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Abstract

More efficient vehicle routing can improve a firm’s competitive advantage or increase the efficiency by which govern-
mental agencies supply public services. More efficient routing can also reduce traffic congestion and air pollution which
are growing problems in many urban areas. Unfortunately, the identification of the optimal solution to most vehicle rout-
ing problems is computationally intractable. This article presents a user-friendly spatial decision support system (SDSS) to
generate vehicle routes for multiple-vehicle routing problems that serve demand located along arcs and at nodes of the
transportation network. The SDSS incorporates a geographical information system (GIS) and heuristic solution proce-
dures to generate routes, system-wide data, and maps, as well as individual vehicle route maps, directions, and data
quickly. It accommodates realistic system specifics such as vehicle capacity and time constraints and network constraints
such as one-way streets, and prohibited turns. The system was tested for trash collection in Coimbra, Portugal. In addition,
the SDSS can be used for ‘‘what-if” analysis related to possible changes to input parameters such as vehicle capacity and
maximum driving time.
� 2008 Elsevier Ltd. All rights reserved.
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1. Introduction

The transportation of goods and services imposes considerable costs on both the public and private sectors
of the economy. In cities, the movement of goods may account for 20–30% of the total vehicle miles traveled
and for 16–50% of all air pollutants resulting from transportation (Dablanc, 2007). Dablanc’s article, ‘‘Goods
transport in large European cities: difficult to organize, difficult to modernize”, calls for improved logistics in
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European cities. Improved logistics also would benefit the United States of America where freight transpor-
tation costs account for approximately 6% of the GDP (MacroSys Research and Technology, 2005). Unfor-
tunately the optimization of transportation routing is computationally intractable for most real-world
problems (e.g., Garey and Johnson, 1979; Magnanti and Wong, 1984). As a consequence, the design and
implementation of exact and heuristic solution algorithms for such problems have been important research
streams in the field operations research (OR).

Due to the data requirements and the complexity of transportation problems, there has been a growing
interest in the use of decision support systems (DSS) to analyze them from the operational level (e.g., Simao
et al., 2004; Maria et al., 2005) to the strategic planning level (e.g., Coutinho-Rodrigues et al., 1997; }Ulengin
et al., 2007). GIS is a natural component of such systems as it is an important tool for collecting, organizing,
and displaying spatial data. It is also an effective way to enter data into mathematical models as well as to
present the results of such models to decision makers (Church, 2002). Although transportation research has
been ‘‘late to embrace GIS as a key technology to support its research and operational needs” (Thill,
2000), there has been an increase of such research in recent years. Much of this research also incorporates
exact and heuristic solution algorithms with the GIS in what are referred to as spatial decision support systems
(e.g., Coutinho-Rodrigues et al., 1997; Simao et al., 2004; Jha and Schonfeld, 2004; Maria et al., 2005; Alc�ada-
Almeida et al., in press).

In this article, we present a spatial decision support system (SDSS) designed to increase the efficiency of
multiple-vehicle routing problems. The SDSS was designed for, and tested on, a real-world multiple-vehicle
routing problem: trash collection in the City of Coimbra, Portugal. Although the application presented in this
paper is specific, the GIS-based SDSS is applicable to many public and private sector multiple-vehicle routing
problems. The system can be used for short-term analysis (e.g., the design of daily vehicle routes) and long-
term analysis (e.g., how many vehicles to operate).

The Coimbra transportation system managers imposed several important design criteria for the GIS-based
SDSS. First, it must generate efficient solutions (i.e., vehicle collections routes) quickly as demand patterns
and routes can change daily. Second, the system must be easy to use for people with little or no background
in operations research or GIS. Third, it must be able to incorporate system data easily from existing spread-
sheet data files. Fourth, the SDSS must generate individual route maps and directions for the drivers. Finally,
the system must be able to incorporate various local network specific conditions and constraints. It was also
desirable for the system to be able to analyze long-term decisions such as the number (and/or size) of vehicles
to operate and the length of an employee’s work shift.

