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Abstract

This paper assesses the global performance and the underlying assumptions of a recently developed one-dimensional model characte-
rising the elastic lateral-torsional buckling behaviour of singly symmetric tapered thin-walled open beams, which is able to account for
the influence of the pre-buckling deflections. A comparative study involving the critical load factors and buckling modes yielded by (i) the
one-dimensional model and (ii) two-dimensional shell finite element analyses (reference results) is presented and discussed. The results
concern I-section cantilevers and simply supported beams (i) with uniform or linearly tapered webs, (ii) equal or unequal uniform flanges
and (iii) acted by point loads applied at the free end or mid-span sections, respectively. In general, the one-dimensional predictions are
found to agree well with the shell finite element results. Some significant discrepancies are also recorded (for the shorter beams), which
are due to the occurrence of relevant cross-section distortion or localised buckling phenomena.
� 2006 Civil-Comp Ltd. and Elsevier Ltd. All rights reserved.
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1. Introduction

Tapered members are widely used in the steel construc-
tion industry, because of their (i) structural efficiency,
which in turn may lead to significant material savings, (ii)
ability to meet architectural and functional requirements
and (iii) competitive fabrication costs. However, a designer
can only take full advantage of the benefits of beam taper-
ing provided that he is equipped with reliable and efficient
methods of analysis, which (i) lead to accurate predictions
of the tapered member structural behaviour and, at the
same time, (ii) do not involve a computer effort prohibitive
for routine applications.

The structural behaviour of the vast majority of laterally
unrestrained beams, either prismatic or tapered, is gov-
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erned by lateral-torsional buckling (LTB), a rather com-
plex instability phenomenon combining minor axis
bending and torsion. Then, it is just logical to expect that,
for the sake of uniformity and ease-of-use, one attempts to
develop design methodologies that are valid for both pris-
matic and tapered beams. In order to achieve this goal, the
most ‘‘natural’’ approach consists of trying to modify the
rules and procedures already available in the current steel
design codes for prismatic beams, in order to extend their
range of validity to tapered beams. Therefore, it is not sur-
prising to learn that this was precisely the path followed in
Eurocode 3 (EC3-EN or simply EC3 [1] – recall that the
pre-standard EC3-ENV [2] did not include any provisions
regarding the design of tapered members). However, if
one wishes to extend the range of validity of the current
design methodologies, it becomes necessary to develop effi-
cient (i.e. as accurate and simple as possible) methods to
evaluate the elastic critical load factor (i.e. the load factor
associated with the first bifurcation point) of any given
rights reserved.
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1 Perhaps the best-known illustration of this statement is provided by
Bernoulli’s assumption of plane sections.
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tapered beam, an indispensable step to determine its nor-
malised slenderness. Concerning this issue, it is worth not-
ing that EC3 [1] merely suggests the performance of a finite
element analysis – presumably, by adopting shell or solid
elements to discretise the beam.

Very recently, the first two authors proposed a one-
dimensional model to analyse the elastic LTB behaviour
of singly symmetric tapered thin-walled open beams [3],
which can be viewed as an extension of Vlassov’s theory
[4] (applicable to prismatic bars). Subsequently, the model
was extended to account for the influence of the pre-buck-
ling deflections [5,6]. The elastic critical load factors and
corresponding buckling modes yielded by this model,
numerically implemented by means of the Rayleigh–Ritz
method [3,5], were only verified through the comparison
with results reported by other authors (e.g. [7–11]), which
also rely on more or less similar a priori hypotheses. Hence,
it becomes necessary to put the model to the test in order to
validate (or, better yet, to corroborate) both (i) the assump-
tions underlying the one-dimensional model and (ii) the
LTB predictions provided by their adoption. One is partic-
ularly interested in obtaining evidence to either support or
refute the more unexpected or even paradoxical conse-
quences of the one-dimensional model, namely:

(i) The LTB behaviours of prismatic and tapered beams
are, in general, qualitatively different. By this asser-
tion it is meant that, in tapered beams exhibiting a
certain geometrical feature (to be specified later),
piecewise prismatic analyses will not converge to the
correct LTB solution.

(ii) For a specific typology and loading conditions, the
minimum buckling resistance is not necessarily asso-
ciated with the beam having the least amount of
material.

Then, the main objective of this work is to present and
discuss a comparative study between the LTB results
obtained through analyses based on (i) the one-dimen-
sional model mentioned in the previous paragraph and
(ii) two-dimensional shell finite element (FE) models –
the latter are performed in the code ABAQUS [12] and taken
as reference. These results (elastic critical load factors and
corresponding buckling mode shapes) concern several I-
section cantilevers and simply supported beams (i) having
equal or unequal uniform flanges and linearly tapered webs
and (ii) subjected to point loads applied at various loca-
tions of the free end section (cantilevers) or mid-span sec-
tion (simply supported beams).

Although the subject of elastic LTB of tapered thin-
walled open beams is an old one, its investigation with
the use of shell finite element models has not attracted
the attention of many researchers in the past. Among the
available studies, one should mention those due to Polyzois
and Qing [13], Polyzois and Raftoyiannis [14], Ronagh and
Bradford [15] and Braham and Heck [16], which focus on
web-tapered I-beams and use shell elements to model the
web, whereas the flanges (and also any existing transverse
stiffeners) are modelled with beam elements. Notice, how-
ever, that the motivation of the present work (to assess
the performance of a specific one-dimensional model) dif-
fers significantly from the purposes of the above research-
ers. Indeed, while (i) the first two investigations tried to
evaluate the applicability of the North American code pro-
visions that were relevant at the time, (ii) the third one is
concerned with lateral-distortional buckling, an instability
phenomenon characterised by simultaneous lateral deflec-
tions and in-plane cross-section deformations, and (iii)
the last one addresses the numerical simulation of experi-
mental tests recently carried out at the University of Liège
(further details about the tests and the FE simulations can
be found in [17]). Moreover, none of these investigations
accounts for the influence of the pre-buckling deflections
on the LTB behaviour of tapered beams.
2. One-dimensional model

The central objective of the various theories of beams,
which have a long and rich history in structural mechanics,
is to achieve a one-dimensional characterisation (i.e. having
the parameter of a certain curve and, possibly, time as the
only independent variables) of the behaviour of a particu-
lar class of bodies, having two characteristic dimensions
much smaller than the third one, the length [18]. The need
for tractable and accurate lower-dimensional theories is
dictated by the formidable mathematical obstacles (analyt-
ical as well as numerical) posed, even today, by the three-
dimensional continuum models. Nevertheless, it must be
stressed that beam models are intrinsically approximate,
since the actual bodies one deals with are three-
dimensional.

The technical or engineering beam theories are typically
obtained by incorporating a set of a priori assumptions
into a three-dimensional continuum model, which may
exhibit different levels of sophistication. These assumptions
(i) are mostly concerned with the ‘‘form’’ of some of the
unknowns, such as displacement or stress components,
(ii) may be more or less realistic and (iii) can foster a
greater or smaller simplification, although some inconsis-
tencies may eventually appear.1

In the next subsections, one sketches a brief outline, rea-
sonably self-contained, of the one-dimensional model
recently developed and numerically implemented by And-
rade and Camotim [3,5,6], which is intended to characterise
the elastic LTB behaviour of singly symmetric tapered thin-
walled open beams (i.e. its goal is to provide accurate pre-
dictions of the bifurcation load factors and buckling
modes). Note that a thin-walled beam exhibits an addi-
tional geometrical feature, concerning the relation between



A. Andrade et al. / Computers and Structures 85 (2007) 1343–1359 1345
the two cross-section dimensions: the wall thickness is an
order of magnitude smaller than the mid-line length. As
far as the mechanical behaviour is concerned, a thin-walled
open beam can be characterised by the fact that it resists
torsion as a spatial system: the cross-sections exhibit out-
of-plane warping and, since this warping generally varies
along the beam axis, non negligible longitudinal normal
strains and stresses appear.
Fig. 1. Tapered I-section beam: undeformed configuration and fixed
reference frame.
2.1. Geometrical description of the undeformed beam

Let B be the region of the Euclidean three-dimensional
space occupied by the beam in its undeformed configura-
tion. It is assumed that B can be generated by the transla-
tion, along a straight-line segment of length L, of a plane
figure (i) remaining normal to that line segment and (ii)
whose shape and dimensions are allowed to vary smoothly.
This generating figure is (i) simply connected, (ii) symmet-
ric with respect to its minor central axis and (iii) may be
viewed as the result of ascribing a small thickness to an
open ‘‘base curve’’, possibly with sharp corners and
branching points. Moreover, it is also assumed that the sur-
face swept by the generating figure symmetry axis is plane.
The mid-surface of B is denoted by S.

