
Ecological Modelling 180 (2004) 523–535

Change in plant spatial patterns and diversity along the
successional gradient of Mediterranean grazing ecosystems
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Abstract

In this study, we analyze the complexity of plant spatial patterns and diversity along a successional gradient resulting from
grazing disturbance in four characteristic ecosystems of the Mediterranean region. Grazing disturbance include not only defo-

sition of
dense and
matorral,
the natural
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eneity of
ization
sitivity of
rmation

termine
liation by animals, but also associated disturbances as animal trampling, soil compaction, and mineralization by depo
urine and feces. The results show that woodland and dense matorral are more resistant to species loss than middle
scattered matorral, or grassland. Information fractal dimension declined as we moved from a dense to a discontinuous
increasing as we moved to a more scattered matorral and a grassland. In all studied cases, the characteristic species of
vegetation declined in frequency and organization with grazing disturbance. Heliophyllous species and others with po
rosette twigs increased with grazing pressure, particularly in dense matorral. In the more degraded ecosystem, only spe
well-adapted traits, e.g., buried buds or unpalatable qualities showed a clear increase with grazing. Indeed, the homog
species distribution within the plant community declined monotonically with grazing impact. Conversely, the spatial organ
of the characteristic plants of each community increased in the better-preserved areas, being also related to the sen
the species to grazing impact. The degree of autocorrelation of plant spatial distribution at the species level and the info
fractal dimension at the community level allow us to quantify the degree of degradation of natural communities and to de
the sensitivity of key species to disturbance.
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Nomenclature: The scientific names of species are
according to Flora Europaea (Tutin et al., 1972) and
Med. Checklist (Greuter et al., 1984–89).

1. Introduction

Ecosystems consist of multiple populations of dif-
ferent taxa interacting in a non-linear way with each
other and with the environment. Ecosystems are com-
plex, dynamic, open systems maintained by exter-
nal input of energy (Jørgensen, 1982) moving in a
self-organizing way by choosing the best pathway of-
fered to move far from the thermodynamic equilibrium
(Jørgensen, 2000). Disturbance of the ecosystem will
alter the dynamics of the interacting species, moving
the system away from the state of equilibrium, to which
the ecosystem may return after perturbation (Emlen
et al., 1998). The system will become unstable until
a new equilibrium develops. The transition state will
be less energetically efficient than the natural evolved
one (Emlen et al., 1998). Thus, ecosystem preservation
must be based on the capacity of the ecosystem to main-
tain its functions and organization after regular distur-
bances (Müller et al., 2000; Gunderson and Holling,
2001). Understanding the mechanism of ecosystem
preservation requires two main components of inter-
pretation: (i) the extent of perturbation the ecosys-
tem can undergo and still remain in the same stage;
(ii) the capacity of the system to self-organize and
a

ies
m cales
( 00;
P ng,
f apta-
t atial
p iffer-
e ondi-
t e,
2 n
a g in-
d cts
t ,
d dis-
t
1 e
s away

from randomness to a more ordered spatial organiza-
tion (Aarssen and Turkington, 1985; Soro et al., 1999).
These regularities represent “attractors” of the dynam-
ics, indicating some kind of equilibrium state at the
community level. Although the constant immigration
of species triggers a number of non-linear processes
that constraints the stability of the ecosystem (Soĺe et
al., 2002), allowing its constant evolution.

Mediterranean grazing systems are complex sys-
tems whose sustainability (ability to maintain structure
and function “indefinitely”, Costanza et al., 1992)
depends not only on the grazing impact, but also on
the history of grazing (Whittaker, 1977; Milchunas
and Lauenroth, 1993) and soil nutrients availability
(Proulux and Mazumder, 1998). Grazing disturbance
includes not only plant defoliation by animals and
alteration of the competitive/facilitative interaction
(Huston, 1994) but also soil compaction and destruc-
tion of plants by animal trampling and acceleration of
the nutrient cycling with the plant–soil system altering
the nutrient balance (Proulux and Mazumder, 1998).
Recent simulation model analyses found that grazing
optimization is possible and depends on recycling effi-
ciencies and the depletion abilities of plant community
composition (Mazancourt and Loreau, 2000). Indeed,
the “intermediate disturbance” hypothesis (Connell,
1978; Sousa, 1984) postulated that intermediate levels
of disturbance favor maximal biodiversity, which can
be explained as a result of the release from competition
in resource-rich ecosystems (Grime, 1979). On the
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Spatial interactions in natural plant communit

ay produce emergent patterns at larger spatial s
Kolasa and Pickett, 1991; Martens et al., 20
eterson, 2000). These patterns can be analyzed alo

or instance, successional gradients to study the ad
ion of ecosystems to changed conditions. Plant sp
atterns are the result of processes operating at d
nt spatial scales and may respond to changed c

ions such as water availability (Couteron and Lejeun
001; Rietkerk et al., 2002a, b). Spatial patterns ca
lso arise as a consequence of interaction amon
ividuals, generating a zone of influence that affe

he surrounding space (Wu et al., 1985). For example
uring the early process of colonization, random

ribution of plants is commonly observed (Kershaw,
963; Fowler, 1990). As the interactions among th
ystem components develop, the system moves
contrary, in semiarid grazing ecosystems, irrevers
vegetation changes may occur when herbivore num
is high in grazing managed systems in compari
with self-regulating natural systems (Van de Koppel
and Rietkerk, 2000). Thus, the relation betwee
grazing impact and ecosystem functioning is comp
and what role species diversity plays in determin
ecosystem function remains unanswered (Keeley and
Swift, 1995; Troumbis and Memtsas, 2000).

