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Abstract 

The aim of the present MSc thesis is the accomplishment and evaluation of a 

novel two-dimensional smooth interpolation method – in the form z= f(x,y) – from an 

irregularly distributed dataset, that intrinsically assures gradient continuity and absence of 

residuals at the input data points, whilst offering some advantages over existing methods.  

The method is generically based on local trends, which are defined from the 

values of neighbour input points. The neighbour relationships are topologically defined by 

means of an irregular triangular tessellation (e.g. Delaunay Triangulation) and the local 

trend of the interpolation is defined by tangency planes at the input points. 

The resulting functional surface is piecewise in nature, which assures, a priori, 

a consistent behaviour, independently of local variations of input data density. The global 

spatial domain is sub-divided in local triangular domains, by means of the aforementioned 

triangular tessellation.   

At the vertices, first-derivative continuity (differentiability class C
1
) is assured 

by guaranteeing the tangency of the interpolated surface with the planes that define the 

local trends. This tangency is achieved by the use of smooth blending functions – defined 

in the local space coordinate system – that have null first order derivatives at the data 

vertices. Smoothness at the local spatial domain boundaries is also achieved by making the 

local coordinate orientation continuous between adjacent triangles (e.g. by making the 

local coordinates orthogonal with the triangle edges). 

The method was implemented in code (in Visual Basic) and the viability of the 

concept was demonstrated. Its virtues and shortcomings were analysed by comparison with 

other available interpolation methods and algorithms, using both simulated and real 

datasets. There is still room for improvement and refinement and several possible avenues 

are mentioned. 

 

Keywords Interpolation, Smooth, Two-Dimensional, 2D, Surface, Scalar Field, Method, 

Algorithm, Analytical, Bijective, Piecewise 



 

 

Analytical Method for Smooth Interpolation of Two-Dimensional Scalar Fields   

 

 

vi  September 2015 

 



 

 

  Resumo 

 

 

Luís João Soares de Sousa Rodrigues  vii 

 

 

Resumo 

O objectivo do presente trabalho é a elaboração e avaliação de um novo 

método de interpolação bidimensional “suave” – da forma z= f(x,y) – a partir de um 

conjunto de pontos irregularmente distribuídos, que assegure, intrinsecamente, 

continuidade de gradiente, ausência de resíduos nos pontos de entrada e, adicionalmente, 

algumas vantagens sobre os métodos actualmente disponíveis. 

O método é genericamente baseado em tendências locais, que são definidas 

com base nos valores dos pontos de entrada vizinhos. As relações de vizinhança são 

topologicamente definidas por intermédio de uma rede de triangulação e a tendência local 

é definida mediante planos de tangencia nos pontos de entrada. 

A superfície funcional resultante é definida por partes, o que assegura, a priori, 

um comportamento  consistente, independentemente de variações locais na densidade 

espacial dos pontos de entrada. O domínio espacial global é subdividido em domínios 

locais triangulares, mediante a triangulação anteriormente referida. 

Nos vértices, a continuidade da primeira derivada (classe C
1
) é assegurada 

garantindo a tangencia da superfície interpolada com os planos que definem as tendências 

locais. Esta tangencia é conseguida mediante o uso de blending functions – definidas no 

espaço de coordenadas locais – que têm derivada nula nos extremos locais (i.e. vértices e 

arestas). A “suavidade” nas fronteiras dos espaços locais (triângulos) é conseguida 

garantido a continuidade de orientação das coordenadas locais entre domínios adjacentes 

(e.g., ortogonalizando as coordenadas locais com os lados dos triângulos). 

O método foi implementado em código (em Visual Basic) e a viabilidade do 

conceito foi demonstrada. As suas virtudes e limitações foram analisadas por comparação 

com outros métodos e algoritmos de interpolação disponíveis, utilizando dados simulados e 

reais.  

 

Palavras-chave Interpolação, Suave, Bidimensional, 2D, Superfície, Campo Escalar, Método, 

Algoritmo, Analítico, Bijectivo, Piecewise 

 



 

 

Analytical Method for Smooth Interpolation of Two-Dimensional Scalar Fields   

 

 

viii  September 2015 

 



 

 

  Contents 

 

 

Luís João Soares de Sousa Rodrigues  ix 

 

 

Contents 

LIST OF FIGURES.............................................................................................................. xi 

SIMBOLOGY ..................................................................................................................... 13 

1. INTRODUCTION....................................................................................................... 15 

1.1. Motivation ........................................................................................................... 16 

1.2. Application Fields ............................................................................................... 16 

1.3. Shortcomings of Current Methods ...................................................................... 17 

2. REQUISITES AND KEY CONCEPTS...................................................................... 19 

2.1. Method Requisites ............................................................................................... 19 

2.2. Key Concepts....................................................................................................... 19 

3. ONE-DIMENSIONAL IMPLEMENTATION AND PROOF-OF-CONCEPT.......... 21 

3.1. Demonstration of the C
1
 continuity..................................................................... 25 

3.2. Controlling the Overshoots.................................................................................. 26 

3.2.1. Solution........................................................................................................ 26 

3.3. Practical Implementation..................................................................................... 28 

4. TWO-DIMENSIONAL GENERALIZATION ........................................................... 31 

4.1. Local Domains..................................................................................................... 32 

4.2. Local Coordinate System .................................................................................... 33 

4.3. Local Trends ........................................................................................................ 35 

5. TWO-DIMENSIONAL METHOD DEFINITION ..................................................... 37 

6. METHOD IMPLEMENTATION ............................................................................... 39 

6.1. General Workflow ............................................................................................... 39 

6.2. Implementation Platform..................................................................................... 40 

6.3. Delaunay Tessellation Algorithm........................................................................ 41 

7. FIRST RESULTS........................................................................................................ 43 

8. IMPROVING THE GRADIENT CONTINUITY....................................................... 47 

8.1. Edge-Orthogonal Local Coordinates ................................................................... 48 

8.2. Edge-Continuous Local Coordinates................................................................... 53 

9. DATA DENSIFICATION AND EXTRAPOLATION............................................... 57 

9.1. Extrapolation/Densification Algorithm ............................................................... 57 

9.2. Testing the Extrapolation/Densification Algorithm ............................................ 58 

10. CONCLUSIONS ..................................................................................................... 63 

BIBLIOGRAPHY ............................................................................................................... 65 

 

 



 

 

Analytical Method for Smooth Interpolation of Two-Dimensional Scalar Fields   

 

 

x  September 2015 

 



 

 

  LIST OF FIGURES 

 

 

Luís João Soares de Sousa Rodrigues  xi 

 

 

LIST OF FIGURES 

Figure 3.1. Illustration of the key-concepts of the method in a one-dimensional space. .... 21 

Figure 3.2. Example of a sinusoidal blending function....................................................... 23 

Figure 3.3. Example of a polynomial blending function (3
rd

 degree). ................................ 23 

Figure 3.4. Illustration of an overshoot condition: the interpolated curve significantly 

exceeds the maximum input value. ....................................................................... 26 

Figure 3.5. Controlling an overshoot condition by continuously varying the slope of the 

trend tangent along the local domain (i.e. as a function of the local coordinate).. 27 

Figure 3.6. MS-Excel® implementation of the one-dimensional version of the interpolation 

method. .................................................................................................................. 28 