Consider a fixed orthonormal right-handed Cartesian
frame {O;e1,e2,e3}, with coordinates {x,y,z}, such that
(i) e1 is parallel to the line segment used to generate B

and (ii) the coordinate plane {e1, e3} coincides with the
plane swept by the minor central axis of the generating fig-
ure (i.e. {e1,e3} is a symmetry plane of B). A beam cross-
section (cross-section mid-line) is defined as the material
surface (curve) having an undeformed configuration,
denoted by A(x) (L(x)), that corresponds to the intersection
of B (of S) by a plane perpendicular to e1.2 In particular,
the end cross-sections are initially contained in the planes
x = 0 and x = L. These considerations are illustrated in
Fig. 1, for the specific case of a tapered I-section beam with
unequal flanges.

A material point on the beam mid-surface is identified
by its coordinates ðx; �y;�zÞ in the undeformed configuration:
x specifies the cross-section, whereas �y and �z define the
location of the point on L(x) (the bar is used to indicate
a quantity associated with the mid-surface). An alternative
description is constructed by assigning to S a system of
Gaussian coordinates {h1,h2}, such that (i) h1 = x and (ii)
h2 measures the arc length along L(h1), with the curve
h2 = 0 lying on the symmetry plane {e1,e3}. According to
this alternative viewpoint, both �y and �z are functions of
h1 and h2.

At this point, it is appropriate to recall some basic con-
cepts and results from the differential geometry of surfaces
(e.g. [19]). At a given (non-singular) point of S, the covar-
2 The chief merit of these definitions is avoiding any reference to
centroidal or shear-centre lines, which, in general, cannot be defined a
priori in an unambiguous way [18].
iant base vectors of the plane tangent to S, associated with
the Gaussian coordinate system, are defined by3

aaðh1; h2Þ ¼ o�rðh1; h2Þ
oha ¼ �r;aðh1; h2Þ ð1Þ

where �rðh1; h2Þ ¼ h1e1 þ �yðh1; h2Þe2 þ �zðh1; h2Þe3 is the posi-
tion vector (relative to the origin of the fixed Cartesian
frame). These base vectors are tangent to the coordinate
curves and, in addition, one should note that a2(h1,h2) is
a unit vector. The contravariant (or dual) basis
{a1(h1,h2),a2(h1,h2)} is defined by the relation

aaðh1; h2Þ � abðh1; h2Þ ¼ da
b; ð2Þ

where the dot stands for the Euclidean inner product and
da

b is the Kronecker symbol. The symmetric second-order
tensor field with covariant components given by

aabðh1; h2Þ ¼ aaðh1; h2Þ � abðh1; h2Þ ð3Þ

is the metric tensor of S, also known as the first fundamen-
tal form of S. The contravariant components of this surface
tensor field are

aabðh1; h2Þ ¼ aaðh1; h2Þ � abðh1; h2Þ ¼ ðaabðh1; h2ÞÞ�1 ð4Þ

and the area element dA(h1,h2) at (h1,h2) 2 S reads

dAðh1; h2Þ ¼ ka1ðh1; h2Þ � a2ðh1; h2Þk dh1 dh2

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aðh1; h2Þ

q
dh1 dh2; ð5Þ

where a(h1,h2) = det(aab(h1,h2)) and jjÆjj and · denote the
Euclidean norm and cross product, respectively.

In general, the base vectors aa(h1,h2) (or aa(h1,h2), for
that matter) are not orthogonal. It is thus convenient to
introduce orthonormal vectors AI(h

1,h2) and AII(h
1,h2),

spanning the plane tangent to S and such that one has
3 Unless otherwise stated, a Greek index takes values from the set {1,2}
and the summation convention is adopted.
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AII(h
1,h2) = a2(h1,h2). From these conditions, one may

write

AIðh1; h2Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aðh1; h2Þ

q a1ðh1; h2Þ � a12ðh1; h2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aðh1; h2Þ

q a2ðh1; h2Þ:

ð6Þ
2.2. Fundamental assumptions

The proposed model, developed under the assumption
that both the strains and the derivatives of the displace-
ments along e1 are small (i.e. negligible in comparison with
unity), is applicable to beams (i) displaying the geometrical
features described in the previous subsection, (ii) made of a
St. Venant-Kirchhoff material (e.g. [20]), with Young’s
modulus E and Poisson’s ratio v, and (iii) subjected to
the generic system of conservative loads depicted in
Fig. 2, which (iii1) act initially on the plane of symmetry
of the undeformed beam ({e1,e3}) and (iii2) are propor-
tional to a single load factor k.

The beams may exhibit either a linear or a non-linear
pre-buckling equilibrium path, which amounts to saying
that the influence of the pre-buckling deflections on their
LTB behaviour may be neglected or not. In the latter case,
it is nevertheless assumed that there exists a linear relation-
ship between the membrane forces associated with a funda-
mental state and the derivatives of the generalised
displacements.

The beams are regarded as membrane shells (e.g. [19]),
upon which the following kinematical constraints are
imposed:

(i) The projection of each cross-section mid-line on a
plane perpendicular to e1 experiences no distortion
(i.e. retains its shape and dimensions) throughout
the whole deformation process.

(ii) The mid-surface shear strains (involving fibres origi-
nally oriented along vectors AI and AII) are
negligible.

The above kinematical constraints extend, to the case of
tapered beams, the classical Vlassov’s hypotheses [4], com-
Fig. 2. External conservative loads.
monly adopted in the overall buckling analysis of prismatic
thin-walled open beams. It is important to stress that the
first constraint inevitably implies that this model is unable
to capture any local-plate, distortional or mixed instability
phenomena (i.e. the beam is constrained to buckle in a
‘‘pure’’ global mode – LTB).

The strain energy associated with uniform torsion,
which is completely disregarded in the membrane shell
model, is added separately by (i) considering the expression
valid for prismatic beams, but (ii) accounting for the
variation of the cross-sectional property J with x, a proce-
dure backed by both theoretical and experimental evidence
[21].
2.3. Kinematics

According to the first of the two kinematical constraints
stated above, the transverse motion (i.e. parallel to the
coordinate plane {e2,e3}) of any given cross-section mid-
line is described by the laws of rigid-body kinematics. It
may therefore be broken down into (i) a rotation U about
e1, followed by (ii) a translation with components V and W

along e2 and e3, respectively. The second constraint makes
it possible to express the mid-line displacements along e1 as
a function of V, W and U, to within an uniform longitudi-
nal displacement U. Indeed, it is shown in [3,5,6] that the
mid-surface displacement field Ue1 þ V e2 þ W e3 takes on
the form

Uðh1; h2Þ ¼ Uðh1Þ � �yðh1; h2ÞðV ;1ðh1Þ cos Uðh1Þ

þ W ;1ðh1Þ sin Uðh1ÞÞ � �zðh1; h2ÞðW ;1ðh1Þ cos Uðh1Þ

� V ;1ðh1Þ sin Uðh1ÞÞ � �xðh1; h2ÞU;1ðh1Þ; ð7Þ
V ðh1; h2Þ ¼ V ðh1Þ � �yðh1; h2Þð1� cos Uðh1ÞÞ

� �zðh1; h2Þ sin Uðh1Þ; ð8Þ
W ðh1; h2Þ ¼ W ðh1Þ þ �yðh1; h2Þ sin Uðh1Þ � �zðh1; h2Þð1� cos Uðh1ÞÞ;

ð9Þ

where U, V, W and U are the generalised displacements,

�xðh1; h2Þ ¼
Z
Cðh1;h2Þ

ð�yðh1; sÞ�z;sðh1; sÞ � �zðh1; sÞ�y;sðh1; sÞÞ ds

ð10Þ

and C(h1,h2) is the segment of L(h1) comprised between the
point defined by h2 = 0 and the point under consideration,
defined by the Gaussian coordinates (h1,h2). Note that the
restriction of �x to L(h1) represents a sectorial coordinate.

