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Abstract

The Thesis investigates Descent Theory in categories of lax algebras, in particular with respect to two
different classes of morphisms: the class given by all morphisms, when one usually speaks of global-
descent (or simply omits the prefix), and the class of étale morphisms, speaking of étale-descent.
Having this goal in mind, we start by giving an overview of the general problem of descent, with
respect to an arbitrary category with pullbacks. Different descriptions of the problem are given, namely
in terms of monads, with respect to a fibration and with respect to an indexed category. Particularly
interesting for us is the framework of descent in Top (i.e., Topological Descent Theory), and its
passage from the finite case to the infinite case. We retain also useful to give a perspective of the
world of (T,V)-categories, in particular with respect to a Set-monad T= (T,µ,η) and a quantale V.
Our study of the problem of descent in categories of lax algebras, with respect to the class given by
all morphisms, starts with the generalization to the non-flat case of the already known results due to
M.M. Clementino and D. Hofmann, investigating also the role played by the triquotient maps (for
which we introduce a suitable definition in the context of (T,2)-categories based on the already known
characterization in Top in terms of ultrafilter convergence). The relation between the effective descent
morphisms in (T,2,T)-Cat, where T is the Barr extension to Rel of T, and in (T,V, T̃)-Cat, where T̃
is (what we call) the uniform extension to V-Rel of T, is investigated. In particular, with respect to
the M-ordered monad M and the free-monoid monad W, we give a complete characterization of the
effective descent morphisms in (M,V,M̃)-Cat and (W,V,W⊗)-Cat. The latter case, under suitable
hypotheses on V, gives also a characterization of the effective descent morphisms in (W,V,W∧)-Cat.
We use informations about the morphisms which are effective for descent in (T,2,T)-Cat to get results
for the problem of descent in (T,V, T̃)-Cat. An useful method is also given, although it represents
only a sufficient condition. Based on the work of M.M. Clementino and D. Hofmann, versions of the
Van Kampen Theorem in categories of lax algebras are also given, in particular with respect to the
free-monoid monad W and the powerset monad P. Considering the problem of descent with respect
to the class of étale morphisms, we recall our first contribution given by the characterization of the
effective étale-descent morphisms in M-Ord, the category of M-ordered sets and monotone maps,
based on the already known characterization in Cat of the effective descent morphisms with respect to
the class of discrete (co)fibrations. Two different sufficient conditions for the effective étale-descent
morphisms are given in V-Cat, the category of V-categories and V-relations, one based on the method
used to study the passage from (T,2,T)-Cat to (T,V, T̃)-Cat in case of global-descent, and one on
direct arguments using techniques from the characterization in Ord.





Resumo

A Tese investiga a Teoria da Descida nas categorias de álgebras lassas, em particular no que diz
respeito a duas classes diferentes de morfismos: a classe que inclui todos os morfismos, onde se fala
de descida global (ou simplesmente de descida), e a classe dos morfismos étale, ou homeomorfismos
locais, que se refere à descida étale. Tendo este objectivo em mente, começamos com uma panorâmica
do problema geral da descida, em relação a uma categoria arbitrária com produtos fibrados. São
dadas descrições diferentes do problema, nomeadamente em termos de mónadas, em relação a uma
fibração e a uma categoria indexada. De particular interesse para nós é a estrutura de descida em Top
(ou seja, Teoria Topológica da Descida), e a sua passagem do caso finito ao caso infinito. Parece-
nos igualmente útil apresentar uma perspectiva do mundo das (T,V)-categorias, em particular no
que respeita a mónada T= (T,µ,η) na categoria dos conjuntos e o quantale V. O nosso estudo do
problema da descida nas categorias de lax álgebras, em relação à classe de todos os morfismos, começa
com a generalização ao caso não plano dos resultados já conhecidos devido ao trabalho de M.M.
Clementino e D. Hofmann, relativos também ao papel desempenhado pelos triquocientes (para os
quais apresentamos uma adequada definição no contexto das (T,2)-categorias baseada na já conhecida
caracterização em Top em termos de convergência de ultrafiltros). A relação entre os morfismos de
descida efectiva em (T,2,T)-Cat, onde T é a extensão de Barr à categoria Rel das relações de T, e em
(T,V, T̃)-Cat, onde T̃ é (aquela que chamamos) a extensão uniforme à categoria V-Rel das relações
com valor em V de T, é investigada. Em particular, em relação à mónada M-ordenada M e à mónada
do monóide livre W, é apresentada a completa caracterização dos morfismos de descida efectiva em
(M,V,M̃)-Cat e (W,V,W⊗)-Cat. O último caso, com hipóteses adequadas sobre V, fornece também
a caracterização dos morfismos de descida efectiva em (W,V,W∧)-Cat. Utilizamos informações
sobre os morfismos de descida efectiva em (T,2,T)-Cat, transpondo os resultados para o problema
da descida em (T,V, T̃)-Cat. Apresentamos também um método útil, ainda que represente somente
uma condição suficiente. Sã também presentadas algumas versões do Teorema de Van Kampen nas
categorias de álgebras lassas, baseadas no trabalho de M.M. Clementino e D. Hofmann, em particular
no que diz respeito à mónada do monóide livre W e à mónada das partes de um conjunto. Tendo em
consideração o problema da descida em relação à classe dos morfismos étale, recordamos a nossa
primeira contribução relativa à caracterização dos morfismos de descida étale efectiva em M-Ord, a
categoria dos conjuntos M-ordenados e funções monótonas, baseada na já conhecida caracterização
dos morfismos de descida efectiva em relação à classe das (co)fibrações discretas em Cat. São também
dadas duas condições suficientes para os morfismos de descida efectiva em V-Cat, uma baseada no
método utilizado no estudo da passagem de (T,2,T)-Cat a (T,V, T̃)-Cat no caso de descida global,
e outra assente na utilização de técnicas a partir da caracterização em Ord.
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Introduction

Descent Theory was developed by A. Grothendieck in [26] and [27] in the abstract context of fibred
categories (see also M. Demazure [23] and J. Giraud [25]). In [33] G. Janelidze and W. Tholen
show its strict connection with Sheaf Theory, in particular investigating how Descent Theory gives
an immediate access to the fundamental idea of passing from global data to local data. They base
their work on the categorical theory of monads, which was not yet in place when A. Grothendieck
developed descent. In this context, for any morphism p : E → B in any category C with pullbacks,
Descent Theory asks whether objects of C ↓ B can be given in terms of algebraic objects of C ↓ E,
i.e., whether the pullback functor

p∗ : C ↓ B → C ↓ E

is monadic, so that C ↓ B is (up to isomorphism) the category of Eilenberg-Moore algebras over
C ↓ E. More precisely, the pullback functor p∗ admits a left-adjoint p!, given by the composition
with p from left, for which the category of Eilenberg-Moore algebras over C ↓ E, defined by the
monad induced by the adjunction p! ⊣ p∗, turns out to be equivalent to the category Des(p) of descent
data (relative to p), so that one can state that p is an (effective) descent morphism if and only if
p∗ is pre(monadic). If one restricts to a subclass E of C, assumed to be pullback stable and closed
under composition with isomorphisms, the problem of descent can be still stated but it is not always
the case that the category DesE(p) is equivalent to a category of Eilenberg-Moore algebras. The
monadic description covers descent also in the abstract context of bifibred categories satisfying the
Beck-Chevalley condition, as observed by J. Bénabou and J. Roubaud (see [3]) and by J.M. Beck.
In [34] G. Janelidze and W. Tholen present also the problem of descent with respect to an indexed
category, where methods of internal category theory are applied to show that the split epimorphisms in
a category C are precisely the morphisms which are effective for descent with respect to any fibration
over C (or to any C-indexed category).
The key role of convergence in the papers [47] and [30] where, respectively, J. Reiterman and W.
Tholen characterize the effective descent maps of topological spaces and G. Janelidze and M. Sobral
characterize special classes of maps between finite spaces (including the effective descent maps),
and the consequent description of effective descent maps given in [9] by M.M. Clementino and D.
Hofmann, were the starting point of the study of Descent Theory in the context of lax algebras (or
(T,V)-categories). Moreover, the result given by M. Barr in [1], where Top is proved to be (up to
isomorphism) a category of relational algebras, represents itself one of the principal roots of the area
Monoidal Topology whose theory provides a unifying framework for fundamental ordered, metric and
topological structures. The main reference for this area can be now considered the book [29], although
the theory of (T,V)-categories (as presented in the book itself) started with [10] (M.M. Clementino

xi



xii Introduction

and D. Hofmann) and [21] (M.M. Clementino and W. Tholen). Hence, for these reasons, along the
Thesis, Top will be our leading category, in the sense that examples, remarks and results will be
particularly stressed in this category. Considering the case of finite topological spaces, in [31] G.
Janelidze and M. Sobral give also a complete characterization in Ord (an example of a category of
(T,V)-categories) of the effective descent maps with respect to the class of étale morphisms, or local
homeomorphisms, which is still an open problem in Top.
In the effective general context of (T,V)-categories, first results on Descent Theory are given in
[11] by M.M. Clementino and D. Hofmann, based on the key-stone characterization in [47], with
respect to flat lax extensions of a Set-monad T= (T,µ,η) to the category V-Rel of V-relations. In
particular the authors show how suitable hypotheses on the functor T and on the quantale V can lead
to an unifying treatment of the arguments. Further developments can be found in [20] (in particular
referring to the Barr extension to Rel), in [14] (where it is given a characterization of the descent
morphisms in categories of lax algebras), and in [18] (where effective descent morphisms in different
categories of relational algebras are fully characterized). More recents developments can be found in
[15], where several results on Descent Theory in the category V-Cat of V-categories and V-functors
are given, in particular concerning the characterization of effective descent morphisms. Our first
contribution to this topic is given in [2], where we give a complete characterization of the effective
étale-descent morphisms in M-Ord, the category of M-ordered sets and monotone maps (an example
of a category of (T,V)-categories involving the M-ordered monad).
The Thesis presents new results about Descent Theory in (T,V)-categories, in particular with respect
to the class of all (T,V)-functors (i.e., global-descent) and with respect to the class of étale morphisms
(i.e., étale-descent). At the same time the Thesis wants to serve as a "journey" along Descent Theory
in categories of lax algebras. In fact most of the known results are here collected in order to present
to the Reader a very global picture of the topic. More specifically: Chapter 1 is devoted to Descent
Theory and it is mostly based on the papers [33] and [34] by G. Janelidze and W. Tholen. In particular,
descriptions of Descent Theory in terms of monads, with respect to a fibration and with respect to
an indexed category are given, respectively, in Section 1.1, 1.2 and 1.3. The aim is to give a global
overview of the problem of descent, in particular focusing on the arguments that are going to be used
in the contex of (T,V)-categories. Section 1.4 is about Topological Descent Theory, collecting most of
the known results on descent in Top, in particular with respect to the class of all continuous maps and
with respect to the class of local homeomorphisms. The finite case, that is when the topological spaces
are finite, is particularly stressed. In [30] and [31] several developments are given by G. Janelidze
and M. Sobral, not only characterizing the (effective) descent maps and effective étale-descent maps
but also suggesting, concretely, how the finite case can help looking for counter-examples and how
it can also help for hints to the infinite case. The last section of Chapter 1 is about the Van Kampen
Theorem since, as shown in [5] by R. Brown and G. Janelidze, its categorical formulation is strictly
connected to the problem of descent.
In Chapter 2, having as main reference the book [29], we introduce the notions of lax extensions
and lax algebras (or (T,V)-categories), firstly recalling some basic concepts about quantales and
V-relations, and then giving the proper definitions. The Barr extension to Rel, given by M. Barr in [1],
and the uniform construction of lax extensions to V-Rel (which we call uniform extension), given by
M.M. Clementino and D. Hofmann in [12], are of our main interest.



xiii

In Chapter 3 and Chapter 4 our contribution is given, in particular for what concerns, respectively,
the study of the effective global-descent morphisms and of the effective étale-descent morphisms in
categories of lax algebras. Chapter 3 starts with a generalization to the non-flat case of the results
given in [11]. In Section 3.2 the notion of triquotient map is introduced in the more general context of
(T,2)-categories, using the same technique given in [9] by M.M. Clementino and D. Hofmann, where
a characterization of triquotient maps in Top in terms of ultrafilter convergence is given. Moreover,
the role in Descent Theory of the triquotient maps is studied. As we mentioned previously for what
concerns Chapter 2, the Barr extension T (to Rel) and the uniform extension T̃ to (V-Rel) of a Set-
monad T= (T,µ,η) are of our main interest, and the reason is the following: the uniform extension,
under suitable hypotheses, is an extension itself of the Barr extension and, in particular, it can be
described in terms of it. Therefore we study whether is the case that informations about the effective
descent morphisms in (T,2,T)-Cat (where there are several examples of complete characterizations
of effective descent morphisms) can give results for the study of the effective descent morphisms
in (T,V, T̃)-Cat. The cases where T is the M-ordered monad M and the free-monoid monad W are
analyzed. These examples suggest that more general arguments can be given and this is what we do
in Section 3.3.3. In Section 3.3.4, having in mind the same goal, we present a method, called the
relational method, to study effective descent morphisms in (T,V, T̃)-Cat, even if we need to restrict
to the case where the quantale V is a frame. We end up the chapter with a direct path to Chapter 1: we
give versions of the Van Kampen Theorem in categories of lax algebras, mostly based on the results
given in [14] by M.M. Clementino and D. Hofmann.
In Chapter 4 we focus on Descent Theory in categories of lax algebras with respect to the class of
étale morphisms. After having analyzed the notion of étale morphism in Top (with its characterization
in terms of ultrafilter convergence given in [16] by M.M. Clementino, D. Hofmann and G. Janelidze)
and its formulation in the more general context of (T,V)-categories, we recall the complete character-
ization of the effective étale-descent morphisms in M-Ord (see [2]), based on the results given in [50]
by M. Sobral, concerning the characterization of the effective descent morphisms in Cat, with respect
to the class of discrete (co)fibrations. Moreover, two different sufficient conditions for the effective
étale-descent morphisms in V-Cat are given, respectively, in Section 4.3 and in Section 4.3.3. Both of
them, in a different way, use informations from the characterization in Ord. We end up the chapter,
and so the Thesis, comparing (effective) global-descent and (effective) étale-descent morphisms in the
general context of (T,V)-categories.





Chapter 1

Descent Theory

We follow the theory developed in [33] and [34] by G. Janelidze and W. Tholen to introduce the
problem of descent. We decide to start by describing Descent Theory in terms of monads, although in
[33] it represents a first step of generalization. The topological approach to Grothendieck’s idea of
descent will be given only after having presented the description of Descent Theory also with respect
to a fibration and with respect to and indexed category. This choice is motivated by the fact that we
collect most the know results about Descent Theory in Top and, to do that, more general settings of
the problem of descent (such as with respect to a fibration and with respect to and indexed category)
are needed.

1.1 Monadic Descent Theory

Let C be a category with pullbacks and let E be a class of morphisms in C closed under composition
with isomorphisms. For an object E in C, consider the full subcategory E(E) of the comma category
C ↓ E with objects in E; that is, objects in E(E) are pairs (C,γ), where C is an object in C and
γ : C → E is a morphism in C belonging to E, and a morphism f : (C,γ)→ (C′,γ ′) in E(E) is given
by a morphism f : C →C′ in C such that the diagram

C

γ ��

f // C′

γ ′��
E

commutes.
Let p : E → B be a morphisms in C such that E is stable under pullback along p. Let

E ×B C

π1

��

π2 // C

p·γ
��

E p
// B

1



2 Descent Theory

be the pullback in C of p · γ along p. The category

DesE(p)

of descent data (relative to p) is given by triples (C,γ,ξ ), where (C,γ) is an object in E(E) and

ξ : E ×B C →C (1.1)

is a morphism in C such that the diagrams

C

1C
��

<γ,1C> // E ×B C
ξ

ww

π1

��
C

γ
// E

E ×B (E ×B C)

1E×Bπ2

��

1E×Bξ // E ×B C

ξ

��
E ×B C

ξ

// C

commute.
A morphism h : (C,γ,ξ )→ (C′,γ ′,ξ ′) in DesE(p) is a morphism h : (C,γ)→ (C′,γ ′) in E(E) com-
patible with the descent data, that is, such that the diagram

E ×B C

ξ

��

1E×Bh // E ×B C′

ξ ′

��
C

h
// C′

commutes.
If we start with an object (A,α) in E(B), and we pull it back along p

E ×B A

pr1

��

pr2 // A

α

��
E p

// B,

(1.2)

we get an object (E ×B A,pr1) in E(E), since the class E is assumed to be stable under pullback along
p. This defines a functor

p∗ : E(B)→ E(E), (A,α) 7→ (E ×B A,pr1)

which is usually called pullback functor or change-of-base functor. We will sometime stress the class
E if necessary, that is refer to p∗ by p∗E.



1.1 Monadic Descent Theory 3

The object p∗(A,α) = (E ×B A,pr1) comes equipped with a canonical descent data

1E ×B pr2 : E ×B (E ×B A)→ E ×B A

which allows to define a functor

Φ
p
E : E(B)→ DesE(p), (A,α) 7→ (E ×B A,pr1,1E ×B pr2) (1.3)

such that the diagram

E(B)

p∗ ##

Φ
p
E // DesE(p)

U p
zz

E(E)

commutes, where U p is the obvious forgetful functor.
The functor Φ

p
E is usually called comparison functor for a reason that we will explain soon.

Definition 1.1.1 Let C be a category with pullbacks and let p : E → B be a morphism in C. Let E be
a class of morphisms in C closed under composition with isomorphisms and stable under pullback
along p. The morphism p is said to be E-descent if Φ

p
E is full and faithful, and it is an effective

E-descent morphism if Φ
p
E is an equivalence of categories.

The definition says that for a morphism p : E → B to be E-descent means that morphisms f : (A,α)→
(A′,α ′) in E(B) are completely described by morphisms

h : (E ×B A,pr1,1E ×B pr2)→ (E ×B A′,pr′1,1E ×B pr′2),

so that h is of the form h = 1E ×B f . For a morphism p : E → B, to be effective E-descent means that,
in addition, objects (C,γ,ξ ) in DesE(p) are of the form (E ×B A,pr1,1E ×B pr2).

To study necessary and sufficient conditions for a morphism p to be (effective) for E-descent one
can assume that, in addition to the conditions given in Definition 1.1.1, the class E is stable under
composition with p from the left, that is,

p · γ ∈ E if γ ∈ E.

In this case, the functor p∗ : E(B)→ E(E) has a left adjoint p! given by the composition with p from
the left

p! : E(E)→ E(B), (C,γ) 7→ (C, p · γ).

This pair of adjoint functors induces a monad Tp on E(E) and the category of Eilenberg-Moore
algebras E(E)Tp

, defined by the monad Tp, is exactly the category DesE(p) of descent data. These
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general arguments of monads theory can be summarized by the following diagram

E(B)

p∗

��

Φ
p
E // E(E)Tp ∼= DesE(p)

p∗TpwwE(E)

Tp

VV

p! ⊣

OO
pT

p
!

⊥

77

where

E(E) ⊥

pT
p

! //
E(E)Tp ∼= DesE(p)

p∗Tp

oo

is the adjunction induced by Tp.

Proposition 1.1.2 [33, Proposition 2.2] If E is closed under composition with p from the left, then
DesE(p) is exactly the Eilenberg-Moore category of the monad induced by the adjunction p! ⊣ p∗,
and p is an (effective) E-descent morphism if and only if p∗ is premonadic (monadic).

This is the reason why the functor Φ
p
E in (1.3) is usually called comparison functor. Therefore, one can

explore the Beck’s monadicity criterion to study necessary and sufficient conditions for a morphism p
to be (effective) for E-descent.

Definition 1.1.3 We say that p : E → B is an E-universal regular epimorphism if the class of morph-
isms which are pullbacks of p along a morphism in E is contained in the class of regular epimorphisms.

We denote by E∗(p) the class of morphisms which are pullbacks of p along a morphism in E.

Theorem 1.1.4 [33, Theorem 2.3] Let E be a class of morphisms in C stable under pullback along
p and under composition with p from the left. Assume that C has coequalizers of parallel pairs of
morphisms in E∗(p).The morphism p is an E-descent morphism of C if and only if p is an E-universal
regular epimorphism of C. The E-descent morphism p is effective if E is right cancellable with respect
to those regular epimorphisms of C which are coequalizers of E∗(p)-morphisms over B and if these
coequalizers are stable under pullback along p.

The technique used to prove this theorem is given by a direct construction of the left adjoint

Ψ
p
E : DesE(p)→ E(B)

of the comparison functor Φ
p
E. For each object (C,γ,ξ ) in DesE(p), since both π2 and ξ are in E∗(p),

we can construct the coequalizer (Q,π)

E ×B C
ξ

//
π2 // C π // Q (1.4)
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of the parallel pair (π2,ξ ). By the universal property of the coequalizer, there is a unique morphism
δ : Q → B

E ×B C
ξ

//
π2 // C

p·γ
��

π // Q

δ��
B

(1.5)

such that δ ·π = p · γ . Diagram (1.5) usually refers to a descent situation describing Q. By the right
cancellability of E, δ is in E(B). Therefore just define

Ψ
p
E(C,γ,ξ ) := (Q,δ )

to get the left adjoint. The Beck’s monadicity criterion given in [36] says that the comparison functor
Φ

p
E is full and faithful if and only if the components of the counit of the adjunction p! ⊣ p∗ are regular

epimorphisms, and, moreover, the unit of the adjunction Ψ
p
E ⊣ Φ

p
E is an isomorphism if and only if the

functor p∗ preserves the coequalizer diagram (1.4).

It is important to stress that if in Proposition 1.1.2 we remove the condition on E to be closed
under composition with p from the left, the result might fail, in the sense there are classes E of morph-
isms in C for which p is not effective for E-descent, although the functor p∗ is monadic. An example
is given in [33, Section 3.10] for C = Top, the category of topological spaces and continuous maps.
Consider Ec be the class of closed-subspace embeddings in Top and let p : E → B be the identity map
where E is the space given by a set X (with at least two points) equipped with the discrete topology
on X , and B is given by the same set X equipped with the indiscrete topology, i.e., only X and the
empty-set /0 are open. An inspection reveals that the category DesEc(p) is equivalent to the category
Ec(E), which is itself equivalent to the (partially ordered) powerset of X , hence non-equivalent to
Ec(B) (which is the 2-element chain), although p∗Ec

is monadic. A more general sufficient condition
for which the category of descent data is isomorphic to a category of Eilenberg-Moore algebras will
be given in Section 1.2.

In Definition 1.1.1, if E is the class of all morphisms in C, we speak of (effective) global-descent. We
remark that in literature one may also simply speak of (effective) descent, omitting the prefix. In this
case, since this class is trivially closed under composition with p from the left, from Theorem 1.1.4,
one obtains the following corollary.

Corollary 1.1.5 [33, Corollary 2.4] A morphism p is a global-descent morphism if and only if p is a
universal regular epimorphism. A global-descent morphism p : E → B is an effective global-descent
morphism if the coequalizer of every parallel pair of universal regular epimorphisms over B exists
and is stable under pullback along p.

Therefore, if the category C (with pullbacks and coequalizers) is locally cartesian closed, Descent
Theory gets easier. In fact, the effective descent morphisms are exactly the regular epimorphisms,
which are necessarily universal. One of the techniques to study (effective) descent morphisms in an
arbitrary category is to fully embed it (if possible) into a locally cartesian closed category, and then
interpret the result in terms of the original category.
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Let E0 and E1 be two classes of morphisms of a category with pullbacks, both stable under pullback
along p : E → B and under composition with isomorphisms. Assume that

E0 ⊆ E1.

Proposition 1.1.6 [33, Proposition 2.6] E1-descent for p implies E0-descent for p. The effective
E1-descent morphism p is an effective E0-descent morphism if and only if the following condition
holds: for every pullback diagram

E ×B A

π1

��

π2 // A

α

��
E p

// B,

π1 ∈ E0 and α ∈ E1 implies α ∈ E0.

Corollary 1.1.7 [33, Corollary 2.7]

1. For C with pullbacks and E stable under pullback along the effective global-descent morphism
p of C, p is an effective E-descent morphism if and only if in every pullback square

E ×B A

π1

��

π2 // A

α

��
E p

// B,

π1 ∈ E implies α ∈ E.

2. For D with pullbacks and C a full subcategory closed under pullback in D, a morphism p of C
which is an effective global-descent morphism in D is also an effective global-descent morphism
in C if and only if in every pullback square

E ×B A

π1

��

π2 // A

α

��
E p

// B

of D, E ×B A ∈ C implies A ∈ C.

Statement 2. of Corollary 1.1.7 is precisely the technique we described before. If we can fully embed
a category C into a locally cartesian closed category D, where effective global-descent morphisms are
known to be exactly the regular epimorphisms, the condition above gives us a criterion for studying
effective global-descent morphisms in C.
Statement 1. of Corollary 1.1.7 turns out to be useful when, knowing the effective global-descent
morphisms in a category C, we are interested in studying effective descent morphisms with respect to
some subclass E of morphisms.
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1.2 Descent Theory with respect to fibrations

Let F : D → C be an arbitrary functor and p : E → B a morphism in C. The fibre D(B) := F−1(B) of
F at B is the (non-full) subcategory of D whose morphisms are mapped by F to the identity morphism,
i.e., morphisms f : A → A′ such that F( f ) = 1B. For an object A ∈ D(B), a pair (C,c), where C is
an object in D(E) and c : C → A is a morphism in D with F(c) = p, is called an F-lifting of p at A.
A morphism c : C → A in D is called F-cartesian if it is a terminal F-lifting of F(c) at A, i.e., for
any morphism d : D → A in D and any morphism q : F(D)→ F(C) with F(c) ·q = F(d), there is a
unique morphism g : D →C with c ·g = d and F(g) = q,

D

d
��

∃!g // C

7→c
��

F(D)

F(d) ##

q // F(C)

F(c)
��

A F(A).