Figure 3.7. Application – in MS-Excel® – for the interpolation of pressure histories – P(t) – 

from ten experimental data points. ........................................................................ 29 

Figure 3.8. Illustration of the fundamental difference between the current 1D method 

(orange) and a 2D parametric method (green). ..................................................... 30 

Figure 4.1. Summary of the main paradigm differences between the 1D and 2D versions of 

the interpolation method........................................................................................ 31 

Figure 4.2. Illustration of a valid Delaunay tessellation; for each triangle, a circumference 

containing its vertices is drawn; no circumference can contain a vertex in its 

interior. .................................................................................................................. 32 

Figure 4.3. Barycentric coordinate values for some key points in two triangles (equilateral 

and rectangular). .................................................................................................... 33 

Figure 4.4. The Delaunay tessellation provides a connectivity model from which 

neighbourship relations can be extracted. ............................................................. 35 

Figure 6.1. General method flowchart, representing the three main phases. ...................... 39 

Figure 6.2. First implementation of the Delaunay triangulation algorithm......................... 42 

Figure 7.1. Screenshot of an interpolation done on a randomly generated set of points..... 43 

Figure 7.2. 3D perspective of an interpolation done on a randomly generated set of points.

............................................................................................................................... 44 

Figure 7.3. Interpolation of a manually created “realistic” field. ........................................ 45 

Figure 7.4. Contoured representation of an interpolation of a simulated “realistic” field. . 45 

Figure 7.5. Interpolation done over an actual metrology dataset; scalar value represents 

shockwave arrival time.......................................................................................... 46 

Figure 7.6. 3D perspective of an interpolated field, done over an actual metrology dataset; 

the scalar value (represented in colour isobands) represents shockwave arrival 

time........................................................................................................................ 46 



 

 

Analytical Method for Smooth Interpolation of Two-Dimensional Scalar Fields   

 

 

xii  September 2015 

 

Figure 8.1. Representation of the barycentric coordinates with coloured isobands............ 47 

Figure 8.2. Representation of the concept of the “edge-orthogonal coordinates”. ............. 48 

Figure 8.3. Representation of the edge-orthogonal coordinates with coloured isobands. .. 50 

Figure 8.4. Interpolation comparison – using a simplistic model – between the use of 

barycentric coordinates and the use of edge-orthogonal coordinates. .................. 51 

Figure 8.5. Comparison between an interpolation using barycentric coordinates (top) and 

an interpolation using edge-orthogonal coordinates (bottom). ............................. 52 

Figure 8.6. Illustration of the concept of edge-continuous local coordinates. .................... 53 

Figure 8.7. Representation of the edge-continuous coordinates with coloured isobands. .. 54 

Figure 8.8. Interpolation comparison – using a simplistic model – between the use of 

barycentric, edge-orthogonal and edge-continuous coordinates........................... 55 

Figure 8.9. Top view of the interpolation comparison between the use of edge-orthogonal 

and edge-continuous coordinates. ......................................................................... 55 

Figure 8.10. Comparison between an interpolation using edge-orthogonal coordinates (top) 

and an interpolation using edge-continuous coordinates (bottom). ...................... 56 

Figure 9.1. Actual empirical dataset containing 70 points, colour coded by value (in this 

case, time in [ns]) from lower (blue) to higher (red). ........................................... 58 

Figure 9.2. Colour isoband 3D perspective of the input data, resulting from a linear 

interpolation based on a Delaunay triangulation................................................... 59 

Figure 9.3. Input dataset mesh for extrapolation/densification; white (hollow) points 

contain no data; actual data points are represented in dark blue........................... 59 

Figure 9.4. Input dataset mesh before extrapolation; grey points contain no data; actual 

data points are colour coded by value (red=higher, blue=lower). ........................ 60 

Figure 9.5. The complete model after tessellation and execution of the extrapolation 

algorithm. .............................................................................................................. 60 

Figure 9.6. 3D shaded perspective of the result of a 200×44 interpolation done on the 

previously extrapolated dataset. ............................................................................ 61 

Figure 9.7. Comparison of contour representations of interpolation results using three 

different types of local coordinates. ...................................................................... 62 

 



 

 

SIMBOLOGY 

 

 

Luís João Soares de Sousa Rodrigues  13 

 

SIMBOLOGY 

 

 ξ - Local 1D coordinate in the interval between two data points; 

 N - 1D blending function (defined in the local domain); 

 Ti - Trend tangent line at the point i; 

 Vi - Triangle vertex: Vi = (xi, yi, fi); 

 λι - Local barycentric coordinate in relation to vertex Vi; 

 α, β, γ - Alternative notation for λ1, λ2, λ3; 

PVi - Tangent plane function that defines the surface trend at the vertex Vi 

(defined in the global coordinate system); 

ωi - Edge-orthogonal local coordinates; 

σi - Edge-continuous local coordinates; 
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1.  INTRODUCTION  

Due to practical constraints, the spatial density of discrete measurements 

and/or calculations – originated either from physical and/or numerical models – is often 

not sufficient to adequately describe the continuous spatial distribution of a particular 

variable. Therefore, an interpolation algorithm is usually applied in order to accomplish 

good quality visual representations and/or achieve physically realistic inter-point estimates. 

Numerous numerical and analytical methods are currently available for multi-dimensional 

interpolation, each with its particular virtues and shortcomings [1-7]. For the specific 

purpose of interpolating two-dimensional functional surfaces, working experience has 

revealed a difficulty in finding a method that – cumulatively – satisfies a set of generally 

desirable qualities, e.g.:  

� Smoothness (C
1
 continuity); 

� Absence of residuals (i.e. null difference between interpolated and input 

data points); 

� Anisotropy-insensitive (consistent behaviour, regardless of local data 

density); 

� Good overshoot control (avoidance of interpolated values outside the 

input extrema interval); 

� Good behaviour at and beyond the spatial domain boundaries (well-

behaved extrapolatory capabilities); 

� Absence of spurious inflections and undulations; 

� Possibility of global and local “fine-tuning” and…  

� Simplicity and reduced processing load, etc…  

 

The aim of the current work is the accomplishment of a novel two-dimensional 

smooth interpolation method that intrinsically assures first-derivative continuity, absence 

of residuals and scale-insensitivity, whilst offering advantages over existing methods, vis-

à-vis the other aforementioned desirable qualities. The final product is a software tool that 

– eventually – will be made available to the scientific and engineering community. 
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1.1. Motivation  

The idea for the current work stemmed from a very practical necessity: in the 

scope of an ongoing research project, the representation of the distribution of transient 

peak pressure on a cross-section of a solid medium traversed by a shockwave needed to be 

obtained (for such purpose, a scattered array of optical probes is embedded on the material, 

detecting the arrival of the shock front). From the spatially referenced arrival instants, a 

shock-velocity spatial distribution must, firstly, be obtained (via surface interpolation). 

Since shock velocity and local pressure are bijectively related, a pressure field can be, then, 

easily achieved. Pressure is very sensitive to small changes in shock velocity, so the utmost 

precision is needed in the velocity values. Since the data points are relatively sparse and 

irregularly distributed (including relatively large empty regions), difficulties arose with the 

quality of the interpolated meshes (through the use of several tried algorithms): these either 

contained unacceptable residuals (from which resulted gross errors in pressure) or 

presented undesirable and physically unrealistic morphological features (e.g. gradient 

discontinuities) and/or aberrations (e.g. spurious curvature inflections and/or undulations).  

