where
f2(X) = T. Unfortunately, the convex hull of the cSP solution set is unknown in advance of solving the kSP
problem. Consequently, this search direction is approximated based upon the relative ‘‘tightness’’ of con-
straint (3).

The three algorithms were compared on two criteria: solution time and computer memory requirements.
The three algorithms were used to solve 900 test problems ranging in size from 10000 to 40000 nodes and
15000 to 800000 arcs. The tightness of constraint (3) has a direct impact on the difficulty of solving the
cSP. For example, if (3) is not binding at the optimal solution, then the problem can be solved very efficiently
as a simple Shortest Path problem. The 900 test problems were divided into 5 sets that had differing levels of
tightness for constraint (3).

All three of the algorithms require solving a kSP problem. The kSP algorithm (Azevedo et al., 1994) used in
these tests is the fastest known one for the problem. It solves the kSP problem by augmenting the original
network with additional nodes and arcs. As a consequence, the augmented network can become extremely
large as k increases requiring large amounts of RAM. Consequently, the computer memory required was mea-
sured in terms of the number of nodes plus the number of arcs in the augmented kSP network. To avoid the
use of virtual memory requiring excessive solution times, an algorithm was terminated before it identified the
optimal solution if it exceeded the RAM available. Algorithm 1 was terminated by this condition before it
identified the optimal solution in 23% of the test problems. This occurred most frequently in the problem sets
where constraint (3) is the tightest. Algorithms 2 and 3 were never terminated by this condition.

Algorithms 1 and 3 both solve the cSP directly via a kSP algorithm. The primary difference is in the search
direction for the kSP. On average, Algorithm 3 required approximately 25% of the time required by Algorithm
1 for the problem sets where constraint (3) was the tightest (e.g., 3.9 vs. 18.6 s and 3.9 vs. 16.1 s) while Algo-
rithm 1 required about 50% of the time of Algorithm 3 for the problem sets where constraint (3) was the least
tight (e.g., 2.4 vs. 4.0 s and 1.9 vs. 4.4 s). However, the times for Algorithm 1 are somewhat misleading as the
algorithm was terminated before finding the optimal solution in 23% of the test problems.

Algorithm 3 required considerably less computer memory than did Algorithm 1, especially, in the problem
sets where constraint (3) was the tightest. The average memory requirements ranged from 16964203 for Algo-
rithm 1 vs. 234103 for Algorithm 3 in the problem sets where (3) was the tightest, to 727 767 for Algorithm 1
vs. 234126 for Algorithm 3 in the problem sets where (3) was the least tight.

Solution time and memory comparisons between Algorithms 2 and 3 are less dramatic but they indicate
that Algorithm 3 was superior to Algorithm 2 in terms of solution time in every problem set. Algorithm 3
required approximately half the time to solve the problems as did Algorithm 2. This advantage was generally

L. Santos et al. / Transportation Research Part B 41 (2007) 756–771 771
the greatest in the problems with the largest networks and the tightest constraint (3). Computer memory
requirements were approximately the same for these two algorithms.

Analyses of the solution time and computer memory requirements presented in Tables 1–5 indicate that
Algorithm 3 outperforms Algorithm 2 in terms of solution time in all problems and requires essentially the
same computer memory. Algorithm 3 performs best vis-à-vis Algorithm 1 in the problem sets where constraint
(3) is most constraining and in those with the largest networks. For example, average solution times for Algo-
rithm 1/Algorithm 3 were 18.6/3.9, 16.1/3.9, and 5.3/4.0 in the three problem sets where constraint (3) is the
tightest and were 2.4/4.0, and 1.9/4.2 for the two problem sets where constraint (3) is the least tight. Algorithm
3 required less computer memory than did Algorithm 1 in every problem set. This advantage was most dra-
matic in the problems with large networks and/or where constraint (3) was the most constraining. In general,
these are the most difficult cSP problems to solve. Consequently, Algorithm 3 was superior to Algorithm 1 in
terms of computer memory and solution times for the problems that are most difficult to solve. However, even
in the easiest problems to solve where Algorithm 1 generally solved the problems faster than did Algorithm 3,
Algorithm 1 required a maximum solution time of 48.1 s vs. a maximum of 14.9 s for Algorithm 3.

References

Azevedo, J.A., Costa, M., Madeira, J., Martins, E.Q.V., 1993. An algorithm for the ranking of shortest paths. European Journal of
Operational Research 69, 97–106.

Azevedo, J.A., Madeira, J., Costa, M., Martins, E.Q.V., Pires, F., 1994. A computational improvement for a shortest paths ranking
algorithm. European Journal of Operational Research 73, 188–191.

Bellman, R.E., 1958. On a routing problem. Quarterly of Applied Mathematics 16, 87–90.
Cherkassky, B.V., Goldberg, A.V., Radzik, T., 1996. Shortest paths algorithms: theory and experimental evaluation. Mathematical

Programming 73, 129–174.
Current, J.R., ReVelle, C.S., Cohon, J.L., 1984. The shortest covering path problem: an application of locational constraints to network

design. Journal of Regional Science 24, 161–185.
Current, J.R., Pirkul, H., Rolland, E., 1994. Efficient algorithms for solving the shortest covering path problem. Transportation Science

28, 317–327.
Dantzig, G.B., 1960. On the shortest route through a network. Management Science, 187–190.
Daskin, M.S., 1995. Network and Discrete Location. John Wiley and Sons, New York.
Deo, N., Pang, C., 1984. Shortest-path algorithms: taxonomy and annotation. Networks 14, 275–323.
Dial, R.B., 1969. Algorithm 360: shortest path forest with topological ordering. Communications of the ACM 12, 632–633.
Dijkstra, E.W., 1959. A note on two problems in connection with graphs. Numerische Mathematik 1, 269–271.
Dreyfus, S., 1969. An appraisal of some shortest path algorithms. Operations Research 17, 345–412.
Evans, J.R., Minieka, E., 1992. Optimization Algorithms for Networks and Graphs. Marcel Dekker, New York.
Floyd, R.W., 1962. Algorithm 97: shortest path. Communications of the ACM 5, 345.
Ford, L.R., Fulkerson, D.R., 1962. Flows in Networks. Princeton University Press, Princeton.
Garey, M.R., Johnson, D.S., 1979. Computers and Intractability: A Guide to the Theory of NP-Completeness. W.H. Freeman, New

York.
Handler, G.Y., Zang, I., 1980. A dual algorithm for the constrained shortest path problem. Networks 10, 293–310.
Johsch, H.C., 1966. The shortest route problem with constraints. Journal of Mathematical Analysis 14, 191–197.
Magnanti, T.L., Wong, R.T., 1984. Network design and transportation planning: models and algorithms. Transportation Science 18, 1–

55.
Martins, E.Q.V., 1984. An algorithm for ranking paths that may contain cycles. European Journal of Operational Research 18, 123–130.
Moore, E.F., 1959. The shortest path through a maze. Proceedings of the International Symposium on the Theory of Switching. Harvard

University Press, pp. 285–292.
Zhan, F.B., Noon, C.E., 1998. Shortest path algorithms on real road networks. Transportation Science 32, 65–73.

	An improved solution algorithm for the constrained shortest path problem
	Introduction
	Mathematical formulation of the cSP problem
	Existing solution algorithms for the cSP problem
	Algorithm 1: k-Shortest path method
	Algorithm 2: Lagrangian relaxation method

	New solution algorithm for the cSP problem
	Computational comparisons of the solution algorithms
	Summary and conclusions
	References