Determining long-term patterns of spatial variati
and the factors, which cause them are key rese
needs in community ecology. Quantifying such p
terns will increase our ability to predict the respon
of the communities to both natural and anthropoge
environmental change. Fractal-dimension anal
may provide a scale-related measure of spa
patterns and can therefore be used to describe
understand pattern in species diversity (Allen and
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Starr, 1982; Ritchie and Olff, 1999). A change in the
fractal dimension of plant spatial patterns may reflect
ongoing directional change in biological and physical
processes in the community. In a previous study,
we presented an evidence that grazing disturbance
in semiarid Mediterranean ecosystems leads to a
decline in species diversity and an increase in the
heterogeneity of species frequency distribution at
the same time that it increases the unpredictability
(randomness) of plant spatial distribution (Alados et
al., 2003). In this study, we are interested in knowing
if the change in plant spatial patterns in response to
grazing disturbance observed in a semiarid matorral
is maintained along a Mediterranean climatic gradient
from semiarid steppes to sub-humid woodlands.

According with self-organization instability theory
(Soĺe et al., 2002), the exponentzof the species–area re-
lation (SAR,S = αAz) decreases when the relative im-
portance of the interaction within the system increases
with respect to immigration.S is the total number of
species observed within a given areaA. As a result, we
expect that species distribution be more homogeneous
(zdeclines) when: (i) interaction within the system de-
clines, such as occurrence in well-developed ecosys-
tems close to the equilibrium (Berlow, 1999); (ii) im-
migration increases due to colonization of empty space
by species adapted to disturbance in highly disturbed
ecosystems (Grime, 1979). In contrast, at the level of
the characteristic species of each community, we ex-
pect a monotonic decline in spatial organization with
d
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involved their use by single shepherds holding grazing
rights. The animals (sheep and goats) move daily from
the shelter to different parts of the rangeland, produc-
ing a gradient of soil and vegetation disturbance out to
the periphery. A dense matorral ofPhillyreaandPista-
cia located at 50 m a.s.l. (590 mm of average rainfall
and 16.2◦C of mean annual temperature) was selected
from the Sithonia peninsula, northern Greece (Toroni,
Chalkidiki). Grazing management was similar to the
Spanish sites, although the land was communal, not
private as in Spain, and the grazing animals were only
goats. A high mountain grassland located at 1900 m
a.s.l. (800 mm of average rainfall and 22◦C of mean
annual temperature) in the territory of the Ait Beni Ya-
coub, Middle Atlas (Morocco) grazed by sheep, was
also included. Traditional activity in this area was no-
madic.

A grazing gradient was established in each study
area at increasing distance from the water point (for the
nomadic herds) or from the shelter (for the established
herds). In S. Nieves (Spain), Sithonia (Greece) and
Middle Atlas (Morocco), three levels of grazing pres-
sure were identified, namely low, medium and high.
In C. Gata (Spain), an ungrazed treatment was also
added. Effective stocking rate (individual ha−1 year−1)
was calculated for each study area by direct rangeland
observations (Table 1). Animal movements (sheep and
goats) were located with GPS and transferred to a map
in a GIS (geographical information system) format.
Effective stocking rate was calculated as the average
s ach
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. Methods

.1. Study area and data collection

Four characteristic ecosystems of the Mediterran
egion were selected. Two different areas were sele
rom southern Spain: A sub-humid woodland;Quercus
uberforest (925 mm of average rainfall and 17.5◦C
f mean annual temperature), located at 600 m a
ierra de las Nieves Natural Park (Bornoque, Málaga)
nd a scattered matorral (scrubland) ofChamaerop
umilisL. andPeriploca laevigataAiton (200 mm of
verage rainfall and 18◦C of mean annual temper
ure) located at 100 m a.s.l., Cabo de Gata Na
ark (Almeŕıa). Grazing management in these a
tocking rate multiplied by the percentage of time e
razing site is used.

In order to analyze the effect of grazing impact
egetation spatial patterns, the line intercept me
every 20 cm) was applied to 39 random 500 m t
ects (three per grazing treatment and site). Veget
urveys were conducted during periods of peak
tation cover (April to June) in 2000. A total nu
er of 158 vascular plant species were observed i
tudy area of S. Nieves, 96 species in Sithonia pe
ula, 144 in C. Gata, and 95 in the Middle Atlas st
rea.