Hence the motivation to develop an alternative surface interpolation method 

which, intrinsically, wouldn’t suffer from the above disadvantages. 

1.2. Application Fields 

Although immediately directed at the above objective, the application scope of 

the current work is vastly wider. It can be applied whenever a continuous field/surface 

representation or a high resolution mesh is needed from a discrete set of sparse, irregularly 

distributed data points. Some examples: 

� Discrete metrology data from physical models (e.g. mechanical 

stress/strain, flow velocity, pressure, etc…); 

� Obtaining high-quality and high-resolution isoline/isoarea/shaded 

representations of unstructured coarse meshed finite elements or 

volumes models (FEA/FVA), whenever shape-functions do not provide 

exact solutions; 

� Digital Terrain Elevation Models; 

� Very coarse datasets (e.g. meteorology, etc…). 
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1.3. Shortcomings of Current Methods 

The number of alternative methods and algorithms for two-dimensional 

interpolation and/or data fitting/smoothing is too large to be comprehensibly addressed in 

the scope of the current work [1-7]. A reasonable number of algorithms were tried, using a 

suite of available software (e.g. Matlab®, Octave®, Techplot®, SigmaPlot®, Graphis®, 

Surfer®). The tested algorithms (which, by no means, encompass all existent) denoted, 

however, some undesirable behaviours, which made them unsuitable for the immediate 

purpose (see Section 1.1), e.g.: 

� Requiring regular/uniform meshes/grids as input; 

� Residual differences at input points; 

� Lack of smoothness (gradient discontinuities); 

� Localizations (dips and/or peaks at input points); 

� Bad extrapolatory qualities (“unrealistic” surface morphology beyond 

the spatial domain of the input data, e.g. spurious undulations, 

overshoots, undershoots, etc.); 

� Resolution-dependent behaviour, etc... 
 

In order to avoid making this section too exhaustive, the tested methods were 

divided – ad hoc – in the following four types or classes: 
 

i. 3D Parametric Methods  

Examples: Bézier, NURBS, etc. 

Advantages:  

� Produce very smooth surfaces;  

Disadvantages: 

� Can be somewhat difficult to parameterize but, mainly: 

� The result is not a functional surface (i.e. not in the form z 

= f (x,y) ); 

ii. Weighting Methods  

Examples: Kriging, Natural Neighbours, Inverse Distance, etc. 

Advantages:  

� Simple and light on processing load and can produce 

good results for some datasets;  
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Disadvantages: 

� Can produce localizations and/or C
1
 discontinuities at the 

input points; 

� Result may depend on the resolution or the 

isotropy/anisotropy of the input data; 

iii. Least-Squares Regression Fitting Methods; 

Examples: Negative Exponential, LOESS, etc. 

Advantages:  

� Very smooth results;  

Disadvantages: 

� Always produce residual differences at the input points 

(frequently very significant); 

� Can misbehave badly outside the input spatial domain 

(i.e. bad extrapolatory properties); 

� Can produce gross “overshoots”; 

� More appropriate as “data smoothers” than interpolators; 

iv. 2D Spline Methods 

Advantages:  

� Very smooth results; 

� Resolution-independent behaviour;  

Disadvantages: 

� Require uniform/regular point grids as input (which 

categorically makes them unsuitable for the current 

purpose). 
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2.  REQUISITES AND KEY CONCEPTS 

2.1. Method Requisites 

The method concept was defined in order to cumulatively satisfy – a priori –

the following requisites: 

i. C
0
 continuity (mandatory); 

ii. Zero residuals (i.e. zero difference at input points); 

iii. Smooth (ideally, completely C
1
 continuous); 

iv. Resolution-independent (i.e. consistent, regardless of resolution); 

v. Anisotropy-insensitive (i.e. unaffected by fluctuations in input dataset 

spatial distribution density); 

vi. Low processing load (ideally O(n)); 

vii. Possibility of model manipulation and fine-tuning, but… 

viii. Good “first results” (without fine-tuning). 

2.2. Key Concepts 

The above requisites led to the definition of the following concept guidelines: 

i. Interpolation based on local trends (defined by means of tangency 

planes at the input points); 

ii. Local trends defined on vicinity criteria based on topological 

relations (i.e. interconnected vertices in a triangular tessellation); 

iii. Strictly local interpolation (avoiding the detrimental effects of 

anisotropic spatial distributions and the exponential growth of 

processing load with dataset size);  

iv. Smoothness achieved by weighting based on smooth blending 

functions (i.e. analytical simplicity); 

v. Piecewise analytical method, allowing for virtually unlimited 

interpolated mesh resolutions; 
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3. ONE-DIMENSIONAL IMPLEMENTATION AND 

PROOF-OF-CONCEPT 

Before proceeding to the final implementation of the two-dimensional (2D) 

method, a one-dimensional (1D) version of the idea was implemented. This worked as a 

“proof-of-concept” and, additionally, allowed for a significant simplification of the 

mathematical formulation for a first approach. In the context of the current paper, the 1D 

implementation also allows for an easier explanation and introduction of the key concepts. 

The final implementation will consist – fundamentally – in the generalization of the 1D 

concept to a 2D spatial domain. 

Figure 3.1 typifies the interpolation paradigm in one-dimensional space: the 

interpolated curve contains the input points – i.e. zero residuals – and its gradient is locally 

equal to the slope of the tangent lines Ti that define the local trends at the points (xi, f(xi)). 

 

 

Figure 3.1. Illustration of the key-concepts of the method in a one-dimensional space. 

Different criteria can be used to define the slope of the local trend tangents, as 

long as they’re defined based on the values of neighbour points and how they relate to each 

other (i.e. increasing or decreasing trend). For instance, the simplest criterion that can be 

defined – and which works surprisingly well in practice – defines the tangent slope as the 

f (x) 

x xi xi+1 xi+2 xi-1 xi-2 

Ti-1(x) 

Ti (x) 

Ti+1(x) 
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gradient of the line segment that joins the two closest neighbour points (i.e. points 

immediately before and after): 

 
 

(3.1) 

 

Alternatively, the tangent slope can be defined using an inverse distance 

weighted least-squares linear regression of several neighbour points. Also, special cases 

can (and should) be defined for notable points, such as the first and last point in the input 

series and/or the points at the extrema. 

The piecewise interpolated curve in a particular interval between two input 

points – [xi, xi+1] – is defined by weighting the two adjacent tangents with a smooth 

blending function (N) defined in the local coordinates of the interval (ξ): 

 

 

(3.2) 

Where: 

 ξ - Local coordinate in the interval; 

 N - Blending function (defined in the local domain); 

 Ti - Trend tangent line function at the point i (in global coordinates). 

 

The blending function needs to be smooth (C
1
 continuous) and satisfy the 

following conditions: 

 
 

 

Specifically, its slope must be null at the local domain limits (i.e.: at ξ = 0 and 

ξ = 1) and its value must be unitary at ξ = 0 and zero at ξ = 1. 

Also, ideally, the sum of the weights should be equal to 1 or, at least, 

approximately equal to 1: 

 
 

 

Figures 3.2 and 3.3 show some examples of possible candidate blending 

functions: the first is a sinusoidal function whilst the second is polynomial. Both have been 

tried with good results. The difference between results with one or the other is negligible.  
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Figure 3.2. Example of a sinusoidal blending function. 