The remainder of this article is organized as follows. Background information is presented in the next sec-
tion. Specifics of the SDSS application are given in the third section and a summary and conclusion are pre-
sented in the last section.

2. Problem background

Vehicle routing is a common and costly problem faced by many private and public sector enterprises.
Two of the most basic vehicle routing problems are the traveling salesman problem (TSP) (Dantzig et al.,
1954) and the Chinese postman problem (CPP) (Kwan, 1962). The TSP identifies the least cost route of a
single vehicle that includes (i.e., serves demand on) every node in the network and then returns to the
starting node. Unfortunately, this very basic routing problem belongs to the set of NP-hard problems
(Garey and Johnson, 1979). The CPP identifies the least cost route of a single vehicle that includes
(i.e., serves demand on) every arc in the network. The CPP can be solved in polynomial time (e.g., Chris-
tofides, 1973).

Several assumptions underlie the TSP and the CPP that are not realistic for many practical vehicle routing
problems. For example, they both assume that the vehicle (or sales person) has no load (or time) capacity con-
straint. Consequently, a single route can serve all of the demand. The addition of vehicle capacity constraints
to the CPP results in the capacitated CPP which is a NP-hard problem (e.g., Golden and Wong, 1981). Sec-
ond, they assume that demand exists at every node in the network (TSP) or along every arc of the network
(CPP). These assumptions are not appropriate for many vehicle routing problems. Unfortunately, relaxing
these assumptions make the problems more difficult to solve.
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The problem most closely resembling the one at hand is the capacitated arc routing problem (CARP) intro-
duced by Golden and Wong (1981). In this problem demand occurs along the arcs, some arcs in the network
may not require service (i.e., have no demand along them) and the vehicles have a capacity on the total demand
that they can serve. Golden and Wong (1981) proved that CARP belongs to the class of NP-hard problems.

Coimbra’s trash collection problem cannot be solved as a CARP because of various network specific con-
ditions/constraints that complicate the vehicle routing problem. We refer to the Coimbra routing problem as
the constrained CARP or C-CARP. These network specific conditions/constraints that differentiate C-CARP
from CARP include:

1. One-way streets (i.e., network includes directed arcs).
2. Demand at network nodes (i.e., intersections) as well as along the arcs. For example, when a trash collection

vehicle in Coimbra arrives at a street intersection, it may collect trash from all of the buildings at that inter-
section during one stop. Clearly nodes are on arcs so CARP will serve them. However, defining demand at
nodes increases the flexibility of the routing decision as this demand may be served by any arc that enters it.

3. Prohibited turns (e.g., U-turns and left turns) at various network intersections.
4. Demand along arcs (i.e., streets) that are too narrow for standard-sized vehicles to traverse.
5. Vehicles can serve more than one route in a day. All routes for a particular vehicle must include a ‘‘drop-off

point” (i.e., landfill in this case) that is not the starting depot. Only the last route for each vehicle must
return to the starting depot immediately after visiting the ‘‘drop-off point”.

6. The time to serve all of a vehicle’s routes (in a day) must be less than the maximum hours that the vehicle’s
crew can work that day.

Given the similarity of Coimbra’s trash collection problem to the CARP, CARP solution procedures
appeared to be good starting places to develop a solution procedure for C-CARP. Several heuristic solution
procedures have been developed to solve the CARP. These include ‘‘construct and strike” (Christofides, 1973;
Golden et al., 1983), ‘‘modified construct and strike” (Pearn, 1984), ‘‘augment and merge” (Golden and Wong,
1981; Golden et al., 1983), ‘‘path scanning” (Golden et al., 1983), and ‘‘parallel insertion” (Chapleau et al.,
1984).

We decided to solve C-CARP using a modified version of the path-scanning (Golden et al., 1983). This deci-
sion was based on a comparative study of the heuristics (Coutinho-Rodrigues et al., 1993), which found that
the path-scanning heuristic was faster than the others, used less memory, and produced good solutions that
averaged about 10% above the lower bound in the tested problems. In addition, the path-scanning heuristic
could be modified to include the problem differences between CARP and C-CARP mentioned earlier.