It is also shown in Refs. [3,5,6] that the covariant com-
ponents of the Green-St. Venant membrane strain tensor
(i.e. half the change of metric tensor associated with the
above displacement field) read4
4 In order to simplify the notation, the independent variables of a
function will henceforth be given explicitly only when this is needed for
special emphasis.
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E11 ¼ U ;1 � �yðV ;11 cos Uþ W ;11 sin UÞ
� �zðW ;11 cos U� V ;11 sin UÞ � �xU;11 � wU;1

þ 1

2
ðV 2

;1 þ W 2
;1 þ ð�y2 þ �z2ÞU2

;1Þ; ð11Þ

E12 ¼ E21 ¼ 0; ð12Þ

E22 ¼
1

2
ð�y ;2ðV ;1 cos Uþ W ;1 sin U� �zU;1Þ

þ �z;2ðW ;1 cos U� V ;1 sin Uþ �yU;1ÞÞ2; ð13Þ

where the function

w ¼ �x;1 þ �y;1�z� �z;1�y ð14Þ

stems directly from the cross-section variation (one has
w = 0 in prismatic beams).
2.4. Total potential energy

The total potential energy P of the beam-load system
consists of the beam (elastic) strain energy U and the poten-
tial energy of the external loads Ve. As mentioned before,
the beam strain energy is the sum of two separate contribu-
tions: (i) the membrane strain energy and (ii) the uniform
torsion strain energy. The former is a quadratic and posi-
tive definite functional in terms of the Green-St. Venant
membrane strain tensor [19]:

1

2

Z
S

taabvdEvdEab dA ¼ 1

2

Z
S

�nabEab dA; ð15Þ

where (i) the contravariant components of the two-dimen-
sional elasticity tensor of the membrane shell are given by

aabvd ¼ E maabavd þ 1

2
ð1� mÞðaavabd þ aadabvÞ

� �
ð16Þ

(note that the approximation 1 � m2 � 1, often used in the
context of beam theories – e.g. [4,22], was adopted), (ii) the
contravariant components of the membrane force (or stress
resultant) tensor read

�nab ¼ t aabvdEvd; ð17Þ

(iii) dA is the area element on S, given by Eq. (5), and (iv) t

is the wall thickness. By introducing the kinematical rela-
tions (11)–(13) into Eq. (15), one can write the membrane
strain energy in terms of the generalised displacements.
As for the part of the strain energy associated with uniform
(or St. Venant) torsion, it is simply given by

E
4ð1þ mÞ

Z L

0

JU2
;1 dh1; ð18Þ

where Jðh1Þ ¼ 4
R
Aðh1Þ n

2 dy dz and n(h1,y,z) measures the
distance from the points in A(h1) to L(h1).

Finally, with reference to Fig. 2, the potential energy of
the external loads is defined by
Ve ¼ �
Z L

0

qzðW � zqð1� cos UÞÞ dh1

� Qz0ðW ð0Þ � zQ0ð1� cos Uð0ÞÞÞ
� QzLðW ðLÞ � zQLð1� cos UðLÞÞÞ
þMy0ðW ;1ð0Þ cos Uð0Þ � V ;1ð0Þ sin Uð0ÞÞ
þMyLðW ;1ðLÞ cos UðLÞ � V ;1ðLÞ sin UðLÞÞ: ð19Þ
2.5. Bifurcation analysis

According to Trefftz’s criterion (e.g. [23]), a bifurcation
point on the fundamental equilibrium path (parameterised
by k) is identified by the variational equation

dðd2PÞ ¼ 0; ð20Þ

which states the stationarity of the second variation of P
from a given fundamental state in the class of kinematically
admissible displacement variations. If one neglects the con-
tribution of the membrane forces �n22 (one of the basic
assumptions of elementary beam theory), the following
expression for d2P is obtained [5] (see also [6], where this
expression has been specialised for doubly symmetric
beams):

d2P ¼ E
2

Z L

0

ðA�ðu;1 þ W f
;1w;1Þ2 � 2S�yðu;1 þ W f

;1w;1Þw;11

þ I�y w2
;11 þ I�z ðv;11 þ W f

;11/Þ
2 þ I�x/2

;11 þ I�w/2
;1

þ 2I�xzðv;11 þ W f
;11/Þ/;11 þ 2I�wzðv;11 þ W f

;11/Þ/;1

þ 2I�xw/;1/;11Þ dh1 þ G
2

Z L

0

J/2
;1 dh1

þ 1

2

Z L

0

M f
y 2v;11/þ W f

;11/
2 þ

z�GI�q � b�y I�y
z�GS�y � I�y

/2
;1

 !
dh1

þ zq

2

Z L

0

qz/
2 dh1 þ zQ0

2
Qz0/ð0Þ

2 þ zQL

2
QzL/ðLÞ

2

�My0

2
ð2v;1ð0Þ/ð0Þ þ W f

;1ð0; kÞ/ð0Þ
2Þ

�MyL

2
ðW f

;1ðL; kÞ/ðLÞ
2 þ 2v;1ðLÞ/ðLÞÞ; ð21Þ

where (i) u, v, w and / are kinematically admissible varia-
tions of the generalised displacements (independent from
k), (ii) the functions

A� ¼
Z
Lðh1Þ

t� dh2; S�y ¼
Z
Lðh1Þ

�zt� dh2; I�y ¼
Z
Lðh1Þ

�z2t� dh2;

I�z ¼
Z
Lðh1Þ

�y2t� dh2; I�x ¼
Z
Lðh1Þ

�x2t� dh2; I�w ¼
Z
Lðh1Þ

w2t� dh2;

I�xz ¼
Z
Lðh1Þ

�x�yt� dh2; I�wz ¼
Z
Lðh1Þ

w�yt� dh2; I�xw ¼
Z
Lðh1Þ

�xwt� dh2;

I�q ¼
Z
Lðh1Þ
ð�y2 þ�z2Þt� dh2; b�y ¼

1

I�y

Z
Lðh1Þ
ð�y2 þ�z2Þ�zt� dh2; z�G ¼

S�y
A�
;

ð22Þ
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with t* = ta�3/2, are geometrical properties of the unde-
formed beam, (iii) Wf(h1,k) denotes the pre-buckling
deflections and (iv) M f

y is the bending moment distribution
in the fundamental state. Note that the derivation of Eq.
(21) uses (i) the orthogonality conditionsZ

Lðh1Þ
�yt� dh2 ¼ 0

Z
Lðh1Þ

�xt� dh2 ¼ 0

Z
Lðh1Þ

wt� dh2 ¼ 0Z
Lðh1Þ

�y�zt� dh2 ¼ 0

Z
Lðh1Þ

�x�zt� dh2 ¼ 0

Z
Lðh1Þ

w�zt� dh2 ¼ 0

ð23Þ
and also (ii) the fact that one has, in a fundamental state,Z
Lðh1Þ
ða11Þ�1=2ð�n11a1 þ �n12a2Þ � e1 dh2 ¼ 0: ð24Þ

From a mathematical viewpoint, Eq. (20) is the varia-
tional statement of a non-linear eigenvalue problem. The
non-linear character stems from the terms appearing in
Eq. (21) that involve the pre-buckling deflections Wf. The
removal of these terms corresponds to linearising the eigen-
value problem – linear buckling analysis – and, physically,
amounts to disregarding the influence of the pre-buckling
deflections on the bifurcation load factors and buckling
modes (i.e. the beam is assumed to remain straight until
the onset of buckling).