 
 

Figure 3.3. Example of a polynomial blending function (3
rd

 degree). 
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Other possible candidate for a blending function is the following 5
th

 degree 

polynomial: 

 

In fact, there’s a whole family of odd degree (greater than 1) polynomials with 

integer coefficients that satisfies the basic conditions for a blending function. Polynomials 

up to 7
th

 degree were tried for the current purpose, but no practical advantage was found 

over the 3
rd

 degree polynomial or the sinusoidal blending function. 

 

The expression (3.2) is algebraically so simple that it can be expanded in order 

to gain some additional insight into its working principle. 

 

The trend tangent lines can be written as: 

 
 

(3.3) 

And the local coordinates are calculated by: 

 
 

(3.4) 

 

Hence, the expansion of (3.1) – except for the blending function N – gives: 

 

 

(3.5) 

 

If the local trends are defined in their simplest form by expression (3.1) – i.e. 

slope of the line that joins the previous and next input point in the series – then: 

 
 

(3.6) 

And, since the tangent line contains the point (xi, fi): 

 
 

(3.7) 
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3.1. Demonstration of the C
1
 continuity 

A short demonstration of the gradient continuity between the piecewise 

segments of the interpolated curve is presented below. 

The slope of the interpolated curve at the point (xi, f(xi)) can be obtained by 

differentiating the expression (3.2): 

 
 

(3.8) 

 

Expanding by the product rule gives: 

 

 

Taking into account the a priori conditions satisfied by the blending function: 

 

 

We can easily simplify the previous expression and reach the conclusion that: 

 
 

(3.9) 

 

The gradient continuity of the interpolated piecewise function is, thus, 

demonstrated. 
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3.2. Controlling the Overshoots 

With the previous presented definition of the method – in its one-dimensional 

version – a very real practical problem may arise: if the slope of a trend tangent is very 

high (in the limit, it can be almost infinite), the interpolation may overshoot significantly 

outside the input range – i.e. it can give origin to values much higher than the maximum 

input value and/or much lower than the minimum input value. This situation is illustrated 

in Figure 3.4. 

 

 

Figure 3.4. Illustration of an overshoot condition: the interpolated curve significantly exceeds the maximum 

input value. 

 

3.2.1. Solution 

One possible solution for this problem – which was tested with very good 

success – is to vary the tangent slopes along the local domain, i.e.: as a function of the 

local coordinates. Figure 3.5 illustrates this concept. 

f(x) 

x x2 x3 x1 

Max(fi) 

x0 
x4 
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Figure 3.5. Controlling an overshoot condition by continuously varying the slope of the trend tangent along 

the local domain (i.e. as a function of the local coordinate). 

In Figure 3.5, the variation of the slope of the trend tangent at the point i (Ti) is 

shown as a function of the local coordinate ξ. At the point i (ξ = 0 and x = xi) there is no 

change of slope (i.e. the tangent defines the local trend at the point). As the interpolation 

evolves from the point i to the point i+1 the slope of the tangent decreases until its 

minimum value (at ξ = 1 and x = xi+1), which is the slope of the line that joins both points i 

and i+1. Conversely, the trend tangent at the point i+1 (not represented in the above graph) 

evolves in a reciprocally equivalent manner. 

As stated before, this method of overshoot control was implemented with very 

good success. Its algebraic notation, however, is very difficult to formulate in an elegant 

and non-obscure fashion.  Hence, it will not be explicitly indicated in the current scope. 

 

Note:  Another approach for controlling overshoots is to purposely attenuate the tangent 

slope at the global and local input extrema (i.e. maximum and minimum input 

values). This allows some degree of freedom in fine-tuning the interpolation result. 

 

 

 

f(x) 

x x2 x3 x1 

Max(fi) 

x0 
x4 

Ti(ξ=0) 

Ti(ξ=0.5) 

Ti(ξ=1) 



 

 

Analytical Method for Smooth Interpolation of Two-Dimensional Scalar Fields   

 

 

28  September 2015 

 

3.3. Practical Implementation 

In order to ascertain the validity of the theoretical method concept, a one-

dimensional implementation was done is MS-Excel®. The choice of this platform had to do 

with the ease and speed of implementation.  

 

Figure 3.6. MS-Excel® implementation of the one-dimensional version of the interpolation method. 

Figure 3.6 shows a screen capture of the Excel® implementation. The 

interpolated curve is shown in thick red, whilst Excel’s® own parametric algorithm is 

show in cyan. It can be observed that the two types of interpolation almost exactly 

coincide, in this particular case. The biggest difference occurs on the final down slope (i.e. 

in the segment between the two last input points).  

Also visible in the image are the trend tangents that “guide” the interpolation, 

represented as grey line segments. 
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Figure 3.7. Application – in MS-Excel® – for the interpolation of pressure histories – P(t) – from ten 

experimental data points. 

A practical application of the one-dimensional version of the method – also in 

Excel®  – is shown in Figure 3.7. In this particular case, the application is used to 

interpolate pressure histories – P(t) – from ten metrology samples. 

In this application, the user is given the option to choose one of several criteria 

for the definition of the trends (i.e. tangents) at each input point, including inverse-distance 

weighting (in the figure, the selected criterion is “average slope of all methods”). 

The user is also given the freedom to manually attenuate the tangent slopes at 

the global and local extrema, thus providing an extra means of controlling possible 

overshoots. 
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Figure 3.8 (obtained in Excel®) depicts the fundamental difference between the 

current method and a parametric method. The parametric method works in 2D space. 

Hence, it does not return a bijective result in the form y = f(x). In the depicted example, the 

parametric curve (generated by Excel’s® algorithm) clearly does not return unique values 

for x � 15, whilst the current method – being one-dimensional in its present iteration – 

produces a bijective relationship between the dependent and independent variables, which 

is a fundamental condition for many applications. 

 

 

Figure 3.8. Illustration of the fundamental difference between the current 1D method (orange) and a 2D 

parametric method (green). 
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4.  TWO-DIMENSIONAL GENERALIZATION 

 

In this chapter, the interpolation method previously defined for a one-

dimensional (1D) space will be generalized for two-dimensional (2D) space. 

 

All the underlying principles are preserved in this dimensional generalization. 

Only the geometric abstractions are changed. Figure 4.1 summarizes the main paradigm 

differences between the 1D and 2D versions of the method. 

 

 

Figure 4.1. Summary of the main paradigm differences between the 1D and 2D versions of the interpolation 

method. 
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4.1. Local Domains 

In the 1D implementation, the local spatial domains were the linear intervals 

between two contiguous input points (i.e. [xi, xi+1]). In 2D, the domains will have to be, 

forcibly, 2D polygons.  

The number of input points can be even or odd. This, in practice, forces the 

choice of polygons to be 2D triangles (the simplest form of polygon).  

Hence, the 2D implementation of the algorithm presupposes a prior subdivision 

of the global data domain into triangular local domains. This can be achieved using a 

triangular tessellation algorithm.  

Ideally, the tessellation algorithm should avoid the creation of “thin triangles” 

(i.e. triangles in which one of the angles is very small). These thin triangles are not ideal in 

terms of surface representation. The tessellation that maximizes the minimum triangle 

angles is called a Delaunay Tessellation or Delaunay Triangulation. This type of 

tessellation is illustrated in Figure 4.2. 