The path-scanning heuristic with five criteria constructs one route at a time in a ‘‘greedy-add” fashion. The
algorithm is executed five times with each execution using a different decision criterion. During each run, indi-
vidual routes are built one arc at a time (the shortest path is used to connect two consecutive arcs and/or nodes
serviced if they are not adjacent). This is done by adding the best arc (for the current decision criterion) until
the vehicle capacity is exhausted. When the vehicle’s capacity is exhausted, the algorithm returns the vehicle to
the ‘‘drop-off point” (landfill in our case) via the shortest path through the network. The solutions generated
by the five criteria are compared and the best solution is selected.

To describe the five arc selection criteria, we assume that a route is at some node i and we want to determine
which arc (i,j) should be the next arc on the route. The selection criteria are to select the arc (i, j) such that: (1)
the ratio of the distance of the arc, cij, to the demand on the arc, dij, is minimized; (2) the ratio of the distance
of the arc, cij, to the demand on the arc, dij, is maximized; (3) the distance from node j back to the landfill is
minimized; (4) the distance from node j back to the landfill is maximized; and (5) if the vehicle is less than half–
full use criterion 4, otherwise use criterion 3.

The routing heuristic employed by the SDSS utilizes the basic structure (and five criteria) of Golden et al.
(1983). However, numerous modifications were necessary to incorporate the network specific conditions/con-
straints mentioned earlier. For example, the shortest path algorithm (Dijkstra, 1959) embedded in the Golden
et al. (1983) heuristics had to be modified to incorporate the ‘‘turn restrictions” of the problem at hand. This
modification is similar that presented in Namkoong et al. (1998) and used by other authors (e.g., Lacomme
et al., 2004; Belenguer et al., 2006), and is explained in Appendix.
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3. Implementation of C-CARP in a GIS-based SDSS

The design criteria for the SDSS for the Coimbra trash collection problem were stated earlier. In summary,
the Coimbra planners had certain input and output requirements as well as desired analytical/planning capa-
bilities. These included the ability to: generate ‘‘good” solutions and allow system planners to alter these
routes manually; generate maps and instructions for individual vehicle routes and system solutions; and
import/export data via spreadsheet files.

To achieve these objectives, the SDSS needed data/information management/analysis capabilities and
graphical display capabilities. Given these requirements and the ‘‘spatial” nature of the data, a SDSS that
incorporated GIS seemed most appropriate. Consequently, the SDSS for this multi-stop, multi-vehicle routing
was implemented in Avenue, an object-oriented language included in ESRI’s ArcView version 3.

C-CARP was tested in the urban core of the City of Coimbra; a Portuguese city of about 120,000 inhab-
itants. The sanitation department of Coimbra collects trash on approximately 1900 km of streets. The collec-
tion region with the highest per area demand and the most complex routing options is the urban core of this
network presented in Fig. 1.
3.1. SDSS input

Problem parameters such as arc and node service demand, arc traversal times, vehicle capacities, and con-
straints such as turn prohibitions and the maximum time a vehicle (crew) can operate in a day can be edited in
the SDSS environment via dialogue boxes like the one shown in Fig. 2 or in a spreadsheet and then imported
into the SDSS. In the Coimbra example, there are 20 nodes where demand could be served regardless of the
arc used to enter the node (i.e., nodes with demand) and 45 nodes with turn restrictions. The former nodes are
represented in Fig. 1 with circles and the latter are identified with triangles.

Trash collection in Coimbra has two additional constraints that demonstrate the flexibility of C-CARP and
the SDSS used to implement it. First, the City of Coimbra is approximately 2000 years old; consequently,
streets in some sections of the city are too narrow for standard-sized vehicles that have a capacity of
7000 kg. Demands at arcs and nodes in these areas are served via one of two predetermined methods. In
Fig. 1. Coimbra street network with nodes with prohibited turns (triangles) and demand (circles) indicated.