.2. Data analysis

The Shannon diversity index (Shannon and Weave
949) measures the complexity of the system, and
esents the information,I(ε), necessary to charact
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Table 1
Effective stocking rate (ind. ha−1 year−1 using the study area), richness (average number of species± S.E.), percentage of bare-ground and
means± S.E. of the Shannon and Evenness indexes calculated from the presence of species along the three transects per test area

Grazing pressure Effective
stocking
rate

Richness Bareground cover
(%)

Shannon index Evenness index

Forest of Sierra de las Nieves (Spain)

Low 0.27 56.7± 3.5a 4.5 2.42± 0.04a 0.597± 0.007a

Medium 0.53 86± 2.3b 4.6 2.87± 0.03b 0.644± 0.004a

High 1.20 55.7± 6.1a 28.6 2.57± 0.15a 0.640± 0.020a

F2,6 = 16.32∗∗ G = 1003.1∗∗∗ F2,6 = 6.35∗ F2,6 = 4.51

Shrubland of Sithonia Peninsula (Greece)
Low 0.3 59± 2.6a 4.4 2.90± 0.05a 0.713± 0.007a

Medium 2.6 61.7± 0.3a 16.4 2.80± 0.04a 0.679± 0.010ab

High 8.2 62.3± 0.9a 21.5 2.73± 0.05a 0.658± 0.010b

F2, 6 = 1.18 G = 489.3∗∗∗ F2,6 = 3.49 F2,6 = 8.98∗

Scrubland of Cabo de Gata (Spain)
Ungrazed 0 89.7± 4.5a 20.9 3.03± 0.10a 0.674± 0.016a

Low 0.27 53± 2.9b 34.6 2.34± 0.09b 0.589± 0.016b

Medium 0.46 51.66± 3.3b 31.5 2.12± 0.06b 0.537± 0.012b

High 0.65 54± 4.6b 29.1 1.64± 0.07c 0.411± 0.010c

F3,8 = 22.52∗∗∗ G = 115.9∗∗∗ F3,8=46.10∗∗∗ F3,8=62.43∗∗∗

Grasslands of the Middle Atlas (Morocco)
Low 0.9 61.5± 4.5a 9.4 2.61± 0.12a 0.668± 0.003a

Medium 1.54 44.5± 0.5b 21 2.20± 0.06b 0.603± 0.009b

High 2.49 36± 0.99c 20 1.60± 0.06c 0.447± 0.015c

F2,6 = 33.38∗∗ G = 171.9∗∗∗ F2,6 = 36.28∗∗∗ F2,6 = 127.70∗∗∗

F values calculated from the one-way ANOVA with grazing pressure as fixed effect factors. Means with different letters are significant at the
0.05 level, DHS Tukey contrast.

∗ P < 0.05.
∗∗ P < 0.01.

∗∗∗ P < 0.0001.

ize the state of the system within an accuracy ofε

(Shannon, 1948). I(ε) = ∑N(ε)
i=1 pi ln 1/pi; pi is the

probability of occurrence of theith of N(ε) events.
In our case,pi = xi/

∑
N(ε)xi, where xi is the fre-

quency of contacts of the species (i) in each transect
of size (ε). When all the events have equal probabil-
ity, pi = 1/N(ε) then I(ε) = Imax(ε) = ln N(ε). The
ratio I(ε)/Imax(ε) = J is called the evenness index
(Pielou, 1966; Frontier, 1987). The probability that a
given plant species occupies in a given transect de-
pends on that transect’s size, i.e.,N(ε) changes with
transect (window) size (ε). Consequently,I(ε) also
changes.

Diversity indices are scale-dependent, i.e., they
change with the size of the area sampled. We need to
characterize the complexity of the ecosystem indepen-

dently of the scale, at least within a range of scales.
Fractal dimension provides a quantitative measure in-
dependent of the scale.

The information fractal dimension (Farmer et al.,
1983) is calculated by regressingI(ε) against the natu-
ral logarithm ofε. The slope of the line is the informa-
tion fractal dimension:

DI
∼= lim

ε→0

I(ε)

ln 1/ε

We calculatedI(ε) at a series of scales of sizeε =
2n, for n from 0 to 6. The curve-fitting accuracy of this
relationship is very high (R2 is 0.997± 0.0003,n= 39,
for the whole dataset) showing that the scale of magni-
fication chosen accurately represents the scale at which
the processes were acting. As we increase the window
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size to more than 128 m, the fitting accuracy starts to
decline. In consequence, we maintained window size
between 1 and 64 m.

Because we obtained the information fractal dimen-
sion from lineal transects, the values obtained are con-
strained to lie between 0 and 1. The information fractal
dimension declines from a homogeneous and random
scattered plant distribution to an aggregated plant dis-
tribution (Li, 2000).