One of the most distinctive features of this one-dimen-
sional model (and therefore one that should be put to the
test) is the indication of qualitative differences between
the LTB behaviours of prismatic and tapered beams when-
ever the latter exhibit w 5 0 (this is always the case in web-
tapered I-beams). Indeed, the terms

E
2

Z L

0

ðIw/2
;1 þ 2Iwzðv;11 þ W f

;11/Þ/;1 þ 2Ixw/;1/;11Þ dh1

ð25Þ
in Eq. (21) clearly show that modelling a tapered beam as
an assembly of prismatic segments constitutes a conceptu-
ally incorrect procedure whenever w 5 0, regardless of the
number of segments considered. Failing to include these
terms in the analysis can lead to significant errors in the
critical moment predictions for tapered beams, either on
the safe or unsafe side, as shown by the numerical examples
presented and discussed in Refs. [3,5]. In web-tapered
I-beams, it is possible to provide a simple physical explana-
tion for these qualitative differences: due to the flange
slopes, the bimoments generated during buckling have an
axial resultant, which is responsible for an additional con-
tribution to the total torque – furthermore, web tapering
has an effect on the amount of warping of the flanges, since
it reduces their distance from the torsion centre (in other
words, web tapering constitutes, in itself, a warping
constraint).

Finally, it is worth mentioning that, in the case of canti-
levers or simply supported beams acted by transverse loads
(all the numerical examples presented in this paper concern
this type of beams), (i) u and w play no part whatsoever in
buckling analyses and (ii) v,11 and / are not independent –
indeed, they are related by the equation

v;11 ¼ �
1

EI�z
M f

y 1� I�z
I�y

 !
/þ EI�xz/;11 þ EI�wz/;1

 !
ð26Þ

or, if one neglects the influence of the pre-buckling deflec-
tions (linear buckling analysis), simply by

v;11 ¼ �
1

EI�z
M f

y/þ EI�xz/;11 þ EI�wz/;1

� �
ð27Þ

(since the proof of this assertion is entirely analogous to the
ones presented, albeit in more restrictive contexts, in [3,6],
it is omitted here). Then, one may rewrite d2P exclusively
in terms of the single unknown field /.

2.6. Numerical implementation

The one-dimensional continuum model just described
was discretised by means of the Rayleigh–Ritz method
(e.g. [24]), using the following approximations for the tor-
sional rotation field /(h1):

(I) Cantilevers (fully built-in at the support, taken here
as corresponding to h1 = 0)
/n ¼
Xn

k¼1

aðnÞk 1� cos
ð2k � 1Þp

2L
h1

� �� �
: ð28Þ
(II) Simply-supported beams (with the so-called ‘‘fork
conditions’’ at both end sections)
/n ¼
Xn

k¼1

aðnÞk sin
kp
L

h1

� �
: ð29Þ
This approximation procedure replaces the continuum
model by a discrete one, with n degrees of freedom – num-
ber of coordinate functions used in the approximation.

3. Shell finite element modelling

This section addresses the most relevant procedures
involved in the LTB analysis of thin-walled open beams
by the FEM (i) using the commercial code ABAQUS [12]
and (ii) adopting shell finite elements to model the beam
behaviour. In particular, the issues discussed include (i)
the adequate discretisation of the beams, (ii) the modelling
of the end support conditions, (iii) the numerical technique
employed to solve the eigenvalue problem arising in the lin-
ear buckling analyses (when the pre-buckling deflections
are neglected) and (iv) the approach devised to perform
the non-linear buckling analyses (when the pre-buckling
deflections are taken into account). At this point, it is
worth mentioning that the FE model may include rigid
transverse web stiffeners placed at one or more cross-sec-
tions (always including the ones where a point load is
applied). The presence of these stiffeners is intended to
restrain (as much as possible) cross-section distortion, thus
providing a better simulation of the one-dimensional model
assumptions.
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3.1. Beam discretisation

In order to be able to determine the ‘‘exact’’ buckling
behaviour of a thin-walled beam, it is indispensable to take
into account the so-called ‘‘local deformation effects’’, i.e.
the in-plane deformation of the beam cross-sections (e.g.
[25]). These effects can be adequately incorporated in the
buckling analysis if the beam is modelled by means of 2D
shell finite elements. In this work, it was decided to use
4-node isoparametric shell elements, a choice that was dic-
tated by (i) a slightly easier automatic generation of the
finite element mesh and (ii) the fact that, in web-tapered
I-beams, the longitudinal edges of the web mid-surface
are not parallel. On the other hand, a previous investiga-
tion [26], carried out in the context of the local and global
buckling behaviours of prismatic cold-formed steel mem-
bers, has shown that, among the various shell elements
with these characteristics available in the ABAQUS library,
the S4 element (which accounts for transverse shear defor-
mations) is particularly adequate to perform thin-walled
member buckling analyses. For the above reasons, all the
cantilevers and simply supported beams analysed in this
work have been modelled by means of S4 shell element
meshes.

The number of degrees of freedom and integration
points involved in a FEA considerably influences both
the required computational effort and the accuracy of the
results obtained. Preliminary convergence studies have
shown that sufficiently accurate results (critical load factors
and buckling modes) are obtained when the finite elements
exhibit the following characteristics: (i) maximum width of
about 10 mm at the beam largest cross-section (always the
one under the largest bending moment, in the tapered
cases) and (ii) equal length, corresponding to an aspect
ratio (length-to-maximum width) of about 2 at the largest
cross-section. Moreover, in order to make the automatic
mesh generation easier, the number of finite elements was
kept constant in all beam cross-sections – thus, the finite
element width is variable in tapered webs. Figs. 4, 6, 9,
11 and 15, which include the FEM-based critical buckling
mode shapes of some of the beams analysed, make it pos-
sible to visualise the finite element meshes employed.

To check the validity of the assumptions upon which the
one-dimensional formulation is based, some FE solutions
were obtained for cantilevers and simply supported beams
with rigid transverse web stiffeners at one or more cross-
sections. In order to model the presence of these stiffeners,
several rigid beam finite elements (elements RB3D2, in the
ABAQUS notation) were connected to the web shell element
node at the cross-sections under consideration.

3.2. End support conditions

The beams analysed in this work exhibit three types of
end support conditions: (i) a built-in end section, (ii) a free
end section and (iii) a simply supported end section with
‘‘fork conditions’’. The first two can be modelled in a
straightforward and unambiguous fashion, either by (i)
imposing that all displacements and rotations are null
(built-in end section) or by (ii) letting all of them free (free
end section). The modelling of a simply supported end sec-
tion is a bit trickier, in order to enforce the ‘‘fork condi-
tions’’ assumed by the one-dimensional model. This was
achieved by considering (i) free longitudinal (warping) dis-
placements, (ii) null transverse (membrane and flexural)
displacements and (iii) free flexural rotations along the
whole cross-section mid-line – note that, by preventing
the transverse displacements of the cross-section mid-line,
its distortion is automatically precluded. Moreover, in
order to eliminate the axial rigid-body mode, the longitudi-
nal displacement was prevented at one node of the mid-
span cross-section.

3.3. Linear buckling analysis – solution of the eigenvalue

problem

Carrying out a linear buckling analysis implies the need
to solve a (linear) eigenvalue problem, defined by the (dis-
cretised) beam elastic stiffness and geometric matrices. In
particular, one is interested in the lowest positive eigen-
value (critical load factor kcr) and the corresponding eigen-
vector (buckling mode shape). The code ABAQUS uses the
subspace iteration method (e.g. [27]), also known as the
inverse block power method in the applied mathematics lit-
erature. Oddly enough, it was found that, due to some yet
unexplained reason, it is essential to solve the problem for
the first two eigenpairs. Failing to do so may lead to a
wrong computation of the critical load factor [26].