Fig. 2. Network data entry dialog box.
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the first method, the trash is hauled manually to an arc that can accommodate a standard vehicle and is
counted as part of that arc’s demand. This method is used for extremely narrow streets. The second method
identifies a subnetwork of narrow streets that can be served by a vehicle of smaller capacity (i.e., 400 kg). The
arcs in this subnetwork can be labeled by ‘‘clicking” on them or by enclosing them in a mouse drawn box on
the network. After such arcs have been labeled, only the smaller capacity vehicles can traverse them. However,
these smaller vehicles may use any of the ‘‘standard-sized” streets in their routes. Fig. 3 highlights a ‘‘neigh-
borhood” of such narrow streets in Coimbra.

A ‘‘route” for a vehicle is constrained by the volume of trash it can carry (i.e., vehicle capacity) and the time
it takes to service the route (maximum employee shift time). A vehicle may serve more than one route in a day
as long as the total routing time for the vehicle is less than the maximum employee shift time. The routing
heuristic embedded in the SDSS enforces both the vehicle capacity and total service time constraints for each
vehicle.

The situation in Coimbra is additionally complicated by the fact that the route ‘‘drop-off point” (a landfill)
is not at the same location as the depot where the vehicles start and end their shifts. The first route starts at the
depot and all routes must go to the landfill when completed. However, only the last route in a given vehicle’s
shift must return to the starting depot. The routing heuristic embedded in the SDSS incorporates these net-
work specifications.

3.2. SDSS output

The primary output of the SDSS is the design of efficient vehicle routes. The SDSS determines the number
of vehicles and routes, as well as designs the individual routes. Additional output includes system-wide data,
and maps and individual vehicle data and maps. The problem was solved initially with a 7 h 30 min shift limit,
which reflects current policy. Summary system-wide and individual vehicle information for this solution is
presented in Table 1. The solution requires five shifts (i.e., vehicles) to serve nine routes. A system-wide



Fig. 3. Coimbra street network with narrow streets highlighted.

Table 1
Summary data for solution to the coimbra trash collection problem

Shift limit: 7 h 30 m

Totals Route 1 Route 2 Truck 1 Route 3 Route 4

Duration 33 h 29 m 3 h 17 m 4 h 7 m 7 h 24 m 3 h 49 m 3 h 41 m
Service (kg) 47,227 6970 7000 13,970 6990 5012
Route length 480,635 36865.2 63178.3 100,043 44305.2 61768.2
Serviced length (%) 22 42 23 30 34 17
Average speed (km/h) 14 11 15 14 12 17

Truck 2 Route 5 Route 6 Truck 3 Route 7 Route 8 Truck 4 Route 9 Truck 5

Duration 7 h 29 m 4 h 37 m 2 h 53 m 7 h 29 m 4 h 13 m 3 h 15 m 7 h 28 m 3 h 37 m 3 h 37 m
Service (kg) 12,002 6981 2529 9510 6772 3041 9813 1932 1932
Route length 106,073 51373.8 53,826 105,200 50563.1 59,566 110,129 59,189 59,189
Serviced length (%) 24 30 11 20 30 12 20 8 8
Average speed (km/h) 14 11 19 14 12 18 15 16 16
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map can be displayed that shows all of the individual vehicle routes. These are color coded by vehicle and
route.

Individual vehicle output includes a map of all of the routes assigned to the vehicle (color coded by specific
route) and a map of each route. An example of the latter is shown in Fig. 4, where the dotted lines represent
arcs on the route that do not include pickups. Route directions are also generated by the SDSS (e.g., Table 2
shows directions for part of a route). This table also lists the expected accumulated length, load, and time for
the route as it progresses from arc to arc. This allows the crew to determine if they are ‘‘on-schedule” in terms
of time and capacity utilization.

