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Abstract

Based on a case study in which a single geochemical anomaly was located in the vicinity of an abandoned mine in

Central Portugal, a recursive methodology for anomaly/background separation was developed. This methodology
relies on the supplementary projection of each of the samples taken from a subset of ‘anomaly candidates’ onto the
axes provided by Principal Components Analysis of the background subset. The concept of ‘anomaly intensity’,

defined by the average of the distances from the original to the supplementary projections, is the basis for final anomaly
identification. # 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

A variety of multivariate statistical methods have

been applied to the identification of metallic geochem-
ical anomalies, namely classical discriminant analysis
(Bull and Mazzucchelli, 1975), empirical ranking using

an a priori index (Smith and Perdrix, 1983), and cano-
nical variate analysis (Smith et al., 1984). These appli-
cations rely on ‘external’ information or on the
availability of training sets [a comprehensive review of

such methods is given in Howarth and Sinding-Larsen
(1983)]. When the ‘anomaly’ is considered as a set of
outliers that ‘emerge’ from the background, the point

stressed (Singh et al., 1994) is the characterisation of the
background in terms of ‘robust’ statistics referring to
each variable, one at a time. Another author (Garrett,

1989a) introduced in geochemistry the concept of robust
multivariate procedures. The generalization of cumula-
tive probability plots to the multivariate situation was

also proposed (Garrett, 1989b), through the use of the

chi-square plot based on the Mahalanobis distance. This
approach is very promising, even though it is not com-
pletely distribution-free (a flavour of multi-gaussianity is

needed for anomaly selection). Other approaches
(Cheng et al., 2000), although more ‘realistic’ in their
assumptions and ‘sophisticated’ in their algorithms, call

for large data sets, which are not always available in
practice.
In the study reported here, where a priori information

is scarce and the number of samples is exiguous, a new

method for anomaly separation, interpretation and
quantification was devised, based on the aim of geome-
trically isolating two systems of relationships, rather

than focusing on each variable independently.
The proposed methodology relies on the geometric

properties of Principal Components Analysis of Stan-

dardized Data [cf. Vairinho et al. (1990), for the detailed
description of the algorithm]. Once a group of ‘anomaly
candidate’ samples are selected, through the inspection

of their projections onto ‘significant’ components (from
the viewpoint of the relationship between the variables
that are driving the process of separation of the two
populations), they are projected as ‘supplementary indi-

viduals’ (Greenacre, 1984) onto the axes provided by the
eigenvalue decomposition of the cosine matrix (which is
the analogue of the correlation matrix in the geometric
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formulation) of the provisional background data subset.
Then, the ‘anomaly intensity’ is calculated by the aver-
age shift, measured along the significant components,
between the original and the supplementary projection of

each sample (or variable). A recursive procedure is then
implemented, by choosing the subset of samples that
maximises ‘anomaly intensity’. The aim of this paper is to

illustrate, in a comprehensive case study, a PCA-based
geometrical method for anomaly separation, which does
not call for large data sets or external information.

2. Proposed methodology

2.1. Rationale

In order to cope with the difficulties in defining and

quantifying globally a ‘geochemical anomaly’ on the
grounds of a small set of empirical data of concentra-
tions of p elements at n sampling sites, a new metho-

dology based on Principal Components Analysis of
Standardized Data (PCASD) was devised. The rationale
behind this methodology is guided by the following
argument:

(i) A ‘geochemical anomaly’ depends on the inter-
action of the measured variables and cannot be

accounted for by the values of those variables,
taken per se.

(ii) In multi-element surveys, the separation of a ‘geo-

chemical anomaly’ from the background should
not be dealt with in univariate terms, but rather in
the scope of a multivariate technique like PCASD,

in which samples and variables are projected onto
the same factorial space [‘biplots’, cf. Jolliffe
(1986); ‘RQ-mode PCA’, cf. Zhou et al. (1983)].

(iii) The criterion for identification of a sample as

contributor to the anomaly relies on quantifying
the ‘disturbance’ which that sample induces in
the background system of relationships.

Fig. 1. Flowchart of the proposed methodology.
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The proposed methodology relies essentially on the
supplementary projection of samples and variables in
the framework of PCASD, which is equivalent to
‘‘Simultaneous R- and Q-Mode Factor Analysis’’ (as

named by Davis, 1986, p. 594). In this framework, both
individuals and properties of the original matrix Z can
be projected onto the same space, on the grounds that

the scaling process guarantees that similarity between
individuals is measured by an Euclidean distance (Zhou
et al., 1983).