3.4. Pre-buckling deflections

Since the code ABAQUS does not offer the possibility of
performing directly non-linear buckling analyses, it was
necessary to devise a ‘‘trial-and-error’’ strategy to account
for the influence of the pre-buckling deflections. It involves
the following steps:

(i) To perform a linear buckling analysis of the beam,
thus determining its critical load factor kcr.0 (which
does not account for the influence of the pre-buckling
deflections).

(ii) To perform a linear (first-order) analysis of the beam,
acted by the load associated with kcr.0, and to record
the corresponding deformed configuration.

(iii) To perform a linear buckling analysis of a ‘‘shallow
arch’’ (possibly an inverted one) having the shape
of the deformed configuration obtained in the previ-
ous step. One obtains the (linear) critical load factor
of this shallow arch kcr.1 (>kcr.0), which provides a
better approximation of the ‘‘straight beam’’ non-lin-
ear critical load.

(iv) On the basis of the kcr.0 and kcr.1 values, to adopt a
trial-and-error approach to find an accurate estimate
of the non-linear critical load factor, which must ren-
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der compatible the solutions of both (iv1) the straight
beam first-order analysis and (iv2) the shallow arch
linear buckling analysis.
5 In the FEM-based buckling mode shapes, the torsional rotation / is
assumed to be equal to the rotation of the tension (top) flange, which is
not ‘‘masked’’ by any cross-section in-plane deformations.
4. One-dimensional model vs. shell FEA

The aim of this section is twofold: (i) to assess the global
performance of the one-dimensional LTB model described
in Section 2 and, in the process, (ii) to investigate the valid-
ity of the a priori assumption stating that the cross-section
mid-lines experience no distortion. In order to achieve
these goals, a comparison is made between the LTB results
provided by (i) the numerical implementation of the afore-
mentioned one-dimensional model and (ii) ABAQUS shell
FEA (which are taken as reference). Moreover, the FEM-
based buckling modes are inspected to detect whether
cross-section distortion takes place and, if this is the case,
some of the FEA are performed again, using a modified
model that includes one or more rigid transverse web stiff-
eners. This comparative study involves the LTB analysis of
several I-section cantilevers and simply supported beams,
both prismatic and web-tapered, acted by point loads
applied at the free end (cantilevers) or at mid-span (simply
supported beams). The load factor is identified with the
load itself (i.e. k � Q).

In Section 4.1, the linear LTB behaviour of two sets of
prismatic cantilevers is addressed. These cantilevers display
(i) equal or unequal flanges (i.e. doubly or singly symmetric
cross-section) and (ii) the geometrical data shown in
Fig. 3a. The lengths vary between 2.0 and 10.0 m, and
the tip load is applied at the intersection of the web and
top flange mid-lines.

In Section 4.2, which deals with web-tapered cantilevers,
the geometry of the built-in section is kept unchanged and
the web height is made to vary linearly along the length
so that, at the free end section, the height h (measured
between the flange mid-lines) is reduced to half (i.e. one
always has a = hmin/hmax = 0.5). The web height linear var-
iation is achieved in two different ways, namely by (i) keep-
ing the top flange horizontal (i.e. parallel to the plane
{e1,e2}, as shown in Fig. 3b) or (ii) having flanges with equal
slopes in relation to {e1,e2} (see Fig. 3c). This gives rise to
four distinct sets of web-tapered cantilevers, which combine
flanges with equal or unequal (i) width and (ii) slope. As
before, the lengths range from 2.0 to 10.0 m and the tip load
acts at the intersection of the web and top flange mid-lines.

In all the cases described so far, the results presented con-
sist of (i) linear critical loads, obtained by means of (i1) one-
dimensional analyses (Q1D

cr ) and (i2) two-dimensional shell
FEA (QFEM

cr – reference results) and (ii) the free end section
web distortion exhibited by the FEM-based critical buck-
ling mode. In the latter case, the aim is to assess the devia-
tion of the ‘‘true’’ deformed shape of the web, in relation to
the one due to a rigid body rotation parallel to the {e1,e2}
plane. For the shorter beams, reference is also made to
QFEM

cr values obtained in the presence of transverse web stiff-
eners, intended to prevent the above web distortion.
Section 4.2 closes with the linear buckling analysis of the
doubly symmetric web-tapered cantilever shown in Fig. 3d,
which has a tapering ratio a = hmin/hmax = 0.2. The point
load is applied at three different locations of the free end
section, namely at (i) the centroid and (ii) the intersections
of the web and (top and bottom) flange mid-lines. A com-
parison is made between (i) the linear critical loads Q1D

cr and
QFEM

cr and also (ii) the associated critical buckling mode
shapes, expressed in terms of the torsional rotation /.5

Next, Section 4.3 concerns the linear LTB behaviour of
doubly symmetric prismatic and web-tapered simply sup-
ported beams. The beams analysed (i) display the geomet-
rical and material data shown in Fig. 3e, (ii) have lengths
varying from 6.0 m to 12.0 m and (iii) are subjected to
point loads acting at the mid-span cross-section (centroid
or intersection of the web and top flange mid-lines). In
the web-tapered beams, the geometry of the mid-span sec-
tion is kept unchanged and the web height is made to
decrease linearly and identically towards both ends, with
different slopes: at the supports, the height h (measured
between the flange mid-lines) is reduced by 40%, 50%,
60% and 80% of its mid-span value. Thus, the beams ana-
lysed exhibit a = hmin/hmax values ranging from 0.4 to 1.0
(prismatic case).

Finally, the influence of the pre-buckling deflections on
the elastic critical loads of the two sets of cantilevers
depicted in Fig. 3f is investigated in Section 4.4. All these
cantilevers, either prismatic (a = 1.0) or web-tapered
(a = 0.5), are doubly symmetric and have lengths varying
between 3.0 and 8.0 m. The load is applied at the free end
section centroid, top flange and bottom flange (or, to be
precise, at the flange and web mid-line intersections). The
purpose of these analyses is (i) to assess the accuracy of
the estimates yielded by the one-dimensional model and
(ii) to study how this accuracy is affected by such factors
as the location of the applied load and the cantilever length
(which also controls the flange slope in the tapered cases).

4.1. Linear LTB behaviour of prismatic cantilevers

Table 1 provides (i) the linear critical loads QFEM
cr and Q1D

cr

obtained for the equal and unequal-flanged prismatic canti-
levers depicted in Fig. 3a (top flange loading) and (ii) the rel-
ative errors D associated with the Q1D

cr values, which are
given by the expression D ¼ ðQ1D

cr � Q FEM
cr Þ=QFEM

cr � 100%.
Moreover, Fig. 4a displays a graphic representation of the
variation of D with L for both cases. This set of LTB results
leads to the following remarks:

(i) The FEM-based critical loads are always smaller than
the ones obtained in a one-dimensional analysis (i.e.
D > 0). This is due to the fact that the one-dimen-



Fig. 3. I-section cantilevers and simply supported beams: geometry, loading and material data.

Table 1
Prismatic cantilevers (Fig. 3a): linear critical loads and relative errors

L (m) Equal flanges Unequal flanges

QFEM
cr (kN) Q1D

cr (kN) D (%) QFEM
cr (kN) Q1D

cr (kN) D (%)

2.0 163.06 253.90 55.71 72.46 79.70 10.37
4.0 42.01 43.68 3.97 18.52 19.12 3.21
6.0 18.05 18.46 2.26 9.63 9.86 2.36
8.0 10.57 10.75 1.67 6.29 6.40 1.79

10.0 7.14 7.23 1.25 4.52 4.58 1.35
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sional model (broadly speaking, a kinematically con-
strained membrane shell) is stiffer than the shell finite
element one.
(ii) For L P 4.0 m, the relative errors are small (D < 4%)
and, moreover, they progressively decrease with L.
As shown in Fig. 5, the distortion taking place at
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Fig. 4. Prismatic cantilevers (Fig. 3a): (a) variation of D with L and (b) FEM-based critical modes for (b1) equal flanges + L = 2.0 m, (b2) equal
flanges + L = 3.0 m, (b3) unequal flanges + L = 2.0 m and (b4) unequal flanges + L = 3.0 m.
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the free end section web is not significant in this
length range and, like D, it gradually diminishes with
L.