The SDSS also generates route/shift comparison information like that shown in Figs. 5–7. The graph in
Fig. 5 shows service distance, non-service distance, and total distance for each route. Notice that there is a
high percentage of non-service driving distance. This is a result of the fact that each route must start at the
depot (i.e., the first route for each vehicle) or the landfill (for routes other than the first one for each vehicle)
and return to the landfill. The last route for each shift must return to the depot after the last drop off. The
landfill is 10 km from the service area, and 15 km from the depot and the depot is 3 km from the service area.



Fig. 4. Route 1 for truck 1 with 7.5 h shift.

Table 2
Route directions and accumulated load and time for truck 1, route 1

Street/Square name Accumulated distance (m) Accumulated load (kg) Accumulated time

Truck 1: route 1
Start at the depot 3000.0 0 0 h 4 m
Bridge of Santa Clara 3265.9 0 0 h 5 m
Av. Emidio Navarro 3613.3 145 0 h 7 m
Av. Emidio Navarro 3717.3 188 0 h 8 m
R. da Alegria 3886.5 259 0 h 10 m
R. Olivenc�a 3965.6 292 0 h 10 m
Av. Emidio Navarro 4313.0 292 0 h 12 m
Av. Emidio Navarro 4364.7 314 0 h 13 m
R. da Sota 4384.7 322 0 h 13 m
R. da Sota 4412.0 333 0 h 13 m
R. da Sota 4437.9 344 0 h 14 m
R. da Sota 4486.4 364 0 h 14 m
R. da Sota 4520.6 378 0 h 15 m
R. da Sota 4555.7 393 0 h 15 m
R. da Sota 4572.7 400 0 h 16 m
R. da Sota 4597.7 410 0 h 16 m
Av. Fernão Magalhães 4663.4 437 0 h 17 m
Av. Fernão Magalhães 4689.0 448 0 h 17 m
Av. Fernão Magalhães 4721.4 461 0 h 18 m
Av. Fernão Magalhães 4750.3 473 0 h 18 m
Av. Fernão Magalhães 4806.2 496 0 h 19 m
Av. Fernão Magalhães 4887.4 530 0 h 20 m
Av. Fernão Magalhães 5032.0 590 0 h 21 m
Av. Fernão Magalhães 5076.6 609 0 h 21 m
Av. Fernão Magalhães 5099.5 619 0 h 22 m
R. Manuel Rodrigues 5167.8 647 0 h 22 m
R. Manuel Rodrigues 5209.9 665 0 h 23 m
R. Manuel Rodrigues 5277.3 693 0 h 24 m
..
. ..

. ..
. ..

.
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Comparison of route lengths (Km)
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Fig. 5. Comparison of route lengths for the 7.5 h shift solution.
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Fig. 6. Comparison of route loads for the 7.5 h shift solution.
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The total loads for each route are shown in Fig. 6 and the total time for each route and shift is shown in
Fig. 7. If major discrepancies occur in route or shift load or time, the route planner can attempt to equalize
them by ‘‘manually” shifting arcs from one route to another as is explained in the next section.
3.3. Post solution analysis/long-term planning

For various reasons, the system planner may want to evaluate alternatives to the routes generated by the
heuristic. For example, after the results of the SDSS are analyzed the planner may want to examine the effects
of changes to the routes to make them more equal in terms of total load or time. The user can ‘‘manually”

exchange a pair of serviced arcs or nodes between two selected routes. Assuming that the constraints on



Table 3
Summary data for sensitivity analysis on total shift time

Shift limit: 6 h 30 m

Totals Route 1 Route 2 Truck 1 Route 3 Route 4 Truck 2 Route 5 Route 6 Truck 3

Duration 35 h 2 m 3 h 17 m 3 h 12 m 6 h 29 m 3 h 55 m 2 h 34 m 6 h 28 m 4 h 19 m 2 h 11 m 6 h 29 m
Service (kg) 47,227 6970 5387 12,357 6867 2242 9109 6897 1671 8568
Route length 532,470 36865.2 54391.1 91,256.3 45,781.1 50,698.1 96,479.2 50,872.5 48,312.7 99,185.1
Serviced length (%) 20 42 20 29 33 9 20 31 7 19
Average speed (km/h) 15 11 17 14 12 20 15 12 22 15