In the framework of PCASD, the supplementary
projection of a block A of the matrix Z onto another
block B of Z consists simply of the calculation of AV,

where V is the eigenvector matrix given by the decom-
position of the cosine matrix that refers exclusively to B
(this matrix contains the cosines of the angles between
points representing properties in the space of indivi-

duals). In geometric terms, this corresponds to finding
the positions of the individuals belonging to A, in the
space created by the individuals of B (responding to the

objective of quantifying the ‘disturbance’ of B created
by A). More than a mere exploratory data reduction
technique, PCA is viewed here as a powerful geome-

trical method that unifies the traditional ‘scores’ of
samples and ‘loadings’ of variables in terms of projec-

tions onto axes. This method can be used for referring
the position of a set of samples on the space created by
another set of samples by the ‘supplementary projection’
procedure, allowing also for interpretation in terms of

variables in the simultaneous projection graphs.

2.2. Description

In Fig. 1, the proposed methodology is described in
terms of a 3-step flowchart.

The first step of the methodology can be summarized
as follows: given a matrix Z of n individuals (samples),
for which p properties are available (the concentrations

of the p elements measured in each sample), the problem
of anomaly identification consists of selecting, in Z, two
subsets: one referring to the background (Block B), and
the other to the anomaly (Block A).

When Z is submitted to PCASD, the resulting axes
can generally be interpreted in terms of the association
of properties in a given geological and geochemical

context. Also, those axes permit the separation of
regions, in factor space, that are more likely to be linked
to an ‘anomaly’ than to the background. This is done by

choosing those samples whose coordinates on ‘sig-
nificant’ axes are higher (‘significant’ axes being inter-

Fig. 2. General geological context of the Zorro abandoned mine.
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Fig. 3. Projection of variables onto the first factorial plane produced by PCASD of the entire data set (explaining 61% of the inertia

contained in the correlation matrix).

Fig. 4. Projection of samples onto the first factorial plane produced by PCASD of the entire data set (explaining 61% of the inertia

contained in the correlation matrix).
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preted on the grounds of the variables that are asso-
ciated to the anomaly). Moreover, once the regions of
factor space are identified where variables likely to cause
the ‘anomaly’ are projected, it is easy to recognize the

samples associated with those variables, due to the
simultaneous projection of individuals and properties in
the same space. Hence, this subset of samples is coined

‘anomaly candidates’, and the entire Z matrix is split
(provisionally) into two blocks—Block B (background)
and Block A (anomaly).

The second step of the methodology consists of the
supplementary projection [in the framework of PCASD,
cf. Lebart et al. (1984)] of the ‘anomaly candidate’ sam-

ples (contained in Block A) onto the axes provided by the
eigen value decomposition of the cosine matrix referring
to the background samples (contained in Block B).
This second step provides the ‘anomaly intensity’ for

each sample, given by the distance, along ‘significant’
axes, between the positions of the sample, before and
after its supplementary projection (‘significant’ axes are

those previously interpreted on the grounds of the vari-
ables that contribute to the anomaly, in a given geo-
chemical context).

This distance measures the dissimilarity between a
sample viewed as part of the whole set and the same

sample segregated into the anomaly subset and viewed
in the framework of the complementary background.
The distance can be seen as the contribution of the sam-
ple to the global ‘anomaly intensity’, since it measures the

importance of each sample in the anomalous subset (the
more that the ‘significant’ sample properties are different
from the background, the bigger is this distance).

The output of this second step is the calculation of a
global intensity of the anomaly, obtained by averaging
the above defined distances for the entire set of ‘anom-

aly candidates’, A. This ‘anomaly intensity’ quantifies
the shift induced on the ‘anomaly candidates’ by posi-
tioning them in a ‘provisional’ background multivariate

structure, given by the components of PCASD referring
exclusively to B. Hence, the ‘anomaly intensity’ mea-
sures how much the background is ‘disturbed’ by the
presence of anomalies, functioning as a criterion for

judging the goodness of the provisional separation.
Subsequently, in a third step, the samples that lie in

the neighbourhood of the frontiers that define the

anomaly regions in factor space (‘border samples’) can
be moved from their initial subset to the other, until the
global ‘anomaly intensity’ is maximised. At this point,

the optimal separation of the anomaly subset from the
background is reached.

Fig. 5. Projection of samples onto the first factorial plane produced by PCASD of the background subset (supplementary projection

of anomalous samples).
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3. Case study

The above described methodology was applied to a
geochemical prospecting campaign undertaken in Cen-

tral Portugal, in the vicinity of the Zorro mine. This
abandoned mine is located in the Central Iberian geo-
tectonic Zone, near the contact with the Ossa Morena

Zone (Fig. 2). The mineralization consists of out-
cropping veins of quartz (locally dolomite and ankerite),
with argentiferous galena and sphalerite. The veins have
a NW-SE strike and dip 60� East.