(iii) For lengths below 4.0 m, both D and the web distor-
tion at the free end section are substantial (particu-
larly in the equal-flanged case). In fact, the
instability phenomenon governing the behaviour of
these shorter cantilevers, which exhibit an unusually
large h/L ratio, is not so much LTB, but a localised
buckling of the web, in the vicinity of the load point
of application. This phenomenon is clearly visible in
Fig. 4b1 to b4 (mainly in the first one), which show
the critical buckling mode shapes of the shorter can-
tilevers provided by the ABAQUS FEM analyses, and
cannot be captured by the one-dimensional model
(recall that this model constrains the beam to buckle
in a ‘‘pure’’ global mode).

(iv) In order to confirm the relevance of the above local-
ised buckling phenomena for the shorter cantilevers
(L = 2.0 m and L = 3.0 m), additional ABAQUS FEA
were performed, with rigid transverse web stiffeners
located at five equally spaced cross-sections (includ-
ing the free end one). The results obtained virtually
coincide with the ones yielded by the one-dimensional
hmax
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L=3 m

L=5 m

L=9 m

L=7 m

0 0.2 0.4

(a)

Fig. 5. Prismatic cantilevers (Fig. 3a): web distortion at the free end section for
model, both for the beams with equal and unequal
flanges – the maximum of the four relative errors is
less than 0.5%.
4.2. Linear LTB behaviour of web-tapered cantilevers

Table 2 gives the values of QFEM
cr , Q1D

cr and D pertaining to
the cantilevers displayed in Fig. 3b (again top flange load-
ing), which have (i) equal or unequal uniform flanges, (ii)
linearly tapered webs (a = 0.5) and (iii) horizontal top
flanges. As in the prismatic case, the FEM-based critical
loads are always smaller than the ones yielded by the one-
dimensional model. The comparison between the results
given in Tables 1 and 2 shows that, except for very short
lengths, the tapered cantilever critical loads are invariably
larger than those of their prismatic counterparts, even if
the latter contain more material. This surprising (even par-
adoxical) fact, clearly visible in both the FEM and 1D
results, is due to the combination of two opposing effects,
both stemming from the web height decrease due to tapering
[3]: (i) a material reduction (lower critical load) and (ii) a
smaller distance from the load point of application to the
cross-section center of rotation (higher critical load). For
most of the cantilevers analysed, the latter effect dominates.
hmax

δ (mm)
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L=5 m

L=9 m

L=7 m

0 0.2

δ 

(b)

(a) equal and (b) unequal flanges – normalised FEM-based critical modes.



Table 2
Web-tapered cantilevers (Fig. 3b): linear critical loads and relative errors

L (m) Equal flanges Unequal flanges

QFEM
cr (kN) Q1D

cr (kN) D (%) QFEM
cr (kN) Q1D

cr (kN) D (%)

2.0 151.91 195.81 28.90 68.44 85.05 24.27
4.0 42.30 47.46 12.18 25.38 28.03 10.47
6.0 22.06 23.46 6.34 14.66 15.47 5.55
8.0 13.75 14.21 3.32 9.54 9.83 3.04

10.0 9.24 9.41 1.77 6.56 6.68 1.71
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Fig. 6. Web-tapered cantilevers (Fig. 3b): (a) variation of D with L and (b) FEM-based critical modes for (b1) equal flanges + L = 2.0 m, (b2) equal
flanges + L = 3.0 m, (b3) unequal flanges + L = 2.0 m and (b4) unequal flanges + L = 3.0 m.
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Fig. 7. Web-tapered cantilevers (Fig. 3b): web distortion at the free end
section for (a) equal and (b) unequal flanges – normalised FEM-based
critical modes.
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Fig. 8. Web-tapered cantilevers (Fig. 3b): compression flange distortion
at the free end section for L = 2.0 m and L = 5.0 m (equal flanges) –
‘‘web-stiffened’’ normalised FEM-based critical modes.
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Figs. 6a and 7 show the variations of (i) the relative
error D and (ii) the web distortion at the free end section
with the cantilever length L. Their observation prompts
the following comments:

(i) Both D and the end section web distortion increase
gradually as the cantilever length diminishes. Since
this increase becomes more pronounced for cantile-
vers shorter than about 4.0–5.0 m, it seems fair to
say that this is a ‘‘validity limit’’ for the one-dimen-
sional model (i.e. it ceases to yield reasonably accu-
rate results).

(ii) No localised web buckling phenomena is visible near
the free end section (where the point load acts), even
for the shortest cantilevers (see Fig. 6b1 to b4). Most
likely, this is due to the fact that the free end web
height has been halved.

(iii) The equal-flanged cantilevers always exhibit higher D
values and more pronounced web distortions than
their unequal-flanged counterparts. However, the dif-
ferences are relatively minor.

(iv) As before, the relevance of the web distortion was
confirmed by the performance of additional ABAQUS

FEA, concerning cantilevers with lengths L = 2.0 m
and L = 5.0 m and rigid transverse web stiffeners
located at several cross-sections (including the free
end one). Surprisingly, it was not possible to reduce
the relative errors D by more than about 50% (both
for the beams with equal and unequal flanges), even
when a significant number of stiffeners were added.
These discrepancies appear to be due to the distortion
of the compressed flange. Indeed, Fig. 8, which con-
cerns the cantilevers with lengths L = 2.0 m and



Table 3
Web-tapered cantilevers (Fig. 3c): linear critical loads and relative errors

L (m) Equal flanges Unequal flanges

QFEM
cr (kN) Q1D

cr (kN) D (%) QFEM
cr (kN) Q1D

cr (kN) D (%)

2.0 156.84 195.78 24.83 70.50 83.37 19.66
4.0 42.68 47.42 11.11 25.61 27.98 9.27
6.0 22.15 23.45 5.88 14.73 15.47 5.01
8.0 13.79 14.21 3.06 9.57 9.83 2.74

10.0 9.26 9.41 1.59 6.73 6.73 0.00
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Fig. 9. Web-tapered cantilevers (Fig. 3c): (a) variation of D with L and (b) FEM-based critical modes for (b1) equal and (b2) unequal flanges (L = 4.0 m).
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Fig. 10. Web-tapered cantilevers (Fig. 3d): 1D and FEM normalised
critical modes (/cr).

Table 4
Web-tapered cantilever (Fig. 3d): linear critical loads and relative errors

Load application QFEM
cr (kN) Q1D

cr (kN) D (%)

Top flange 38.31 38.70 1.02
Centroid 44.36 44.40 0.09
Bottom flange 48.40 48.50 0.21
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L = 5.0 m and equal flanges, confirms that such a dis-
tortion takes place.6

Next, Table 3 and Fig. 9 display the results concerning
web-tapered cantilevers (a = 0.5) with both flanges equally
inclined in relation to the plane {e1,e2}. Because these
results are very similar to the ones obtained in the previous
case (web-tapered cantilevers with horizontal top flanges),
all the remarks prompted by the observation of Figs. 6
and 7 remain valid – note that the consideration of a large
number of web stiffeners in the FE simulations (again for
L = 2.0 m and L = 5.0 m and cantilevers with equal or
unequal flanges) did not reduce the relative errors by more
than about 50% (as before, the remaining differences
appear to be due the compression flange distortion).