The level of spatial autocorrelation of individual
plant species was calculated by the Detrended Fluctu-
ation Analyses (DFA), developed byPeng et al. (1992)
and applied to plant spatial analyses byAlados et al.
(2003). DFA quantifies the degree of organization of
each plant species, i.e., random or non-random dis-
tribution. The method is a modification of the root-
mean square analyses of a random walk (Wang and
Uhlenbeck, 1945). This method is similar to the semi-
variogram (Legendre and Legendre, 1998) but has
the advantage that it removes local trends and conse-
quently, is not affected by non-stationarities, i.e., sys-
tematic change in the mean. It measures the level of au-
tocorrelation (α) of a random walk (y (s) = ∑s

i=1z (i))
generated from the sequence of presence (z(i) = +1)
and absence (z(i) = −1) intercepts per each species
along the transect. We calculated the residual variance
of the regression ofyb(s) on s per non-overlapping
boxes of sizeb from theN point contacts in the tran-
sect:F2(b) = ∑N

s=1(yb(s) − ŷb(s))2/N. The slope of
the line relatingF(b) to b determines the scaling expo-
n
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3. Results

3.1. Changes in plant diversity with grazing

The number of species declined significantly with
grazing pressure in the semiarid scattered matorral of
C. Gata and in the mountain grassland of Middle At-
las. No significant effects were observed in the dense
matorral of Sithonia, while a significant richness in-
crease was observed at the medium grazing level at the
S. Nieves woodland. As expected, percentage of bare-
ground increased with grazing pressure in all the study
areas (Table 1).

Shannon diversity index, which is a measure of in-
formation flow across the ecosystem, was measured at
the scale of the 500 m transect. It declined significantly
with increased grazing in the scattered matorral of C.
Gata (in comparison with ungrazed, DHS Tukey con-
trast) and the grassland of Middle Atlas (Table 1), while
the difference was not significant for the dense mator-
ral of Sithonia. S. Nieves, on the other hand, showed
a significant diversity increase under medium-grazing
pressure (DHS Tukey contrast).

The evenness index represents the homogeneity of
species distribution within the plant community. A high
evenness index indicates that all species are equally
represented. As the evenness index declined, domi-
nance of some species over others appeared. The even-
ness index declined significantly with grazing impact
in all the studied sites, except in S. Nieves woodland
(
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entα: F(b) ∝ bα. The scaling exponentα is inversely
elated to the fractal dimension. When average cr
ize is lower than intercept intervals, a shuffle of
ata set gives values ofα = 1/2, indicating no cor
elation in the sequence (white noise), whileα 	= 1/2
ndicates a long-range power-law correlation (plant
ribution sequence depends on the spatial history o
istribution). In order to remove spatial autocorrela
btained from species with crown cover larger t

he size of the intercept interval, we calculated thα
alue of simulated randomizations of individual pla
omparisons between the actual plant distribution

he random distribution were performed for the m
bundant species in each community and assess

-test. Comparisons between the observed alpha v
f each treatment were calculated separately for
pecies by bootstrap procedure with 1000 random
nalyses.
Table 1).

.2. Fractal dimension of plant spatial patterns

The information fractal dimension provides a qu
itative measure of the degree of patchiness of the
ommunity independent of scale. It increases with
reases in the degree of randomness (lack of sp
orrelation). Grazing significantly reduced the fra
imension of plant distribution in the S. Nieves wo

and (F2,6 = 49.49,P< 0.001) as the vegetation chang
rom dense to middle dense matorral, and in Sith
F2,6 = 7.55,P = 0.02) from low to medium grazin
ressure as the matorral became discontinuous. W
e moved to a more scattered vegetation, at the h
razing matorral of Sithonia and semiarid matorra
. Gata formation, the information fractal dimens

ncreased with grazing disturbance as the plant d
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Fig. 1. Changes on information fractal dimension (DI ) along the grazing disturbance of different Mediterranean communities. Information
fractal dimension for random, aggregated and random clumped point patterns from the upper part of the figure were obtained fromLi (2000).

bution became more sparse (F3,8 = 11.87,P= 0.003, in
C. Gata). This occurred also in the grassland formation
(F2,6 = 17.9,P = 0.003, in the Middle Atlas;Fig. 1).

Spatial autocorrelation analyses revealed that, in
general, annual plants were more randomly distributed
(lower alphas) than woody species (larger alpha values,
i.e., more organized distribution). Overall, most of the
species exhibited a spatial autocorrelation that differed
significantly from a random distribution (Table 2). The
significance of thet-test comparing average alpha val-
ues from the actual distributions with those from the
random distributions was significant in most cases.

The characteristic species of the sclerophyllusQuer-
cus suberL. forest of S. Nieves (Juniperus oxycedrus
andErica arborea), became more organized (larger al-

pha values) at low or median grazing pressure. Tree
species such asQ. suberandPinus pinaster, although
declining in frequency, did not change their spatial dis-
tribution, keeping the same alpha values along the graz-
ing gradient. Other species, such asCalicotome vil-
losa (Poiret) Link andCistus ladaniferalso become
more randomly distributed with grazing perturbation.
Finally, early succession, heliophyllous species, e.g.,
Phlomis purpurea, favored by woodland gaps, became
clumped (larger alpha values) as they colonized open
gaps.