Definition 1.2.1 A functor F : D → C is a (cloven) fibration if every morphism p : E → B admits a
(specified) cartesian lifting at every object A in D(B).

In the presence of a fibration F : D → C or, more generally, if every object A in D(B) admits a
cartesian lifting (p∗A,θpA) of p at A

p∗A

↓

θpA // A

E p
// B,

then one can obtain a functor
p∗ : D(B)→ D(E),

called inverse-image functor, and a cleavage

θp : JE · p∗ → JB,

where JE : D(E)→ D and JB : D(B)→ D are the inclusion functors, with Fθp the constant natural
transformation. Therefore (−)∗ : Cop → CAT

B ✤ // D(B)

p∗

��
E

p

OO

✤ // D(E)

defines a pseudo-functor. Note that the cleavages of a fibration F : D → C define a right-adjoint
right-inverse of every functor FA : D ↓ A → C ↓ F(A)(A ∈ D) induced by F . Conversely, with the
right-adjoint right-inverses of these functors, F becomes a (cloven) fibration.

Example 1.2.2
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(1) Let C be a category and let E be a class of morphisms in C. The comma categories E(C)(C ∈C),
considered in Section 1.1, can be interpreted as the fibres of the codomain functor

FE : E2 → C,

where E2 is the category whose objects are all morphisms in E and whose morphisms (p′, p) :
α ′ → α (with α,α ′ ∈ E) are commutative diagrams in C of the form

·
α ′

��

p′ // ·
α

��
· p

// ·

If the diagram above is a pullback then it represents an FE-cartesian lifting morphism of E2. On
the other hand, if the class E contains all isomorphisms of C, then every FE-cartesian morphism
of C is given by a pullback diagram. Moreover, if C has pullbacks and E is stable under
pullback, then FE is a (cloven) fibration. In fact, for a morphism p : E → B in C, we have a
cartesian FE-lifting of p at every (A,α) ∈ E(B)(= E2(B)) given by the pullback diagram (1.2).
The inverse-image functor p∗ and the cleavage θp are obtained from a choice of the pullback
(1.2).

(2) Let ΠX be the fundamental groupoid of a topological space X . Every continuous map p : E → B
gives a groupoid homomorphism Πp : ΠE → ΠB so that Π : Top → Grpd is a functor from
Top to Grpd, the category of groupoids and groupoid homomorphisms. It can be seen also
as a 2-functor Π : Top → Cat, with Top considered as a groupoid-enriched category. If p is a
Hurewicz fibration (see [52]) then Πp is a (cloven) fibration.

Let F : D → C be a fibration, where C is a category with pullbacks. For a morphism p : E → B in C
consider (p1, p2) the kernel pair of p

E ×B E

p1

��

p2 // E

p
��

E p
// B.

(1.6)

A descent data relative to p is given by a pair (C, ξ̂ ), where C is an object in D(E) and

ξ̂ : p∗1(C)→ p∗2(C)

is a morphism in D(E ×B E) from p∗1 =C×E (E ×B E) to p∗2 = (E ×B E)×E C such that the following
diagrams commute

p∗1(C)
ξ̂ // p∗2(C)

θp2C
}}

C
δ1

aa
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π∗
1 p∗2C

j // π∗
2 p∗1C

π∗
2 ξ̂

$$
π∗

1 p∗1C

j−1
1 $$

π∗
1 ξ̂

::

π∗
2 p∗2C

π∗p∗1C
π∗ξ̂

// π∗p∗2C.

j2

::

The morphism δ1 : C → p∗1C is the unique morphism induced by the cartesian lifting (p∗1C,θp1C) with
respect to the morphism δ : E → E×B E for which p1 ·δ = p2 ·δ = 1E , i.e., δ1 is the unique morphism
such that F(δ1) = δ and θp1C ·δ1 = 1C. The morphism π : (E ×B E)×E (E ×B E)→ E ×B E is the
one induced by the pair (p1 ·π1, p2 ·π2), where π1 and π2 are given by the pullback diagram

(E ×B E)×E (E ×B E)

π1

��

π2 // E ×B E

p1

��
E ×B E p2

// E.

The morphisms j, j1 and j2 are the canonical isomorphisms arising from the identities p1 ·π2 = p2 ·π1,
p1π = p1 ·π1 and p2 ·π = p2 ·π2. In [44] an explicit proof of the fact that ξ̂ must be an isomorphism
is given. Descent data relative to p form the object-part of the category

DesD(p)

whose morphisms h : (C, ξ̂ )→ (C′, ξ̂ ′) are morphisms h : C →C′ in D(E) such that the diagram

p∗1C

ξ̂

��

p∗1h // p∗1C′

ξ̂ ′

��
p∗2C

p∗2h
// p∗2C′

commutes. For every object A in D(B), p∗A comes equipped with a canonical descent data

ϕ̂ = ( j−1
p,p2

A)( jp,p1A) : p∗1 p∗A → p∗2 p∗A,

where jp,p1 : p∗1 p∗ → (p · p1)
∗ and jp,p2 : p∗2 p∗ → (p · p2)

∗ are natural equivalences. Therefore one
can define a functor Φp : D(B)→ DesD(p)

A 7→ (p∗A, ϕ̂),

which makes the diagram

D(B)

p∗ ##

Φp
// DesD(p)

U p
zz

D(E)
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commutative. The functor U p is the obvious forgetful functor.

Definition 1.2.3 Let F : D → C be a fibration with C a category with pullbacks. For a morphism
p : E → B in C one says that p is an (effective) D-descent morphism if Φp is full and faithful (an
equivalence of categories).

For F = FE, there is a bijective correspondence between the descent data ξ̂ and the one given in
Section 1.1 so that the categories DesD(p), with D = E2, and the category DesE(p), defined in Section
1.1, are isomorphic. In Proposition 1.1.2 we saw under which conditions the category of descent data
is exactly a category of (Eilenberg-Moore) algebras. This fact can be viewed also in a more general
context concerning fibrations. In particular, assume that the functor F : D → C is a (cloven) bifibration,
so that both F and Fop : Dop → Cop are (cloven) fibrations. Hence, for a morphism p : E → B in
C, one has, dually with respect the inverse-image functor p∗ and the cleavage θp, the direct-image
functor

p! : D(E)→ D(B)

and the co-cleavage
ϑp : JE → JB p!,

giving rise to the adjunction

D(B)
p∗
// D(E).

p!

⊥
oo

The unit and counit of the adjoint situation above are given, respectively, by the natural transformations

ηp : 1D(E) → p∗ · p!, εp : p! · p∗ → 1D(B),

with (θp p!)(JEηp) = ϑp and (JBεp)(ϑp p∗) = θp. Moreover, considering the kernel pair (p1, p2) of p
(see diagram (1.6)), one has the so-called Beck-transformation

βp : (p2)! p∗1 → p∗p!, with (JEβp)(ϑp2 p∗1) = (JEηp)θp1 .

The bifibration F satisfies the Beck-Chevalley condition for p if βp is a natural equivalence. This
condition, as proved by J. Bénabou and J. Roubaud in [3], and by J.M. Beck, turns out to play a key
role for the Monadic Descent Theory.

Theorem 1.2.4 Let F : D → C be a bifibration, with C a category with pullbacks. For a morphism
p : E → B in C such that the Beck-Chevalley condition is satisfied for p, the category DesD(p) of
descent data is isomorphic to the category of Eilenberg-Moore algebras of the monad induced by the
adjunction p! ⊣ p∗. Therefore p is an (effective) D-descent morphism if and only if p∗ is premonadic
(monadic).

The theorem above reveals how the monadic description given in Section 1.1 covers the problem of
descent in the abstract context of bifibred category satisfying the Beck-Chevalley condition.
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1.3 Descent Theory with respect to indexed categories

Since fibrations (over C) are essentially equivalent to pseudo-functors Cop → CAT, the descent
problem can be treated equivalently in the context of indexed categories, as developed in [34] by G.
Janelidze and W. Tholen. The authors found convenient to work with indexed categories (instead of
fibrations) to study, in any category C with pullbacks, which morphisms are effective for descent with
respect to every fibration D → C. In this general context, they show that they are precisely the split
epimorphisms of C (see Theorem 1.3.4).
Let C be a category with pullbacks. A C-indexed category A, in the sense of [37], is a pseudo-functor

A : Cop → CAT;

that is, it consists of the following data:

- for every object D in C, a category AD;

- for every pair of objects E,D in C, a functor

C(E,D)→ CAT(AD,AE), f 7→ f ∗;

- for every E
f−→ D

g−→C in C, a natural isomorphism

j f ,g : f ∗ ·g∗ → (g · f )∗; (1.7)

- for every object D in C, a natural isomorphism

iD : 1AD → (1D)
∗. (1.8)

The natural isomorphisms (1.7) and (1.8) are required to satisfy the following coherence axioms:

(i) for every triple of morphisms E
f−→ D

g−→C h−→ B in C, the diagram

f ∗ ·g∗ ·h∗

j f ,gh∗

��

f ∗ jg,h
// f ∗ · (h ·g)∗

j f ,h·g

��
(g · f )∗ ·h∗

jg· f ,h
// (h ·g · f )∗

(1.9)

commutes;

(ii) for every morphism f : E → D in C, the diagram

f ∗
1 f∗

&&
iE f ∗

��

f ∗iD // f ∗ · (1D)
∗

j f ,1D

��
(1E)

∗ · f ∗
j1E , f

// f ∗

(1.10)
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commutes.

Example 1.3.1

(1) An example of a C-indexed category is given by the comma categories C ↓ D, for an object D
in C. In fact, to each object D in C, we assign AD = C ↓ D and to each morphism f : E → D
the pullback functor f ∗ : C ↓ D → C ↓ E, given by pulling back along f . This is precisely
the situation studied in Section 1.1 and it is easy to check that this defines a pseudo-functor
Cop → CAT;

(2) The second example of a C-indexed category is given by a (cloven) fibration. More precisely,
as already remarked in Section 1.2, in the presence of a fibration F : D → C one can define a
pseudo-functor ()∗ : Cop → CAT by considering F-fibres of objects and F-cartesian liftings.

Let A : Cop → CAT be a C-indexed category. In order to define the category DesA(p) of descent data,
for a morphism p : E → B in C, one needs to define the category AD, for D an internal category in C.
Let us first recall what an internal category, of a category C with pullbacks, is. Let C be a category
with pullbacks. An internal category D of C is given by a diagram

D2

π2 //
m //
π1
// D1

d //

c
// D0

eoo (1.11)

of objects and morphisms in C, with D2,π1,π2 given by the pullback diagram

D2

π1

��

π2 // D1

e
��

D1 d
// D0

in C, such that the following conditions are satisfied:

(1) d · e = 1D0 = c · e;

(2) d ·m = d ·π2, c ·m = c ·π1;

(3) m · (1D1 ×m) = m · (m×1D1);

(4) m·< 1D1 ,e ·d >= 1D1 = m·< e · c,1D1 >.

If C = Set, it is precisely the definition of a (small) category. An internal functor f : D → D′ of
internal categories D,D′ of a category C is given by two morphisms

f0 : D0 → D′
0, f1 : D1 → D′

1

in C such that

(5) f0 ·d = d′ · f1, f0 · c = c′ · f1;



1.3 Descent Theory with respect to indexed categories 13

(6) f1 · e = e′ · f0, f1 ·m = m′ · f2,

where f2 = f1 × f1 : D1 ×D0 D1 → D′
1 ×D′

0
D′

1.

Defining the composition of internal functors as in C, we obtain the category cat(C) of internal
categories of C. It is actually a 2-category; in fact one can define an internal natural transformation
α : f → g between internal functors f ,g : D → D′ as a morphism

α : D0 → D′
1

in C such that

(7) d′ ·α = f0, c′ ·α = g0;

(8) m′·< α · c, f1 >= m′·< g1,α ·d >.

The category AD, for A : Cop → CAT a pseudo-functor and D an internal category in C, is then
defined as follows: objects are given by pairs (C,ξ ), where C is an object of AD0 and ξ : d∗C → c∗C
is a morphism in AD1 such that the following diagrams

e∗d∗C

∼= ""

e∗ξ // e∗c∗C

∼=||
C

(1.12)

π∗
2 c∗C

∼= // π∗
1 d∗C

π∗
1 ξ

$$
π∗

2 d∗C

∼= $$

π∗
2 ξ

::

π∗
1 c∗C

m∗d∗C
m∗ξ // m∗c∗C

∼=

::

(1.13)

commute in AD0 and AD1 , respectively. All isomorphisms come from the conditions (1) and (2) in the
definition of the internal category D and from the natural isomorphisms in diagrams (1.9) and (1.10).
A morphism h : (C,ξ )→ (C′,ξ ′) in AD is defined to be a morphism h : C →C′ of AD0 such that the
diagram

d∗C

ξ

��

d∗h // d∗C′

ξ ′

��
c∗C

c∗h
// c∗C′

commutes in AD1 . Composition and identity morphisms are defined as in AD0 .
Every object D0 in C can be seen as a discrete internal category D in C. In fact, in diagram (1.11),
just take D2 = D1 = D0 and all morphisms to be identities. By diagram (1.12), for every C-indexed
category A, each object C in AD0 has only one structure ξ , so that AD ∼= AD0 . This allows to define a
full embedding C ↪→ cat(C).
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Theorem 1.3.2 [34, Theorem 2.5] For every C-indexed category A : Cop → CAT, the assignment
D 7→ AD is part of a pseudo-functor A : cat(C)op → CAT of 2-categories.

Let C be a category with pullbacks and let p : E → B be a morphism in C. The kernel pair of p, given
by the pullback diagram

E ×B E

π1

��

π2 // E

p
��

E p
// B,

induces an equivalence relation (π1,π2). This gives rise to an internal category, denoted by Eq(p) and
defined by the diagram

(E ×B E)×E (E ×B E)∼= E ×B E ×B E
π2,3 //
π1,3 //
π1,2
// E ×B E

π2 //

π1
// E

eoo

where e =< 1E ,1E >.

Let A be a C-indexed category. For a morphism p : E → B in C, the category of A-descent data
(relative to p) is defined to be

DesA(p) := AEq(p).

The internal functor p̄ : Eq(p)→ B, given by p̄0 = p and p̄1 = p ·π1 = p ·π2, where B is considered
as a discrete internal category, gives rise to a factorization of the discrete internal functor p : E → B

E

δ ""

p // B

Eq(p)
p̄

<<

where δ is given by δ0 = 1E and δ1 = e. The diagram above induces the diagram

AB

p∗   

Φ
p
A=p̄∗

// DesA(p)

δ ∗
{{

AE

in CAT which commutes up to natural isomorphism.

Definition 1.3.3 The morphism p is called an (effective) A-descent morphism if the comparison
functor Φ

p
A = p̄∗ is full and faithful (an equivalence of categories). The morphism p is an absolutely

effective descent morphism of C if it is an effective A-descent morphism for every C-indexed category
A.

If A is given by a (cloven) fibration F : D→C, (see Example 1.3.1) the category DesA(p) is isomorphic
to the category DesD(p) and the notion of (effective) A-descent coincide with the notion of (effective)
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D-descent.
One of the main results of [34] is the following theorem.

Theorem 1.3.4 [34, Theorem 3.5] A morphism of a category with pullbacks is an absolutely effective
descent morphism if and only if it a split epimorphism.

We end up the section observing how the problem of descent can be moved from a C-indexed category
A to another C-indexed category B.

Remark 1.3.5 Let A : Cop → CAT and B : Cop → CAT be two C-indexed categories, where C is a
category with pullbacks. An indexed functor F : A→ B, in the sense of [37], is given by the following
data:

- for each object D in C, a functor FD : AD → BD,

- for each morphism f : E → D in C, a natural isomorphism τ f : f ∗B ◦FD → FE ◦ f ∗A, such that, for

each pair of composable morphisms C
g−→ E

f−→ D, the diagram

g∗B f ∗BFD

jg, f
B FD

��

g∗Bτ f // g∗BFE f ∗A
τg f ∗A // FCg∗A f ∗A

FC jg, f
A

��
( f g)∗BFD τ f g

// FC( f g)∗A

commutes.

An indexed functor F :A→B is an equivalence of C-indexed categories if each functor FD :AD →BD,
for D ∈ Ob(C) is an equivalence of categories. If A and B are equivalent as C-indexed categories, for
a morphism p : E → B in C, one has that the category DesA(p) of descent data with respect to A is
equivalent to the category DesB(p) of descent data with respect to B. Moreover the diagram

AB

Φ
p
A
��

≃ // BB

Φ
p
B
��

DesA(p) ≃
// DesB(p)

is commutative (up to equivalence). Therefore one can state that, if A and B are equivalent as C-
indexed categories, then a morphism p : E → B in C is an (effective) A-descent morphism if and only
if it is an (effective) B-descent morphism.

In the presence of an equivalence of C-indexed categories, in order to study effective descent morph-
isms in the category C, one can then move from an environment A to a (possibly friendlier) environ-
ment B. This represents another technique to study Descent Theory for which, along the Thesis, we
will see some application.
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1.4 Topological Descent Theory

In this section we present an account of Descent Theory in the category Top of topological spaces
and continuous maps, based on the work in [33] by G. Janelidze and W. Tholen. Let E be a class of
continuous maps of topological spaces, closed under composition with isomorphisms. Let p : E → B
be a continuous map and let (C,γ) be an object of the comma category E(E) (usually called E-bundle
over E). The pullback

E ×B C

π1

��

π2 // C

p·γ
��

E p
// B

is given by
E ×B C = {(x,z) ∈ E ×C : p(x) = p(γ(z))},

equipped with the subspace topology of the topological product E ×C. For each pair of points x,x′ in
E such that p(x) = p(x′), we have canonical embeddings

ix,x′ : γ
−1(x′)→ E ×B C, z 7→ (x,z),

for which we can consider E ×B C as the join of the subspaces ix,x′(γ−1(x′)).
A descent data for (C,γ) (relative to p) is given by a family of continuous maps

ξx,x′ : γ
−1(x)→ γ

−1(x′),

indexed by points x,x′ ∈ E with p(x) = p(x′), and such that

(i) ξx,x = 1γ−1(x), for each x ∈ E;

(ii) ξx,x′′ = ξx′,x′′ ·ξx,x′ , for each x,x′,x′′ ∈ E with p(x) = p(x′) = p(x′′);

(iii) the unique map ξ̄ : E ×B C → E ×B C, which makes all diagrams

γ−1(x)

ix′,x
��

ξx,x′ // γ−1(x′)

ix,x′
��

E ×B C
ξ̄

// E ×B C

commute, is continuous.

Conditions (i) and (ii) represent functorial properties for which we conclude that each ξx,x′ is an
isomorphism (since ξx′,x ·ξx,x′ = 1γ−1(x)). Therefore, since explicitly ξ̄ is defined as

ξ̄ (x′,z) = (x,ξx,x′(z)) with x = γ(z),

also ξ̄ is an isomorphism, where ξ̄−1 = ξ̄ . Condition (iii) represents a gluing property. One can
usually speak of

ξ̄ : E ×B C → E ×B C (1.14)
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as a descent data for an E-bundle (C,γ) over E.
Triples (C,γ, ξ̄ ), where (C,γ) is an E-bundle over E and ξ̄ is a descent data (relative to p) for the
E-bundle (C,γ), form the objects of the category

DesE(p)

of descent data. A morphism h : (C,γ, ξ̄ )→ (C′,γ ′, ξ̄ ′) in DesE(p) is a morphism h : (C,γ)→ (C′,γ ′)

in E(E) such that
h(ξx,x′(z)) = ξ

′
x,x′(h(z)), (1.15)

for each x,x′ ∈ E with p(x) = p(x′) and z ∈ γ−1(x). Condition (1.15) can be equivalently expressed
in terms of ξ̄ , that is

(1E ×B h) · ξ̄ = ξ̄
′ · (1E ×B h).

As in Section 1.1, if the class E is assumed to be stable under pullback along p : E → B, each E-bundle
(A,α) over B gives rise to an E-bundle (E ×B A,pr1) over E, simply pulling back along p:

E ×B A

pr1
��

pr2 // A

α

��
E p

// B.

This defines the pullback functor

p∗ : E(B)→ E(E), (A,α) 7→ (E ×B A,pr1).

Also in this case, if necessary, we will stress the class E denoting p∗ by p∗E. The E-bundle p∗(A,α) =

(E ×B A,pr1) comes equipped with a canonical descent data

φx,x′ : pr−1
1 (x)→ pr−1

1 (x′), (x,w) 7→ (x′,w),

so that φ̄ : E ×B (E ×B A)→ E ×B (E ×B A) is the involution

(x′,(x,w)) 7→ (x,(x′,w)).

We then have the (comparison) functor

Φ
p
E : E(B)→ DesE(p), (A,α) 7→ (E ×B A,pr1, φ̄)

which makes the following diagram commutative

E(B)

p∗ ##

Φ
p
E // DesE(p)

U p
zz

E(E),

(1.16)
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where U p is the obvious forgetful functor.

Definition 1.4.1 The continuous map p is an E-descent map if Φ
p
E is full and faithful, and it is an

effective E-descent map if Φ
p
E is an equivalence of categories.

We remark that in [33] the authors presents Monadic Descent Theory (see Section 1.1) only as a first
step of generalization of the Topological Descent Theory. As we mentioned in the introduction of the
chapter, we present the topological framework only after the description of the problem of descent in
terms of monads but, as shown in [33, Section 2.2], one can see explicitly the bijective correspondence
between the descent data ξ given in (1.1) and the descent data ξ̄ in (1.14). If we start with a descent
data ξ̄ : E ×B C → E ×B C as in (1.14), just define

ξ := π2 · ξ̄

to obtain a descent data in terms of algebra structure as in (1.1). On the other hand, starting with a
descent data ξ : E ×B C →C as in (1.1), define

ξ̄ :=< γ ·π2,ξ >,

the morphism induced by the pair (γ ·π2,ξ ) in the diagram below

E ×B C

γ·π2

&&

ξ

""

ξ̄

%%
E ×B C

π1

��

π2 // C

p·γ
��

E p
// B.

This establishes a bijective correspondence between the descent data ξ and ξ̄ . Therefore the criteria
given in Section 1.1 (such as for instance those involving the Beck’s monadicity criterion, under
further hypotheses on E) can be applied to study descent in Top. In particular, in order to find criteria
for a continuous map p : E → B to be effective for E-descent, one can construct, as in Section 1.1, the
left adjoint

Ψ
p
E : DesE(p)→ E(B)

of the (comparison) functor Φ
p
E. As in (1.5), for an object (C,γ, ξ̄ ) ∈ DesE(p), consider the diagram

E ×B C
ξ

//
π2 // C

p·γ
��

π // Q

δ��
B

(1.17)

where Q is the quotient space obtained by C under the equivalence relation ∼ξ defined by

z ∼ z′ ⇔ p(γ(z)) = p(γ(z′)) and z′ = ξγ(z),γ(z′)(z),
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for z,z′ ∈C. The map π : C → Q is the quotient map defined accordingly and δ : Q → B is the map
induced by the universal property of the quotient space. If E is stable under pullback along p and δ

belongs to E, for each (C,γ, ξ̄ ) ∈ DesE(p), then the class E is called descent stable with respect to p.
In this case the assignment

(C,γ, ξ̄ ) 7→ (Q,δ )

defines the functor Ψ
p
E on objects.

Theorem 1.4.2 [33, Theorem 1.10] Let E be descent stable with respect to p : E → B. Then there is
a pair of adjoint functors

Ψ
p
E ⊣ Φ

p
E : E(B)→ DesE(p) (1.18)

whose units are continuous bijections; this is also true for the counits, provided that p is a surjective
map. Furthermore, in this case

(1) p is an E-descent map if and only if for every object in E(B) the counit is open;

(2) if p is an E-descent map, then the category E(B) is equivalent to the full subcategory of those
(C,γ, ξ̄ ) ∈ DesE(p) for which the map

1E ×B π : E ×B C → E ×B Q, (x,z) 7→ (x, [z]),

with π as in diagram (1.17), is a quotient map; consequently,

(3) p is an effective E-descent map if and only if p is an E-descent map and the quotient condition
of (2) holds for all objects DesE(p).

Recall that in Top the class of regular epimorphisms coincides with the class of quotient maps so
that E-universal regular epimorphisms are also called E-universal quotient maps. For what concerns
E-descent morphisms, the following results holds.

Proposition 1.4.3 [33, Proposition 1.6] Let E be stable under pullback along p : E → B. Then for
the statements

(i) p is an E-universal quotient map,

(ii) p is an E-descent map,

(iii) p∗ reflects isomorphisms,

one has the implications (i)⇒ (ii)⇒ (iii), and they are all equivalent if E is transferable along p.

One says that E is transferable along p if, for every pullback diagram

E ×B A

π1

��

π2 // A

α

��
E p

// B
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with π1 ∈ E and π2 a quotient map, one has α ∈ E. Of course, if E is the class of all continuous
maps, the transferability property is trivially satisfied. This will lead, as we are going to see in the
next section, to a complete characterization of the descent maps. But, in general, the equivalence of
conditions (i), (ii) and (iii) is not true. As pointed out in [33, Section 4.4], if one considers E the
class of local homeomorphisms, a bijective map p : E → B, with E a 2-points discrete space and B
a 2-points indiscrete space fails to be E-descent, as can be seen by a direct inspection, although p∗E
reflects isomorphisms.

1.4.1 (Effective) global-descent maps

In this section we study when E is the class of all continuous maps. We recall that, in this case, one
can speak of (effective) global-descent or simply of (effective) descent, omitting the prefix. We saw
how one can explore monadicity criterion to study the problem of descent. In [32] G. Janelidze and
W. Tholen, although they do not speak about descent, show that monadicity of the pullback functor
p∗ : Top ↓ B → Top ↓ E, relative to a continuous map p : E → B, turns out to be a local property. In
particular, the main result of the paper states that p∗ is monadic for every locally sectionable map p.
Recall that a continuous map p : E → B in Top is locally sectionable or a local-split epimorphism if
for every y ∈ B there is a neighbourhood U in B such that the restriction pU : p−1(U)→U is a split
epimorphism.