 

Figure 4.2. Illustration of a valid Delaunay tessellation; for each triangle, a circumference containing its 

vertices is drawn; no circumference can contain a vertex in its interior. 



 

 

 TWO-DIMENSIONAL GENERALIZATION 

 

 

Luís João Soares de Sousa Rodrigues  33 

 

As can be seen in Figure 4.2, a circumference was drawn for each triangle, 

containing its vertices. In a valid Delaunay tessellation (which guarantees the 

maximization of triangle angles), each circumference cannot contain any triangle vertex in 

its interior. 

4.2. Local Coordinate System 

With local spatial domains established as 2D triangles, comes the need to 

define an appropriate local coordinate system. The coordinate system should, ideally, 

easily give us the relative distance to each of the triangle’s vertices, so that the weight of 

the trend defined in each vertex in the final interpolated value can be easily calculated via a 

blending function. The obvious choice is the Barycentric Coordinate System, usually 

denoted by one of the following notations: (α, β, γ) or (λ1, λ2, λ3). 

Figure 4.3 shows the values of the barycentric coordinates for several points of 

interest in a couple of archetypal triangles (equilateral and rectangular): 

 

 

Figure 4.3. Barycentric coordinate values for some key points in two triangles (equilateral and rectangular). 

Essentially, the three barycentric coordinates are each related to one particular 

vertex and its opposite side (or edge). The value of the barycentric coordinate is unity at 

the corresponding vertex and zero at the opposite side. 

Barycentric coordinates are homogeneous and affine. One of their most 

interesting properties – particularly in the scope of the current work – is that their sum is 

always unity: 

(1,0,0) 

(0,0,1) 

(0,1,0) 
(1/2,1/2,0) 

(1/2,0,1/2) (0,1/2,1/2) 

(1/2,1/4,1/4) (1/4,1/2,1/4) 

(1/4,1/4,1/2) 

(1/3,1/3,1/3) 

(0,0,1) 

(0,1,0) (1/2,1/2,0) (1,0,0) 

(1/2,0,1/2) (0,1/2,1/2) 

(1/2,1/4,1/4) (1/4,1/2,1/4) 

(1/4,1/4,1/2) 

(1/3,1/3,1/3) 
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(4.1) 

Another interesting property of this coordinate system is that, inside the 

triangle, each coordinate is always in the interval [0, 1]. Outside the triangle, at least one of 

the coordinates is negative. This provides a way of knowing if a given point is inside or 

outside the triangle (this feature was, in fact, used in the code implementation). 

The conversion between global coordinates (x, y) and local barycentric 

coordinates (λ1, λ2, λ3) is, algebraically, very simple and immediate (which is one of the 

other advantages of this coordinate system): 

 

 

(4.2) 

 

 

(4.3) 

Where (x1, y1), (x2, y2) and (x3, y3) are the triangle vertices in global coordinates 

and D is the determinant: 

 

 

(4.4) 

The remaining coordinate is even easier to calculate, since (from (4.1)): 

λ1 + λ2 + λ3 = 1 

So, λ3 comes simply from: 

 λ3 = 1 – λ1 – λ2 (4.5) 
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4.3. Local Trends 

In the one-dimensional implementation, the interpolated function trend at the 

input points is defined via a tangent line. The equivalent geometric abstraction in 2D is a 

tangent plane.  

In 1D, the slope of the tangent line was defined by the neighbour points (e.g. 

the slope of a line segment joining the previous and next point in the series). In 2D, the 

gradient of the tangency plane will also be calculated from the values of neighbour points. 

However, in this case, finding the neighbour points is not as straightforward as in 1D. 

Fortunately, the triangular tessellation (necessary for the establishment of local domains) 

also provides a topological connectivity model that can be used for this purpose. Figure 4.4 

demonstrates how neighbour relations can be topologically extracted. 

 

Figure 4.4. The Delaunay tessellation provides a connectivity model from which neighbourship relations can 

be extracted. 

In Figure 4.4, the thick brown lines represent neighbourship relations between 

the red vertex (in the centre) and its set of “first order” neighbour vertices (represented in 

green). 
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In an analogous manner to the 1D method, the gradient of the tangency plane 

that defines the local trend at a given input point can be calculated via a least-squares 

regression using the neighbour vertices. 

The plane that best fits the neighbour points (xi, yi, fi) of vertex V can be 

calculated by solving the following linear system [8]: 

 

 

(4.6) 

If the neighbour vertices (xi, yi, fi) of vertex V are linearly independent (e.g. not 

collinear – which is inherently assured in the current application), the system has an 

immediate solution (e.g., by applying Cramer’s Rule). The gradient components of the 

tangency plane are, thus, given by: 

 

 

(4.7) 

 

 

(4.8) 

Where D is the determinant: 

 

 

(4.9) 

Since the plane has to include the vertex V = (xV, yV, fV), the following 

translation must be applied: 

 

 

(4.10) 
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5. TWO-DIMENSIONAL METHOD DEFINITION 

In the previously presented 1D simplified version of the method, the 

interpolated curve was obtained by weighing the two trend tangent lines – that contain the 

data points that define the limits of the local domain – using one-dimensional blending 

functions working in local linear coordinates.  

In an analogous fashion, the 2D interpolated surface/field is obtained by 

weighing – within each local domain (i.e. triangle) – the three trend planes defined (in the 

manner explained in the previous section) at each input data point (or mesh vertex). The 

blending functions are kept one-dimensional, but now work with barycentric coordinates. 

The piecewise interpolated surface is defined (for each local domain) by the 

following expression: 

 

 

(5.1) 

Where: 

PVi - Tangent plane function that defines the surface trend at the vertex Vi 

(defined in the global coordinate system XY); 

λi - Local barycentric coordinate in relation to the vertex Vi; 

N - One-dimensional blending function defined in the local domain 

(barycentric coordinate system); 

 

In order to make it less abstract, the plane functions can be expanded (with 

some loss in elegance): 

 

 

(5.2) 
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6.  METHOD IMPLEMENTATION 

6.1. General Workflow 

The diagram depicted in Figure 6.1 represents the three main phases of the 

interpolation method workflow. 

 
 

Figure 6.1. General method flowchart, representing the three main phases. 

The first step is, of course, the triangular tessellation phase, which will divide 

the global domain in smaller local domains. Once the tessellation is complete, the vertex 

neighbourship relations can be extracted and the tangency planes – which define the local 

trends at the vertices – can be calculated. These two first phases constitute the “model 

building process” for a particular set of data points. 

Once the “model” for the dataset is built, the interpolation can be calculated 

repeatedly – e.g. with different resolutions – without the need for repeating the two first 

phases. 
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6.2. Implementation Platform 

The method prototype was coded in Visual Basic 6.0 ®. The main reasons for 

the selection of this implementation platform were: 

� A license was readily available; 

� It’s an interpreted language, which speeds up development and 

debugging (e.g. it’s easy to interrupt execution and execute commands at 

a line prompt); 

� It’s a structured language; 

� Implements an object-oriented paradigm; 

� Supports complex data structures; 

� Includes a good integrated development environment (IDE) – Microsoft 

Visual Studio® – including interactive code and graphical user interface 

(GUI) editors; 

� Good support documentation; 

� Relatively recent working experience with it. 