The least grazing-resistant shrubland species of the
Sithonia dense matorral,Quercus cocciferaandOlea
europeavar.sylvestris, became significantly more ran-
dom with grazing impact. Overall, most of the species
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Table 2
Means± S.E. (n) α values of the scaling exponent alpha from the equationF(b) ∝ b�, of the most abundant species along the grazing disturbance of different vegetation communities

Species Low Medium High F α-Random

Woodland of Sierra de las Nieves (Spain)
Adenocarpus telonensis 0.704± 0.02 (3)∗ 0.592± 0.05 (3) 0.567± 0.03 (3) 4.47 0.522± 0.01 (9)
Astragalus lusitanicus – 0.811± 0.04 (3)∗ 0.662± 0.04 (3)∗ 0.003 0.521± 0.01 (6)
Brachypodium retusum – 0.924± 0.0 (3)∗ 0.827± 0.00 (1)∗ 1.765 0.618± 0.01 (4)
Calicotome villosa 0.733± 0.01 (3)∗ 0.723± 0.05 (3)∗ 0.513± 0.02 (2) 12.59∗∗ 0.507± 0.02 (8)
Cistus albidus 0.606± 0.05 (3)∗ 0.704± 0.07 (3)∗ 0.703± 0.03 (3)∗ 1.22 0.525± 0.01 (9)
Cistus ladanifer 0.819± 0.01 (3)∗ 0.798± 0.01 (3) 0.729± 0.01 (3) 14.56∗∗ 0.729± 0.02 (9)
Cistus monspeliensis 0.766± 0.00 (1)∗ 0.639± 0.05 (2)∗ 0.700± 0.02 (3)∗ 2.75 0.522± 0.01 (6)
Cistus salvifolius 0.692± 0.07 (3)∗ 0.665± 0.01 (2)∗ 0.636± 0.02 (3)∗ 0.39 0.524± 0.01 (8)
Dactylis glomerata 0.625± 0.02 (3)∗ 0.659± 0.03 (3)∗ 0.585± 0.04 (3)∗ 1.57 0.513± 0.01 (9)
Erica arborea 0.818± 0.07 (3)∗ 0.937± 0.03 (3)∗ 0.573± 0.01 (3) 15.29∗∗ 0.602± 0.02 (9)
Genista umbellata 0.619± 0.02 (3)∗ 0.673± 0.02 (3)∗ – 2.23 0.517± 0.01 (6)
Juniperus oxycedrus 0.763± 0.02 (3)∗ 0.825± 0.01 (3)∗ 0.726± 0.01 (3)∗ 13.75∗∗ 0.627± 0.01 (9)
Lavandula stoechas 0.704± 0.02 (3)∗ 0.719± 0.01 (3)∗ 0.722± 0.02 (3)∗ 0.25 0.536± 0.01 (9)
Phillyrea angustifolia 0.696± 0.02 (3)∗ 0.722± 0.03 (2)∗ 0.657± 0.03 (3)∗ 1.95 0.579± 0.01 (11)
Phlomis purpurea 0.623± 0.01 (3)∗ 0.802± 0.01 (3)∗ 0.783± 0.01 (3)∗ 61.13∗∗ 0.501± 0.01 (9)
Pinus pinaster 0.987± 0.01 (3)∗ 0.972± 0.03 (3)∗ 0.966± 0.02 (3)∗ 0.21 0.827± 0.01 (9)
Pistacia lentiscus 0.793± 0.04 (2)∗ 0.631± 0.09 (3) 0.625± 0.14 (2) 0.86 0.545± 0.03 (7)
Quercus suber 0.981± 0.01 (3) 1.016± 0.02 (3) 1.005± 0.04 (3) 0.34 0.868± 0.05 (11)
Ulex parviflorus 0.692± 0.00 (1)∗ 0.756± 0.03 (3)∗ 0.671± 0.05 (3)∗ 1.34 0.516± 0.01 (7)