Remark 1.4.4 The fact that monadicity for p∗, and so to be effective for descent for p, is a local
property has been investigated also in the more general context of indexed categories. In [34] G.
Janelidze and W. Tholen generalize the notion of locally-split epimorphism to the context of an
arbitrary indexed category A, proving that, using Theorem 1.3.4, it still implies effective A-descent.

The fact that continuous maps p : E → B for which p∗ : Top ↓ B → Top ↓ E reflects isomorphisms
coincide with the universal quotient maps can be immediately deduced by Proposition 1.4.3 but it was
first proved in [32]. Universal quotient maps have been characterized by B.J. Day and G.M. Kelly in
[22] as those continuous maps p : E → B satisfying the following condition:

for every point y ∈ B and for every family (Ui)i∈I of open sets in E which covers the fibre
p−1(y), there are finitely many i1, . . . , in ∈ I with y belonging to the interior of p(Ui1 ∪·· ·∪Uin).

In particular, the following theorem holds.

Theorem 1.4.5 [32, Theorem 1.1] The following conditions are equivalent for a map p : E → B in
Top:

(1) p∗ reflects isomorphisms;

(2) p is an universal quotient map;

(3) p∗ reflects quotient maps;

(4) for every point y ∈ B and for every family (Ui)i∈I of open sets in E which covers the fibre p−1(y),
there are finitely many i1, . . . , in ∈ I with y belonging to the interior of p(Ui1 ∪·· ·∪Uin).
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Therefore, by Corollary 1.1.5, descent morphisms in Top are characterized as those continuous maps
satisfying condition (4) of the theorem above. For what concerns the effective descent morphisms, a
complete characterization is given in [47] by J. Reiterman and W. Tholen.

Theorem 1.4.6 [47, Theorem 1.5] A surjective map p : E →B in Top is an effective descent morphism
of Top if and only if the following condition condition holds:

for every family of ultrafilters yi converging to yi ∈ B, i ∈ I, if the yi converge to y with respect
to an ultrafilter i on I, then there is an ultrafilter x on E converging to a point x ∈ p−1(y) such
that ⋃

i∈U

Ai ∈ x

for all U ∈ i, with Ai = p−1(yi)∩ adh(p−1(yi)) for i ∈ I, where adh(p−1(yi)) is the set of
adherence points of the filter base p−1(yi).

The technique they used to get such a characterization is precisely the one given in Corollary 1.1.7
2: embed Top into the locally cartesian closed category PsTop of pseudo-topological spaces, where
effective descent morphisms are simply quotient maps, and reinterpret the characterization in topo-
logical terms using filter theory. A surjective map p : E → B in PsTop satisfying the condition of
Theorem 1.4.6 is called a *-quotient map. The following classes of maps are properly contained in the
class of effective global-descent morphisms:

- open surjections (see [42] and [51]);

- proper surjections (see [53] and [47]);

- locally sectionable maps (see [32] and [34]).

Maps such as surjective local homeomorphisms and covering maps are locally sectionable and,
therefore, effective for descent. In Chapter 3 we will see another description, always involving
convergence of ultrafilters, of the effective descent maps in Top, given by M.M. Clementino and D.
Hofmann in [9]. In [47] is also given an example of an universal quotient map in Top (therefore a
descent morphism) which is not effective for descent. Anyway, for these kind of examples, it turned
out to be useful working with finite topological spaces, as we will see soon in Section 1.4.3.

1.4.2 (Effective) étale-descent maps

When E is the class of étale maps (i.e., local homeomorphisms) one usually speaks of (effective)
étale-descent. In [33] G. Janelidze and W. Tholen present criteria concerning the investigation of
(effective) étale-descent morphisms. Let p : E → B be a continuous map of topological spaces and let
pO : O(B)→ O(E) be its corresponding monotone map of (complete) lattices O(B) and O(E) given
by the open sets of B and E, respectively. The map p can be factored as

E
p̄−→ p(E) ↪→ B,

where p̄ is the restriction of p to its image and p(E) ↪→ B is the subspace embedding.
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Proposition 1.4.7 [33, Proposition 4.3] A map p : E → B is an (effective) étale-descent map if and
only if

(i) p is a descent map with respect to the class of open-subspace embeddings;

(ii) p̄ is an (effective) étale-descent map.

Moreover, if pO : O(B)→ O(E) is bijective, then p is an effective étale-descent map.

Condition (i) is equivalent to the fact that pO : O(B)→ O(E) is injective, as proved in [33, Proposition
4.2] where the effective descent maps with respect to the class of open embeddings (i.e., effective open-
descent maps) are proved to be exactly the quotient maps. Therefore one can restrict the investigation
to the case when p is surjective. A characterization of étale-descent maps is given in [33] in terms of
étale systems.

Definition 1.4.8 An étale system for an open subset U of a space B is a family X = (Xu,v)(u,v)∈U×U

of open subsets of U such that, for all u,v,w ∈U ,

1. u ∈ Xu,u,

2. Xu,v = Xv,u,

3. Xu,v ∩Xv,w ⊆ Xu,w.

A subset V ⊆U is X-admissible if V = {v ∈ Y : v ∈ Xu,v} for some open subset Y ⊆ Xu,u with u ∈U .

Theorem 1.4.9 [33, Theorem 4.6] A surjective map p : E → B in Top is an étale-descent map if and
only if for every open subspace U of B and every étale system X for U, all X-admissible subsets are
open in B whenever the inverse image under p of all these sets are open in E.

In [49] M. Sobral presents developments concerning the study of the effective étale-descent maps in
Top. Let p : E → B be a continuous map of topological spaces. Consider the following commutative
diagram

Top ↓ B

p∗ %%

Φp
⊥ // Des(p)∼= (Top ↓ E)T

U p
vv

Ψp

ss

Top ↓ E

E(B)

p∗E %%

OO

Φ
p
E // DesE(p)

OO

U p
Evv

E(E)

OO

where the vertical arrows are full embeddings, the top-side and the botton-side triangles are diagrams
(1.16) with respect to the class of all continuous maps and local homeomorphisms, respectively, T is
the monad induced by the adjunction

Top ↓ B ⊥
p∗
// Top ↓ E,

p!oo
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where p! is the left adjoint of p∗ given by the composition with p from the left, and Ψp is the left
adjoint of Φp as in (1.18).

Proposition 1.4.10 [49, Proposition 3.4] The surjective map p is effective for étale-descent if and
only if the adjunction Ψp ⊣ Φp : Top ↓ B → Des(p) restricts to an equivalence between E(B) and
DesE(p).

As a consequence we have the following result.

Theorem 1.4.11 [49, Theorem 3.5] A surjective morphism p is effective étale-descent if and only if

(i) p is an étale-universal regular epimorphism;

(ii) for each descent situation defining Q

E ×B C
ξ

//
π2 // C

p·γ
��

π // Q

δ��
B

δ is a local homeomorphism if γ is a local homeomorphism.

A complete characterization in Top of the effective étale-descent maps is still an open problem, at
least for continuous maps between arbitrary topological spaces. But, if one restricts to the finite case,
a complete characterization is given and this is what we are going to see in the next section.

1.4.3 The finite case

The restriction to the case where topological spaces are finite, investigated in [30] and [31] by G.
Janelidze and M. Sobral, show how finite instances, expressed in the language of finite (pre)orders,
motivate the results of Topological Descent Theory. Thanks to the isomorphism

FinTop ∼= FinOrd (1.19)

between the category FinTop, of finite topological spaces and continuous maps, and the category
FinOrd, of finite (pre)orders and monotone maps, several kinds of continuous maps can be re-written
in terms of relations of (pre)ordered sets. For every subset A of a finite topological space X , there is a
smallest open set ↓ A containing A. Moreover,

↓ A =
⋃
x∈A

↓ x,

where ↓ x =↓ {x}. Writing
y → x ⇔ y ∈↓ x
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one obtains a reflexive and transitive relation, which establishes then the isomorphism (1.19). As we
mentioned before, this allows for a description in terms of convergence of maps such as open maps

X

f
��

∃x1❴

��

// x0❴

��
Y y1 // f (x0)

(1.20)

(for every x0 ∈ X and y1 → f (x0) in Y , there exists x1 ∈ X with x1 → x0 and f (x1) = y1), proper maps

X

f
��

x1❴

��

// ∃x0❴

��
Y f (x1) // y0

(1.21)

(for every x1 ∈ X and f (x1)→ y0 in Y , there exists x0 ∈ X with x1 → x0 and f (x0) = y0), étale maps

X

f
��

∃!x1❴

��

// x0❴

��
Y y1 // f (x0)

(1.22)

(for every x0 ∈ X and y1 → f (x0) in Y , there exists a unique x1 ∈ X with x1 → x0 and f (x1) = y1), and
regular epimorphisms (i.e., quotient maps)

x′n

��

y1

��

xn−1 // x′n−1

��
xn−2 // x′n−2

�� //

�� // x′1

��
x0 y0

(1.23)

(if for each y1 → y0 in B there exists a (finite) sequence in X as above with f (x′n) = y1, f (x0) = y0,
f (xi) = f (x′i), for i = 1, . . . ,n−1, and x′i → xi−1, for i = 1, . . . ,n, in X). Also descent morphisms and
effective descent morphisms, whose characterizations in Top are given in Theorem 1.4.5 and Theorem
1.4.6, respectively, have a description in terms of relations between points.
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Proposition 1.4.12 [30, Proposition 2.5] For a morphism p : E → B in FinTop, the following condi-
tions are equivalent:

(i) p is a descent map;

(ii) p is a pullback stable regular epimorphism;

(iii) for every y1 → y0 in B there exists x1 → x0 in E with p(xi) = yi, for i = 0,1,

E

p
��

x1❴

��

// x0❴

��
B y1 // y0.

Proposition 1.4.13 [30, Proposition 3.4] For a morphism p : E → B in FinTop, the following condi-
tions are equivalent:

(i) p is an effective descent morphism;

(ii) for every y2 → y1 → y0 in B there exists x2 → x1 → x0 in E with p(xi) = yi, for i = 0,1,2,

E

p
��

x2❴

��

// x1❴

��

// x0❴

��
B y2 // y1 // y0.

For what concerns the étale case, as we mentioned, a complete characterization of the effective
étale-descent maps in Top is not given. But, working with (pre)orders, it has been possible to get
such a characterization, holding then for finite topological spaces. Let p : E → B a monotone map of
(pre)ordered sets and denote by E the class of étale morphisms in Ord. The characterization is given
in two steps, each one represented by changing environment

E(B)

Φ
p
E
��

p∗ // E(E)

≃(1)

SetBop

kp

��

Setpop
// SetEop

≃(2)

SetBop

Setϕop

��

Setpop
// SetEop

DesE(p)
U p

::

X
up

;;

SetZ(Eq(p))op
Setψop

99 (1.24)

in an equivalent way. The first one has been done in [30] by G. Janelidze and M. Sobral. The
passage from the standard diagram in Descent Theory, where the comparison functor Φ

p
E and the

category of descent data DesE(p) are involved, to the second diagram is given by the equivalence
of Ord-indexed categories E(E), E(B) and SetEop

, SetBop
, respectively. Accordingly, by Remark

1.3.5, the pullback functor p∗ : E(B)→ E(E) can be identified (up to equivalence) with the functor

Setpop
: SetBop → SetEop

, which sends a functor Bop → Set to its composite Eop pop

−−→ Bop → Set with
pop. The category DesE(p) is then identified with the category X of pairs (X ,ξ ) where X : Eop → Set
is a functor and ξ is given by a family of maps ξx,x′ : X(x)→ X(x′), defined for x,x′ ∈ E such that
p(x) = p(x′), and satisfying the following conditions:
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- ξx,x = 1X(x), for each x ∈ E;

- ξx′,x′′ ·ξx,x′ = ξx,x′′ , for each x,x′,x′′ ∈ E such that p(x) = p(x′) = p(x′′);

- ξx1,x′1
·X(x1,x0) = X(x′1,x

′
0) ·ξx0,x′0

, for each x0,x′0,x1,x′1 ∈ E such that p(x0) = p(x′0), p(x1) =

p(x′1) and x1 → x0, x′1 → x′0 in E.

The forgetful functor U p is again a functor up forgetting the structure while kp is defined by kp(F) =

(F · pop,1), where 1 is the family of identity morphisms 1x,x′ of F(p(x)) = F(p(x′)) for all x,x′ ∈ E
with p(x) = p(x′). Therefore, by step ≃(1), one can say that the monotone map p is an effective
étale-descent morphism if and only if the functor kp is an equivalence of categories.
Step ≃(2) is given in [31], where G. Janelidze and M. Sobral complete the characterization. It consists
of the construction of the so-called category of zigzags Z(Eq(p)), where Eq(p) is the internal category
in Ord given by the kernel pair of p and Z : DoubleCat → Cat is the left adjoint of the functor
S : Cat → DoubleCat which sends each category C to the double category of commutative squares in
C. The category Z(Eq(p)) is constructed as follows. Let:

- Eq(p)0 be the discrete category with objects as in Eq(p);

- Eq(p)h and Eq(p)v be categories with the same objects and the morphisms to be, respectively,
the horizontal and the vertical arrows of Eq(p);

- Eq(p)+ the pushout in Cat of the embeddings Eq(p)0 → Eq(p)h and Eq(p)0 → Eq(p)v;

then, for every square in Eq(p)
x1

��

// x′1

��
x0 // x′0

the pairs
x1 // x′1

��

x1

��
x′0 x0 // x′0

become morphisms in Eq(p)+ from x1 to x′0, and one constructs Z(Eq(p)) as the quotient category
Eq(p)+/∼ under the smallest equivalence relation ∼ for which

x1 // x′1

��
∼

x1

��
x′0 x0 // x′0,
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for all such pairs. Observe that a morphism in Z(Eq(p)) from a point xn to a point x′0 is then given by
an equivalent class of a morphism in Eq(p)+, say an n-zigzag z

x′n

��
xn−1 // x′n−1

��
xn−2 // x′n−2

�� //

�� // x′1

��
x0

where p(xi) = p(x′i) for i = 1, . . . ,n− 1, and x′i → xi−1 in E for i = 1, . . . ,n. The notation for such
an n-zigzag as above will be z = (x0,x′0) · · ·(x1,x′1). The equivariant map p : E → B can be then
factorized in Cat through the category Z(Eq(p))

E

ψ $$

p // B

Z(Eq(p))
ϕ

:: (1.25)

where ψ is defined as the identity on objects and ψ(x1 → x0) = [x1 → x0] on morphisms, while ϕ on
objects acts as p and the image of an equivalent class of an n-zigzag z = (x0,x′0) · · ·(xn,x′n) via ϕ is
ϕ([z]) = p(xn)→ p(x′n−1)→ ··· → p(x′0) = p(xn)→ p(x′0). Thanks to the adjoint situation

Cat ⊥
S
// DoubleCat

Zoo
(1.26)

an object (X ,ξ ) of DesE(p), i.e., a double functor from Eq(p) to S(Set), is the same as a functor from
Z(Eq(p)) to Set, so that the equivalence ≃(2) holds.

Theorem 1.4.14 [31, Theorem 1.2] The monotone map p : E → B is an effective étale-descent
morphism if and only if the functor ϕ : Z(Eq(p))→ B is an equivalence of categories.

Corollary 1.4.15 [31, Corollary 1.3] The monotone map p : E → B is an effective étale-descent
morphisms if and only if the following conditions hold:

(i) the map p : E → p(E) induced by p is a quotient map;

(ii) Z(Eq(p)) is a (pre)ordered set;
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(iii) p : E → B is essentially surjective on objects, i.e., for every y ∈ B there exists an element x ∈ E
such that p(x)→ y and y → p(x).

Remarks 1.4.16

- [31, Proposition 2.1] For every two elements x1 and x0 in E, every two 1-zigzags x1 → x0 are
equivalent;

- [31, Corollary 2.2] If every 2-zigzag is equivalent to a 1-zigzag, then Z(Eq(p)) is a (pre)ordered
set.

As observed in [30], the (pre)order relation on a finite topological space represents convergence and
this is the key ingredient to use while dealing with the infinite case. In fact, writing x→ x when a filter
x converges to a point x, in the finite case one has that x→ x if and only if y → x for every y belonging
to the intersection of the elements of x. As we will see in the next chapter, the passage from topology
in terms of open sets to topology in terms of (ultra)filters convergence determines an isomorphism of
categories which extends the one given in the finite case by (1.19). Moreover, in Chapters 2 and 3, we
are going to see how this translation of the pointwise convergence on a (pre)order set to the one in
terms of (ultra)filters on a (infinite) topological space is reflected in the description of several maps,
also for what concerns (effective) descent morphisms.

1.4.4 (Effective) global-descent versus (effective) étale-descent

What is the relations between the (effective) descent morphisms and the (effective) étale-descent
morphisms in Top?

Theorem 1.4.17 [33, Theorem 4.7] Every effective global-descent map is an effective étale-descent
map.

Of course this includes the case where topological spaces are finite. Anyway, thanks to characteriza-
tions of Proposition 1.4.13 and Corollary 1.4.15, a simple direct proof in the finite case can be given.

Proposition 1.4.18 [31, Proposition 2.3] If p is an effective descent map, then every 2-zigzag is
equivalent to a 1-zigzag.

The proposition above, with Remark 1.4.16, gives immediately that every effective descent map
between finite topological spaces is effective for étale-descent. The converse of Theorem 1.4.17 is not
true, since there are non-surjective effective étale-descent maps as it can be deduced by Proposition
1.4.7. A concrete counter-example, even in the surjective case, has been given by M. Sobral in [49],
involving precisely finite topological spaces. It actually represented the starting point of the study of
Descent Theory in Top restricted to the finite case.

Proposition 1.4.19 [49, Proposition 3.6] The class of effective global-descent maps is strictly con-
tained in the class of surjective effective étale-descent maps.
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Take
E = ({x,x′,x1,x2},{ /0,E,{x,x1},{x′,x2}}), B = ({y,y1,y2},{ /0,B}),

and p : E → B be the continuous map defined by p(x) = p(x′) = y and p(xi) = yi, for i = 1,2. To
prove that p is an effective étale-descent map one uses Theorem 1.4.11. The map p is an étale-regular
epimorphism, since it is, in particular, an universal quotient map. Moreover, the transferability
property given by condition (ii) in Theorem 1.4.11 is satisfied. Anyway, working directly with
relations between points, a list of interesting examples are given in [30].

Example 1.4.20 [30, Example 8.2] A simple inspection using Proposition 1.4.12, Proposition 1.4.13
and Corollary 1.4.15 reveals that the following map is a descent morphism but neither effective for
descent nor effective for étale-descent. This is precisely the finite version of the original counter-
example given in [47].

E

p
��

B

x20 // x10 x00

x21

55

x11 // x01

❴

��

y2 66// y1 // y0

Example 1.4.21 [30, Example 8.7] We already know by Proposition 1.4.19 that there are effective
étale-descent maps not effective for descent, even in the surjective case. The following example gives
a morphism effective for étale-descent but not even a descent map, as it can be deduced by a quick
inspection using Proposition 1.4.12 and Corollary 1.4.15.

E

p
��

B

x2
// x10oo

x11
// x0oo

❴

��

y2 66// y1oo // y0ooss

Summing up all the material studied so far, in Top the following picture of implications (taken from
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[33]) holds.

effective global-descent

⇓

⇒ effective étale-descent

⇓global-descent ⇔ universal quotient

⇓

quotient ⇒ étale-descent

(1.27)

The fact quotient maps are étale-descent has been proved in [33] as a corollary of [33, Proposition
4.5] where a criterion for a surjective map in Top to be E-descent is given for

{open-subspace embeddings} ⊆ E⊆ {local homeomorphisms}.

The one-direction implications are strict, as mostly suggested by Example 1.4.20 and Example 1.4.21.
In fact in Example 1.4.20 a descent map not effective for descent is given. Moreover, being an
universal quotient map, it is also étale-descent but it is not an effective étale-descent morphism. The
map in Example 1.4.21 is an effective étale-descent map not effective for descent. Also it represents a
quotient map that is not an universal quotient map. It remains to exhibit an example of an étale-descent
map not quotient. Of course in the non-surjective case is easy since there are non-surjective effective
étale-descent maps. But, as suggested in [33], also in the surjective case we have an example. Take
the identity map of a 2-elements set where the domain is equipped with the Sierpiński topology while
the codomain with the indiscrete topology. It is étale-descent but it fails to be a quotient map.

1.5 The categorical Van Kampen Theorem

We end up the first chapter with a section dedicated to the Van Kampen Theorem since its categorical
version, given in [5] by R. Brown and G. Janelidze, shows a strict connection with Descent Theory. The
classical Van Kampen Theorem is a tool to compute the fundamental group πX of a given topological
space X . Let X be a topological space and let X1 and X2 two open and path-connected subspaces of X
such that X1 ∪X2 = X and X1 ∩X2 is non-empty and path-connected itself. Let x ∈ X1 ∩X2 be a fixed
base point. The following square of inclusions

(X1 ∩X2,x)

i2
��

i1 // (X1,x)

j1
��

(X2,x) j2
// (X ,x)

(1.28)

is a pushout in the category Top∗ of pointed topological spaces and continuous maps preserving the
base point. The classical Van Kampen Theorem asserts that the canonical morphism

k : π(X1,x)+π(X1∩X2,x) π(X2,x)→ π(X ,x) (1.29)
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induced by the universal property of the pushout

π(X1 ∩X2,x)

πi2
��

πi1 // π(X1,x)
π j1

��

τ1

��
π(X2,x)

π j2
22

τ2
// π(X1,x)+π(X1∩X2,x) π(X2,x)

k

))
π(X ,x)

is an isomorphism, i.e., the fundamental group of X is the pushout in category Grp of groups and
group homomorphisms of the fundamental groups of X1 and X2 along X1 ∩X2. In the diagram above
πi1,πi2,π j1 and π j2 are the morphisms induced by the inclusions i1, i2, j1 and j2, respectively, and
τ1 and τ2 are the canonical injections of the pushout. In other words, the fundamental group functor
π : Top∗ → Grp preserves the pushout (1.28). A first generalization of it has been given in [4] by
R. Brown where the fact of its computation in terms of a fixed base point, for which one usually
restricts to path-connected spaces, has been replaced by considering, more generally, the fundamental
groupoid ΠX of the space X , so that the hypotheses about path-connectedness can be avoided. In
particular, let X be a topological space and let X1 and X2 be two subspaces of X such the join of their
interiors covers X . The following square of inclusions

X1 ∩X2

i2
��

i1 // X1

j1
��

X2 j2
// X

(1.30)

is a pushout in Top. A set A is called representative in X if A meets each path-component of X .

Theorem 1.5.1 [4, 6.7.2] If A is representative in X1,X2 and X1 ∩X2, then the square

Π(X1 ∩X2,A)

Πi2
��

Πi1 // Π(X1,A)

Π j1
��

Π(X2,A)
Π j2

// Π(X ,A)

induced by (1.30) is a pushout in the category Grpd of groupoids and groupoid homomorphisms.

If A = X it simply says that the fundamental groupoid functor Π : Top → Grpd preserves the pushout
(1.30).
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1.5.1 General settings

Let C be a category with pullbacks and let E be a class of morphisms in C which contains all
isomorphisms and is pullback stable. For a commutative diagram in C of the form

X0

f2
��

f1 // X1

g1

��
X2 g2

// X

(1.31)

one defines
E(X1)×E(X0)E(X2)

to be the category of triples ((A1,α1),(A2,α2),φ) where (A1,α1) is an object in E(X1), (A2,α2) an
object in E(X2) and φ : f ∗1 (A1,α1) → f ∗2 (A2,α2) is an isomorphism. Since the diagram (1.31) is
commutative the pair (g1,g2) induces a functor

Kg1,g2 : E(X)→ E(X1)×E(X0)E(X2)

described in the following way: for an object h : Y → X in E(X) one considers the pullbacks of h
along g1 and g2, respectively

X1 ×X Y

prX1
1
��

prX1
2 // X

h
��

X2 ×X Y

prX2
1
��

prX2
2 // Y

h
��

X1 g1
// X X2 g2

// X

so that Kg1,g2(Y,h) = ((X1 ×X Y,prX1
1 ),(X2 ×X Y,prX2

1 ),φ), where

φ : f ∗1 (X1 ×X Y,prX1
1 )→ f ∗2 (X2 ×X Y,prX2

1 )

is the isomorphism induced by the universal property of pullbacks.

Definition 1.5.2 One says that the class E satisfies the Van Kampen Theorem for a given commutative
diagram (1.31) if the functor Kg1,g2 is an equivalence of categories.

The classical formulation of the Van Kampen Theorem is covered by the definition above, in fact, as
M. Brown proved in [4], if the space X is Hausdorff, locally connected and semi-locally 1-connected,
then there is an equivalence of categories

Cov(X)≃ SetΠX

where Cov(X) is the comma category whose objects are coverings over X and SetΠX is the presheaf
category over the fundamental groupoid ΠX . Therefore (1.29) can be generalized and formulated in
terms of coverings, that is,

Cov(X)≃ Cov(X1)×Cov(X1∩X2) Cov(X2).
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Hence one can state that the class of coverings satisfies the Van Kampen Theorem.

1.5.2 The general Van Kampen Theorem

To give a general formulation of the Van Kampen Theorem, and therefore explore its strict connection
with Descent Theory, one needs to restrict the attention to lextensive categories. A category C with
finite coproducts is called extensive if, for each pair of objects X1,X2 in C, the canonical functor

+ : C ↓ X1 ×C ↓ X2 → C ↓ (X1 +X2)

is an equivalence of categories. An equivalent formulation of extensive categories can be found in [6].

Proposition 1.5.3 [6, Proposition 2.14] A category with finite coproducts and pullbacks along their
injections is extensive if and only if the coproducts are universal and disjoint.

Recall that, in a category with finite coproducts and pullbacks along their injections, a coproduct
diagram

X1 // X1 +X2 X2oo

is said to be universal if pulling it back along any morphism into X1 +X2 gives a coproduct diagram,
while it is said to be disjoint if the pullback of the injections of a binary coproduct is the initial object,
and all injections are monic. Roughly speaking, an extensive category is a category where coproducts
exist and are well-behaved. An extensive category with all finite limits is called lextensive.