Route 7 Route 8 Truck 4 Route 9 Route 10 Truck 5 Route 11 Truck 6

Duration 4 h 14 m 2 h 11 m 6 h 24 m 4 h 2 m 2 h 27 m 6 h 29 m 2 h 42 m 2 h 42 m
Service (kg) 6954 699 7653 6617 1178 7795 1745 1745
Route length 50,421.7 49,728.3 100,150 45,341.6 51,866.1 97,207.7 48,191.7 48,191.7
Serviced length (%) 31 3 17 34 5 19 9 9
Average speed (km/h) 12 23 16 11 21 15 18 18

Shift limit: 7 h

Totals Route 1 Route 2 Truck 1 Route 3 Route 4 Truck 2 Route 5 Route 6 Truck 3

Duration 32 h 50 m 3 h 17 m 3 h 43 m 6 h 59 m 3 h 49 m 3 h 10 m 6 h 59 m 3 h 50 m 3 h 8 m 6 h 58 m
Service (kg) 47,227 6970 6229 13,199 6995 3723 10,718 6992 2857 9849
Route length 472,740 36,865.2 59,115.5 95,980.7 44,216.2 57,236.4 101,453 46,163 56,576.2 102,739
Serviced length (%) 22 42 21 29 36 14 24 31 11 20
Average speed (km/h) 14 11 16 14 12 18 15 12 18 15

Route 7 Route 8 Truck 4 Route 9 Truck 5

Duration 4 h 3 m 2 h 55 m 6 h 58 m 4 h 55 m 4 h 55 m
Service (kg) 6833 2150 8983 4478 4478
Route length 45,451.9 56,706.9 102,159 70,408.9 70,408.9
Serviced length (%) 34 9 20 15 15
Average speed (km/h) 11 19 15 14 14

Shift limit: 7 h 30 m

Totals Route 1 Route 2 Truck 1 Route 3 Route 4 Truck 2 Route 5 Route 6 Truck 3

Duration 33 h 29 m 3 h 17 m 4 h 7 m 7 h 24 m 3 h 49 m 3 h 41 m 7 h 29 m 4 h 37 m 2 h 53 m 7 h 29 m
Service (kg) 47,227 6970 7000 13,970 6990 5012 12,002 6981 2529 9510
Route length 480,635 36,865.2 63,178.3 100,043 44,305.2 61,768.2 106,073 51,373.8 53,826 105,200
Serviced length (%) 22 42 23 30 34 17 24 30 11 20
Average speed (km/h) 14 11 15 14 12 17 14 11 19 14

Route 7 Route 8 Truck 4 Route 9 Truck 5

Duration 4 h 13 m 3 h 15 m 7 h 28 m 3 h 37 m 3 h 37 m
Service (kg) 6772 3041 9813 1932 1932
Route length 50,563.1 59,566 110,129 59,189 59,189
Serviced length (%) 30 12 20 8 8
Average speed (km/h) 12 18 15 16 16

Shift limit: 8 h

Totals Route 1 Route 2 Truck 1 Route 3 Route 4 Truck 2

Duration 31 h 26 m 3 h 17 m 4 h 7 m 7 h 24 m 3 h 49 m 4 h 9 m 7 h 57 m
Service (kg) 47,227 6970 7000 13,970 6990 6795 13,785
Route length 437,017 36,865.2 63,178.3 100,043 44,305.2 65,298.1 109,603
Serviced length (%) 24 42 23 30 34 23 28
Average speed (km/h) 14 11 15 14 12 16 14