Dense matorral of Sithonia Peninsula (Greece)
Anthoxanthum odoratum 0.727± 0.23 (3)∗ 0.685± 0.02 (3)∗ 0.697± 0.02 (3)∗ 0.963 0.523± 0.00 (9)
Avena barbata 0.677± 0.02 (3)∗ 0.634± 0.02 (3)∗ 0.596± 0.02 (3)∗ 3.692 0.511± 0.01 (9)
Carex sp. 0.738± 0.02 (3)∗ 0.659± 0.03 (2) – 6.689∗∗ 0.541± 0.00 (5)
Calicotome villosa 0.694± 0.02 (3)∗ 0.670± 0.05 (3)∗ 0.636± 0.07 (3) 0.352 0.566± 0.00 (9)
Cistus monspeliensis 0.849± 0.01 (3) 0.796± 0.03 (3)∗ 0.778± 0.03 (3)∗ 1.870 0.682± 0.00 (9)
Cynosurus echinatus 0.698± 0.03 (3)∗ 0.653± 0.01 (3)∗ 0.584± 0.02 (3)∗ 6.532∗ 0.505± 0.01 (9)
Daucus carota 0.697± 0.04 (3) 0.680± 0.01 (3)∗ 0.604± 0.00 (1)∗ 0.895 0.511± 0.00 (7)
Dactylis glomerata 0.682± 0.01 (3)∗ 0.651± 0.02 (3)∗ 0.658± 0.02 (3)∗ 0.879 0.535± 0.00 (9)
Lagurus ovatus 0.703± 0.00 (3)∗ 0.664± 0.03 (3)∗ 0.623± 0.03 (3)∗ 4.159 0.527± 0.00 (9)
Leontodon tuberosus 0.668± 0.01 (3)∗ 0.589± 0.03 (2) 0.536± 0.03 (3) 7.464∗ 0.514± 0.00 (8)
Olea europaea var. sylvestris 0.792± 0.01 (3)∗ 0.808± 0.02 (3)∗ 0.705± 0.03 (3) 6.306∗ 0.637± 0.00 (9)
Phillyrea latifolia 0.746± 0.01 (3)∗ 0.738± 0.04 (3)∗ 0.763± 0.05 (3)∗ 0.142 0.626± 0.00 (9)
Pistacia lentiscus 0.896± 0.01 (3) 0.876± 0.02 (3)∗ 0.835± 0.02 (3)∗ 3.305 0.651± 0.00 (9)

ntago bellardi 0.656± 0.01 (3)∗ 0.631± 0.03 (3)∗ 0.699± 0.02 (3)∗ 2.206 0.540± 0.01 (9)
Pla
529

Poa bulbosa 0.597± 0.02 (3) 0.569± 0.01 (2) 0.736± 0.03 (2)∗ 13.721∗ 0.532± 0.00 (7)
Quercus coccifera 0.921± 0.01 (3)∗ 0.881± 0.06 (3)∗ 0.632± 0.03 (3) 16.633∗ 0.599± 0.00(9)
Stipa bromoides 0.640± 0.04 (3)∗ 0.758± 0.07 (3)∗ 0.541± 0.05 (3) 3.430∗ 0.531± 0.00 (9)
Vulpia muralis 0.648± 0.00 (3)∗ 0.600± 0.04 (3)∗ 0.636± 0.00 (3)∗ 1.019 0.505± 0.01 (9)



530
C
.L
.A

la
d
o
s
e
ta
l./E

co
log

ica
lM

o
d
e
llin

g
1
8
0
(2
0
0
4
)
5
2
3
–
5
3
5

Table 2 (Continued)

Species Ungrazed Low Medium High F α-Random

Scattered matorral of Cabo de Gata (Spain)
Ballota hirsuta 0.658± 0.03 (3)∗ 0.684± 0.01 (3)∗ 0.657± 0.03 (2)∗ 0.663±0.04 (3)∗ 0.17 0.593±0.01 (6)
Brachypodium distachyon 0.715± 0.05 (3)∗ 0.674± 0.03 (3)∗ 0.664± 0.02 (2)∗ 0.649±0.04 (3)∗ 0.53 0.519±0.02 (12)
Brachypodium retusum 0.892± 0.02 (3)∗ 0.618± 0.04 (3)∗ 0.750± 0.01 (2)∗ 0.689±0.03 (3)∗ 16.15∗∗ 0.665±0.09 (6)
Chamaerops humilis 0.893± 0.02 (3)∗ 0.886± 0.03 (3)∗ 0.870± 0.02 (2)∗ 0.863±0.02 (3)∗ 0.43 0.760±0.01 (6)
Genista spartioides 0.907± 0.06 (3)∗ 0.733± 0.03 (3)∗ 0.786± 0.03 (2) 0.676±0.00 (1) 3.74 0.613±0.02 (3)
Helianthemun almeriense 0.707± 0.07 (3)∗ 0.677± 0.02 (3) - 0.479±0.00 (1) 1.94 0.523±0.01 (6)
Launaea lanifera 0.718± 0.04 (3)∗ 0.686± 0.05 (3)∗ 0.696± 0.05 (2)∗ 0.677±0.04 (3)∗ 0.15 0.532±0.02 (6)
Lavandula multifida 0.678± 0.04 (3)∗ 0.640± 0.02 (3) 0.552± 0.01 (2)∗ 0.503±0.01 (2) 7.40∗ 0.590±0.05 (10)
Lycium intrincatum 0.693± 0.02 (3)∗ 0.689± 0.02 (2)∗ 0.764± 0.01 (2)∗ 0.687±0.07 (3) 0.47 0.566±0.01 (6)
Periploca laevigata 0.863± 0.01 (3)∗ 0.803± 0.04 (3)∗ 0.827± 0.02 (2)∗ 0.671±0.02 (3) 11.31∗∗ 0.719±0.01 (4)
Phlomis purpurea 0.782± 0.02 (3)∗ 0.626± 0.03 (3)∗ 0.741± 0.04 (2) 0.660±0.03 (3)∗ 5.44∗ 0.579±0.01 (7)
Plantago bellardi 0.715± 0.04 (3)∗ 0.539± 0.03 (2) 0.690± 0.04 (3)∗ 0.583±0.01 (3)∗ 5.71∗ 0.513±0.01 (6)
Salsola genistoides 0.703± 0.02 (3)∗ 0.602± 0.02 (2) 0.689± 0.00 (1) 0.710±0.00 (1) 3.38 0.631±0.01 (6)
Sideritis oxteosylla 0.697± 0.02 (2)∗ 0.699± 0.06 (3)∗ 0.729± 0.05 (2)∗ 0.617±0.04 (3) 0.97 0.591±0.02 (10)
Stipa tenacissima 0.865± 0.01 (3)∗ 0.738± 0.02 (3) 0.808± 0.00 (2)∗ 0.826±0.05 (3)∗ 3.71 0.705±0.02 (14)
Thymus hyemalis 0.719± 0.02 (3)∗ 0.712± 0.02 (3)∗ 0.659± 0.05 (2)∗ 0.659±0.02 (3)∗ 1.57 0.518±0.01 (8)