Lemma 1.5.4 [5, Lemma 3.1] Let

X0

f2
��

f1 // X1

g1

��
X2 g2

// X

be a pullback diagram in a lextensive category C, in which g1 and g2 (and so also f1 and f2) are
monomorphisms, and let E be a class of morphisms in C which is pullback stable and contains all
isomorphisms. Let p : X1 +X2 → X denote the morphism induced by g1 and g2. Then there exists an
equivalence of categories between E(X1)×E(X0)E(X2) and DesE(p) such that the diagram

E(X1)×E(X0)E(X2)
≃ // DesE(p)

E(X)

Kg1,g2

gg

Φ
p
E

::

commutes (up to isomorphism).
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Theorem 1.5.5 [5, Proposition 3.2] Let

X0

f2
��

f1 // X1

g1

��
X2 g2

// X

be a pullback diagram in a lextensive category C in which g1 and g2 are monomorphisms. Let E be a
class of morphisms in C which is pullback stable and contains all isomorphisms. Then the following
are equivalent:

(i) E satisfies the Van Kampen Theorem for the pullback diagram above;

(ii) the morphism X1 +X2 → X induced by g1 and g2 is an effective E-descent morphism.

Note that if E is the class of all morphisms, then the pullback above is also a pushout. The theorem
shows that the solution for a Van Kampen Theorem can be pursued studying Descent Theory. Moreover,
one can now study the Van Kampen Theorem for different class of morphisms, as it has been done for
example in [8] by M.M. Clementino, where a Van Kampen Theorem in Top with respect to the class
of all continuous maps is given.

Theorem 1.5.6 [8, Corollary 2] Given a pullback diagram in Top

X0

f2
��

f1 // X1

g1

��
X2 g2

// X

where g1 and g2 are embeddings, then the class E of all continuous maps satisfies the Van Kampen
Theorem if and only if X −X2 ⊆ X1 and X −X1 ⊆ X2.



Chapter 2

Lax algebras

As proved by E. Manes in [39], the category CHaus of compact and Hausdorff spaces is equivalent
to the category of Eilenberg-Moore algebras over Set, i.e., the forgetful functor CHaus → Set is
monadic. Therefore compact Hausdorff spaces reveal an algebraic nature described in terms of
ultrafilter convergence, i.e., a compact Hausdorf space X can be identified (up to isomorphism) with
the (Eilenberg-Moore algebra) (X ,a), where X is its underlying set and

a : UX → X (2.1)

is the map assigning to each ultrafilter x on X (x ∈UX) its limit point (recall that a topological space
X is compact Hausdorff if and only if each ultrafilter on X converges to a unique point). The reflexive
and transitive (algebras) properties can be expressed by the following commutative diagram

X

1X   

ηX // UX

a
��

U2XUaoo

µX

��
X UXa
oo

where ηX : X →UX and µX : U2X →UX are the maps defined, respectively, by

x 7→ {A ⊆ X : x ∈ A}, X 7→
⋃

A ∈X

⋂
x∈A

x,

so that A ⊆ X belongs to µX(X) if and only if A♯ = {x ∈ UX |A ∈ x} ∈ X. They represent the
components of the natural transformations η : 1Set → U and µ : U2 → U of the ultrafilter monad
U= (U,µ,η). For a general topological space X convergence of ultrafilters defines no longer a map
(2.1) but a relation a : UX−→7 X , since an ultrafilter on an arbitrary topological space might not be
convergent and, even if it is, the set of its limit points might have more the one element. As M. Barr

35
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showed in [1], relaxing the axioms of reflexivity and transitivity

X

1X

≤

  

ηX // UX
❴a
��

U2X✤Uaoo

µX

��
X

≤

UX ,✤
a

oo

(2.2)

and considering a suitable extension U of the ultrafilter functor U : Set → Set to the category Rel
of sets and relations, one is able to describe any topological space as a set X equipped with a (lax)
algebraic structure a : UX−→7 X . The concept of lax algebras comes from this idea of relaxing the
axioms of Eilenberg-Moore algebras. This presentation of topological spaces as lax Eilenberg-Moore
algebras of the ultrafilter monad, together with description of metric spaces as small categories
enriched over the complete (non-negative) half-real line, given by F.W. Lawvere in [35], represent the
two principal roots of the theory developed in [10] by M.M. Clementino and D. Hofmann, where Set
and Rel are replaced by different categories, and in [21] by M.M. Clementino and W. Tholen, where
relations are replaced by more general V-relations, for V a monoidal closed category. Furthermore,
in [48] G. Seal considers also a context with a different notion of extension. All these abstract
constructions allow for a description of many other objects in mathematics such as, for instance,
(pre)metric spaces, closure spaces and approach spaces. They are the subject of the area so-called
Monoidal Topology, whose main reference can be now considered the book [29]. Along this chapter
we follow its settings, in particular for what concerns the definition of lax extension and the choice of
V.

2.1 Basic concepts

Definition 2.1.1 A quantale V is a complete lattice V which carries a monoid structure with neutral
element k and where the binary operation, denoted as a tensor ⊗, distributes over suprema:

u⊗
∨
i∈I

vi =
∨
i∈I

(u⊗ vi),
∨
i∈I

ui ⊗ v =
∨
i∈I

(ui ⊗ v),

for all u,v ∈V and for all families (ui)i∈I,(vi)i∈I of elements in V . A quantale V is denoted by a triple
V = (V,⊗,k).
A lax homomorphism of quantales f : V → V′ is a monotone map f : V → V ′ of complete lattices
such that

f (u)⊗V′ f (v)≤ f (u⊗V v), kV′ ≤ f (kV),

for all u,v ∈ V.

Monotonicity of f means, equivalently, lax preservation of joins, i.e.,

∨
f (A)≤ f (

∨
A)

for all A ⊆ V.

Example 2.1.2
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(1) 2 = ({⊥,⊤},∧,⊤). It is the two-chain given by values true and false, where k =⊤ is the top
element and the tensor ⊗ is given by the meet ∧.

(2) P = (P(M),⊗,k). Given a monoid (M, ·,1M), the complete lattice (P(M),⊆) with tensor
product ⊗=× defined by

A×B = {x · y : x ∈ A,y ∈ B}

for A,B ⊆ M, and unit k = {1M}, defines a quantale.

(3) R+ = ([0,∞]op,+,0). The complete half-real line [0,∞] is a complete lattice with its natural
order ≤. We reverse it so that the top element ⊤ is 0 and the bottom ⊥ is ∞. The tensor ⊗ is
given by the addition extended via

u+∞ = ∞ = ∞+u,

for all u ∈ [0,∞].

(4) R∗ = ([0,∞]op,∗,1). In (3) addition can be replaced by multiplication extended via

u∗∞ = ∞ = ∞∗u,

for all u ∈ [0,∞].

(5) Rmax = ([0,∞]op,max,0). In this case the complete half-real line [0,∞], with the reverse order
≥, is considered equipped with the tensor given by its meet operation which is the max with
respect to the natural order ≤ of [0,∞].

(6) I∗ = ([0,1],∗,1). The unit interval [0,1] is a complete lattice with the usual order ≤. It is
isomorphic to [0,∞] via the map

[0,1]→ [0,∞], u 7→ − ln(u),

where − ln(0) = ∞. Under this isomorphism, the addition + on [0,∞] corresponds to the
multiplication ∗ on [0,1].

(7) Iinf = ([0,1], inf,1). The unit interval [0,1] can be equipped with the tensor ⊗ = ∧ which is
given by the infimum.

(8) I⊕ = ([0,1],⊕,1). In this case the tensor is given by the Łukasiewicz tensor ⊕ defined by

u⊕ v = max(0,u+ v−1),

for u,v ∈ [0,1].

Quantale operations on [0,1] are usually called t-norms. It is shown in [24] and [43] that every
continuous t-norm ⊗ : [0,1]× [0,1] → [0,1] with neutral element 1 is a combination of the three
operations on [0,1] described above in (6), (7) and (8).
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A quantale V = (V,⊗,k) is said to be:

- trivial, if |V |= 1 or, equivalently, ⊥= k;

- commutative, if it is commutative as a monoid i.e., u⊗ v = v⊗u, for all u,v ∈ V;

- integral, if the top element ⊤ coincides with the neutral element k;

- totally ordered, if the complete lattice V is totally ordered, i.e., u ≤ v or v ≤ u, for all u,v ∈V ;

- idempotent, if each element is idempotent, i.e., u⊗u = u, for all u ∈ V;

A frame V is a complete lattice which satisfies the infinite distributive law

u∧
∨
i∈I

vi =
∨
i∈I

(u∧ vi),

for all u ∈V and all families (vi)i∈I of elements in V . Every frame becomes a commutative quantale
when we put ⊗= ∧ and k =⊤. In fact, since for a commutative, integral and idempotent quantale
V = (V,⊗,k) one has ⊗= ∧ (see [29, Exercise II.1.L]), one can identify frames as those commutative
quantales which are integral and idempotent. In Example 2.1.2, (1), (5) and (7) are totally ordered
frames, while (2) does not have any property mentioned above. It is commutative if the monoid M
is commutative and it is integral when M = 1, the trivial monoid. The quantales R+, I∗ and I⊕ are
commutative, integral and totally ordered but they are not idempotent. The quantale R∗ in (4) is
commutative and totally ordered but it is neither integral nor idempotent.

2.1.1 Completely distributive quantales

Let V be an ordered set, that is, a set equipped with a reflexive and transitive relation. For an element
u in V ,

↓ u = {v ∈V : v ≤ u}

is called the down-set of u in V . For a subset A of V , ↓ A =
⋃

u∈A ↓ u is the down-closure of A in V .
We say that A ⊆V is down-closed if ↓ A = A. Denoting by DnV the set

Dn = {A ⊆V :↓ A = A}

of down-closed sets of V , there is a full and faithful morphism

↓: V → DnV, u 7→↓ u (2.3)

where DnV is ordered by the inclusion. Another way to say that the ordered set V is complete is that
the morphism (2.3) is right adjoint; equivalently, there is a morphism

∨
: DnV →V (2.4)

such that
∀u ∈V (

∨
S ≤ u ⇐⇒ S ⊆↓ u),
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for every S ∈ DnV .

Definition 2.1.3 A complete lattice V is called completely distributive (cd) if for each A ⊆ P(V )

∧
{
∨

A : A ∈ A } ∼=
∨
{
∧

B : B ∈ A ♯}

where A ♯ is the set of all subsets of the complete lattice V that have non-empty intersection with all
members of A .

Definition 2.1.4 A complete lattice V is called constructively completely distributive (ccd) if the left
adjoint (2.4) has itself a left adjoint, i.e., if there is a morphism

⇓: V → DnV

such that
⇓ u ⊆ S ⇐⇒ u ≤

∨
S,

for all u ∈V , S ∈ DnV .

As it has been shown in [45], the two notions of completely distributive and constructively completely
distributive coincide if the Axiom of Choice (AC) is assumed.

Proposition 2.1.5 [45, Theorem 6.2]

(AC) ⇐⇒ ((cd) ⇔ (ccd)).

For v ∈⇓ u, we write v ≪ u and we read v is totally below u. We have

v ≪ u ⇐⇒ ∀S ∈ DnV (u ≤
∨

S ⇒ v ∈ S)

or, equivalently,
v ≪ u ⇐⇒ ∀A ⊆V (u ≤

∨
A ⇒∃w ∈ A : v ≤ w).

The following properties follow:

1. v ≪ u ⇒ v ≤ u;

2. v ≤ v′ ≪ u′ ≤ u ⇒ v ≪ u;

3. v ≪
∨

A ⇒∃a ∈ A : v ≪ a;

4. u =
∨
{v ∈V : v ≪ u};

5. u ≪
∨

S ⇒ u ∈ S, for all S ∈ DnV .

A quantale V = (V,⊗,k) is said to be (constructively) completely distributive ((c)cd) if the complete
lattice V is.

Proposition 2.1.6 [29, Proposition II.1.11.1] If the complete lattice V allows for some relations @
satisfying
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(1) u @ v ≤ w ⇒ u @ w, for all u,v and w in V ;

(2) u ≤
∨
{v ∈V : v @ u,v @-atomic },

then V is ccd.

Recall that an element v ∈ V is @-atomic if for all A ⊆ V , v @
∨

A ⇒ ∃w ∈ A with v ≤ w. All the
quantales given in Example 2.1.2 are ccd. For the two-chain 2, the totally below relation is given
by (v ≪ u ⇔ u =⊤). For quantales with complete lattices [0,∞]op and [0,1], (v ≪ u ⇔ v > u) and
(v ≪ u ⇔ v < u), respectively. For the lattice P(M) one has L ≪ N ⇔ L = {x} for some x ∈ N, for
L,N ⊆ M.

2.1.2 V-relations

In the category Rel a morphism is a relation r : X−→7 Y from a set X to a set Y . This can be seen as
a map r : X ×Y → 2, where 2 = ({⊥,⊤},∧,⊤) is the two-chain given in Example 2.1.2. In fact, to
each pair of elements (x,y) ∈ X ×Y , we give the value ⊤ (true) if x is in relation with y via r, or ⊥
(false) otherwise. Therefore, to describe situations where quantitative informations are needed, one
can ask for relations to take values in any quantale V = (V,⊗,k) rather than just in 2. We define then
a V-relation r : X−→7 Y from the set X to the set Y to be a map

r : X ×Y → V.

Given two V-relations r : X−→7 Y and s : Y−→7 Z, we can define the composition s · r : X−→7 Z by

(s · r)(x,z) =
∨
y∈Y

r(x,y)⊗ s(y,z), (2.5)

for all x ∈ X and z ∈ Z. One can easily verify that the composition defined above is associative. The
V-relation 1X : X−→7 X , given by

(x,x′) 7→

{
k, if x = x′,
⊥, otherwise,

for x,x′ ∈ X , acts as the identity morphism on X . Thus, sets and V-relations form a category denoted
by V-Rel. We remark that, in the literature, this category is also denoted by Mat(V). The reason is
that formula (2.7) can be interpreted as a "matrix multiplication". As one can expect, if V = 2 then
2-Rel ∼= Rel. The order of the quantale V induces a (pointwise) order on the hom-sets V-Rel(X ,Y ),
for each pair of sets X and Y : given r : X−→7 Y and r′ : X−→7 Y , define

r ≤ r′ ⇐⇒ ∀(x,y) ∈ X ×Y (r(x,y)≤ r′(x,y)).

The order defined above inherits properties from the order on V: it is complete and allows the
V-relational composition (2.7) to preserve suprema in each variable, i.e.,

s ·
∨
i∈I

ri =
∨
i∈I

(s · ri),
∨
i∈I

ri · t =
∨
i∈I

(ri · t),
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for V-relations (ri : X−→7 Y )i∈I , s : Y−→7 Z and t : W−→7 X . Thus the category V-Rel is a 2-category
or, more precisely, an ordered category.
For every V-relation r : X−→7 Y , we can define the opposite (or dual) V-relation rop : Y−→7 X by

rop(y,x) = r(x,y), (2.6)

for all y ∈ Y and x ∈ X . This is possible thanks to the isomorphism V-Rel(X ,Y ) ∼= V-Rel(Y,X),
induced by the bijection between X ×Y and Y ×X for all sets X and Y . The opposite operation (2.6)
has the following properties:

- r ≤ r′ ⇒ rop ≤ (r′)op, for all V-relations r,r′ : X−→7 Y ;

- 1op
X = 1X ;

- (rop)op = r;

- if V is commutative, (s · r)op = rop · sop, for all V-relations r : X−→7 Y and s : Y−→7 Z.

2.1.3 From Set to V-Rel

A map f : X → Y can be interpreted as a V-relation f : X−→7 Y by

f (x,y) =

{
k, if f (x) = y,
⊥, otherwise.

We have then a functor
Set → V-Rel (2.7)

which is faithful if and only if ⊥< k in V, i.e., V is not trivial. Therefore, from now on, we assume
the quantale V to be non-trivial. The composition of V-relations, given by the formula (2.5), becomes
much easier when maps, interpreted as V-relations, are involved:

1. s · f (x,z) = s( f (x),z),

2. g · r(x,z) =
∨

y∈g−1(z) r(x,y),

3. hop · s(y,w) = s(y,h(w)),

4. t · f op(y,z) =
∨

x∈ f−1(y) t(x,z),

for all maps f : X → Y , g : Y → Z, h : W → Z, V-relations r : X−→7 Y , s : Y−→7 Z, t : X−→7 Z and
elements x ∈ X , y ∈ Y , z ∈ Z, w ∈ W . Moreover, composition of V-relations with maps is also
compatible with the opposite operation (2.6), i.e.,

(s · f )op = f op · sop and (g · r)op = rop ·gop,

for all maps f : X → Y , g : Y → Z and V-relations r : X−→7 Y , s : Y−→7 Z. All the formulas above,
where maps are involved, give the following inequalities in V-Rel, for every Set-morphism f : X →Y :

1X ≤ f op · f and f · f op ≤ 1Y .
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Moreover, given Set-morphisms f : X → Y and g : Y → Z, we have the so called adjunction rules:

g · r ≤ t ⇐⇒ r ≤ gop · t and t · f op ≤ s ⇐⇒ t ≤ s · f , (2.8)

for every V-relation r : X−→7 Y , s : Y−→7 Z and t : X−→7 Z.

2.2 Lax extensions

In this section we are going to define lax extensions for a monad. In order to do that, we start by
defining lax extensions for a functor. In particular, for our purpose, we restrict to Set-functors and
Set-monads but we remark that, as in [10], this could be pursued in a more general setting.

Definition 2.2.1 Let V be a quantale and T : Set → Set be a functor. A lax extension of T to V-Rel
is given by a lax functor

T̂ : V-Rel → V-Rel

which extends, laxly, the given Set-functor, i.e.,

Set

��

T // Set

��

Setop

��

T op
// Setop

��
V-Rel

≥

T̂
// V-Rel V-Rel

≥

T̂
// V-Rel

(2.9)

where the functor Set → V-Rel is the embedding (2.7) and the functor Setop → V-Rel is given by the
opposite V-relation (2.6). The conditions above mean that

T f ≤ T̂ f and (T f )op ≤ T̂ ( f op),

for all maps f : X → Y .

Proposition 2.2.2 [29, Proposition III.1.4.3] The following conditions are equivalent:

(i) T f ≤ T̂ f and (T f )op ≤ T̂ ( f op) for all f : X → Y ;

(ii) T f ≤ T̂ f and T̂ (s · f ) = T̂ s ·T f for all f : X → Y and s : Y−→7 Z;

(iii) (T f )op ≤ T̂ ( f op) and T̂ ( f op · s) = (T f )op · T̂ r for all f : X → Y and r : Z−→7 Y .

Corollary 2.2.3 [29, Corollary III.1.4.4] For a lax extension T̂ : V-Rel → V-Rel of a Set-functor T
one has

T̂ (s · f ) = T̂ s · T̂ f = T̂ s ·T f , T̂ ( f op · r) = T̂ ( f op) · T̂ r = (T f )op · T̂ r (2.10)

for all maps f : X → Y and V-relations r : Z−→7 Y , s : Y−→7 Z.

A lax extension T̂ of T is said to be flat if

T̂ 1X = T 1X = 1T X ,
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i.e., if both diagrams (2.9) commute

Set

��

T // Set

��

Setop

��

T op
// Setop

��
V-Rel T̂ // V-Rel V-Rel T̂ // V-Rel.

In fact, by Proposition 2.2.2, if T̂ is flat, we get

T̂ f = T̂ 1Y ·T f = T f and T̂ ( f op) = (T f )op · T̂ 1X = (T f )op

for all maps f : X → Y .

Definition 2.2.4 A lax extension T̂ to V-Rel of a Set-functor T is said to be left-whiskering if

T̂ (h · r) = T h · T̂ r

for all r : Y−→7 Z, h : Z →W . Similarly one says that T̂ is right-whiskering if

T̂ (s · f op) = T̂ s · (T f )op

for all f : X → Y , s : X−→7 Z.

Definition 2.2.5 Let T = (T,µ,η) be a monad on Set. A lax extension T̂ of the monad T is given
by a lax extension T̂ of T , in the sense of Definition 2.2.1, which makes both µ : T̂ 2 → T̂ and
η : 1V-Rel → T̂ op-lax, i.e.,

(4) µY · T̂ 2r ≤ T̂ r ·µX ,

(5) ηY · r ≤ T̂ r ·ηX ,

for all V-relations r : X−→7 Y .

Conditions (4) and (5) of Definition 2.2.5, by the adjunction rules (2.8), can be equivalently expressed
as:

(4′) T̂ 2r ≤ µ
op
Y · T̂ r ·µX ,

(5′) r ≤ η
op
Y · T̂ r ·ηX ,

for all V-relations r : X−→7 Y . Pointwise:

(4•) T̂ 2r(X,Y)≤ T̂ r(µX(X),µY (Y)),

(5•) r(x,y)≤ T̂ r(ηX(x),ηY (y)),

for all x ∈ X , y ∈ Y , X ∈ T 2X , Y ∈ T 2Y and V-relations r : X−→7 Y .

A lax extension of a monad T = (T,µ,η) will be denoted by T̂ = (T̂ ,µ,η). We say that a lax
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extension T̂ of a monad T is flat if the lax extension T̂ of the functor T is flat. The same holds for
right-whiskering and left-whiskering when referred to a lax extension. We point out that in literature,
such as for example in [11], [14], [10] and [21], the authors may include flatness in the definition of
lax extensions.

Example 2.2.6

(1) The identity monad I = (I,1,1) on Set has a flat lax extension given by the identity monad
Î= (I,1,1) on V-Rel.

(2) Each Set-monad T admits a largest lax extension to V-Rel, denoted by T⊤, where the lax
functor T⊤ is defined by

T⊤r : T X ×TY → V, (x,y) 7→ ⊤

for all V-relations r : X−→7 Y . This lax extension is not flat.

(3) If V = 2, for the powerset monad P= (P,µ,η), where P : Set → Set is the covariant powerset
functor and η : 1Set → P and µ : P2 → P are natural transformations defined, componentwise,
by

ηX : X → PX , x 7→ {x},

µX : P2X → PX , A 7→
⋃

A ,

one can consider the lax extensions P̂, P̌ with corresponding lax functor P̂, P̌ : Rel → Rel
defined, respectively, by

P̂r(A,B) =

{
⊤, if ∀y ∈ B ∃x ∈ A : r(x,y) =⊤,
⊥, otherwise,

P̌r(A,B) =

{
⊤, if ∀x ∈ A ∃y ∈ B : r(x,y) =⊤,
⊥, otherwise,

for every relation r : X−→7 Y , and all A ⊆ X , B ⊆ Y . Both P̂ and P̌ are not flat. On the other
hand, the lax extension P̂ is left-whiskering but not right-whiskering, while the lax extension P̌
behaves conversely.

2.2.1 The Barr extension

Given a relation r : X−→7 Y , we denote by Γr its graph, i.e.,

Γr = {(x,y) ∈ X ×Y : r(x,y) =⊤}.
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Therefore we can represent r as a span

Γr
πX

��

πY

��
X Y

where πX : Γr → X and πY : Γr → Y are the restrictions to Γr of the product projections. We can write
r as

r = πY ·πop
X

in Rel. Given a functor T : Set → Set, the Barr extension T : Rel → Rel of T , introduced by M. Barr
in [1], is defined by

T r := T πY · (T πX)
op.

Pointwise, for elements x ∈ T X and y ∈ TY , the Barr extension is given by

T r(x,y) =

{
⊤, if ∃g ∈ Γr : T πX(g) = x & T πY (g) = y,
⊥, otherwise.

The following properties follow:

(1) T preserves the order on hom-sets, i.e., r ≤ r′ ⇒ T r ≤ T r′, for all relations r,r′ : X−→7 Y ;

(2) T is an op-lax functor from Rel to Rel, i.e., T (s · r)≤ T s ·T r, for all relations r : X−→7 Y and
s : Y−→7 Z;

(3) T preserves the opposite operation, i.e., T (rop) = (T r)op, for all relations r : X−→7 Y ;

(4) T extends the given functor T , i.e., T f = T f , for all maps f : X → Y ;

(5) T (g · r) = T g · T r and T (r · f op) = T r · (T f )op, for all relations r : X−→7 Y and maps
f : A → X , g : Y → B.

We have still to check whether the Barr extension is a lax extension, in the sense of Definition 2.2.1.
In order to do that, we need the so called Beck-Chevalley condition. A commutative diagram in Set

W

p
��

q // Y

g
��

X
f
// Z

(2.11)

is a Beck-Chevalley square, or simply a BC-square, if q · pop = gop · f , or equivalently, p ·qop = f op ·g.

Definition 2.2.7

(1) A Set-functor T satisfies the Beck-Chevalley condition, or simply BC, if it sends BC-squares to
BC-squares, i.e.,

q · pop = gop · f ⇒ T q · (T p)op = (T g)op ·T f
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for all maps f ,g, p,q as in diagram (2.11).

(2) A natural transformation α : S → T , between Set-functors S and T , satisfies BC if every
naturality diagram

SX

S f
��

αX // T X

T f
��

SY
αY
// TY

is a BC-square for all maps f : X → Y .

Proposition 2.2.8 [29, Proposition III.1.11.3] The following statements are equivalent for a Set-
functor T :

(i) T satisfies BC;

(ii) T preserves weak pullback diagrams;

(iii) T transforms pullbacks into weak pullbacks and preserves the surjectivity of maps.

The following result shows the key-role played by the Beck-Chevalley condition.

Theorem 2.2.9 [29, Theorem III.1.11.5] For a functor T : Set → Set, the following assertions are
equivalent:

(i) the functor T satisfies BC;

(ii) the Barr extension T is a flat lax extension of T to Rel and a functor T : Rel → Rel;

(iii) there is some functor T̂ : Rel → Rel which is a lax extension of T to Rel.

Moreover, any functor T̂ : Rel → Rel as in (iii) is uniquely determined, i.e., T̂ = T .