 

On the downside, this platform revealed the following disadvantages: 

� Slow execution speed (although good enough for the current purpose, 

i.e.: rapid prototyping); 

� Graphical display object with very limited functionality and very poor 

performance; 

 

These shortcomings, however, were found no to hinder the implementation in a 

significant manner and were largely superseded by the advantages. 

 

 

 

 



 

 

 METHOD IMPLEMENTATION 

 

 

Luís João Soares de Sousa Rodrigues  41 

 

6.3.  Delaunay Tessellation Algorithm 

Among the several existent algorithms for building a Delaunay tessellation [9-

14], a brief bibliographical research led to the selection of the method described by 

Bowyer [13] and Watson [14] (appropriately known as the Bowyer-Watson Algorithm). 

This algorithm is relatively simple to understand and implement and is also very efficient. 

Another reason for its selection is related to the fact that it’s relatively easy to find open 

source code for it in the public domain. 

A detailed description of this algorithm is beyond the scope of the current 

paper (it can be found in the given references). Nevertheless, a pseudo-code is reproduced 

below, in order to provide a topical idea about its principles. 

 
function BowyerWatson (pointList) 

// pointList is a set of coordinates defining  

// the points to be  triangulated 

      triangulation := empty triangle mesh data structure 

      add super-triangle to triangulation 

 // The “super-triangle” encompasses all the input points  

      for each point in pointList do  

// add all the points one at a time to the triangulation 

         badTriangles := empty set 

         for each triangle in triangulation do  

   // first find all the triangles that are no longer valid due to  

   // the insertion 

            if point is inside circumcircle of triangle 

               add triangle to badTriangles 

         polygon := empty set 

         for each triangle in badTriangles do  

   // find the boundary of the polygonal hole 

            for each edge in triangle do 

       if edge is not shared by any other triangles in badTriangles 

                add edge to polygon 

         for each triangle in badTriangles do  

         // remove them from the data structure 

            remove triangle from triangulation 

         for each edge in polygon do  

   // re-triangulate the polygonal hole 

            newTri := form a triangle from edge to point 

            add newTri to triangulation 

      for each triangle in triangulation  

// done inserting points, now clean up 

         if triangle contains a vertex from original super-triangle 

            remove triangle from triangulation 

return triangulation 
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Figure 6.2 shows a screenshot documenting the first successful implementation 

of the Bowyer-Watson Delaunay Triangulation algorithm in Visual Basic 6.0®: 

 

 
Figure 6.2. First implementation of the Delaunay triangulation algorithm. 
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7.  FIRST RESULTS 

In this section, a selection of some of the first most interesting interpolation 

results will be presented. These first results revealed some issues relating to gradient 

continuity in some particular instances. The solution of these issues will be the object of 

subsequent sections. 

Figure 7.1 shows an interpolation done on a randomly generated set of points 

(the surface values are represented in a spectrum colour-scale). The triangular tessellation 

and the input points are visible. The quality of the interpolation is – for the most part – of 

“reasonably good” quality, taking into to account the “topographic complexity” of this 

particular dataset. The underlying idea of using randomly generated datasets is to obtain 

the widest possible variety of situations, as “unrealistic” as they may be when compared 

with real data. 

 

Figure 7.1. Screenshot of an interpolation done on a randomly generated set of points. 

In this result, one can easily see some less desirable features and interpolation 

“artifacts”. Lack of smoothness is patent along some triangle edges. For instance, the edges 

3-14 and 14-16 denote a sharp gradient discontinuity. 
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Figure 7.2 is a representation of the same interpolation in 3D perspective with 

values represented as colour “isobands” (obtained with the software Graphis®): 

 

Figure 7.2. 3D perspective of an interpolation done on a randomly generated set of points. 

Although this representation is still far from ideal, it still makes the gradient 

discontinuities more apparent. These discontinuities occur mainly on the edges of very 

“thin” triangles, which, ideally, should not exist. 

In order to get an interpolation behaviour more akin to what one would get 

with real data, a “field simulant” dataset was manually created. Figure 7.3 and Figure 7.4 

document the results. 
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Figure 7.3. Interpolation of a manually created “realistic” field. 

Figure 7.4 shows the interpolation result with contour lines (obtained in 

SigmaPlot®). 

 
Figure 7.4. Contoured representation of an interpolation of a simulated “realistic” field. 

The contour lines allow a better assessment of the quality of the interpolation. 

In this particular case, most of the interpolation is very smooth and of general good quality. 

The notable exceptions are the gradient discontinuities near the bottom corners of the field, 

which are caused (again) by thin triangles in the underlying tessellation. 

Next, the first results of the application of the interpolation method to real 

datasets will be shown and analysed.  
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Figure 7.5 shows an interpolation done over an actual empirically obtained 

dataset. The scalar field represents the arrival instants (in nanoseconds) of a shockwave 

front at different probes (in this case, optical fibres) embedded in an inert medium 

(PMMA, in this case). 

 
Figure 7.5. Interpolation done over an actual metrology dataset; scalar value represents shockwave arrival 

time. 

In Figure 7.6, the same result is represented in 3D perspective with the scalar 

value (time in ns) represented as contoured colour bands: 

 
 

Figure 7.6. 3D perspective of an interpolated field, done over an actual metrology dataset; the scalar value 

(represented in colour isobands) represents shockwave arrival time. 

The field interpolation quality is, qualitatively, adequate. Some gradient 

discontinuities are apparent in the upper right region of the field, due to the underlying thin 

triangles of the Delaunay tessellation. 
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8.  IMPROVING THE GRADIENT CONTINUITY 

The evaluation of the first results denoted the occurrence of sharp gradient 

discontinuities along the edges of “thin” triangles. Ideally, the occurrence of these thin 

triangles should be avoided by adding extra points to the model (this subject will be treated 

in the chapter dedicated to extrapolation and data densification). 

Nevertheless, another approach for solving this issue is to “attack” its root 

cause: as it is defined in Chapters 4 and 5, the method is not C
1
 continuous along the 

triangular domain boundaries (it is, however, C
1
 continuous in every other location, 

including the input data points). 

The reason for the gradient discontinuity along the triangle edges lies in the 

definition of the local coordinate systems: their orientation (in relation to the global 

system) changes abruptly in the transition from one local domain to another. 

In order to illustrate this, Figure 8.1 represents a sample dataset containing four 

rectangular triangles in a square arrangement, in which the local coordinates are 

represented as coloured isobands. 

 
 

Figure 8.1. Representation of the barycentric coordinates with coloured isobands. 



 

 

Analytical Method for Smooth Interpolation of Two-Dimensional Scalar Fields   

 

 

48  September 2015 

 

 

By examining the spatial evolution of, for instance, the local barycentric 

coordinate λ1, one can see that its metric orientation changes abruptly (90º, in this case) 

between each adjacent triangle. It’s this abrupt metric rotation that, ultimately, causes 

gradient discontinuities in the interpolation, particularly in the case of very thin triangles. 

Next, some possible solution approaches for this problem will be addressed. 

8.1. Edge-Orthogonal Local Coordinates 

The first approach to solve the lack of gradient continuity of the interpolation 

method is to orthogonalize the local coordinates in relation to the triangle edges. Figure 8.2 

attempts to illustrate this principle. 