Route 5 Route 6 Truck 3 Route 7 Route 8 Truck 4

Duration 4 h 37 m 3 h 23 m 7 h 59 m 4 h 29 m 3 h 35 m 8 h 4 m
Service (kg) 6981 3027 10,008 6669 2795 9464
Route length 51,373.8 59,261.4 110,635 53,233.8 63,500.8 116,735
Serviced length (%) 30 12 20 29 10 19
Average speed (km/h) 11 17 14 12 18 14
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Table 3 (continued)

Shift limit: 8 h 30 m

Totals Route 1 Route 2 Route 3 Truck 1 Route 4 Route 5 Truck 2

Duration 32 h 33 m 3 h 17 m 3 h 42 m 1 h 30 m 8 h 29 m 3 h 45 m 4 h 19 m 8 h 4 m
Service (kg) 47,227 6970 7000 541 14,511 7000 6964 13964
Route length 464,797 36,865.2 48,129.2 41,389.5 126,384 43850.9 67233.3 111084
Serviced length (%) 22 42 30 3 25 34 22 27
Average speed (km/h) 14 11 13 28 15 12 16 14

Route 6 Route 7 Truck 3 Route 8 Route 9 Truck 4

Duration 4 h 16 m 4 h 13 m 8 h 28 m 4 h 46 m 2 h 45 m 7 h 31 m
Service (kg) 6619 4900 11,519 6741 492 7233
Route length 47,564.2 66,307.9 113,872 56,825.6 56,631.2 113,457
Serviced length (%) 32 17 23 28 2 15
Average speed (km/h) 11 16 13 12 21 15

Shift limit: 9 h

Totals Route 1 Route 2 Route 3 Truck 1 Route 4 Route 5 Truck 2

Duration 31 h 20 m 3 h 17 m 3 h 42 m 1 h 59 m 8 h 57 m 3 h 36 m 5 h 18 m 8 h 53 m
Service (kg) 47,227 6970 7000 1043 15,013 7000 6993 13,993
Route length 435,854 36,865.2 48,129.2 46,263.1 131,257 42175.1 76484.5 118660
Serviced length (%) 24 42 30 5 25 37 20 26
Average speed (km/h) 14 11 13 23 15 12 14 13

Route 6 Route 7 Truck 3 Route 8 Truck 4

Duration 3 h 28 m 4 h 54 m 8 h 21 m 5 h 7 m 5 h 7 m
Service (kg) 6829 6995 13,824 4397 4397
Route length 42,278.2 70,521.3 112,799 73,137.6 73,137.6
Serviced length (%) 35 22 27 14 14
Average speed (km/h) 12 14 13 14 14
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vehicle capacity and time are not violated by the exchange, it will be executed by the SDSS using a heuristic
algorithm. The corresponding routes are redrawn, inserting an arc and deleting another arc in each route. The
inserted arc is connected to its new route using shortest paths. The deletion of the other arc may require the
creation of a substitution shortest path link in the route. All of this done automatically once the user has iden-
tified the arcs or nodes to be exchanged.

The SDSS can also be used for sensitivity and what-if analyses. For example, how would changes in vehicle
capacity or shift times affect the number of vehicles and routes required? We analyzed the tradeoffs between
shift time and the number of vehicles required by solving the problem with shift limits of 6 h 30 min, 7 h, 7 h
30 min, 8 h, 8 h 30 min, and 9 h. Note, we allowed the shifts to extend 5 min beyond the stated time limits if
this would allow a route to service an additional arc before going to the landfill. Summaries of these solutions
are shown in Table 3 and Fig. 8.
Total length for each problem (Km)
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This type of what-if analysis is possible as individual solutions to the Coimbra network took less than 2 min
to generate on a 2 GHz Pentium IV computer.

This analysis demonstrates that by utilizing 8 h shifts, the network could be served by four vehicles instead
of the five required by the current 7 h 30 min shifts. This change would require paying overtime to three crews
(i.e., shifts 2–4) but would require one less crew and one less vehicle, which cost €100,000 to purchase. Planners
can now analyze the cost and reliability issues (i.e., less flexibility in dealing with demand fluctuation as there is
less slack in the system) associated with such a change.