Finally, one addresses the linear LTB of the doubly sym-
metric web-tapered cantilever shown in Fig. 3d, which is (i)
very severely tapered (a = 0.2) and (ii) subjected to tip
loads applied at the top flange, centroid and bottom flange.
Besides comparing the critical loads QFEM

cr and Q1D
cr (see

Table 4), one also assesses the accuracy of the buckling
mode shapes yielded by the one-dimensional model, which
are expressed in terms of the torsional rotation field /. To
achieve this, Fig. 10 shows a comparison between (i) the 1D
critical buckling mode shapes and (ii) FEM-based dia-
grams providing, in several cross-sections along the cantile-
6 Note that, in this schematic representation, all the compressed flange
deformed configurations have zero slope at the point of intersection with
the web (they are all normal to the stiffened web).
ver length, the rigid-body rotation of the top (tension)
flange.7
7 Recall that it has been assumed that, due to the virtual absence of
distortion, the tension (top) flange rotation provides an accurate measure
of the FEM-based cross-section rigid-body torsional rotation. Therefore,
it may be directly compared with the critical buckling mode shape /cr

yielded by the 1D model.
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After observing the results presented in Table 4 and
Fig. 9, one may conclude that:

(i) There is always an excellent agreement between the
linear critical loads of the 1D and shell finite element
models. The largest relative error occurs when the tip
load is applied at the top flange, most likely because
of some (very minor) local effects stemming from the
transversal compression of the web induced by the tip
load – such local effects cannot be captured by the
one-dimensional analysis.

(ii) The critical buckling mode shapes (expressed in terms
of the torsional rotation /) provided by the 1D and
shell FE models practically coincide. Indeed, one only
sees very small differences, near the free end section,
when the load acts either at the cross-section centroid
or at the top flange. Most likely, these differences are
also due to the minor local effects already mentioned
in the previous item.
4.3. Linear LTB behaviour of web-tapered simply supported

beams

Table 5 gives the values of QFEM
cr , Q1D

cr and D obtained for
the simply supported beams displayed in Fig. 3e, which
have (i) two longitudinal planes of symmetry (equal flanges
and symmetric tapering slopes), (ii) different tapering ratios
a = hmin/hmax (ranging from 0.4 to 1.0, the latter corre-
sponding to the prismatic case) and (iii) are acted by a
mid-span point load applied at (iii1) the web mid-height
(centroid) or (iii2) the intersection of the web and top flange
mid-lines. Figs. 11a and b show the variation of Qcr and D
with a, for beams having lengths L = 6.0 m and L = 9.0 m.
Note that Fig. 11a also includes (dashed lines) the results
yielded by the one-dimensional model when the condition
w = 0 is imposed (i.e. when the terms given by Eq. (25)
are omitted from d2P) – these same results would be
obtained by using a fine enough mesh of prismatic beam
FE (incorporating Vlassov’s assumptions, of course).
Table 5
Simply supported beams (Fig. 3e): linear critical loads and relative errors

L (m) a Top flange loading

QFEM
cr (kN) Q1D

cr (kN)

6.0 0.4 59.28 65.84
0.6 69.22 72.55
0.8 83.28 85.07
1.0 99.30 100.75

9.0 0.4 29.59 31.03
0.6 32.05 32.81
0.8 35.65 36.06
1.0 39.93 40.24

12.0 0.4 17.73 18.22
0.6 18.75 19.03
0.8 20.20 20.36
1.0 21.92 22.03
Finally, Fig. 11c displays two FEM-based buckling mode
shapes and Fig. 12 provides the variation of the web distor-
tion at the mid-span section with the beam length L, for
a = 0.4 and a = 1.0 (centroid and top flange loading).
The observation of these LTB results leads to the following
remarks:

(i) Regardless of the a value, both the relative error D
and the mid-span section web distortion increase
gradually as the beam length diminishes. However,
note that (i1) errors exceeding 5% only occur for the
shorter beams (L = 6.0 m), particularly for low taper-
ing ratios (a < 0.6), and (i2) all the errors concerning
the critical loads of the longer beams (L = 12.0 m) are
below 3%.

(ii) In the beams loaded at the intersection of the web
and top flange mid-lines, the value of D continually
decreases with a (see Fig. 11b). However, this state-
ment does not remain true when the load is applied
at the centroid: in this case, there is a consistent
(though slight) error increase between a = 0.8 and
a = 1.0. This unexpected phenomenon is probably
due to an increased relevance of the web distortion
– notice that the prismatic beam has the most slender
web and the highest critical loads.

(iii) As shown in Fig. 11a, the shell FEA confirm the qual-
itative differences between the LTB behaviours of
prismatic and tapered I-beams, as predicted by the
one-dimensional model. Furthermore, these differ-
ences are more significant for the shorter beams
(L = 6.0 m), i.e. the ones exhibiting larger web-taper-
ing slopes.

(iv) In order to assess the relevance of the web distortion,
which is clearly visible in Fig. 12, additional ABAQUS

FEA were performed for the five shorter beams
(L = 6.0 m). A large number of transverse web stiff-
eners were included and it was found that the reduc-
tion of the relative error D (with respect to the
corresponding unstiffened beams) increases with a:
Centroidal loading

D (%) QFEM
cr (kN) Q1D

cr (kN) D (%)

11.07 100.74 109.75 8.94
4.81 112.31 118.42 5.44
2.15 126.73 133.26 5.15
1.46 141.27 151.28 7.08

4.87 43.78 45.45 2.79
2.37 46.58 47.55 2.08
1.15 50.42 51.31 1.77
0.78 54.78 55.99 2.21

2.76 24.18 24.67 2.03
1.49 25.32 25.61 1.15
0.79 26.87 27.10 0.86
0.50 28.67 28.94 0.94
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indeed, this reduction varies continuously between (i)
practically 100% (the 1D and FEM-based results vir-
tually coincide), for a = 1.0, and (ii) about 35%, for
a = 0.4. Once again, these discrepancies can be attrib-
uted to the distortion of the compressed (top) flange,
as illustrated in Fig. 13 (L = 6.0 m and load applied
at the top flange) – one observes that the compressed
flange distortion (i) is virtually null for a = 1.0 and
(ii) progressively grows as a decreases.8
4.4. Influence of the pre-buckling deflections

In this Section, the influence of the pre-buckling
deflections on the critical loads of prismatic and web-
tapered cantilevers is addressed. In particular, one wishes
8 Note once more that the three compressed flange deformed configu-
rations have zero slope at the point of intersection with the (stiffened) web.
to assess how accurately the one-dimensional model can
capture this influence. In order to achieve this goal, one
analyses the LTB behaviour of the web-tapered (a = 0.5)
and prismatic (a = 1.0) cantilevers shown in Fig. 3f. Tables
6 and 7 provide, for each web-tapered and prismatic canti-
lever, four critical load values, which were obtained from
(i) linear (i.e. with the pre-buckling deflections neglected)
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Table 6
Web-tapered cantilevers (Fig. 3f – a = 0.5): linear and non-linear critical loads (kN)

L (m) Top flange Centroid Bottom flange

Q1D
cr:lin Q1D

cr:nl QFEM
cr:lin QFEM

cr:nl Q1D
cr:lin Q1D

cr:nl QFEM
cr:lin QFEM

cr:nl Q1D
cr:lin Q1D

cr:nl QFEM
cr:lin QFEM

cr:nl

4.0 34.0 35.2 31.6 32.7 56.6 61.2 53.5 57.6 70.4 76.4 70.0 76.1
6.0 15.5 16.3 15.2 15.9 20.5 22.1 20.3 21.8 23.8 25.7 23.7 25.7
8.0 8.5 9.0 8.4 9.0 10.2 11.0 10.2 10.9 11.4 12.3 11.4 12.3

Table 7
Prismatic cantilevers (Fig. 3f – a = 1): linear and non-linear critical loads (kN)

L (m) Top flange Centroid Bottom flange

Q1D
cr:lin Q1D

cr:nl QFEM
cr:lin QFEM

cr:nl Q1D
cr:lin Q1D

cr:nl QFEM
cr:lin QFEM

cr:nl Q1D
cr:lin Q1D

cr:nl QFEM
cr:lin QFEM

cr:nl

4.0 24.1 24.3 22.8 23.0 58.8 61.0 47.4 48.6 84.5 88.0 83.4 87.2
6.0 11.7 11.9 11.4 11.5 21.3 22.1 20.2 20.9 27.5 28.6 27.4 28.6
8.0 7.0 7.1 6.9 7.0 10.6 11.0 10.4 10.7 12.8 13.4 12.8 13.4

Fig. 15. Prismatic cantilevers (Fig. 3f): FEM-based critical mode shapes
for tip load applied at the (a) top flange, (b) centroid and (c) bottom flange
(L = 4.0 m and linear buckling analysis).
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or non-linear LTB analyses performed by means of the (ii)
one-dimensional or shell FE models. They are designated
as follows: (i) Q1D

cr:lin, (ii) Q 1D
cr:nl, (iii) QFEM

cr:lin and (iv) QFEM
cr:nl .