Under the same assumptions, one can show that the Barr extension yields a lax extension of a
Set-monad T= (T,µ,η).

Theorem 2.2.10 [29, Theorem III.1.12.1] For a monad T= (T,µ,η) on Set, the following assertions
are equivalent:

(i) the functor T satisfies BC;

(ii) the Barr extension yields a flat lax extension T= (T ,µ,η) of T to Rel.

Example 2.2.11

(1) Identity monad - The Barr extension 1Set of the identity functor 1Set on Set is the identity functor
1Rel on Rel. Of course the identity functor 1Set satisfies BC so that the Barr extension 1Rel is a
flat lax extension of the identity monad I= (I,1,1).
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(2) Ultrafilter monad - The ultrafilter functor U : Set → Set is defined by

X

f
��

✤ // UX

U f
��

Y ✤ // UY

where UX and UY are the sets of ultrafilters on the sets X and Y , respectively, and U f is the
map sending each ultrafilter x ∈ UX to the ultrafilter U f (x) generated by { f (A) : A ∈ x}. It
satisfies BC so that its Barr extension U yields a flat lax extension to Rel of the ultrafilter
monad U= (U,µ,η). The functor U is the ultrafilter functor described above, while the natural
transformations η and µ are defined, componentwise, by

ηX : X →UX , x 7→ {A ⊆ X : x ∈ A}

µX : U2X →UX , X 7→
⋃

A ∈X

⋂
x∈A

x.

The functor U : Rel → Rel is given by

Ur(x,y) =

{
⊤, if ∀B ∈ y {x ∈ X | ∃y ∈ B : r(x,y) =⊤} ∈ x,
⊥, otherwise,

for each relation r : X−→7 Y and x ∈UX ,y ∈UY . We remark that the natural transformation µ

satisfies BC and remains strict (in the sense that µY ·U2r =Ur ·µX for any relation r : X−→7 Y ),
while η does not satisfy BC. However, the naturality diagram

X
❴r
��

ηX // UX
❴Ur
��

Y
ηY
// UY

is a BC-square, i.e., (Ur)op ·ηY = ηX · rop, provided that the relation r has finite fibres in the
sense that, for every y ∈ Y , the set {x ∈ X : r(x,y)>⊥} is finite.

(3) M-ordered monad - Let M = (M, ·,1M) be a monoid. Consider the functor M× = M×− : Set →
Set given by

X

f
��

✤ // M×X

M× f
��

Y ✤ // M×Y

where (M× f )(m,x) = (m, f (x)), for each m ∈ M and x ∈ X . This functor satisfies the Beck-
Chevalley condition so that its Barr extension yields a flat lax extension to Rel of the M-ordered
monad M= (M×,µ,η). The natural transformations η and µ are defined by

ηX : X → M×X , x 7→ (1M,x),
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µX : M×M×X → M×X , (m,n,x) 7→ (n ·m,x),

and the functor M× : Rel → Rel is given by

M×r((m,x),(n,y)) =

{
⊤, if m = n & r(x,y) =⊤,
⊥, otherwise,

for each relation r : X−→7 Y and m,n ∈ M,x ∈ X ,y ∈ Y .

(4) Free-monoid monad - The free-monoid monad W= (W,µ,η) is given by the functor W : Set →
Set, which assigns to each set X the set WX of all finite words (x1, . . . ,xn)(n ∈ N) of elements
of X and to each map f : X → Y the Set-morphism W f : WX →WY defined by

(x1, . . . ,xn) 7→ ( f (x1), . . . , f (xn)).

The natural transformation η : 1Set →W is defined, elementwise, by

ηX : X →WX , x 7→ (x),

while the components µX : W 2X →WX of µ are given by removing the inner brackets. The
functor W is a cartesian functor, that is, it sends pullback diagrams to pullback diagrams.
Moreover, the naturality squares of η and µ are pullback squares making then the free-monoid
monad W a cartesian monad. By Proposition 2.2.8, the BC-property is satisfied and the Barr
extension W= (W ,η ,µ), where W : Rel → Rel is given by

Wr((x1, . . . ,xn),(y1, . . . ,ym)) =

{
⊤, if m = n & r(xi,yi) =⊤ for i = 1, . . . ,n,
⊥, otherwise,

for each relation r : X−→7 Y,(x1, . . . ,xn) ∈WX ,(y1, . . . ,ym) ∈WY , yields a flat lax extension of
W to Rel.

(5) Powerset monad - In Example 2.2.6 we already introduced two different (non-flat) lax extensions
of the powerset monad P= (P,µ,η). But, since the functor P : Set → Set has BC, also the Barr
extension yields a flat lax extension P= (P,µ,η) of P to Rel. The lax functor P : Rel → Rel is
defined by

Pr(A,B) =

{
⊤, if ∀x ∈ A ∃y ∈ B : r(x,y) =⊤ & ∀y ∈ B ∃x ∈ A : r(x,y) =⊤,
⊥, otherwise,

for each relation r : X−→7 Y and A ⊆ X , B ⊆ Y .

2.2.2 Uniform construction of lax extensions to V-Rel

In [12] M.M. Clementino and D. Hofmann presente a uniform construction of an extension of a
Set-monad, satisfying BC, into a lax monad of the 2-category V-Rel. By a lax monad T= (T,µ,η)

on V-Rel they mean a lax functor T : V-Rel → V-Rel for which the op-lax natural transformations
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η : 1V-Rel → T and µ : T 2 → T satisfy, for every set X ,

T 3X

T µX
��

µT X // T 2X

µX

��

T X

1T X

≤

""

T ηX // T 2X

µX

��

T X
ηT Xoo

T 1X

≤

||
T 2X

≤

µX
// T X T X .

The construction is given in three steps (1), (2) and (3) which we can sum up with the following
diagram

Set

(1)
��

T // Set

��
Rel

(2)E
��

T
// Rel

E
��

2Vop
-Rel

(3)L
��

T̂ // 2Vop
-Rel

L
��

V-Rel ˜̂
T

// V-Rel.

Starting with a Set-monad T= (T,µ,η), the first step (1) consists of the Barr extension T of T to
Rel. We know, by Theorem 2.2.10, that if T satisfies BC then T yields a flat lax extensions T of T to
Rel. The intermediate step (2) is given by the construction of an extension T̂ : 2Vop

-Rel → 2Vop
-Rel

X 7→ T̂ X := T X , r 7→ T̂ a(x,y)(v) := T (rv)(x,y)

for every set X , every 2Vop
-relation r : X−→7 Y , x ∈ T X , y ∈ TY and v ∈ V, where rv : X−→7 Y is given

by
rv(x,y) = r(x,y)(v)

for every (x,y) ∈ X ×Y . The functor E : Rel → 2Vop
-Rel is induced by the embedding

E : 2 → 2Vop

defined by u 7→ E(u) : Vop → 2 where

v 7→ E(u)(v) =

{
u, if v ≤ kV,
⊥, otherwise.

In general the lax functor T̂ extents only laxly the Barr extension T , i.e.,

Rel

E
��

T // Rel

E
��

2Vop
-Rel

≥

T̂

// 2Vop
-Rel

(2.12)
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but if V is integral or T preserves the ⊥-relation, as it is proved in [12, Theorem 4.1], T̂ strictly
extends T , i.e., the diagram (2.12) is commutative.

Step (3) is given by the construction of the lax functor
˜̂
T : V-Rel → V-Rel. This is defined by the

following composition

V-Rel
˜̂
T−→ V-Rel := V-Rel Y−→ 2Vop

-Rel T̂−→ 2Vop
-Rel L−→ V-Rel

where Y is the functor induced by the Yoneda embedding Y : V → 2Vop

v 7→ Y (v) : Vop → 2, Y (v)(u) =⊤ ⇐⇒ u ≤ v,

and L is the functor induced by the left adjoint L : 2Vop → V of Y

f 7→
∨
{v ∈ V : f (v) =⊤}.

Also in this case it happens that the extension
˜̂
T is only lax with respect to T̂ , i.e.,

2Vop
-Rel

L
��

T̂ // 2Vop
-Rel

L
��

V-Rel

≥

˜̂
T

// V-Rel

(2.13)

but, if V is ccd, the extension becomes strict. Summing up we have the following result:

Theorem 2.2.12 [12, Corollary 5.3] Let (T,µ,η) be a monad in Set. If T satisfies BC, V is ccd and

kV =⊤V or T preserves the ⊥-relation, then (
˜̂
T , ˜̂µ, ˜̂η) is a lax monad in V-Rel that extends the given

one.

Hence, under the hypotheses of Theorem 2.2.12, a Set-monad T admits a flat lax extension T̃=
˜̂
T

to V-Rel, in the sense of Definition 2.2.1. The extension T̃ : V-Rel → V-Rel can described by the
following formula: for x ∈ T X , y ∈ TY and every V-relation r : X−→7 Y ,

T̃ r(x,y) =
∨
{v ∈ V : T rv(x,y) =⊤}, (2.14)

where rv : X−→7 Y is the relation defined by

rv(x,y) =

{
⊤, if v ≤ r(x,y)
⊥, otherwise.

The extension T̃ of T to V-Rel, given by (2.14), will be called uniform extension.

Example 2.2.13

(1) Identity monad - The uniform extension Ĩ to V-Rel of the identity monad I= (I,1,1) is itself the
identity monad on V-Rel.
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(2) Ultrafilter monad - The uniform extension Ũ= (Ũ ,µ,η) on V-Rel of the ultrafilter monad U is
given by

Ũ(x,y) =
∧

A∈x,B∈y

∨
x∈A,y∈B

r(x,y),

for x ∈UX , y ∈UY and every V-relation r : X−→7 Y .

(3) M-ordered monad - Let M = (M×,µ,η) be the M-ordered monad. Its uniform extension M̃ to
V-Rel is described by the lax functor M̃× : V-Rel → V-Rel given by

M̃×r((m,x),(n,y)) =

{
r(x,y), if m = n,
⊥V, otherwise,

for m,n ∈ M, x ∈ X , y ∈ Y and every V-relation r : X−→7 Y .

(4) Free-monoid monad - The lax functor W̃ : V-Rel → V-Rel of the uniform extension W̃= (W̃ ,µ,η)

to V-Rel of the free-monoid monad W is given by

W̃ r((x1, . . . ,xn),(y1, . . . ,ym)) =

{ ∧n
i=1 r(xi,yi), if m = n

⊥V, otherwise,
(2.15)

for (x1, . . . ,xn) ∈WX , (y1, . . . ,ym) ∈WY and every V-relation r : X−→7 Y .

(5) Powerset monad - For the powerset monad P=(P,µ,η) the lax extension P̃=(P̃,µ,η) is described
by the lax functor P̃ : V-Rel → V-Rel given by

P̃r(A,B) =
∨
{v ∈ V|∀x ∈ A ∃y ∈ B : v ≤ r(x,y) & ∀y ∈ B ∃x ∈ A : v ≤ r(x,y)},

for A ⊆ X , B ⊆ Y and every V-relation r : X−→7 Y .

In all the examples above, to have the uniform extension to V-Rel, we only need V ccd, since all
the Set-functors involved satisfy BC and all the corresponding Barr extensions to Rel preserve the
⊥-relation.

2.2.3 Lax extensions in terms of algebra structures

Let T= (T,µ,η) be a monad on Set and let V = (V,⊗,k) be a quantale. Assume that V is ccd and
that both T and µ satisfy BC. In [13] M.M. Clementino and D. Hofmann showed the link between the
uniform extension T̃ of T , defined by (2.14), and the T-algebra structure on V

ξ : TV →V, v 7→
∨
{v ∈ V : v ∈ T (↑ v)},

where ↑ v = {u ∈ V : v ≤ u}, introduced by Manes in [40].

Proposition 2.2.14 [13, Proposition 4.1] For any V-relation r : X−→7 Y , each x ∈ T X and y ∈ TY ,

T̃ r(x,y) =
∨

w∈T (X×Y ):
T πX (w)=x
T πY (w)=y

ξ ·Tr(w). (2.16)
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The extension above can be pictured by the following diagram

T X

T X ×TY

πT X

88

πTY
&&

T (X ×Y )

T πX

OO

T πY
��

oo Tr // TV
ξ // V

TY

where the map T (X ×Y )→ T X ×TY , induced by the universal property of the product, is surjective
since T has BC (see Proposition 2.2.8). Formula (2.16) actually establishes a more general link
between lax extensions of a Set-monad T and T-algebra structures, in the sense that each T-algebra
structure ξ : TV → V can define a lax extension to V-Rel of T via formula (2.16). Examples of
lax extensions in terms of algebra structures are given when we consider the free-monoid monad
W= (W,µ,η). By Proposition 2.2.14, the uniform extension W̃ given by (2.15) in Example 2.2.13 is
then described in terms of the W-algebra structure

ξ
∧ : WV →V, (u1, . . . ,un) 7→

n∧
i=1

ui.

In [21] M.M. Clementino and W. Tholen presented a lax extension W⊗ to V-Rel of the free-monoid
monad described by

W⊗r((x1, . . . ,xn),(y1, . . . ,ym)) =

{ ⊗n
i=1 r(xi,yi), if m = n,

⊥V, otherwise,

for (x1, . . . ,xn) ∈ WX , (y1, . . . ,ym) ∈ WY and every V-relation r : X−→7 Y . This extension can be
given as well in terms of the W-algebra structure

ξ
⊗ : WV →V, (u1, . . . ,un) 7→

n⊗
i=1

ui

using the formula (2.16). In order to keep in mind which W-algebra structure we refer to, we denote
the extension W̃ by W∧. In the next chapter we will see the relation occurring between these two
extensions.

2.3 (T,V)-categories

Let V = (V,⊗,k) be a quantale and let T̂ = (T̂ ,µ,η) be a lax extension to V-Rel of a Set-monad
T = (T,µ,η). By a (T,V)-relation we mean just a V-relation a : T X−→7 X , where the domain is
given by the image T X of the set X , i.e., a map a : T X ×X → V. A (T,V)-relation a : T X−→7 X is
said to be reflexive if

1X ≤ a ·ηX or equivalently η
op
X ≤ a,



2.3 (T,V)-categories 53

which in pointwise notation can be expressed by

k ≤ a(ηX(x),x)

for all x ∈ X . A (T,V)-relation a : T X−→7 X is transitive if

a · T̂ a ≤ a ·µX or equivalently a · T̂ a ·µ
op
X ≤ a,

which in pointwise notation is given by

T̂ a(X,x)⊗a(x,x)≤ a(µX(X),x)

for all X ∈ T 2X , x ∈ T X and x ∈ x. For a (T,V)-relation a : T X−→7 X , reflexivity and transitivity can
be expressed, in a compact way, by the following diagram

X

1X

≤

  

ηX // T X
❴a
��

T 2X✤̂T aoo

µX

��
X

≤

T X✤
a

oo

(2.17)

where the left-side triangle represents the reflexivity property, while the right-side square the transitivity
property. In case V = 2, we will often use the arrow notation x→ x to express a(x,x) =⊤, for x ∈ T X
and x ∈ X . Therefore, for instance, the reflexivity and the transitivity properties can be given,
respectively, by

ηX(x)→ x, X→ x→ x ⇒ µX(X)→ x,

for all X ∈ T 2X ,x ∈ T X and x ∈ X .

Definition 2.3.1 A (T,V)-category is a pair (X ,a) where X is a set and a : T X−→7 X is a reflexive
and transitive (T,V)-relation.

We remark that in the literature one may refer to (T,V)-categories also as lax algebras or (T,V)-
algebras since conditions (2.17) represent lax conditions for an Eilenberg-Moore algebra. Also, in
case V = 2, one can refer to relational algebras. We also point out the fact that Definition 2.3.1
depends, for what concerns the transitivity part, on the lax extension T̂, so that, in some cases, we
allow us to speak of (T,V, T̂)-categories when we want to stress which lax extension we refer to.

Definition 2.3.2 A morphism f : (X ,a) → (Y,b) between (T,V)-categories is said to be a (T,V)-
functor if

f ·a ≤ b ·T f or equivalently a ≤ f op ·b ·T f ,

which in pointwise notation is given by

a(x,x)≤ b(T f (x), f (x))

for all x ∈ T X and x ∈ X .
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The condition above can be expressed by the following diagram

T X
❴a
��

T f // TY
❴b
��

X

≤

f
// Y,

(2.18)

which represents a lax condition for a morphism to be a homomorphism of (lax) Eilenberg-Moore
algebras. In case V = 2, using the arrow notation, the condition expressed by diagram (2.18) is given
by

x→ x ⇒ T f (x)→ f (x),

for all x ∈ T X and x ∈ X . Having (T,V)-categories as objects and (T,V)-functors as morphisms, one
forms a category denoted by

(T,V)-Cat.

In this way one can define a (full) subcategory of (T,V)-Cat: the subcategory (T,V)-Gph of (T,V)-
graphs given by reflexive (T,V)-relations and (T,V)-functors.

Example 2.3.3

(1) Identity monad - For the lax extension to V-Rel given by the identity functor I : V-Rel → V-Rel,
(I,V)-categories and (I,V)-functors give the category V-Cat (V-Gph) of V-categories (V-
graphs) and V-functors. If V = 2 then 2-Cat is isomorphic to the category Ord of (pre)ordered
sets and monotone maps. When V = R+ then, as pointed out in the general paper [35] of F.W.
Lawvere, R+-Cat is the category of (generalized) metric spaces and non-expansive maps, while
for V = Iinf, Iinf-Cat is isomorphic to the category of (generalized) ultrametric spaces and
non-expansive maps.

(2) Ultrafilter monad - For V = 2 M. Barr in [1] proved that (U,2,U)-Cat, where U is the Barr
extension given in Example 2.2.11, is isomorphic to the category Top of topological spaces
continuous maps (see diagram (2.2) in the beginning of the chapter). When V = R+, for the
uniform extension Ũ given in Example 2.2.13, we have that (U,R+, Ũ)-Cat is isomorphic to
the category App of approach spaces and non-expansive maps (the description of approach
spaces as lax algebras was established in [10] by M.M. Clementino and D. Hofmann).

(3) M-ordered monad - For a given monoid M = (M, ·,1M), the Barr extension M of the M-
ordered monad M given in Example 2.2.11 gives rise to the category (M,2,M)-Cat of M-
ordered sets and equivariant maps, usually denoted simply by M-Ord. For a (M,2)-relation
a : (M×X)−→7 X one can write x m−→ y instead of a((m,x),y) =⊤, i.e., x is in relation with y
with weight m.

(4) Free-monoid monad - The reflexivity and the transitivity properties of a (W,2,W)-category
(X ,a), where W is the Barr extension described in Example 2.2.11, are given, respectively, by

(x)→ x,
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for all x ∈ X , and

((x1
1, . . . ,x

1
m1
), . . . ,(xn

1, . . . ,x
n
mn
))→ (x1, . . . ,xn)→ x0 ⇒ (x1

1, . . . ,x
1
m1
, . . . ,xn

1, . . . ,x
n
mn
)→ x0,

for all ((x1
1, . . . ,x

1
m1
), . . . ,(xn

1, . . . ,x
n
mn
)) ∈ W 2X , (x1, . . . ,xn) ∈ WX and x0 ∈ X . A (W,2,W)-

functor f : (X ,a)→ (Y,b) is a map f : X → Y such that

(x1, . . . ,xn)→ x0 ⇒ ( f (x1), . . . , f (xn))→ f (x0),

for all (x1, . . . ,xn) ∈ WX and x0 ∈ X . The category (W,2,W)-Cat is usually denoted by
MultiOrd.

(5) Powerset monad - For V = 2, in Example 2.2.6, we introduced the (non-flat) lax extensions P̂
and P̌ of the powerset monad P= (P,µ,η). We have the following isomorphisms

(P,2, P̌)-Cat ∼= Ord (P,2, P̂)-Cat ∼= Cls,

where Cls is the category of closure spaces and continuous maps.

(6) For the lax extension T⊤ given in Example 2.2.6 one has

(T,V,T⊤)-Cat ∼= Set,

for every Set-monad T and every quantale V.

2.3.1 Unitary (T,V)-relations

Definition 2.3.4 Given a lax extension T̂ = (T̂ ,µ,η) of a Set-monad T = (T,µ,η), the Kleisli
convolution s ◦ r : T X−→7 Z of (T,V)-relations r : T X−→7 Y and s : TY−→7 Z is the (T,V)-relation
defined by

s◦ r := s · T̂ r ·µ
op
X .

If T is the identity monad I then s◦ r = s · r, i.e., the Kleisli convolution is just the usual relational
composition of V-relations.

Definition 2.3.5 A (T,V)-relation r : T X−→7 Y is right-unitary if it satisfies

r ◦η
op
X ≤ r,

and it is left-unitary if
η

op
Y ◦ r ≤ r

holds. The (T,V)-relation r is unitary if it is both right and left unitary.

The conditions for a (T,V)-relation r to be right and left unitary can be expressed in terms of the
relational composition respectively by

r · T̂ 1X ≤ r and η
op
Y · T̂ r ·µ

op
X ≤ r.
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In terms of the Kleisli convolution, a (T,V)-category (X ,a) is reflexive if

η
op
X ≤ a

and it is transitive if
a◦a ≤ a.

Observe that the inequality above is actually an identity since a ≤ a ◦η
op
X ≤ a ◦ a ≤ a. For what

concerns (T,V)-functors we have the following: recall that a (T,V)-functor f : (X ,a)→ (Y,b) is a
map f : X → Y such that

f ·a ≤ b ·T f

but, since the (T,V)-relation b is right unitary, it satisfies b · T̂ 1Y = b ◦η
op
Y = b. Hence b · T̂ f =

b · T̂ 1Y · T f = b · T f so that the (T,V)-functor condition can be equivalently given using the lax
extension of T , i.e.,

f ·a ≤ b · T̂ f .

One can then consider full subcategories of (T,V)-Gph, namely

(T,V)-UGph and (T,V)-RGph,

of unitary (T,V)-graphs (X ,a) and right unitary (T,V)-graphs (X ,a), respectively. The following
diagram of inclusions follows

(T,V)-Cat ↪→ (T,V)-UGph ↪→ (T,V)-RGph ↪→ (T,V)-Gph.

Definition 2.3.6 A lax extension T̂ to V-Rel of a monad T= (T,µ,η) on Set is associative whenever
the Kleisli convolution of unitary (T̂,V)-relations is associative, i.e.,

t ◦ (s◦ r) = (t ◦ s)◦ r,

or, equivalently,
t · T̂ (s · T̂ r ·µ

op
X ) ·µ

op
X = t · T̂ s ·µ

op
Y · T̂ r ·µ

op
X

for all unitary (T,V)-relations r : T X−→7 Y , s : TY−→7 Z and t : T Z−→7 W.

Example 2.3.7

(1) The identity extension to V-Rel of the identity monad I is associative. In fact in this case, as we
previously remark, the Kleisli convolution coincides with the usual composition of V-relations, which
is associative.

(2) The largest lax extension T⊤ to V-Rel of a monad T on Set is associative.

(3) The lax extensions P̂ and P̌ to Rel of the powerset monad P defined in Example 2.2.6 are both
associative.
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(4) The Barr extension T of a Set-monad T= (T,µ,η) is associative if both T and µ satisfy BC ([29,
Corollary III.1.12.2]).

Remark 2.3.8 A flat associative lax extension is always right-whiskering and left-whiskering. Hence,
if both T and µ satisfies BC, the Barr extension is right-whiskering and left-whiskering.

2.3.2 Properties of the categories of lax algebras

Let V be a quantale and let T̂ be a lax extension to V-Rel of a Set-monad T= (T,µ,η). Denote by
SetT the category of Eilenberg-Moore algebras with respect to T. As it is proved in [10], in case T̂ is
flat, and in [29, III.4] in the non-flat case, the full embeddings

SetT ↪→ (T,V)-Cat ↪→ (T,V)-Gph

are reflective. Moreover, the canonical forgetful functors from SetT, (T,V)-Gph and (T,V)-Cat
into Set are topological functors. The above situation can be pictured by the following commutative
diagram

SetT

%%

⊥ // (T,V)-Cat

��

vv ⊥ // (T,V)-Gph

ww

tt

Set

(2.19)

where the vertical arrows are the forgetful functors, the horizontal arrows are the full embeddings
and the dotted arrows are the reflections whose underlying morphisms are given by the identities. It
follows that the categories (T,V)-Cat and (T,V)-Gph, as well as SetT, are complete and cocomplete.
In case of the ultrafilter monad and its Barr extension to Rel the diagram (2.19) reduces to

CHaus

$$

⊥ // Top

��

ww ⊥ // PsTop

{{

xx

Set

where CHaus is the (full) subcategory of Top of compact Hausdorff spaces, PsTop is the category of
pseudo-topological spaces and the reflection Top → CHaus is given by the well-known Čech-Stone
compactification.
Diagram (2.19) can be made larger if we consider the categories (T,V)-UGph and (T,V)-RGph of
unitary graphs and right unitary graphs, respectively. In the diagram

SetT

''

⊥ // (T,V)-Cat
vv

""

⊥ // (T,V)-UGph
tt

��

⊥ // (T,V)-RGph
tt

{{

⊥ // (T,V)-Gph
tt

uuSet

the forgetful functor (T,V)-RGph → Set is topological (see [29, Corollary III.4.1.5]). As it has been
proved in [29, Proposition III.4.2.1], (T,V)-Cat is reflective in (T,V)-RGph if µop : T̂ → T̂ 2 is a
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natural transformation, while [29, Proposition III.4.2.2] says that the reflector (T,V)-RGph → (T,V)-
UGph has an easy one-step construction if the lax extension T̂ of T to V-Rel is associative.
The following result for the category (T,V)-Gph will play a key role concerning the study of effective
descent morphisms in categories of lax algebras.

Proposition 2.3.9 [19, Theorem 4.6, Remark 4.7] The category (T,V)-Gph is a quasitopos provided
that V is cartesian closed and T satisfies BC.

A quasitopos is, in particular, a locally cartesian closed category and this is precisely the condition
we need in the next chapter to study effective descent morphisms in (T,V)-categories. An analogous
result of Proposition 2.3.9 can be obtained for (T,V)-RGph.