 
Figure 8.2. Representation of the concept of the “edge-orthogonal coordinates”. 

Here, the barycentric coordinate λ1 was replaced by its “edge-orthogonal” 

counterpart ω1. The green isolines represent different values of ω1. Focusing on the ω1 = 

1/2  isoline, we can see that it is locally orthogonal with the triangle sides V1V2 and V1V3. 

and intersects them exactly at the midpoint. Hence, it must take a curved shape. 

Of course, this operation cannot be done for the entirety of the triangle area, as 

is demonstrated by the isoline ω1 = 0. In order to maintain the orthogonality with the 

V1 

V2 

V3 

ω1 = 0 

ω1 = 1/2 

ω1 = 1 
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triangle sides, this isoline overshoots and undershoots the side V2V3. Thus, the 

orthogonalization operation should “fade out” as it approaches the opposite side (V2V3 in 

this case) to avoid this undesirable behaviour. Near the opposite side, the local coordinates 

become purely barycentric. 

Algebraically, the edge-orthogonal coordinates can be defined as a function of 

the barycentric coordinates, by the following expressions: 

 

 

(8.1) 

 

 

(8.2) 

 

 

(8.3) 

Where N is the already familiar one-dimensional blending function (applied 

here in a completely different context). P is the point – defined in real world coordinates –

for which we want to calculate the edge-orthogonal local coordinates.  

The right vector elements are the ratios between the distance of the point P to 

the vertex of origin of the coordinate we want to calculate (V1 for the coordinate ω1, V2 for 

the coordinate ω2…) and the length of the adjacent triangle sides (all defined in global 

coordinates). 

Note that the above expressions do not contain the previously mentioned “fade 

out” transition to barycentric coordinates near the opposite triangle edge (to avoid 

undershoots and overshoots), for notation clarity reasons. 
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Figure 8.3. Representation of the edge-orthogonal coordinates with coloured isobands. 

Figure 8.3 represents this coordinate system transformation. Note that all 

coordinate isolines form, locally, a 90º angle with the triangle sides. In the case of ω1, the 

result is concentric perfectly circular isolines (when a sinusoidal blending function is 

used). The “fade to barycentric” transition is visible near the outer edges. 

Next, the impact of using edge-orthogonal coordinates will be examined on 

some interpolation results. 

In Figure 8.4, a very simple model (basically four pyramids) is used to show a 

comparison between a linear interpolation (in order to visualize the underlying model), an 

interpolation using barycentric coordinates for the blending functions and an interpolation 

using edge-orthogonal coordinates. 
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Figure 8.4. Interpolation comparison – using a simplistic model – between the use of barycentric 

coordinates and the use of edge-orthogonal coordinates. 

In the case of the barycentric coordinates (Figure 8.4, centre), sharp edges – 

denoting gradient discontinuities – are clearly visible. By using edge-orthogonal 

coordinates (Figure 8.4, right), the gradient discontinuities completely disappear. The 

advantage of using edge-orthogonal local coordinates for the blending functions is, thus, 

clearly apparent. 

Now, the impact of using edge-orthogonal coordinates on a more realistic 

situation will be analysed. For this purpose, the simulated field dataset will be used. Figure 

8.5 documents the comparison between an interpolation done with barycentric coordinates 

(top) and an interpolation using edge-orthogonal coordinates (bottom). 
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Figure 8.5. Comparison between an interpolation using barycentric coordinates (top) and an interpolation 

using edge-orthogonal coordinates (bottom). 

The differences between the two results are quite clear: the gradient 

discontinuity near the bottom corners improved considerably with the use of edge-

orthogonal coordinates. 

Unfortunately, an undesirable “side-effect” of using edge-orthogonal 

coordinates is also visible: by forcing the coordinates to a 90º angle with the triangle sides, 

extra spurious surface inflections are introduced (mainly visible at the bottom of the above 

figure).  
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8.2. Edge-Continuous Local Coordinates 

Previously, an undesirable side-effect of using edge-orthogonal coordinates 

was observed: by forcing the coordinates to be orthogonal with the triangle edges, spurious 

inflections were introduced into the interpolated surface. 

Another approach at improving the gradient continuity of the method is to 

apply a smooth transition between local coordinate systems of adjacent triangles, i.e., not 

forcing them to form a fixed angle with the edge. Figure 8.6 attempts to illustrate this 

concept. 

 
Figure 8.6. Illustration of the concept of edge-continuous local coordinates. 

The edge-continuous counterpart of the barycentric coordinate λi is the σi 

coordinate. The green σi = 1/2 isoline is, basically, a smooth version of the pink λi = 1/2 

isoline. The angle that the green isoline forms with the triangle side is the average angle of 

the barycentric coordinate to each side. 

One way of achieving this is – once again – by using blending functions to 

smoothly transition between adjacent coordinate systems. 

Vi 

λi = 1/2 

σi = 1/2 
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This, however, is not easily done and – so far – an elegant formulation for this 

process was not achieved. Figure 8.7 illustrates the best attempt at achieving a smooth 

transition between adjacent local coordinate systems. 

 
 

Figure 8.7. Representation of the edge-continuous coordinates with coloured isobands. 

As can be observed for the σ1 coordinate, the result of the current attempt is 

still far from perfect. The curvature of the isolines denotes some undesirable undulations. 

Still, this crude attempt was tested with the same datasets used for testing the 

edge-orthogonal datasets, for direct comparison. 



 

 

 IMPROVING THE GRADIENT CONTINUITY 

 

 

Luís João Soares de Sousa Rodrigues  55 

 

 
 

Figure 8.8. Interpolation comparison – using a simplistic model – between the use of barycentric, edge-

orthogonal and edge-continuous coordinates. 

The difference between the interpolations done with edge-orthogonal and edge-

continuous coordinates is hardly discernible in this example. Both results look good, with 

no visible gradient discontinuities. In order to better evaluate the differences, Figure 8.9 

presents a top view with contour lines. 

 
 

Figure 8.9. Top view of the interpolation comparison between the use of edge-orthogonal and edge-

continuous coordinates. 
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There is, in fact a slight morphological difference. But, qualitatively, both 

versions are equivalent in this particular case. A comparison using a more realistic dataset 

can be more useful, as illustrated in Figure 8.10. 

 

 
Figure 8.10. Comparison between an interpolation using edge-orthogonal coordinates (top) and an 

interpolation using edge-continuous coordinates (bottom). 

The differences are slight but somewhat important. With the edge-continuous 

coordinates, there are less spurious surface inflections (and less pronounced), as expected. 

Unfortunately, the interpolated solution at the very thin triangles in the bottom 

corners reveals an undesirable behaviour. 

Clearly, the approach of smoothly transitioning between local coordinate 

systems works well. But a better method of doing it is needed. There is still much room for 

improvement in this respect. 
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9. DATA DENSIFICATION AND EXTRAPOLATION 

As defined in the objectives, the method must include good extrapolatory 

capabilities. This is most useful when, for instance, a rectangular interpolated field/surface 

must be produced from a scattered set of points which do not configure a rectangle. 

Also, another very useful functionality is the possibility of increasing the 

number of vertices in the model, in order to avoid the undesirable “thin triangles”. 

A unique solution was found that addresses both necessities – i.e. data 

densification and extrapolation – via the same mechanism: a provision for adding dataless 

points (i.e. points with 2D position but no scalar value) to the dataset and an algorithm for 

automatic estimation of the values of these extra points, based on the same trend paradigm 

that is the foundation of the interpolation method. 