Fig. 14, on the other hand, shows a graphic representation
of the critical load percentage increase due to the pre-
buckling deflections, calculated by means of DQcr =
(Qcr.nl � Qcr.lin)/Qcr.lin · 100%.

The analysis of these data prompts the following
comments:

(i) Comparing the Q1D
cr:lin and Q FEM

cr:lin values, one observes
the same general trend as in the cantilevers analysed
previously. Indeed, with a single exception, all the rel-
ative errors are below 8%. The exception concerns the
prismatic cantilever acted by a centroidal load, for
which the FEM linear critical load is about 20%
below its one-dimensional counterpart. As shown in
Fig. 15b, this is due to the occurrence of a localised
web buckling phenomenon, which does not take
place when the load is applied at either one of the
flanges – Figs. 15a–c.9
9 When the load is applied at the top flange, this localised web buckling
phenomenon does not occur because the LTB load is much smaller than
the one concerning the centroidal load case (about 40%).
(ii) With the same single exception, the Q1D
cr:nl values also

never overestimate the QFEM
cr:nl ones by more than 8%.

Moreover, it is fair to say that the differences between
the non-linear LTB critical loads yielded by the one-
dimensional and FE models are similar to those
separating the linear ones, both for the prismatic
and web-tapered cantilevers. Thus, it is not surprising
that the critical load percentage increases given in
Fig. 14 are also quite close (once again, with the
exception of the prismatic cantilever acted by a cent-
roidal load).
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(iii) Fig. 14 shows that, at least for the geometry and
loading considered here, the effect of the pre-buckling
deflections on the critical load is more relevant for the
web-tapered cantilevers acted by loads applied at the
centroid and bottom flange (DQcr � 8%).

5. Concluding remarks

This paper presented and discussed the results of a com-
parative study carried out in order to assess the perfor-
mance of a one-dimensional model of the elastic LTB
behaviour of singly symmetric tapered thin-walled open
beams, which may take into account the pre-buckling
deflections. This study involved the critical loads and buck-
ling modes of several prismatic and linearly web-tapered I-
section cantilevers and simply supported beams, with equal
or unequal uniform flanges, acted by point loads applied at
various locations of the free end (cantilevers) or mid-span
section (simply supported beams). These results were
obtained from buckling analyses based on (i) the above
one-dimensional model, which was numerically imple-
mented by means of the Rayleigh–Ritz method, and (ii)
two-dimensional shell finite element modelling, using the
commercial code ABAQUS – the latter were taken as refer-
ence. Some of the FEA included rigid transverse web stiff-
eners located at a variable number of beam cross-sections.
These stiffeners made it possible to restrain (at least par-
tially) the cross-section distortion, thus simulating more
closely one of the assumptions underlying the one-dimen-
sional model.

On the basis of this comparative study, it was possible to
conclude that, as long as the beams are not too short, the
one-dimensional analyses yield reasonably accurate esti-
mates of the critical loads and buckling mode shapes,
regardless of whether the pre-buckling deflections are taken
into account or not. Moreover, the accuracy of these esti-
mates gradually increases with the beam length, a trend
that reflects the decreasing relevance of the cross-section
distortion (in-plane deformation). As for the considerable
differences between the one-dimensional and shell FE mod-
els recorded for the shorter beams, it was found that they
are mainly due to either (i) significant web and/or flange
distortion or (ii) a localised web buckling phenomenon,
which occurs in the neighbourhood of the load point of
application – obviously, none of these phenomena can be
captured by the one-dimensional model. This last assertion
was corroborated by the FEM-based results obtained for
beams with rigid transverse web stiffeners, as the presence
of these stiffeners ‘‘pulled’’ the FEM-based critical loads
towards the ones yielded by the one-dimensional model.
Indeed, the larger gaps, associated with the shorter beams,
were either completely (prismatic beams) or partially
(tapered beams) closed. In the latter case, the distortion
of the compressed flange appears to be responsible for
the remaining differences – recall that no flange stiffening
was ever incorporated in the FE analyses.
Appendix A. List of symbols

Upper case symbols

A undeformed configuration of a cross-section
AI,AII orthonormal vectors spanning the plane tangent to

S

B undeformed configuration of the beam
C segment of L comprised between the point defined

by h2 = 0 and the point under consideration
E Young’s modulus
Eab covariant components of the Green-St. Venant

membrane strain tensor
A�; S�y ; z

�
G; I

�
y ; I
�
z ; I
�
q; I
�
x; I

�
xz; I

�
w; I
�
wz; I

�
xw; b

�
y geometrical prop-

erties of the undeformed beam, defined in Eq. (22)
J torsion constant of a cross-section
L length
L undeformed configuration of a cross-section mid-

line
M f

y bending moment distribution in a fundamental
state

Q point load
S undeformed configuration of the beam mid-sur-

face
U elastic strain energy
U, V, W, U generalised displacements in the one-dimen-

sional model
U ; V ;W Cartesian components of the mid-surface displace-

ment field
Ve potential energy of the external loads
D relative error, taking as reference the results of the

shell finite element analysis
DQcr percentage increase in critical load due to the pre-

buckling deflections
P total potential energy of the beam-load system
Lower case symbols

a determinant of aab

a1,a2 (a1,a2) covariant (contravariant) base vectors of the
plane tangent to S

aab (aab) covariant (contravariant) components of the
metric tensor of S (first fundamental form of S)

aabvd contravariant components of the two-dimensional
elasticity tensor of the membrane shell

h height of an I-section, measured between the
flange mid-lines

�nab contravariant components of the membrane force
(or stress resultant) tensor

�r position vector of a point in S (relative to the ori-
gin of the fixed Cartesian frame)

t wall thickness
t* ‘‘reduced’’ wall thickness, equal to ta�3/2

u, v, w, / kinematically admissible variations of the gener-
alised displacements

x, y, z Cartesian coordinates
a ratio between the minimum and maximum heights

of a web-tapered I-beam
d2(.) second variation of a function or functional
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k load factor
v Poisson’s ratio
�x sectorial coordinate
w tapering function (i.e. directly associated with the

cross-section variation)
h1, h2 Gaussian coordinates on S
Subscripts, superscripts and other symbols

(.)cr critical value
(.)cr.lin critical value obtained from a linear buckling anal-

ysis (pre-buckling deflections disregarded)
(.)cr.nl critical value obtained from a non-linear buckling

analysis (pre-buckling deflections accounted for)
(.)f quantity associated with the fundamental equilib-

rium path
(.)FEM result obtained from a shell finite element analysis
(.)1D result obtained from a one-dimensional analysis
(.),a derivative with respect to ha

{O;e1,e2,e3} fixed orthonormal right-handed Cartesian
frame

k.k Euclidean norm in R3

Æ Euclidean inner product in R3

· cross product in R3
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Kiadó; 2002.

[17] European Commission for Steel and Coal (ECSC). Lateral-torsional
buckling in steel and composite beams. Research project 7210-PR-
183 final technical report (Book 3); 2003.

[18] Antman SS. The theory of rods. In: Truesdell C, editor. Encyclo-
paedia of physics, vol. VIa/2. Berlin: Springer; 1972. p. 641–703.

[19] Ciarlet PG. Mathematical elasticity. Theory of shells, vol. 3. Amster-
dam: Elsevier; 2000.

[20] Ciarlet PG. Mathematical elasticity. Three-dimensional elasticity,
vol. 1. Amsterdam: Elsevier; 1988.

[21] Lee G, Szabo B. Torsional response of tapered I-girders. J Struct Div
(ASCE) 1967;93(5):233–52.
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