Proposition 2.3.10 [29, Theorem III.4.6.7] Let V be cartesian closed and integral and let T =

(T,µ,η) be a Set monad such that T satisfies BC. Let T̂= (T̂ ,µ,η) be a lax extension of T to V-Rel.
If T̂ is associative and T̂ ( f op) = T̂ 1X · (T f )op for all maps f : X →Y , then the category (T,V)-RGph
is locally cartesian closed.

Another property, in particular concerning the Van Kampen Theorem, is that the category (T,V)-Cat
is an extensive category. This has been deduced in [14] by the fact that coproducts in (T,V)-Cat are
disjoint and universal: disjointness follows from the fact that the forgetful functor (T,V)-Cat → Set
preserves coproducts, while universality follows from the characterization of coproducts, stated in
theorem below, and pullback stability of open embeddings.

Theorem 2.3.11 ([38], [14, Theorem 1.3]) For (T,V)-categories (Xi,ai), i ∈ I, and (X ,a), the fol-
lowing conditions are equivalent:

(i) (X ,a) is the coproduct of (Xi,ai)i∈I in (T,V)-Cat;

(ii) (a) X is the coproduct of (Xi)i∈I in Set;

(b) for each i ∈ I, the inclusion (Xi,ai) ↪→ (X ,a) is open.

Corollary 2.3.12 [14, Corollary 1.4] (T,V)-Cat is an extensive category.

Of course, since it is complete, (T,V)-Cat is also a lextensive category.



Chapter 3

Effective global-descent morphisms in
categories of lax algebras

In [11] M.M. Clementino and D. Hofmann investigate effective descent morphisms in the general
context of (T,V)-categories, in particular proving that open and proper surjection are effective for
descent, extending the already known results in Top. Their investigation is conducted with respect
to flat lax extensions to V-Rel of the Set-monad, in fact in [11] flatness in included in the definition
of lax extension. Our investigation starts by generalizing the results obtained in [11] to the case of
non-necessarily flat lax extensions. We follow the same method based on the result given by Corollary
1.1.7 which we can re-write in the following way.

Theorem 3.0.1 Let C and D be categories such that

(a) D has pullbacks and coequalizers and C is a full subcategory of D closed under pullback,

(b) every regular epimorphism in D is an effective descent morphism.

Then a morphism p : E → B in C, which is of effective descent in D, is an effective descent morphism
in C if and only if

E ×B A ∈ C ⇒ A ∈ C

holds for every pullback

E ×B A

π1

��

π2 // A

f
��

E p
// B

in D.

For a lax extension T̂ to V-Rel (not necessarily flat) of a given Set-monad T= (T,µ,η), the theorem
above can be applied when C = (T,V)-Cat and D = (T,V)-Gph. In fact, in Section 2.3.2, we saw
that (T,V)-Cat is a full reflective subcategory of (T,V)-Gph, so that it is closed under pullback, and
also that (T,V)-Gph is cocomplete (and complete), so that the existence of coequalizers is guaranteed.
Moreover, by Proposition 2.3.9, if T satisfies BC and V is cartesian closed, the category (T,V)-Gph
is a quasitopos and so, in particular, locally cartesian closed. Hence, by Corollary 1.1.5, we know that

59
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the effective global-descent morphisms in (T,V)-Gph are precisely the (necessarily universal) regular
epimorphisms. Regular epimorphisms in (T,V)-Gph have been characterized in [10, Proposition 5.1]
as those (T,V)-functors f : (X ,a)→ (Y,b) such that the underlying map f : X → Y is surjective and

b = f ·a · (T f )op. (3.1)

A (T,V)-functor f : (X ,a)→ (Y,b) satisfying the condition above is usually called final, since (3.1)
represents the final structure for b in (T,V)-Gph. If V = 2 condition (3.1) becomes

X

f
��

x❴

��

// x❴

��
Y y // y,

i.e., a (T,2)-functor f : (X ,a)→ (Y,b) is final if for each y ∈ TY and y ∈ Y with y→ y, there exist
x ∈ (T f )−1(y) and x ∈ f−1(y) such that x→ x. The following theorem holds.

Theorem 3.0.2 Let V be a cartesian closed quantale and let T̂ be a lax extension to V-Rel of a Set-
monad T= (T,µ,η), where T satisfies BC. For a class F of morphisms in (T,V)-Gph, F∩(T,V)-Cat
is a class of effective global-descent morphisms in (T,V)-Cat provided that:

(1) each f in F∩ (T,V)-Cat is a regular epimorphism in (T,V)-Cat;

(2) F is stable under pullback;

(3) (T,V)-Cat is closed under F-images in (T,V)-Gph.

Following the definition given in [11], based on the characterization of effective descent maps in Top
(see Theorem 1.4.6), we introduce the notion of *-quotient morphisms.

Definition 3.0.3 A (T,V)-functor f : (X ,a)→ (Y,b) in (T,V)-Gph is said to be *-quotient if

∀Y ∈ T 2Y, ∀y ∈ TY, ∀y ∈ Y

T̂ b(Y,y)⊗b(y,y) =
∨

X∈(T 2 f )−1(Y)
x∈(T f )−1(y)

x∈ f−1(y)

T̂ a(X,x)⊗a(x,x)

In case V = 2, using the arrow notation, a (T,2)-functor f : (X ,a)→ (Y,b) is a *-quotient map if for
every Y ∈ T 2Y , y ∈ TY and y ∈ Y with Y→ y→ y, there exist X ∈ (T 2 f )−1(Y), x ∈ (T f )−1(x) and
x ∈ f−1(y) such that X→ x→ x, i.e.,

X

f
��

X❴

��

// x❴

��

// x❴

��
Y Y // y // y.



61

Proposition 3.0.4 If f : (X ,a)→ (Y,b) is a *-quotient morphism in (T,V)-Cat, then it is a regular
epimorphism in (T,V)-Gph.

Proof
We have to show that b = f ·a ·(T f )op. We already know that b ≥ f ·a ·(T f )op, since f is, in particular,
a (T,V)-functor. Hence, it remains to show that b ≤ f ·a · (T f )op. Since

1TY = T 1Y ≤ T̂ 1Y ≤ T̂ (b · eY ) = T̂ b · T̂ eY = T̂ b ·TeY ,

for y ∈ TY and y ∈ Y , we then have

b(y,y)≤ T̂ b(TeY (y),y)⊗b(y,y) =
∨

X∈T 2X :T 2 f (X)=TeY (y)
x∈T X :T f (x)=y

x∈X : f (x)=y

T̂ a(X,x)⊗a(x,x) (f is *-quotient)

≤
∨

X∈T 2X :T 2 f (X)=TeY (y)
x∈X : f (x)=y

a(mX(X),x) (a is transitive)

≤
∨

x∈T X :T f (x)=y
x∈X : f (x)=y

a(x,x),

since, for X ∈ T 2X such that T 2 f (X) = TeY (y), one has

T f (mX(X)) = mY (T 2 f (X)) = mY (TeY (y)) = y.

�

Proposition 3.0.5 (T,V)-Cat is closed under *-quotient images in (T,V)-Gph.

Proof
Let f : (X ,a)→ (Y,b) be a *-quotient morphism in (T,V)-Gph with (X ,a) ∈ (T,V)-Cat. We want
to prove that (Y,b) is transitive. For each Y ∈ T 2Y , y ∈ Y and y ∈ Y we have

T̂ b(Y,y)⊗b(y,y) =
∨

X∈(T 2 f )−1(Y)
x∈(T f )−1(y)

x∈ f−1(y)

T̂ a(X,x)⊗a(x,x)≤
∨

X∈(T 2 f )−1(Y)
x∈ f−1(y)

a(mX(X),x)≤ b(mY (Y),y).

The equality follows from the fact that f is a *-quotient morphism, while the first inequality follows
from the fact that a is transitive. �

Finally, by Theorem 3.0.2, and combining the previous results, the following holds.

Theorem 3.0.6 Let V be a cartesian closed quantale and let T̂ be a lax extension to V-Rel of a Set-
monad T= (T,µ,η), where T satisfies BC. A morphism in (T,V)-Cat is an effective global-descent
morphism provided that it is a pullback stable *-quotient morphism in (T,V)-Gph.

�
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The converse is not true in general, as we will se in Section 3.3.2 in the case of MultiOrd. For
what concerns descent morphisms in (T,V)-Cat, in case the lax extension T̂ is flat, the following
characterization holds.

Theorem 3.0.7 [14, Theorem 2.4] Let T̂ be a flat lax extension to V-Rel of a Set-monad T. Assume
that every naturality square of η with respect to V-relations with finite fibres is a BC-square. Then the
following conditions are equivalent for a morphism f : (X ,a)→ (Y,b) in (T,V)-Cat:

(i) f is final;

(ii) f is a pullback stable regular epimorphism in (T,V)-Gph;

(iii) f is a pullback stable regular epimorphism in (T,V)-Cat;

(iv) f is a descent morphism in (T,V)-Cat.

Remark 3.0.8

(1) In general the natural transformation η does not satisfy BC but, in some cases, as in Top for
instance (see Example 2.2.11), the naturality diagram

X

��
❴r

ηX // T X

��
❴T̂ r

Y
ηY
// TY

is a BC-square, i.e., (T̂ r)op ·ηY = ηX · rop, provided that the relation r has finite fibres in the
sense that, for every y ∈ Y , the set {x ∈ X : r(x,y)>⊥} is finite.

(2) In case V = 2, for the ultrafilter monad and its Barr extension to Rel, one obtains the charac-
terization in Top of descent maps (see Theorem 1.4.5). Accordingly we can then state that a
continuous map f : X → Y in Top is a descent map if and only if for each ultrafilter y ∈UY
and each point y ∈Y with y→ y, there exist an ultrafilter x ∈ (U f )−1(y) and a point x ∈ f−1(y)
such that x→ x

X

f
��

x❴

��

// x❴

��
Y y // y.

The description of the map above is a concrete example of the role played by convergence (see
Proposition 1.4.12 describing descent maps of finite topological spaces).

An analogous result of Theorem 3.0.6 can be obtained replacing the category (T,V)-Gph by (T,V)-
RGph, the category of right unitary graphs. In fact, by Proposition 2.3.10, if in addition one has:

(i) T̂ is associative;

(ii) T̂ ( f op) = T̂ 1X · (T f )op for all maps f : X → Y ,
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then (T,V)-RGph is locally cartesian closed. Therefore effective descent morphisms coincide with
regular epimorphisms. According to [29, Corollary III.4.1.5], a (T,V)-functor f : (X ,a)→ (Y,b) in
(T,V)-RGph is a regular epimorphism if and only if f : X → Y is surjective and

b = f ·a · T̂ ( f op).

Condition (ii) gives
f ·a · T̂ ( f op) = f ·a · T̂ 1X · (T f )op = f ·a · (T f )op,

where the last equality follows from the fact that the structure a is right unitary, so that the description
of regular epimorphisms in (T,V)-RGph coincides with the one given in (T,V)-Gph. Therefore
Theorem 3.0.2 and Theorem 3.0.6, assuming in addition V integral and conditions (i) and (ii), still
hold replacing (T,V)-Gph by (T,V)-RGph.

3.1 Open and proper surjections

We study open and proper surjections in (T,V)-categories and prove them to be, under some conditions,
effective for descent. This was first proved to be true in Top ∼= (U,2,U)-Cat (see [42], [51] and [53])
and, thanks to the convergence description of such maps, it has been possible, first to generalize the
notion of open and proper morphisms in the context of (T,V)-categories, and second to generalize the
result concerning Descent Theory. In [11] positive answers are given for flat lax extensions while here
we study the more general case where lax extensions are not necessarily flat. The idea is the same,
that is to use Theorem 3.0.6.

Definition 3.1.1 A (T,V)-functor f : (X ,a)→ (Y,b) is open if

f op ·b ≤ a · (T f )op,

and f : (X ,a)→ (Y,b) is proper if
b ·T f ≤ f ·a.

Observe that, in both cases, the inequality is actually an equality, since f : (X ,a) → (Y,b) is a
(T,V)-functor.

In elementwise notation, a (T,V)-functor f : (X ,a)→ (Y,b) is open if

∀y ∈ TY ∀x ∈ X b(y,x) =
∨

x∈T X :T f (x)=y

a(x,x)

and proper if
∀x ∈ T X ∀y ∈ Y b(T f (x),y) =

∨
x∈X : f (x)=y

a(x,x).
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For V = 2 the conditions above become, respectively,

X

f
��

∃x❴

��

// x❴

��
Y y // f (x)

X

f
��

x❴

��

// ∃x❴

��
Y T f (x) // y,

i.e., a (T,2)-functor f : (X ,a)→ (Y,b) is open if and only if for every x∈X and y∈ TY with y→ f (x),
there exists x ∈ T X with x→ x and T f (x) = y, and f is proper if and only if for every x ∈ T X and
y ∈ Y with T f (x)→ y, there exists x ∈ X with x→ x and f (x) = y.

Remark 3.1.2 For the ultrafilter monad U one obtains the descriptions of open and proper maps
in Top. Comparing with the description of open and proper maps of finite topological spaces (see
diagrams (1.20) and (1.21)) one can see another example of the role of convergence.

First of all we need to guarantee the pullback stability of such maps.

Proposition 3.1.3 [29, Proposition V.3.1.4] Let V be a cartesian closed quantale.

1. Proper morphisms are pullback stable in (T,V)-Gph.

2. If T satisfies BC, open morphisms are pullback stable in (T,V)-Gph.

Lemma 3.1.4 Let T̂= (T̂ ,µ,η) be a lax extension to V-Rel of a Set-monad T and let f : (X ,a)→
(Y,b) be a (T,V)-functor.

(1) If T̂ is left-whiskering, then T f : (T X , T̂ a)→ (TY, T̂ b) is a proper (T,V)-functor provided that
f : (X ,a)→ (Y,b) is proper.

(2) If T̂ is right-whiskering, then T f : (T X , T̂ a)→ (TY, T̂ b) is an open (T,V)-functor provided
that f : (X ,a)→ (Y,b) is open.

Proof
(1) T f · T̂ a = T̂ ( f ·a) = T̂ (b ·T f ) = T̂ b · T̂ (T f ) = T̂ b ·T 2 f .

The first equality follows from the fact that T̂ is left-whiskering, while the second one follows from
the fact that f : (X ,a)→ (Y,b) is a proper (T,V)-functor.

(2) (T f )op · T̂ b = T̂ ( f op) · T̂ b = T̂ ( f op ·b) = T̂ (a · (T f )op) = T̂ a · (T 2 f )op.

The third equality follows from the fact that f : (X ,a)→ (Y,b) is an open (T,V)-functor, while the
last one follows from the fact that T̂ is right-whiskering. �

Proposition 3.1.5 Let T̂= (T̂ ,µ,η) be a lax extension to V-Rel of a Set-monad T.



3.1 Open and proper surjections 65

1. If T̂ is left-whiskering, then proper surjections are *-quotient morphisms.

2. If T̂ is right-whiskering, then open surjections are *-quotient morphisms.

Proof
1. Let f : (X ,a)→ (Y,b) be a proper and surjective (T,V)-functor. Let Y ∈ T 2Y , y ∈ TY and y ∈ Y .
Since f is surjective, and since the functor T : Set → Set preserves surjections, there exist X ∈ T 2X
and x∈ T X such that T 2 f (X) =Y and T f (x) = y. Since f is proper, b(y,x)) =

∨
x∈X : f (x)=y a(x,x) and

since, by Lemma 3.1.4, also T f is proper, we have T̂ b(Y,y) =
∨

x∈T X :T f (x)=y T̂ a(X,x). Therefore,

T̂ b(Y,y)⊗b(y,y) =
∨

x∈T X :T f (x)=y

T̂ a(X,x)⊗
∨

x∈X : f (x)=y

a(x,x) =
∨

x∈T X :T f (x)=y
x∈X : f (x)=y

T̂ a(X,x)⊗a(x,x)

which of course implies that

T̂ b(Y,y)⊗b(y,y)≤
∨

X∈T 2X :T 2 f (X)=Y
x∈T X :T f (x)=y

x∈X : f (x)=y

T̂ a(X,x)⊗a(x,x).

The other inequality is trivially satisfied.
2. An analogous proof can be given for open surjections. �

Combining the previous results, and by Theorem 3.0.6, we get:

Theorem 3.1.6 Let V be a cartesian closed quantale. Let T= (T,µ,η) be a monad on Set such that
T satisfies BC, and let T̂= (T̂ ,µ,η) be a lax extension of T to V-Rel.

1. If T̂ is left-whiskering, then proper surjections are effective for descent in (T,V)-Cat.

2. If T̂ is right-whiskering, then open surjections are effective for descent in (T,V)-Cat.

�

As we mentioned in Example 2.2.6, the lax extension P̂ to Rel of the powerset functor P is left-
whiskering but not right-whiskering, while P̌ behaves conversely. Hence, by Theorem 3.1.6, proper
surjections are effective for descent in (P,2, P̂)-Cat and open surjections are effective for descent in
(P,2, P̌)-Cat. Moreover the following two propositions hold.

Proposition 3.1.7 Open surjections are effective for descent in (P,2, P̂)-Cat.

Proof
Let f : (X ,a)→ (Y,b) be an open surjection in (P,2, P̂)-Cat. By Theorem 3.0.6 and Proposition 3.2.8,
it suffices to show that f is a *-quotient morphism. Let then

B−→ B −→ y0

be a chain of convergence in Y , i.e., B∈P2Y , B∈PY and y0 ∈Y with P̂b(B,B) =⊤ and b(B,y0) =⊤.
Since f is surjective, there exists x0 ∈ X such that f (x0) = y0. Since f is open, there exists then
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A ∈ PX such that P f (A) = B and A −→ x0. By definition of the extension, B−→ B means that for
each y ∈ B, there exists B′ ∈B such that B′ −→ y. Hence, since f is open, there exist A′ ∈ PX such
that P f (A′) = B′ and A′ −→ x, where x ∈ A with f (x) = y. With A ∈ P2X given by all these A′, we
get A−→ A but, in general, P2 f (A) =B does not hold since there might exist elements in B not in
relation to any point of B. For such elements, since f is surjective, take their counter-images via f , and
add them to A to get an element in P2X converging to A and mapped to B by P2 f . �

Proposition 3.1.8 Proper surjections are effective for descent in (P,2, P̌)-Cat.

Proof
Let f : (X ,a) → (Y,b) be a proper surjection in (P,2, P̌)-Cat. As before, by Theorem 3.0.6 and
Proposition 3.2.8, it suffices to show that f is a *-quotient morphism. Let then

B−→ B −→ y0

be a chain of convergence in Y . By definition of the extension, B−→ B means that for each B′ ∈B

there exists y ∈ B such that B′ −→ y. Since f is surjective, for each one of these B′ there exists A′ ∈ PX
with P f (A′) = B′. Let A ∈ P2X be given by all such elements A′. Since f is proper, for each one of
these A′ there exists a point x ∈ X such that f (x) = y and A′ −→ x. Let A ∈ PX be the join of all these
points x ∈ X satisfying the property above. Of course A−→ A but, in general, P f (A) = B does not
hold since there might be points in B not in relation to any element of B. For those points consider
their counter-images via f , which are non-empty since f is surjective, and add them to A. With this
technique we get an element in PX mapped to B by P f and in relation with A. To conclude the proof,
apply again to the convergence B −→ y0 the fact that f is proper. �

3.2 Triquotient maps

Triquotient maps were introduced by E. Michael in [41]. The notion is purely topological but thanks
to the characterization of such maps in terms of ultrafilter convergence, given by M.M. Clementino
and D. Hofmann in [9], it is possible to define them in the more general context of (T,2)-categories.
We start recalling the definition in Top and see how we can move to (T,2)-Cat. Then we explore the
role they play in Descent Theory, based on the key result given by Theorem 3.2.8.
For a topological space X let OX denote its topology. For x ∈ X , O(x) denotes the set of open subsets
of X containing x.

Definition 3.2.1 A continuous function f : X → Y is a triquotient map if there exists a map

(−)♯ : OX → OY

such that:

(T1) (∀U ∈ OX) U ♯ ⊆ f (U),

(T2) X ♯ = Y ,

(T3) (∀U,V ∈ OX) U ⊆V ⇒U ♯ ⊆V ♯,
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(T4) (∀U ∈ OX) (∀y ∈U ♯) (∀Σ ⊆ OX directed) f−1(y)∩U ⊆
⋃

Σ ⇒∃S ∈ Σ : y ∈ S♯.

In the finite case, the following characterization was established (see [30] and [7]).

Theorem 3.2.2 A continuous map f : X → Y between finite topological spaces is a triquotient map if
and only if for every natural number n and every sequence bn → bn−1 → ··· → b0 in Y , there exists a
sequence xn → xn−1 → ·· · → x0 in E such that f (xi) = yi for i = 1, . . . ,n,

X

f
��

xn❴

��

// xn−1❴

��

// · · · // x0❴

��
Y yn // yn−1 // · · · // y0.

In [9] M.M. Clementino and D. Hofmann characterize triquotient maps as those that are surjective
on chains of ultrafilter convergence, extending the result given by the theorem above for the finite
case. The technique they used can be generalized to the context of (T,2)-categories, leading to a
(T,2)-categorical definition of triquotient maps. We follow their method where the ultrafilter monad
they consider is replaced any Set-monad T.

Let T= (T,µ,η) be a monad on Set.

Definition 3.2.3 A T-relation on a set X is a subset r ⊆ T X ×X . A T-relational algebra is a set
X equipped with an ultrarelation r on X . A morphism f : (X ,r) → (Y,s) of T-relational algebras
(X ,r) and (Y,s) (also called T-relational morphism) is a map f : X → Y such that if (x,x) ∈ r then
(T f (x), f (x)) ∈ s.

We denote by (T,2)-Conv the category of T-relational algebras and morphisms between them. Often
we could use the notation x→ x instead of (x,x) ∈ r. The category (T,2)-Conv is equipped with a
canonical faithful functor U : (T,2)-Conv → Set sending (X ,r) to X .

Proposition 3.2.4 The functor U : (T,2)-Conv → Set is topological.

Proof
Let (X

fi−→U(Yi,si))i∈I be a U-structured source. Consider fi : (X ,r)→ (Yi,si), where

r = {(x,x) ∈ T X ×X such that (T fi(x), fi(x)) ∈ si for every i ∈ I}.

Then ((X ,r)
fi−→ (Yi,si))i∈I is the unique U-initial lift of (X

fi−→U(Yi,si))i∈I . �

Hence, by the proposition above, the category (T,2)-Conv is complete and cocomplete.
Observe that, if we consider a lax extension T̂ to Rel of the monad T, the category (T,2)-Conv
contains (T,2)-Cat (and (T,2)-Gph) as a full subcategory: each (T,2)-category (X ,a) defines a
T-relation r(X ,a) by

r(X ,a) = {(x,x) ∈ T X ×X such that a(x,x) =⊤}.
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For a T-relational algebra (X ,r), we consider the projection map

p(X ,r) : r → X , (x,x) 7→ x

and define the following T-relation R(X ,r) on r:

R(X ,r) = {(X,(x,x)) ∈ Tr× r such that T p(X ,r)(X) = x}.

The map p(X ,r) : (r,R(X ,r))→ (X ,r) is a morphism of T-relational alegbras, by definition of the struc-
ture on r.

We can now define a functor

Conv : (T,2)-Conv → (T,2)-Conv

in the following way: on objects, Conv(X ,r)= (r,R(X ,r)), and for a T-relational morphism f : (X ,a)→
(Y,s), define

Conv( f ) : r → s, (x,x) 7→ (T f (x), f (x)).

Since the diagram

r
p(X ,r)

��

Conv( f )// s
p(Y,s)
��

X
f
// Y

is commutative, Conv( f ) : Conv(X ,r) → Conv(Y,s) is a T-relational morphism. Moreover, the
equalities

Conv(1(X ,r)) = 1Conv(X ,r) and Conv( f ·g) = Conv( f ) ·Conv(g)

hold. Hence Conv : (T,2)-Conv → (T,2)-Conv is a functor and

(p(X ,r))(X ,r)∈(T,2)-Conv : Conv → 1(T,2)-Conv

is a natural transformation. In particular, since Conv(p(X ,r)) = pConv(X ,r) for each T-relational algebra
(X ,r), the pair (Conv, p) is a well copointed endofunctor. The functor Conv, in case T is the ultrafilter
monad U, is precisely the functor Ult in [9].
We can now define endofunctors Convα and natural transformations pα

β
for ordinal numbers α,β with

β ≤ α , by:

• Conv0 = 1(T,2)-Conv and p0
0 = 1Conv0 ;

• Convα+1 = Conv(Convα), pα+1
β

= pα

β
· pConvα and pα+1

α+1 = 1Convα+1 , for β ≤ α;

• Convλ = limβ≤α<λ pα

β
, pλ

β
= the limit projection and pλ

λ
= 1Convλ , for every limit ordinal λ

and every β < λ .

Following the notation of [9], From now on, for a T-relational algebra we write just X instead of
(X ,r), and we denote Convα(X) simply by Xα and Convα( f ) by fα , for every T-relational morphism
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f : X → Y between T-relational algebras.
The transfinite construction can be described in the following way: for each T-relational algebra X
and each ordinal α ,

Xα = {((xβ )β∈α ,x) ∈ ∏
β∈α

T (Xβ )×X | x0 → x and (∀γ ≤ β < α) T (pβ

γ )X(xβ ) = xγ},

where for each β ≤ α , the projection (pα

β
)X : Xα → Xβ is defined by

(pα

β
)X((xγ)γ∈α ,x) = ((xγ)γ∈β ,x),

and the T-relational structure on Xα is defined by

xα → ((xβ )β∈α ,x) ⇐⇒ (∀β ∈ α) T (pα

β
)X(xα) = xβ .

Finally, if f : X → Y is a T-relational morphism, then, for each ordinal α and each ((xβ )β∈α ,x) ∈ Xα ,

fα((xβ )β∈α ,x) = (T fβ (xβ )β∈α , f (x)).