9.1. Extrapolation/Densification Algorithm 

The implemented extrapolation/densification algorithm relies on the same basic 

philosophy of the final interpolation method: the extrapolated/interpolated value at the 

additional dataless points is estimated based on the field/surface trend (i.e. tangency plane) 

at the nearest connected neighbours. The final value results from an inverse distance 

weighted convex (linear) combination. 

The extrapolation algorithm is iterative: dataless nodes that have the greatest 

number of neighbours with data (i.e. input points) are treated first. Then, the extrapolation 

“propagates” from the “data rich” regions to the dataless regions in a stepwise fashion. 

Between each extrapolation step, the tangent planes that define the local trend are 

recalculated. Although this approach results in a relatively heavy processing load, it 

ensures that the extrapolation is smooth and that the slope of the extrapolated regions 

remains coherent with the gradient trends defined by the input data set. 
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The pseudo-code below outlines the high-level iteration of the algorithm: 
 

PointSet := LoadFromFile(File) 

FieldModel := Triangulate(PointSet) 

DatalessPointsCount := CountDatalessPoints(FieldModel) 

RequiredNumberOfDatumNeighbors := 4 

While DatalessPointsCount > 0 

 CalculateTangencyPlanes(FieldModel) 

 DatalessPointsCount := CountDatalessPoints(FieldModel) 

 DatalessPointsBeforeExtrapolation := DatalessPointsCount 

 Extrapolate(FieldModel, RequiredNumberOfDatumNeighbors) 

   DatalessPointsCount := CountDatalessPoints(FieldModel) 

 If DatalessPointsCount = DatalessPointsBeforeExtrapolation 

  Decrement RequiredNumberOfDatumNeighbors 

 EndIf 

Loop 

CalculateTangencyPlanes(FieldModel) 

9.2. Testing the Extrapolation/Densification Algorithm 

The extrapolation/densification algorithm was tested with a real dataset, 

resulting from an experiment designed to resolve a cross-section of the shock field inside 

an inert polymer – PMMA in this case (this dataset has already been presented before). The 

data points are spatially characterized in the XY plane and contain the instant of interaction 

of a shockwave with a bundle of PMMA optical fibres. The original dataset containing 70 

× (xi, yi, ti) points is shown in Figure 9.1 (from an actual screenshot taken from the 

interpolator application) colour coded by value (t in [ns]) from lower (blue) to higher (red). 

 

 

Figure 9.1. Actual empirical dataset containing 70 points, colour coded by value (in this case, time in [ns]) 

from lower (blue) to higher (red). 
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As we can see, the dataset is “quasi-structured” in terms of spatial distribution, 

but presents a very irregular outline and has some “holes” or unpopulated regions (the data 

from those regions was irretrievable from the experimental record). Figure 9.2 depicts a 

shaded 3D perspective of the input data, resulting from a linear interpolation based on a 

Delaunay triangulation. 

 

Figure 9.2. Colour isoband 3D perspective of the input data, resulting from a linear interpolation based on a 

Delaunay triangulation. 

The surface gradient discontinuities are apparent (although the figure 

resolution is not ideal for a detailed examination), as well as the irregular outline. In order 

to obtain a rectangular domain and “fill-in” the dataless regions, a mesh of additional 

dataless points was added to the original dataset (resulting in a total of 139 points). Figure 

9.3 documents the total mesh (dataless nodes are represented as white circles). 

 

Figure 9.3. Input dataset mesh for extrapolation/densification; white (hollow) points contain no data; actual 

data points are represented in dark blue. 
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Please note that there is an additional dataless point “inside” the original spatial 

domain. This point will be interpolated using the same algorithm as the exterior points. 

Figure 9.4 provides another view of the “original” points – colour coded by value – and the 

added dataless points – in grey (from a screenshot taken before the extrapolation). 
 

 

Figure 9.4. Input dataset mesh before extrapolation; grey points contain no data; actual data points are 

colour coded by value (red=higher, blue=lower). 

 

The “Build Model” command of the implemented application automatically 

executes the extrapolation/densification algorithm upon completion of the initial Delaunay 

tessellation. The result can be seen Figure 9.5. 
 

 

Figure 9.5. The complete model after tessellation and execution of the extrapolation algorithm. 

All the points now have data (note that the colour-key has been re-scaled to 

accommodate the full range of extrapolated values). 

Figure 9.6 shows a 3D shaded perspective of the result of a 200×44 

interpolation done on the previously extrapolated dataset (using edge-orthogonal 

coordinates and a sinusoidal “blending function”): 
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Figure 9.6. 3D shaded perspective of the result of a 200×44 interpolation done on the previously 

extrapolated dataset. 

The extrapolation/densification seems to have worked quite well in this 

instance: the surface now fills the rectangular boundary and the slope evolves in a coherent 

and “natural” manner from the original data region to the extrapolated domain. Thanks to 

the smooth interpolation method, the contours (isochrones) are smooth and don’t reveal 

any gradient discontinuity. 

 

In order to enable a more accurate and detailed analysis of the resulting surface 

characteristics, Figure 9.7 displays some unshaded contour representations of three 

interpolation results, using different local coordinate systems. 
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Barycentric local coordinates 

 

Edge-continuous local coordinates 

 

Edge-orthogonal local coordinates 

 

Figure 9.7. Comparison of contour representations of interpolation results using three different types of 

local coordinates. 

 

The differences between the versions obtained with different local coordinate 

systems are minimal and very hard to pinpoint, at least for this particular dataset and 

interpolation resolution.  
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10. CONCLUSIONS 

The method concept was demonstrated as viable and fulfilled all the requisites 

stated a priori. Nevertheless, there is still much room for improvement. Some results 

revealed some shortcomings of the method for some particular types of data distributions. 

Further efforts should be applied in the refinement of the local coordinate 

systems – namely the smooth transition between adjacent local domains – since this seems 

to be the most promising avenue for improving the gradient continuity and the overall 

smoothness of the results. 

The quality of the interpolation may also be further enhanced by refining the 

tessellation algorithm. For instance, the implementation of a constrained Delaunay 

triangulation could allow some degree of human intervention on the tessellation topology. 

Other possibility would be the implementation of a 3D tessellation algorithm or, at least, 

some form of taking into account the value (or third dimension) for determining the best 

tessellation solution (which does not necessarily obey the Delaunay criterion). 

Other useful functionalities could also be added to the implemented software, 

e.g.: definition of convex hulls (in order to contain the triangulation within a given 

perimeter), data and model editing capabilities, further parameter manipulation, etc. 

The current method is not necessarily “better” than other methods. No 

interpolation method is “perfect” or perfectly suitable for all applications and dataset 

characteristics. All depends on the nature of the data at hand. 

An extensive comparative study with other interpolation methods is essential 

for correctly ascertaining the relative qualities and shortcomings of the current method. 

Such a study was initially intended in the scope of the current work but – due to time 

constraints – could not be accomplished. 

Notwithstanding, the author hopes that the current work might be of relevance 

and that this method might, after some refinements, make part of the arsenal of algorithms 

used by scientists and engineers faced with the not so straightforward challenge of 

achieving good quality and realistic field and surface representations with less than perfect 

source data. 
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