Species Low Medium High F α-Random

Grassland of Middle Atlas (Morocco)
Carex divisa 0.779± 0.05 (3)∗ 0.816± 0.06 (3)∗ 0.731± 0.02 (3)∗ 0.842 0.552± 0.01 (9)
Cerastium gibralicum 0.701± 0.00 (3)∗ 0.546± 0.00 (1) 0.557± 0.01 (2)∗ 133.313∗ 0.519± 0.01 (6)
Convolvulus cantabricus 0.712± 0.15 (2)∗ 0.624± 0.14 (3)∗ 0.517± 0.02 (2) 1.237 0.520± 0.01 (7)
Dactylis glomerata 0.761± 0.12 (2)∗ 0.563± 0.06 (2) 0.601± 0.03 (3)∗ 2.168 0.523± 0.01 (7)
Euphorbia nicaeensis 0.619± 0.02 (2) 0.585± 0.02 (3) 0.774± 0.09 (3)∗ 3.043 0.556± 0.01 (8)
Festuca sp. 0.705± 0.01 (3)∗ 0.546± 0.01 (3) – 219.088∗∗ 0.522± 0.01 (6)
Genista pseudopilosa 0.712± 0.04 (3)∗ 0.665± 0.04 (3)∗ 0.743± 0.01 (3)∗ 1.388 0.583± 0.01 (9)
Phleum phleo¨ıdes 0.704± 0.05 (3)∗ 0.602± 0.07 (3)∗ 0.542± 0.06 (3) 1.749 0.497± 0.01 (9)
Poa bulbosa 0.669± 0.02 (3)∗ 0.718± 0.03 (3)∗ 0.674± 0.00 (1)∗ 1.663 0.571± 0.01 (9)
Stipa parviflora 0.733± 0.03 (3)∗ 0.760± 0.03 (3)∗ 0.674± 0.03 (3)∗ 1.844 0.535± 0.01 (9)
Thymelea glomerata 0.546± 0.02 (3) 0.671± 0.03 (2)∗ 0.622± 0.00 (1) 5.229 0.521± 0.01 (6)
Thymus sp. 0.644± 0.02 (3)∗ 0.640± 0.03 (3)∗ 0.548± 0.01 (3)∗ 6.416 0.510± 0.01 (8)

F-test is performed among the grazing treatment. The significance levels are calculated by bootstrap after 1000 reanalyzes.α-values with∗ are significantly different (t-test) from
theα-Random, obtained after shuffling data set.

∗ P < 0.05.
∗∗ P < 0.01.
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became randomly distributed as the dense matorral was
transformed into a discontinuous matorral, with the ex-
ception of grazing-resistant species such asPhillyrea
latifolia that maintained its spatial distribution and
Poa bulbosa,which became clumped in the open
gaps.

A decline in the alpha exponent with grazing was
also observed in characteristic species of the C. Gata
matorral, e.g.,Periploca laevigata, Phlomis purpurea,
Brachypodium retusum, andLavandula. multifidaL.,
while Chamaerops humilisdid not change its spa-
tial distribution as a result of grazing, and neither
did Ballota hirsuta. On the other hand,Stipa tenacis-
sima, which favored by grazing disturbance, did not
change the degree of randomization in response to graz-
ing (Table 2), becoming the dominant species at the
end of the regressive succession (Stipa steppe) that
results from grazing pressure in the most scattered
matorrals.

Finally, grazing favored the randomization of the
characteristic colonizating species of the grassland
of Middle Atlas, like Cerastium gilbralicumand
Thymussp., and most perennial grasses likeFes-
tuca sp., although the difference was not always
significant.