For each ordinal α , and each T-relational space X , an element of Xα+1 is given by an element
xα ∈ T (Xα) and an element x ∈ X such that T (pα

0 )X(xα) → x. The map fα+1 : Xα+1 → Yα+1 is
surjective if and only if, for each element yα in T (Yα) and each y ∈ Y such that T (pα

0 )Y (yα)→ y,
there exist an element xα in T (Xα) and an x ∈ f−1(y) such that T (pα

0 )X(xα)→ x and T fα(xα) = yα .

Definition 3.2.5 If α is an ordinal number, a T-relational morphism f : X → Y is said to be α-
surjective if fβ : Xβ → Yβ is surjective for each β ∈ α . The morphism f is called Ω-surjective if fα is
surjective for every ordinal α .

It immediately follows that 1-surjective maps are just surjective maps, while 2-surjective maps are the
final (T,2)-functors.

Definition 3.2.6 A (T,2)-functor f : (X ,a) → (Y,b) is called triquotient map if f is Ω-surjective,
that is,

X

f
��

· · · // xα+1❴

��

// xα❴

��

// · · · // x1❴

��

// x0❴

��
Y · · · // yα+1 // yα

// · · · // y1 // y0.

If we consider the ultrafilter monad U= (U,µ,η), the definition above of triquotient map gives the
notion of triquotient map in Top, thanks to the following characterization theorem.

Theorem 3.2.7 [9, Theorem 6.4] Let f : X → Y be a continuous map between topological spaces.
The following conditions are equivalent:

(i) f is a triquotient map;

(ii) f is Ω-surjective;

(iii) f is λY -surjective;
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where λY is the least cardinal larger than the cardinal of Y .

The fact that, in Top, triquotient maps are effective for descent was first proved by T. Plewe in [46].
Later on, in [9], M.M. Clementino and D. Hofmann improved the result characterizing the effective
descent maps as those morphisms which are 3-surjective. In particular,

Theorem 3.2.8 [9, Theorem 5.2] A topological continuous map f : X → Y is effective for descent if
and only if it is 3-surjective.

We apply Theorem 3.0.6 to prove that triquotient maps in (T,2,T)-Cat, where T is the Barr extension
of a Set-monad T, are effective for descent.

Proposition 3.2.9 If T satisfies BC, then 3-surjective maps are pullback stable in (T,2)-Gph.

Proof
Let f : X → Y be a 3-surjective map between (T,2)-graphs. In the following pullback diagram in
(T,2)-Gph,

X ×Y Z

π1
��

π2 // Z

g
��

X
f
// Y

we want to prove that π2 : X ×Y Z → Z is a 3-surjective map, i.e., that (π2)2 : (X ×Y Z)2 → Z2 is sur-
jective. Let then z1 ∈ T (Z1) and z ∈ Z such that T (p1

0)Z(z1)→ z. Since p1
0 is a natural transformation,

T (p1
0)Y (T g1(z1))→ g(z). Hence, since f2 : X2 → Y2 is surjective, there exist x1 ∈ T (X1) and x ∈ X

such that T f1(x1) = T g1(z1), f (x) = g(z) and T (p1
0)X(x1)→ x. Therefore the pair (x1,z1) belongs to

T (X1)×T (Y1) T (Z1).
Since

(X ×Y Z)1

(π1)1

��

(π2)1 // Z1

g1

��
X1 f1

// Y1

is a commutative diagram, there exists a unique map k

T ((X ×Y Z)1)

T (π1)1

((

T (π2)1

((

k

((
T (X1)×T (Y1) T (Z1)

pr1

��

pr2 // T (Z1)

T g1

��
T (X1) T f1

// T (Y1).
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such that pr1 · k = T (π1)1 and pr2 · k = T (π2)1. We want to show that k is surjective. Consider the
pullback diagram in Set

X1 ×Y1 Z1

π ′
1
��

π ′
2 // Z1

g1

��
X1 f1

// Y1

By the universal property, there exists a unique map l

(X ×Y Z)1

(π1)1

''

(π2)1

$$

l

&&
X1 ×Y1 Z1

π ′
1
��

π ′
2 // Z1

g1

��
X1 f1

// Y1

such that π ′
1 · l = (π1)1 and π ′

2 · l = (π2)1. Since T satisfies BC, l is surjective.
Moreover, always by the universal property, there exists a unique map t

T (X1 ×Y1 Z1)

T π ′
1

((

T π ′
2

((

t

((
T (X1)×T (Y1) T (Z1)

pr1

��

pr2 // T (Z1)

T g1

��
T (X1) T f1

// T (Y1).

such that pr1 · t = T π ′
1 and pr2 · t = T π ′

2. Since T satisfies BC, t is surjective.
Since the composition t ·T l satisfies

pr1 · (t ·T l) = T π
′
1 ·T l = T (π ′

1 · l) = T (π1)1, pr2 · (t ·T l) = T π
′
2 ·T l = T (π ′

2 · l) = T (π2)1

we conclude that k = t · T l, so that k is, in particular, a surjective map as claimed. Hence, there
exists an element w1 ∈ T (X ×Y Z)1 such that k(w1) = t(T l(w1)) = (x1,z1). Therefore, T (π2)1(w1) =

pr2(k(w1)) = z1. It remains to show that T (p1
0)X×Y Z(w1)→ (x,z), i.e.,

T π1(T (p1
0)X×Y Z(w1))→ x and T π2(T (p1

0)X×Y Z(w1))→ z.

Since p1
0 is a natural transformation,

T π1(T (p1
0)X×Y Z(w1)) = T (p1

0)X(T (π1)1)(w1) = T (p1
0)X(pr1(k(w1))) = T (p1

0)X(x1)→ x,

T π2(T (p1
0)X×Y Z(w1)) = T (p1

0)Z(T (π2)1(w1)) = T (p1
0)Z(pr2(k(w1))) = T (p1

0)Z(z1)→ z. �
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We may now ask whether 3-surjective maps are effective for descent. The fact that 3-surjective in
(T,2,T)-Cat maps are *-quotient morphisms has been proved in [20] by M.M. Clementino and G.
Janelidze.

Proposition 3.2.10 [20, Problem 2.2] A (T,2)-functor f : (X ,a) → (Y,b) in (T,2,T)-Cat is a *-
quotient morphism provided that it is 3-surjective.

Therefore the following theorem holds.

Theorem 3.2.11 A (T,2)-functor f : (X ,a)→ (Y,b) in (T,2,T)-Cat is an effective descent morphism
provided that it is a triquotient map.

Proof
It immediately follows from this chain of implications:

triquotient

⇓

3-surjective

⇓

pullback stable *-quotient in (T,2)-Gph

⇓

effective descent

(3.2)

where the first one, starting from the top-side, follows by Definition 3.2.6, the second by Propositions
3.2.9 and 3.2.10, and the last one by Theorem 3.0.6. �

In the chain of implications given in the proof of the theorem above, the converse of the last implication
is not true in general, as we already mentioned after having stated Theorem 3.0.6. A counter-example
is given in MultiOrd, where a monotone map is of effective descent if and only if it is a weak
*-quotient map (see Section 3.3.2). But it is true in Top, as it has been proved by M.M. Clementino
and G. Janelidze in [20].

Theorem 3.2.12 [20, Theorem 3.3] For a continuous map f : X →Y between topological spaces, the
following conditions are equivalent:

(i) f is of effective descent in Top;

(ii) f is a pullback stable *-quotient map in PsTop.

The converse of the second implication in (3.2) is true, accordingly to [20, Theorem 2.3], always
considering the Barr extension, if the canonical map

T (A×B)→ TA×T B (3.3)

is injective for every two sets A and B, since *-quotient morphisms, assuming the condition above, are
proved to be 3-surjective. In case of the Barr extension to Rel of a given Set-monad T= (T,µ,η),
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assuming that every naturality square of η with respect to relations with finite fibres is a BC-square,
the following diagram of implications summarizes the general situation in (T,2)-Cat.

triquotient

⇓

3-surjective

⇓

⇒ pullback stable *-quotient in (T,2)-Gph

⇓

⇒ effective global-descent

⇓

2-surjective

⇓

⇔ pullback stable regular epimorphism

⇓

⇔ global-descent

1-surjective regular epimorphism.⇐

Counter-examples of most of the one-direction implications can be given if we take T= I, the identity
monad. In this case (T,2)-Cat ∼= Ord and here the notion of 3-surjective map coincides with the
notion of *-quotient morphism. In Section 1.4.4 we already gave an example of a pullback stable
regular epimorphism not *-quotient (see Example 1.4.20) and an example of a regular epimorphism
not pullback stable (see Example 1.4.21). The 1-surjective morphisms are simply the surjective
(T,2)-functors, so that Example 1.4.21 gives a 1-surjective map not 2-surjective. Of course the
1-surjective morphisms need not be regular epimorphisms. An easy counter-example can be given in
Top, simply considering the identity map of a set X , with at least two points, equipped for the domain
with the discrete topology and for the codomain with indiscrete topology. The map is continuous and
surjective but it fails to be quotient. The converse of the implication

3-surjetive ⇒ pullback stable *-quotient in (T,2)-Gph

is still an open problem, in the sense we do not know if it is true in general (although we know to be
true in Top and for all Set-monads T= (T,µ,η) for which the canonical map (3.3) is injective for
any two sets A and B). As we mentioned previously, an example of an effective descent morphism not
pullback stable *-quotient in (T,2)-Gph can be given in MultiOrd. By Theorem 3.2.2 we can easily
construct a 3-surjective map not triquotient (we omit the composition arrows in the picture):
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X

f

��

Y

x30 // x10 // x00

x31 // x21 // x01

x32 // x22 // x12

x23 // x13 // x03

❴

��

y3 // y2 // y1 // y0

All the sequences in Y of length 2 and 1 can be lifted in X but for n= 3 the sequence y3 → y2 → y1 → y0

has no lifting in X . In case of Top one has

3-surjective ⇔ effective descent ⇔ pullback stable *-quotient in PsTop.

One may now ask: does Theorem 3.2.11 remain true for extensions different from the Barr extensions?
We start remarking that Proposition 3.2.9 is true for any lax extension of the Set-monad T= (T,µ,η),
as long as T satisfies BC. Therefore pullback stability of 3-surjective maps is guaranteed. It remains to
ask whether Proposition 3.2.10 still holds for different kinds of extensions. It is the case for instance,
as we show next, if we consider the two lax extensions P̌ and P̂ of the powerset monad P given in
Example 2.2.6.

Proposition 3.2.13 A (P,2, P̌)-functor f : (X ,a)→ (B,b) is an effective descent morphism provided
that it is a triquotient map.

Proof
We only need to show that if f is 3-surjective then it is a *-quotient morphism. Let B ∈ P2Y , B ∈ PY
and y0 ∈ Y such that

B→ B → y0, (3.4)

where we recall that B→ B means that for every B′ ∈B there exists y ∈ B such that B′ → y. By
assumption, we know that f2 : X2 → Y2 is surjective, that is, for every b1 ∈ PY1 and y0 ∈ Y such that
P(p1

0)Y (b1)→ y0 there exist a1 ∈ PX1 and x0 ∈ f−1(y0) such that P(p1
0)X(a1)→ x and P f1(a1) = b1,

where
X1 = {(A,x) ∈ PX ×X : A → x}, Y1 = {(B,y) ∈ PY ×Y : B → y}

and f1 : X1 → Y1 is defined by (A,x) 7→ (P f (A), f (x)). Hence, given the chain of convergence (3.4),
let

b1 = {(B′,y) ∈ PY ×Y : B′ ∈B,y ∈ B with B′ → y}∪{({ỹ}, ỹ) ∈ PY ×Y : ỹ ∈ B̃},
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where B̃ = B−{y ∈ B : ∃B′ ∈B with B′ → y}. Basically in the definition of b1 we are taking, on
the left-side of the join, all the elements B′ ∈B. Only this part does not guarantee the presence of all
elements of B, because of the definition of the convergence, so that we need to add them and this is
precisely the right-side part of the join. Now b1 ∈ PY1 and P(p1

0)Y (b1) = B → y0. Therefore, since f2

is surjective, there exist a1 ∈ PX1, x0 ∈ f−1(y0) such that

P(p1
0)X(a1)→ x0 and P f1(a1) = b1.

Since p1
0 is a natural transformation,

P f (P(p1
0)X)(a1) = P(p1

0)Y (P f1(a1)) = P(p1
0)Y (b1) = B.

The element a1 ∈ PX1 is given by pairs (A,x) ∈ PX ×X such that A → x. Taking

A= {A ∈ a1}−{Ã ∈ a1 : P f (Ã) = {ỹ}}

we get an element A ∈ P2X such that P2 f (A) =B and A→ P(p1
0)X(a1). �

Proposition 3.2.14 A (P,2, P̂)-functor f : (X ,a)→ (B,b) is an effective descent morphism provided
that it is a triquotient map.

Proof
As one can expect, the proof is going to be similar to the previous one with the only difference that we
have to be careful with the different extension we are considering. Let B ∈ P2Y , B ∈ PY and y0 ∈ Y
such that

B→ B → y0,

where we recall that B→ B means that for every y ∈ B there exists B′ ∈B such that B′ → y. Let
b1 ∈ PY1 be given by

b1 = {(B′,y) ∈ PY ×Y : B′ ∈B,y ∈ b with B′ → y}.

Then P(p1
0)Y (b1) = B → y0. Since f2 : X2 → Y2 is surjective, there exist a1 ∈ PX1, x0 ∈ f−1(y0) such

that P(p1
0)X(a1)→ x0 and P f1(a1) = b1. Since p1

0 is a natural transformation

P f (P(p1
0)X)(a1) = P(p1

0)Y (P f1(a1)) = P(p1
0)Y (b1) = B.

The element a1 ∈ PX1 is given by pairs (A,x) ∈ PX ×X such that A → x. This time, starting from the
elements A in a1, we need to add all the subsets f−1(B′) for B′ ∈B such that there are no points y ∈ B
with B′ → y, that is, define A ∈ P2X by

A= {A ∈ a1}∪{ f−1(B′) : B′ ∈ B̃},

where B̃ = B−{B′ ∈ B : there are no elements y in B for which B′ → y}. Then P2 f (A) = B and
A→ P(p1

0)X(a1). �
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3.3 From Rel to V-Rel: the problem of effective descent morphisms

In Section 2.2.2 we saw how to construct the uniform lax extension T̃ = (T̃ ,µ,η) to V-Rel of a
Set-monad T= (T,µ,η) through its Barr extension T. In particular, if T satisfies BC, V is ccd and
kV =⊤V or T preserves the ⊥-relation, then, for x ∈ T X , y ∈ TY and every V-relation r : X−→7 Y ,

T̃ r(x,y) =
∨
{v ∈ V : T rv(x,y) =⊤}

where rv : X−→7 Y is the relation defined by

rv(x,y) =

{
⊤, if v ≤ r(x,y)
⊥, otherwise,

defines a (flat) lax extension of T to V-Rel. Since the definition of the lax extension T̃ is strictly
related to the Barr extension T , and it is actually an extension of it, a question arises: is there any
relation between effective descent morphisms in the category (T,2,T)-Cat and effective descent
morphisms in (T,V, T̃)-Cat? In case (T,η ,µ) is the identity monad (I,1,1), we saw in Example 2.3.3
that (I,2,I)-Cat ∼= Ord, the category of (pre)ordered sets, and (I,V, Ĩ)-Cat = V-Cat, the category of
V-categories. According to Proposition 1.4.13, in Ord effective descent morphisms coincide with
*-quotient morphisms, that is a monotone map f : X → Y in Ord is of effective descent if and only if

∀ y2 −→ y1 −→ y0 in B ∃ x2 −→ x1 −→ x0 in E : ∀i = 0,1,2 p(xi) = yi.

As it has been proved in [15] by M.M. Clementino and D. Hofmann, in V-Cat one can get an
analogous result but a condition on V is required.

Definition 3.3.1 For a ccd quantale V one says that V is cancellable if for all u,v ∈ V−{⊥}, for all
families (ui)i∈I,(vi)i∈I in V with ui ≤ u and vi ≤ v for every i ∈ I

∨
i∈I

(ui ⊗ vi)≥ u⊗ v ⇒∀u′ ≪ u,v′ ≪ v ∃i ∈ I : u′ ≤ ui and v′ ≤ vi.

Theorem 3.3.2 [15, Proposition 6.3] If V is cancellable and cartesian closed, then the following
conditions are equivalent, for a morphism f : (X ,a)→ (Y,b) in V-Cat.

(i) f is effective for descent;

(ii) f is a ∗-quotient morphism;

(ii) f is a ∗∗-quotient morphism.

For a V-functor f : (X ,a)→ (Y,b) to be a *-quotient morphism means that

∀y2,y1,y0 ∈ Y b(y2,y1)⊗b(y1,y0) =
∨

xi∈ f−1(yi)

a(x2,x1)⊗a(x1,x0),

while f is called **-quotient if

∀y2,y1,y0 ∈ Y,u ≪ b(y2,y1),v ≪ b(y1,y0) ∃xi ∈ f−1(xi), for i = 0,1,2, such that
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u ≤ a(x2,x1), v ≤ a(x1,x0).

Every **-quotient morphism is *-quotient and the converse is true if V is cancellable. In Example
2.1.2, the quantales 2, R+ and I∗ are cancellable while I⊕ is not cancellable; in fact, as remarked in
[15, Example 2.5], for ui = 0 = vi and u = 1

2 = v one has 0 =
∨
(ui ⊕ vi) = u⊕ v but

∨
ui = 0 ̸= u.

This suggests also that the quantale P = (P(M),⊗,k) is not cancellable; in fact one can take M = I⊕,
considered as a monoid, and the elements above giving I⊕ not cancellable as one-point set elements.
Anyway in [15] the following results are given.

Theorem 3.3.3 [15, Theorem 6.4 (2)] Let ⊗ be a continuous quantale structure on [0,1] with neutral
element 1. Then a [0,1]⊗-functor is effective for descent in [0,1]⊗-Cat if and only if it is a *-quotient
morphism.

This of course applies for ⊗=⊕ but, as remarked in the same paper, an effective [0,1]⊗-functor does
not need to be **-quotient. The counter-example is given precisely in I⊕.

Example 3.3.4 [15, Remark 6.4 (2)] An easy inspection reveals that the following I⊕-functor fails to
be **-quotient but, since 1

2 ⊕
1
2 = 0, it is a *-quotient morphism. The class of *-quotient morphisms

in [0,1]⊗-Cat, where ⊗ is a continuous quantale structure with neutral element 1, is pullback stable
(as proved in [15]) and so effective for descent.

X

f
��

Y

x2

1
2 // x10

x11

1
2 // x0

❴

��

y2

1
2 // y1

1
2 // y0

Theorem 3.3.5 [15, Theorem 6.4 (4)] If M is a non-trivial monoid, then:

(1) A P-functor is effective for descent in P-Cat if and only if it is a **-quotient morphism;

(2) There are *-quotient morphisms in P-Cat which are not effective for descent.

Inspired by the definition of **-quotient morphisms given above for V-functors, and considering a lax
extension T̂ of a Set-monad T to V-Rel, one can, more generally, call a (T,V)-functor f : (X ,a)→
(Y,b) a **-quotient morphism if

∀Y ∈ T 2Y,y ∈ TY,y ∈ Y,u ≪ T̂ b(Y,y),v ≪ b(y,y) ∃X ∈ (T 2 f )−1(Y),x ∈ (T f )−1(y),x ∈ f−1(y)

such that
u ≤ T̂ a(X,x), v ≤ a(x,x).

Also in this case every **-quotient morphism is *-quotient and the converse is true if V is cancellable.
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3.3.1 Effective descent morphisms in (M,V,M̃)-Cat

In Example 2.2.13 we described the uniform extension M̃ to V-Rel of the M-ordered monad M =

(M×,µ,η). Our aim is to study effective descent morphisms in (M,V,M̃)-Cat and see if there is any
relation with the effective descent morphism in M-Ord = (M,2,M)-Cat. A complete characterization
of effective descent morphisms in M-Ord is given in [18] by M.M. Clementino, D. Hofmann and A.
Montoli.

Proposition 3.3.6 [18, Theorem 1.8] An equivariant map f : (X ,a)→ (Y,b) in M-Ord is of effective
descent if and only if it is a *-quotient map, i.e.,

∀ y2
m−→ y1

n−→ y0 in B ∃ x2
m−→ x1

n−→ x0 in E : ∀i = 0,1,2 p(xi) = yi.

In order to give a complete characterization of the effective descent morphisms in (M,V,M̃)-Cat, we
start by describing the category: objects are pairs (X ,a) where X is a set and a : (M×X)×X → V is
a map satisfying the following properties

· k ≤ a((1M,x),x), ∀x ∈ X

· a((m,x),x′)⊗a((n,x′),x′′)≤ a((n ·m,x),x′′), ∀x,x′,x′′ ∈ X ,m,n ∈ M.

A morphism f : (X ,a)→ (Y,b) in (M,V,M̃)-Cat is a map f : X → Y such that

· a((m,x),x′)≤ b((m, f (x)), f (x′)), ∀x,x′ ∈ X ,m ∈ M.

Observe that, if M = 1, the trivial monoid, considered as one-object category, (M,V,M̃)-Cat is
isomorphic to the category V-Cat of V-categories and V-functors, as it happens for M-Ord where,
if M = 1, it is isomorphic to the category Ord of (pre)ordered sets and monotone maps. Hence the
characterization of the effective descent morphisms in (M,V,M̃)-Cat will be a generalization of
Theorem 3.3.2. We base our work on the results given in [11] for V-Cat and adapt them for our
purpose.

Lemma 3.3.7 Let f : (X ,a)→ (Y,b) be an (M,V)-functor such that its change of base functor f ∗

reflects isomorphisms. Then f is a regular epimorphism in (M,V,M̃)-Gph.

Proof
Let f : (X ,a)→ (Y,b) be a (M,V,M̃)-functor such that its change of base functor f ∗ reflects iso-
morphisms. Let y1,y0 ∈ Y and m ∈ M. Then

α :=
∨

xi∈ f−1(yi)

a((m,x1),x0)≤ b((m,y1),y0) := β .

We want to show the other inequality. Take the set 2 = {0,1} equipped with the structures bα and bβ

defined as follows:

· bα((m,1),0) = α ,

· bα((n,1),0) =⊥, if n ̸= m,
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· bα((1M,0),0) = bα((1M,1),1) = k,

· bα((n,0),1) =⊥, for each n ∈ M,

· bα((n,1),1) = bα((n,0),0) =⊥, for each n ̸= 1M in M;

while bβ equals bα except for ((m,1),0) where

· bβ ((m,1),0) = β .

Then (2,bα) and (2,bβ ) are (M,V,M̃)-categories. Consider the (M,V)-functors

gα : (2,bα)→ (Y,b) gβ : (2,bβ )→ (Y,b)

defined both by i 7→ yi for i= 0,1. We prove that the image under f ∗ of the identity map id2 : (2,bα)→
(2,bβ ) is an isomorphism. The morphism we refer to is idX ×Y id2 : (X ×Y 2,dα) → (X ×Y 2,dβ ),
where the structures dα ,dβ : M× (X ×Y 2)× (X ×Y 2)→ V are described by

dα(n,(x, i),(x′, i′)) = a((n,x),x′)∧bα((n, i), i′)

dβ (n,(x, i),(x
′, i′)) = a((n,x),x′)∧bβ ((n, i), i

′),

for each n ∈ M, i, i′ ∈ 2 and x,x′ ∈ X such that f (x) = y1 and f (x′) = yi′ . Since idX ×Y id2 is an
(M,V)-functor, we already have that dα ≤ dβ , and since it also a Set-isomorphism, it remains to show
that dβ ≤ dα . We have

a((m,x1),x0)∧bβ ((m,1),0) = a((m,x1),x0)≤
∨

xi∈ f−1(yi)

a((m,x1),x0)).

The equality follows from the definition of the structure bβ and from the fact that a((m,x1),x0) ≤
b((m,y1)y0), since f is an (M,V)-functor. The other cases are trivially satisfied. Hence, since by
hypothesis f ∗ reflects isomorphisms, we conclude that id2 : (2,bα)→ (2,bβ ) is an isomorphism as
well, giving rise to the claimed inequality. �

Proposition 3.3.8 If V is cartesian closed, then every effective descent morphism in (M,V,M̃)-Cat
is a ∗-quotient morphism.

Proof
Let f : (X ,a)→ (Y,b) be an effective descent morphism in (M,V,M̃)-Cat. The pullback functor f ∗

reflects isomorphisms. By Lemma 3.3.7, f is a regular epimorphism in (M,V,M̃)-Gph and so an
effective descent morphism in this category as well. We want to show that f is a *-quotient morphism,
that is, for each y0,y1,y2 ∈ Y , m,n ∈ M

b((m,y2),y1)⊗b((n,y1),y0) =
∨

xi∈ f−1(yi)

a((m,x2),x1)⊗a((n,x1),x0).

Assume that there are elements y0,y1,y2 ∈ Y , m,n ∈ M such that

∨
xi∈ f−1(yi)

a((m,x2),x1)⊗a((n,x1),x0)< b((m,y2),y1)⊗b((n,y1),y0)≤ b((n ·m,y2),y0).
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Let us call
α :=

∨
xi∈ f−1(yi)

a((m,x2),x1)⊗a((n,x1),x0).

Define on the set B = {0,1,2} the following reflexive and non-transitive structure bα :

· bα((m,2),1) = b((m,y2),y1),

· bα((n,1),0) = b((n,y1),y0),

· bα((n ·m,2),0) = α ,

· bα((1M,0),0) = bα((1M,1),1) = bα((1M,2),2) = k,

· bα((l, i), j) =⊥, elsewhere.