The geochemical campaign provided a data set of 45
samples, taken from the B horizon of the soil, at a reg-
ular 20 m interval along two lines, separated by 200 m

and perpendicular to the strike of the veins. The first 18

samples came from the northernmost line, the other 27
from the southern line. The fraction smaller than 80
mesh (177 mm) was recovered for each sample, com-

pletely dissolved in a mixture of acids (HF, HNO3 and
HClO4), and the concentration of the following ele-
ments was determined: Ag, Ba, Co, Cr, Cu, Fe, Li, Mn,

Ni, Pb, Ti, Zn, As, Sb and Sn. The pH was also mea-
sured for each sample. The empirical data, in the form
of a n�p matrix (n=45 samples, p=16 variables), was
submitted to the PCASD algorithm, giving rise to the

projection of variables shown in Fig. 3.
The interpretation of Fig. 3 is clear—axis 1 opposes

the mineralization elements (arranged in two groups—

Cu and Zn, and As, Ag, Sb and Pb) to the soil compo-
nents, associated to pH. Hence, the farther a sample
projects from the origin, on the positive side of axis 1,

the greater is its ‘anomalous’ character. This leads to the
conclusion that the only ‘significant’ axis is the first, and
further discussion refers only to this axis.

The projection of samples onto the same plane is
given in Fig. 4. Selection of the ‘anomalous candidate
samples’ is straightforward, by sorting their positive co-
ordinate on axis 1 in descending order: 6, 13, 7, 8, 10, 9,

11, and 12. The group of samples 39, 40, 43, 36 and 41,
although projected onto the positive side of axis 1, was
not selected, at this stage, as ‘anomaly candidates’, as

Fig. 6. Plot of variables before and after supplementary projection of the anomalous samples (supplementary projection of each

variable is denoted by *).

Table 1

Distance between variable positions along axis 1, before and

after supplementary projection

Variable dj1

As 0.355

Pb 0.271

Sb 0.264

Ag 0.244

Zn 0.177

Cu 0.003
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these samples appear to represent only an extension of

the background distribution.
Hence, the total data set was split into a ‘background

matrix’ of 37�16 elements, and an ‘anomaly matrix’

containing the selected 8 samples. The supplementary
projection of the samples contained in this ‘anomaly
matrix’ onto the axes provided by PCASD of the

‘background matrix’ is shown in Fig. 5. As expected, the
anomalous samples move away from the origin, in the
direction of increasing positive co-ordinates on axis 1,

and their ‘importance’ is reversed in some cases (now
the sequence is 13, 6, 7, 8, 9, 10, 12, 11).
With regard to variables, their position before and

after the supplementary projection can be visualised in

the same graph—see Fig. 6. As expected, the variables
that are associated to the anomaly (Cu and Zn, and As,
Ag, Sb and Pb) shift towards the origin when the sup-
plementary projection of the anomalous samples is

compared to the original one (revealing a more uniform
configuration, characteristic of the background).
The importance of each variable in the anomaly for-

mation can be quantified by the distance dj1 (distance,
along axis 1, between the positions before and after
supplementary projection, cf. Fig. 6). These values are

given in Table 1, showing the ranking of the ‘interesting
variables’ for this specific anomaly.
Regarding samples, their ‘anomaly intensities’ can be

measured by the distance between their positions, along
axis 1, before and after supplementary projection, as
given in Table 2 by di1 (note that a new sequence is
obtained, now ranking samples in terms of their con-

tribution to ‘anomaly intensity’). The relative positions
of anomalous samples in the plane of axes 1 and 2 are
shown in Fig. 7 by their locations before and after the

supplementary projection.
The global intensity of the anomaly, obtained by

averaging the values of di1 from Table 2, is 4.242. By

moving samples 36, 39, 40, 41 and 43—which have also
a positive coordinate on axis 1 (see Fig. 4) —, one at a
time, from the background subset to the anomaly sub-

set, no further increase is obtained (the new global
anomaly intensities are always lower than 4.242).
Hence, the separation initially performed between
anomaly and background cannot be improved.

Fig. 7. Plot of samples before and after supplementary projection of the anomalous samples (supplementary projection of each sample

is denoted by *).

Table 2

Distance between sample positions along axis 1, before and

after supplementary projection

Sample di1

13 8.523

6 7.870

7 3.789

9 3.690

8 3.598

12 2.424

10 2.178

11 1.722
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4. Conclusions

The proposed methodology proved to be a reliable
procedure for anomaly identification based on the rela-

tionships between concentrations in a set of elements
determined in small sample sets. Moreover, it calls for a
minimum of ‘external’ information and provides a good

visualisation of the interdependence between variables,
thus facilitating an interpretation that supports the
selection of ‘anomaly candidates’ on factor planes. The

underlying pre-requisite is only that the samples are
representative of background/anomaly multivariate
structure (in the sense that it allows choosing visually

the ‘anomaly candidates’ in the PCASD graphs). The
‘anomaly intensity’ concept is applied to the anomaly/
background optimisation procedure, which cannot rely
on random selection of ‘anomaly candidates’. The

methodology does not provide the internal structure of
each anomaly, in the sense that it cannot cope with
multiple type anomalies, but it is viewed as a first step

for anomaly comparison in different contexts.
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