4. Discussion

4.1. Change in plant diversity with grazing
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grasslands anthropogenically stressed by frequent fires
(Collins et al., 1998). Although, when disturbance
is very intense, few species can persist, resulting in
lower diversity. Indeed, we observed that plants tend
to be equally represented (larger evenness index) in
the lightly grazed areas in comparison with areas with
heavy grazing pressure. Under heavy grazing pressure,
a few species dominated the community. For example,
cushion perennial grasses with underground stems
e.g.,Stipa tenacissima, with their buried buds are more
protected from grazing than shrubs (Hendrickson and
Briske, 1997), increasing its relative frequency with
grazing pressure from 27% at the control site to 66% at
the heavy grazing site. Thus, the C. Gata middle dense
scrubland ofChamaerops, Rhamnusand Periploca
is transformed progressively intoStipa steppe at
the end of the regressive succession (Tomaselli,
1981).

In the dense matorral of the Sithonia Peninsula,
grazing led to a preponderance of species adapted to
high disturbance (Cistus monspeliensis) over species
indicative of the pristine matorral, such asQuercus coc-
cifera andOlea europaeavar. sylvestristhat declined
88 and 70%, respectively, becoming very scarce. At
the same time, species with grazing syndrome (pros-
trate or rosette twigs) (Lavorel et al., 1998), e.g.,
Plantago sp. became frequent. In the Middle Atlas
grassland,Poa bulbosa(a biennial grass with a short
growth cycle and a high production of bulblets) dom-
inated under heavy grazing whileGenistadeclined
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4.2. Fractal dimension of plant spatial patterns

Because species diversity is the result of proce
acting at various spatial and temporal scales, we
ally should study diversity at the scale at which
processes operate. The fractal dimension of struc
ecosystem components is an emergent property
measure) that may reflect the scale at which sp
interactions between these components operate (Allen
and Holling, 2002). The information fractal dimen
sion provides is a quantitative measure of the de
of patchiness of the plant community independen
scale, and increases as the degree of randomness
of spatial correlation) increases. We found that
information fractal dimension declined as we mov
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When we turned from a discontinuous matorral to a
scattered matorral, the information fractal dimension
increased and kept increasing as we moved to the grass-
lands. This change in the fractal dimension may indi-
cate a substantial change in the processes that generate
plant spatial patterns (Krummel et al., 1987; Sugihara
and May, 1990; Li, 2000). The results are in accordance
with our expectations and the theory of self-organized
instability, that hypothesize that ecological complex-
ity results from the interaction between the trend to in-
crease diversity as ecosystem develops and the negative
feedback aroused from interactions among individuals
(Soĺe et al., 2002). Resulting two opposite processes
(interaction declining with ecosystem development and
immigration increasing with degradation) in a common
pattern, i.e., small patches homogeneously distributed
into the landscape.

Two hypotheses have been outlined to explain the
plant spatial patterns observed in arid and semiarid ar-
eas: (i) they are the result of pre-existing environmental
heterogeneity (Rietkerk et al., 2002a, b); (ii) they are
the result of spatial self-organization caused by wa-
ter infiltration into vegetated ground (Rietkerk et al.,
2002a, b). Recent empirical (Pugnaire et al., 2003) and
theoretical studies (HilleRisLambers et al., 2001) have
demonstrated that soil infiltration and nutrient retention
occurring around the plant crown are responsible for
facilitation processes in semiarid vegetation (Bertness
and Callaway, 1994; Pugnaire et al., 1996). In con-
trast, soil erosion and run-off increase when vegetation
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the height accessible to goats (Sirkou et al., 2003), was
also very resistant to heavy grazing. In contrast, sensi-
tive species of the pristine matorral community like
Q. coccifera, O. europaeavar. sylvestris, Erica. ar-
borea, Phlomis purpureaand even the grazing tolerant
Periploca laevigatashowed a drastic decline in spatial
organization.
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s y to
t hen
t dras-
t oler-
a
e tial
p pro-
c ts
o ong
i

atial-
p us-
i al
m
(
a
A not
i del
over decreases (Elwell and Stocking, 1976). As a re-
ult, a positive feedback between reduced plant gr
nd reduced water and nutrient availability is trigge
Rietkerk and Van de Koppel, 1997) and can thereb
ontribute to irreversible vegetation destruction, as
xample observed in the Sahel, where increases in

ng pressure resulted in irreversible shifts between
tation states (Le Hoúerou, 1989).
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ically and disturbance exceeds the threshold of t
nce. These results agree with previous studies (Alados
t al., 2003) and with the hypothesis that plant spa
atterns are the result of spatial self-organization
esses (Rietkerk et al., 2002a, b) under the constrain
f other processes such as spatial interaction am

ndividuals (Li, 2000).
Recent studies have demonstrated plant sp

attern formation as a result of different process
ng different kind of models, ranging from analytic
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(Whilhelm and Br̈uggemann, 2000). Nevertheless scal-
ing relations and fractal provide a powerful analytical
framework that includes the structural complexity of
plant communities and can be used to analyze “emer-
gent patterns” of the ecosystem to predict catastrophic
shifts before the ecosystem has moved into the new
dynamic state.
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