4. Summary and conclusions

In this article, we address a real-world multi-vehicle, multi-stop routing problem: trash collection. We call
the underlying problem the constrained capacitated arc routing problem (C-CARP) as it is a more constrained
version of the capacitated arc routing problem (CARP) (Golden and Wong, 1981). C-CARP is a generaliza-
tion of CARP in that it can accommodate one-way streets; demand located at nodes of the network as well as
along arcs of the network; prohibited turns; and vehicle time (as well as capacity) constraints, among other
realistic routing considerations.

A spatial decision support system (SDSS) was designed to analyze the C-CARP. Given that such problems
are computationally intractable, solution heuristics were designed and embedded in the SDSS to determine the
number of vehicles and routes to employ as well as design the individual routes. Important design consider-
ations included user-friendly inputs (e.g., changes to the network) and outputs (e.g., route maps) for use by
system planners and vehicle drivers. A commercial geographical information system (ESRI, 1996) was incor-
porated into the SDSS to address these considerations.

The SDSS was tested in the City of Coimbra, Portugal. The results indicate that a multiple-vehicle routing
SDSS based upon spreadsheet data input, efficient solution heuristics, and GIS can be used to analyze and
solve extremely complicated multiple-vehicle routing problems and provide system analysts with pertinent
data and maps regarding total system performance as well as data, maps, and directions for the drivers for
their individual routes. In addition, the SDSS enables planners to analyze the benefits and costs of possible
changes to system parameters such as vehicle capacity and shift duration constraints.

Dablanc (2007) concluded that ‘‘. . .the large majority of cities have not yet found adequate solutions to help
optimize the urban movement of goods”. Certainly, the same is true for many cities in other continents. This
research has shown that a user-friendly SDSS can be designed to analyze complex urban transportation prob-
lems. Although the application presented in this paper is case specific, the GIS-based SDSS is applicable to
many public and private sector multiple-vehicle routing problems. The system can be used for short-term anal-
ysis (e.g., the design of daily vehicle routes) and long-term analysis (e.g., how many vehicles to operate).

Appendix

The route generation heuristic presented in the text requires the determination of shortest paths. Labeling
algorithms (e.g., Dijkstra, 1959) can solve shortest path problems very efficiently. However, these algorithms
require that each node have exactly one label that is the label of a predecessor node plus an arc cost. Unfor-
tunately, this causes problems in many networks such as Coimbra’s where turn prohibitions exist. Consider
the example in Fig. A-1 where the source node is s and all arcs have equal costs, the shortest path from s

to node 1 is (s, 1). The shortest path from s to t is not s ? 1 ? t because a left turn restriction prohibits a turn
from arc a1 to arc a3. As a result of this turn prohibition, node 1 appears two times in the shortest path from
node s to node t (s ? 1 ? 2 ? 1 ? t) as is shown in Fig. A-2 (note, node 2 is a ‘‘roundabout” or ‘‘circle”

which allow a vehicle to make a U-turn). Consequently, node 1 requires two labels that are not possible in
traditional shortest path algorithms.

To overcome this problem, the algorithm must label the arcs on the path rather than nodes on it. The
resulting shortest path from node s to node t and it’s labeling scheme (a0 ? a1 ? a4 ? a5 ? a3) are shown
in Fig. A-3 where a0 is a ‘‘dummy arc” representing the starting node, s. As this example demonstrates, nodes
may be entered more than once in shortest paths in networks with turn prohibitions. However, a directed arc
will never appear more than one time in a shortest path unless it has a negative cost which is not the case here.
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Consequently, the arc labeling algorithm identifies all feasible shortest paths and allows nodes to be entered
more than one time if is efficient or necessary to so because of restricted turns. The Buckets ‘‘basic implemen-
tation” (Dial, 1969) of the Dijkstra algorithm (1959) was used to solve the shortest path problems because of
its coding simplicity and efficiency.
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