Consider then the (M,V)-functor g : (B,bα) → (Y,b) defined by i 7→ yi for i = 0,1,2 and take its
pullback along f in (M,V,M̃)-Gph

(X ×Y B,d)

π1

��

π2 // (B,bα)

g
��

(X ,a)
f
// (Y,b),

where d is the pullback structure on the set X ×Y B in (M,V,M̃)-Gph. Since f is an effective descent
morphism, (X ×Y B,d) is not transitive, i.e., there exist elements (x, i),(x′, i′),(x′′, i′′) ∈ X ×Y B and
m̄, n̄ ∈ M such that

d((m̄,(x, i)),(x′, i′))⊗d((n̄,(x′, i′)),(x′′, i′′))� d((n̄ · m̄,(x, i)),(x′′, i′′)).

The only possibility is for i = 0, i′ = 1, i′′ = 2 and m̄ = m, n̄ = n. We have

· d((n ·m,(x2,2)),(x0,0)) = a((n ·m,x2),x0)∧bα((n ·m,2),0) = a((n ·m,x2),x0)∧α ,

· d((m,(x2,2)),(x1,1))⊗d((n,(x1,1)),(x0,0))≤ a((m,x2),x1)⊗a((n,x1),x0).

Hence,
a((m,x2),x1)⊗a((n,x1)x0)� a((n ·m,x2),x0)∧α.

But since a((m,x2),x1)⊗a((n,x1),x0)≤ a((n ·m,x2),x0), we conclude that

a((m,x2),x1)⊗a((n,x1),x0)� α,

which contradicts the definition of α . �

For an (M,V)-functor f : (X ,a)→ (Y,b) to be **-quotient morphism means that

∀y2,y1,y0 ∈ Y,m,n ∈ M,u ≪ b((n,y2),y1),v ≪ b((m,y1),y0)
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∃xi ∈ f−1(xi), for i = 0,1,2 : u ≤ a((n,x2),x1),v ≤ a((m,x1),x0).

Theorem 3.3.9 Let V be a ccd quantale. If V is cancellable and cartesian closed, then the following
conditions are equivalent for a morphism f : (X ,a)→ (Y,b) in (M,V,M̃)-Cat:

(i) f is effective for descent;

(ii) f is a *-quotient morphism;

(iii) f is a **-quotient morphism.

Proof
(i)⇒ (ii) follows from Proposition 3.3.8.
(ii)⇒ (iii) follows from the fact that V is cancellable by hypothesis.
(iii)⇒ (i) We only need to show that **-quotient morphisms are pullback stable in (M,V,M̃)-Gph.
Let

(X ×Y Z,d)

π1

��

π2 // (Z,c)

g
��

(X ,a)
f
// (Y,b)

be a pullback diagram in (M,V,M̃)-Gph, where d is the pullback structure of the set X ×Y Z and
f is a **-quotient morphism. We want to show that π2 is a **-quotient morphism as well. Let
z2,z1,z0 ∈ Z,m,n ∈ M and u ≪ c((n,z2),z1),v ≪ c((m,z1),z0). Since g is an (M,V)-functor,

u ≪ c((n,z2),z1)≤ b((n,g(z2)),g(z1))⇒ u ≪ b((n,g(z2)),g(z1))

v ≪ c((m,z1),z0)≤ b((m,g(z1)),g(z0))⇒ v ≪ b((m,g(z1)),g(z0)).

Since f is a **-quotient morphism, there exist x2,x1,x0 ∈ X such that f (xi) = g(zi), for i = 0,1,2, and

u ≤ a((n,x2),x1), v ≤ a((m,x1),x0).

Therefore, (xi,zi) ∈ X ×Y Z, for i = 0,1,2, and

u ≤ a((n,x2),x1)∧ c((n,z2),z1) = d((n,(x2,z2)),(x1,z1))

v ≤ a((m,x1),x0)∧ c((m,z1),z0) = d((m,(x1,z1)),(x0,z0))

as wished. �

This generalizes Theorem 3.3.2 and offers the perspective that, under hypotheses on the quantale
V, relations between effective descent morphisms in (T,2,T)-Cat and (T,V, T̃)-Cat might exist. In
fact, in both cases of the identity monad and the M-ordered monad, the effective descent morphisms,
passing from (T,2,T)-Cat to (T,V, T̃)-Cat, remain the *-quotient morphisms. In the next section we
study the case where T=W, the free-monoid monad.
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3.3.2 Effective descent morphisms in (W,V,W⊗)-Cat and (W,V,W∧)-Cat

In Sections 2.2.2 and 2.2.3 we introduced two different lax extensions to V-Rel of the free-monoid
monad W= (W,µ,η), which we denoted by W∧ and W⊗. Recall that W∧ comes from the uniform
construction of lax extensions so that ccd of V is required. Because of this, when we talk about
the extension W∧, we automatically assume V ccd, in order to make the reading smoother. As
we did for the M-ordered monad, we want to study effective descent morphisms in the context of
(W,V)-categories and see if there is any possible connection with the effective descent morphisms in
MultiOrd = (W,2,W)-Cat. In particular, we are mainly interested in the case of (W,V,W∧)-Cat
because of its direct relation with the Barr extension W. Effective descent morphisms in MultiOrd
have been characterized by M.M. Clementimo, D. Hofmann and A. Montoli in [18].

Theorem 3.3.10 [18, Theorem 1.10] A monotone map in MultiOrd is of effective descent if and only
if it is a weak *-quotient map.

A (W,2)-functor f : (X ,a) → (Y,b) is said to be a weak *-quotient map if for each y0,y1, . . . ,yn,
yi

1, . . . ,y
i
m ∈ Y , i ∈ {1, . . . ,n}, such that

b((yi
1, . . . ,y

i
m),yi) =⊤ and b((y1, . . . ,yn),y0) =⊤,

there exist x j ∈ f−1(y j), j = 1, . . . ,n, and xi
j ∈ f−1(xi

j), j = 1, . . . ,m, such that

a((xi
1 . . . ,x

i
m),xi) =⊤ and a((x1, . . . ,xn),x0) =⊤.

As remarked in [18], with a counter-example induced by the proof of the theorem above, weak
*-quotient morphisms need not to be *-quotient. This implies that the converse of Theorem 3.0.6
is not true in general. One of the steps to reach the characterization above is given by an equival-
ent formulation of transitivity for a (W,2,W)-graph. An analogous result can be obtained for a
(W,V,W⊗)-graph. Observe that the categories of (W,V)-graphs, for both the extensions W⊗ and
W∧, coincide, since in the description of the reflexivity property the extension is not involved. But we
will anyway stress the notation if needed, in particular to remark in which context we are interested in
getting the result.

Lemma 3.3.11 For an (X ,a) ∈ (W,V,W⊗)-Gph, the following conditions are equivalent:

(i) (X ,a) is transitive;

(ii) ∀x0,x1, . . . ,xn,xi
1, . . . ,x

i
m ∈ X, with i ∈ {1, . . . ,n}

a((xi
1, . . . ,x

i
m),xi)⊗a((x1, . . . ,xn),x0)≤ a((x1, . . . ,xi

1, . . . ,xi−1,xi
m,xi+1, . . . ,xn),x0).

Proof
(i)⇒ (ii) Let x0,x1, . . . ,xn,xi

1, . . . ,x
i
m ∈ X with i ∈ {1, . . . ,n}. Consider

((x1), . . . ,(xi−1),(xi
1, . . . ,x

i
m),(xi+1), . . . ,(xn)) ∈W 2X .
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Since (X ,a) is transitive,

a((x1),x1)⊗·· ·⊗a((xi
1, . . . ,x

i
m),xi)⊗·· ·⊗a((xn),xn)⊗a((x1, . . . ,xn),x0)≤

≤ a((x1, . . . ,xi−1,xi
1, . . . ,x

i
m,xi+1 . . . ,xn),x0).

but since
k ≤ a((x j),x j) for each j = 1, . . . , i−1, i+1, . . . ,n

we get the wished inequality of condition (ii).

(ii)⇒ (i) Let ((x1
1, . . . ,x

1
m1
), . . . ,(xn

1, . . . ,x
n
mn
)) ∈W 2X , (x1, . . . ,xn) ∈WX and x0 ∈ X .

For i = 1, by condition (ii), we have

a((x1
1, . . . ,x

1
m1
),x1)⊗a((x1, . . . ,xn),x0)≤ a((x1

1, . . . ,x
1
m1
,x2, . . . ,xn),x0).

For i = 2
a((x2

1, . . . ,x
2
m2
),x2)⊗a((x1

1, . . . ,x
1
m1
,x2, . . . ,xn),x0)≤

≤ a((x1
1, . . . ,x

1
m1
,x2

1, . . . ,x
2
m2
,x3, . . . ,xn),x0).

Iterating the process, for i = n we get

a((xn
1, . . . ,x

n
mn
),xn)⊗a((x1

1, . . . ,x
1
m1
, . . . ,xn−1

1 , . . . ,xn−1
mn−1

,xn),x0)≤

≤ a((x1
1, . . . ,x

1
m1
, . . . ,xn

1, . . . ,x
n
mn
),x0).

Starting from the last inequality, and coming backwards to i = 1, we get

(
n⊗

i=1

a((xi
1, . . . ,x

i
mi
),xi))⊗a((x1, . . . ,xn),x0)≤ a((x1

1, . . . ,x
1
m1
, . . . ,xn

1, . . . ,x
n
mn
),x0)

proving that (X ,a) is transitive. �

A connection between the categories (W,V,W⊗)-Cat and (W,V,W∧)-Cat is given when V is
integral.

Proposition 3.3.12 If V is integral, then (W,V,W∧)-Cat is contained in (W,V,W⊗)-Cat, i.e., there
is a full embedding

I : (W,V,W∧)-Cat ↪→ (W,V,W⊗)-Cat.

Proof
Let (X ,a) be an object in (W,V,W∧)-Cat. We want to prove that condition (ii) of Lemma 3.3.11 is
satisfied. Let x0,x1, . . . ,xn,xi

1, . . . ,x
i
m ∈ X with i ∈ {1, . . . ,n}. Consider

((x1), . . . ,(xi−1),(xi
1, . . . ,x

i
m),(xi+1), . . . ,(xn)) ∈W 2X .
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Since (X ,a) is transitive,

(a((x1),x1)∧·· ·∧a((xi
1, . . . ,x

i
m),xi)∧·· ·∧a((xn),xn))⊗a((x1, . . . ,xn),x0)≤

≤ a((x1, . . . ,xi−1,xi
1, . . . ,x

i
m,xi+1 . . . ,xn),x0).

But
(a((x1),x1)∧·· ·∧a((xi

1, . . . ,x
i
m),xi)∧·· ·∧a((xn),xn)) = a((xi

1, . . . ,x
i
m),xi),

since k =⊤≤ a((x j),x j) for j = 1, . . . , i−1, i+1, . . . ,n. �

Inspired by the notion of weak *-quotient morphisms for (W,2)-functors, we have the following
definitions.

Definition 3.3.13 A (W,V)-functor f : (X ,a)→ (Y,b) is called weak *-quotient if for each y0,y1, . . . ,yn,
yi

1, . . . ,y
i
m ∈ Y with i ∈ {1, . . . ,n}

b((yi
1, . . . ,y

i
m),yi)⊗b((y1, . . . ,yn),y0) =

∨
xi

j∈ f−1(yi
j)

x j∈ f−1(y j)

a((xi
1, . . . ,x

i
m),xi)⊗a((x1, . . . ,xn),x0).

Definition 3.3.14 A (W,V)-functor f : (X ,a)→ (Y,b) is called weak **-quotient if for each y0,y1, . . . ,yn,

yi
1, . . . ,y

i
m ∈ Y with i ∈ {1, . . . ,n} and for each u ≪ b((yi

1, . . . ,y
i
m),yi), v ≪ b((y1, . . . ,yn),y0) there

exist x j ∈ f−1(y j), for j = 1, . . . ,n, and xi
j ∈ f−1(yi

j), for j = 1, . . . ,m such that

u ≤ a((xi
1, . . . ,x

i
m),xi), v ≤ a((x1, . . . ,xn),x0).

It follows that every weak **-quotient morphism is weak *-quotient while the converse is true if V is
cancellable.

Lemma 3.3.15 Weak **-quotient morphisms are pullback stable in (W,V,W⊗)-Gph.

Proof
Let f : (X ,a)→ (Y,b) be a weak **-quotient morphism in (W,V,W⊗)-Gph and let

(X ×Y Z,d)

π1

��

π2 // (Z,c)

g
��

(X ,a)
f
// (Y,b)

be a pullback diagram in (W,V,W⊗)-Gph, where d is the pullback structure on the set X ×Y Z. We
want to show that π2 is a weak **-quotient morphism as well. Let then z0,z1, . . . ,zn,zi

1, . . . ,z
i
m ∈ Z,

with i ∈ {1, . . . ,n}, and let u ≪ c((zi
1, . . . ,z

i
m),zi), v ≪ c((z1, . . . ,zn),z0). Since g is a (W,V)-functor,

u ≪ b((g(zi
1), . . . ,g(z

i
m)),g(zi)), v ≪ b((g(z1), . . . ,g(zn)),g(z0)).
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Since f is a weak **-quotient morphism, there exist x0,x1, . . . ,xn,xi
1, . . . ,x

i
m ∈ X such that f (x j) =

g(z j), for j = 1, . . . ,n, f (xi
j) = g(zi

j), for j = 1, . . . ,m, and

u ≤ a((xi
1, . . . ,x

i
m),xi), v ≤ a((x1, . . . ,xn),x0).

Therefore (x0,z0)∈ X ×Y Z, ((x1,z1), . . . ,(xn,zn))∈W (X ×Y Z) and ((xi
1,z

i
1), . . . ,(x

i
m,z

i
m))∈W (X ×Y

Z). Hence

u ≤ a((xi
1, . . . ,x

i
m),xi)∧ c((zi

1, . . . ,z
i
m),zi) = d(((xi

1,z
i
1), . . . ,(x

i
m,z

i
m)),(xi,zi)),

v ≤ a((x1, . . . ,xn),x0)∧ c((z1, . . . ,zn),z0) = d(((x1,z1), . . . ,(xn,zn)),(x0,z0)).

�

Lemma 3.3.16 Weak *-quotient morphisms in (W,V,W⊗)-Cat are final.

Proof
Let f : (X ,a)→ (Y,b) be a weak *-quotient morphism in (W,V,W⊗)-Cat. We want to show that for
each y0 ∈ Y and (y1, . . . ,yn) ∈WX

b((y1, . . . ,yn),y0) =
∨

x j∈ f−1(y j)

a((x1, . . . ,xn),x0).

Let y0 ∈ Y and (y1, . . . ,yn) ∈WY . We have

b((y1, . . . ,yn),y0) = k⊗b((y1, . . . ,yn),y0)≤ b((yi),yi)⊗b((y1, . . . ,yn),y0),

for i ∈ {1, . . . ,n}. Since f is a weak *-quotient morphism,

b((yi),yi)⊗b((y1, . . . ,yn),y0) =
∨

x j∈ f−1(y j)

a((xi),xi)⊗a((x1, . . . ,xn),x0)≤

≤
∨

x j∈ f−1(y j)

a((x1, . . . ,xn),x0).

The last inequality follows from the transitivity of the (W,V,W⊗)-algebra (X ,a). �

Theorem 3.3.17 If V is cancellable and cartesian closed, then a morphism in (W,V,W⊗)-Cat is of
effective descent if and only if it is a weak *-quotient morphism.

Proof
(⇐) Let f : (X ,a)→ (Y,b) be a weak *-quotient morphism in (W,V,W⊗)-Cat. By Lemma 3.3.16,
f is final and so it is an effective descent morphism in (W,V,W⊗)-Gph. Let

(X ×Y Z,d)

π1

��

π2 // (Z,c)

g
��

(X ,a)
f
// (Y,b)
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be the pullback in (W,V,W⊗)-Gph of f along a morphism g : (Z,c)→ (Y,b), where (X ×Y Z,d)
is in (W,V,W⊗)-Cat. We want to show that (Z,c) is in (W,V,W⊗)-Cat as well. Let then
z0,z1, . . . ,zn,zi

1, . . . ,z
i
m ∈ Z, with i ∈ {1, . . . ,n}. By Lemma 3.3.15, π2 is a weak *-quotient morphism.

Hence
c((zi

1, . . . ,z
i
m),zi)⊗ c((z1, . . . ,zn),z0) =

=
∨

xi
j∈ f−1(g(zi

j))

x j∈ f−1(g(z j))

d(((xi
1,z

i
1), . . . ,(x

i
m,z

i
m)),(xi,zi))⊗d(((x1,z1), . . . ,(xn,zn)),(x0,z0)).

Since (X ×Y Z,d) is transitive,

∨
xi

j∈ f−1(g(zi
j))

x j∈ f−1(g(z j))

d(((xi
1,z

i
1), . . . ,(x

i
m,z

i
m)),(xi,zi))⊗d(((x1,z1), . . . ,(xn,zn)),(x0,z0))≤

≤
∨

xi
j∈ f−1(g(zi

j))

x j∈ f−1(g(z j))

d(((x1,z1), . . . ,(xi
1,z

i
1), . . . ,(x

i
m,z

i
m) . . . ,(xn,zn)),(x0,z0))≤

≤ c((z1, . . . ,zi−1,zi
1, . . . ,z

i
m,zi+1, . . . ,zn),z0).

(⇒) Let f : (X ,a)→ (Y,b) be an effective descent morphism in (W,V,W⊗)-Cat. Assume there exist
y0,y1, . . . ,yn,yi

1, . . . ,y
i
m ∈ Y , with i ∈ {1, . . . ,n} such that

∨
xi

j∈ f−1(yi
j)

x j∈ f−1(y j)

a((xi
1, . . . ,x

i
m),xi)⊗a((x1, . . . ,xn),x0)< b((yi

1, . . . ,y
i
m),yi)⊗b((y1, . . . ,yn),y0).

Let us call
α :=

∨
xi

j∈ f−1(yi
j)

x j∈ f−1(y j)

a((xi
1, . . . ,x

i
m),xi)⊗a((x1, . . . ,xn),x0)

for simplicity.
On the set B = {0}∪{1, . . . ,n}∪{(i,1), . . . ,(i,m)}, define the following reflexive but non-transitive
structure bα : WB×B → V:

- bα(( j), j)) = k, for each j ∈ B,

- bα((1, . . . ,n),0) = b((y1, . . . ,yn),y0),

- bα(((i,1), . . . ,(i,m)), i) = b((yi
1, . . . ,y

i
m),yi),

- bα((1, . . . , i−1,(i,1), . . . ,(i,m), i+1, . . . ,n),0) = α ,

- bα((. . .), j) =⊥, elsewhere.

Take g : (B,bα)→ (Y,b) the (W,V,W⊗)-functor defined by

j 7→ y j, j = 0, . . . ,n, (i, j) 7→ yi
j, j = 1, . . . ,m,
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and consider the pullback in (W,V,W⊗)-Gph

(X ×Y B,d)

π1

��

π2 // (B,bα)

g
��

(X ,a)
f

// (Y,b)

of f along g. The (W,V,W⊗)-algebra (X ×Y B,d) is not transitive. Hence there are elements
(x0, i0),(x1, i1), . . . ,(xn, in),(xi

1, ji
1), . . . ,(x

i
m, ji

m) ∈ X ×Y B, with i ∈ {i1, . . . , in} such that

d(((xi
1, ji

1), . . . ,(x
i
m, ji

m)),(xi, ii))⊗d(((x1, i1), . . . ,(xn, in)),(x0, i0))�

� d(((x1, i1), . . . ,(xi−1, ii−1),(xi
1, ji

1), . . . ,(x
i
m, ji

m),(xi+1, ii+1), . . . ,(xn, in)),(x0, i0)),

which is only possible if i0 = 0, i1 = 1, . . . , in = n, ji
1 = (i,1), . . . , ji

m = (i,m). We have

· d(((x1,1), . . . ,(xi
1,(i,1)), . . . ,(x

i
m,(i,m)), . . . ,(xn,n)),(x0,0)) =

= a((x1, . . . ,xi
1, . . . ,x

i
m, . . . ,xn),x0)∧α ,

· d(((xi
1,(i,1)), . . . ,(x

i
m,(i,m))),(xi, i))⊗d(((x1,1), . . . ,(xn,n)),(x0,0))≤

≤ a((xi
1, . . . ,x

i
m),xi)⊗a((x1, . . . ,xn),x0).

This implies that

a((xi
1, . . . ,x

i
m),xi)⊗a((x1, . . . ,xn),x0)� a((x1, . . . ,xi

1, . . . ,x
i
m, . . . ,xn),x0)∧α.

Hence
a((xi

1, . . . ,x
i
m),xi)⊗a((x1, . . . ,xn),x0)� α

which contradict the definition of α . �

If V is a (cancellable) frame, the characterization of effective descent morphisms in (W,V,W⊗)-Cat
is also a characterization for effective descent morphisms in (W,V,W∧)-Cat, since the two categories
coincide. By Theorem 3.3.17 and Lemma 3.3.12, we have

Proposition 3.3.18 If V is cancellable, integral and cartesian closed, then a morphism f : (X ,a)→
(Y,b) in (W,V,W∧)-Cat which is weak *-quotient in (W,V,W⊗)-Cat, is of effective descent in
(W,V,W∧)-Cat if and only if for each pullback diagram in (W,V,W⊗)-Cat

(X ×Y Z,d)

π1

��

π2 // (Z,c)

g
��

(X ,a)
f
// (Y,b),

(X ×Y Z,d) ∈ (W,V,W∧)-Cat ⇒ (Z,c) ∈ (W,V,W∧)-Cat.

�
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Therefore, also in the case of the free-monoid monad, as we already saw for the identity monad and
the M-ordered monad, a relation between the effective descent morphisms in (T,2,T)-Cat and in
(T,V, T̃)-Cat exists, although this time one requires V to be a frame. In fact, both in MultiOrd and
(W,V,W∧)-Cat, the effective descent morphisms are the weak *-quotient morphisms. The following
table summarizes what we got for what concerns the effective descent morphisms in the examples
studied so far. The quantale V is assumed to be cartesian closed and cancellable (and so also ccd) in
case of the identity monad I and of the M-ordered monad M, while for the free-monoid monad W, in
addition, V is also a frame.

effective descent V-Cat (M,V,M̃)-Cat (W,V,W∧)-Cat
Ord *-quotient

M-Ord *-quotient
MultiOrd weak *-quotient

3.3.3 Reflecting and preserving effective descent morphisms

The examples given so far, in Ord, M-Ord and MultiOrd, and their corresponding categories V-Cat,
(M,V,M̃)-Cat and (W,V,W∧)-Cat, show that, under hypotheses on V, a possible relation between
the effective descent morphisms in (T,2,T)-Cat and in (T,V, T̃)-Cat might exist. In this section
we try to analyze the general case, in particular studying how suitable functors can preserve and
reflect effective descent morphisms. In [21] M.M. Clementino and W. Tholen showed how a monoidal
functor α : V → V′, between monoidal-closed categories V and V′, may induce a functor

Fα : (T,V, T̂)-Cat → (T,V′, T̂′)-Cat, (3.5)

where T̂ and T̂′ are (flat) lax extensions to V-Rel and V′-Rel, respectively, of a Set-monad T =

(T,µ,η). Of course this applies to the case when V and V′ are simply quantales. For a given
(T,V, T̂)-algebra (X ,a) the idea is just to compose the map a : T X ×X → V with α

T X ×X a−→ V α−→ V′

and, under some hypotheses, one gets a (T,V′, T̂′)-algebra (X ,α · a). We give an explicit proof
when the lax extension is induced by a T-algebra structure, as done in Section 2.2.3. A lax quantale
homorphism α : V → V′ between quantales V = (V,kV,⊗V) and V′ = (V ′,kV′ ,⊗V′) may induce a
functor

Fα : (T,V, T̂ξ )-Cat → (T,V′, T̂ξ ′)-Cat,

where T̂ξ is the lax extension of T to V-Rel given by a T-algebra structure ξ : TV →V and T̂ξ ′ is the
lax extension of T to V′-Rel given by a T-algebra structure ξ ′ : TV ′ →V ′.
Recall first that by a lax quantale homomorphism α : V → V′ we mean a monotone map between V
and V ′ satisfying

α(u)⊗V′ α(v)≤ α(u⊗V v) and kV′ ≤ α(kV),

for all u,v ∈V .
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Proposition 3.3.19 Let T= (T,η ,µ) be a Set-monad. Let V and V′ be quantales, ξ : TV →V and
ξ ′ : TV ′ →V ′ be T-algebras structures of V and V′, respectively. Let α : V → V′ be a lax quantale
homomorphism satisfying

α ·ξ ≥ ξ
′ ·T α.

Then
Fα : (T,V, T̂ξ )-Cat → (T,V′, T̂ξ ′)-Cat

is a functor induced by α where T̂ξ : V-Rel → V-Rel and T̂ξ ′ : V′-Rel → V′-Rel are the lax extensions
of T

T̂ξ r(x,y) =
∨

w∈T (X×Y ):
T πX (w)=x
T πY (w)=y

ξ ·Tr(w), T̂ξ ′r(x,y) =
∨

w∈T (X×Y ):
T πX (w)=x
T πY (w)=y

ξ
′ ·Tr(w),

for any V-relation r : X−→7 Y and each x ∈ T X, y ∈ TY , induced respectively by ξ and ξ ′.

Proof
The functor Fα is defined as in the case of (3.5). Let (X ,a) be a (T,V, T̂ξ )-algebra, that is, a set X
equipped with a map a : T X ×X → V satisfying the reflexivity and the transitivity properties. The
assignment

Fα(X ,a) = (X ,α ·a).

defines a reflexive and transitive (T,V′, T̂ξ ′)-algebra.
Reflexivity: for each x ∈ X ,

kV′ ≤ α(kV)≤ α(a(ηX(x),x)).

Transitivity: for each X ∈ T 2X , x ∈ T X and x ∈ X ,

T̂ξ ′(α ·a)(X,x)⊗V′ (α ·a)(x,x) =
∨

w∈T (T X×X):
T πT X (w)=X
T πX (w)=x

ξ
′ ·T (α ·a)(w)⊗V′ (α ·a)(x,x)≤

≤
∨

w∈T (T X×X):
T πT X (w)=X
T πX (w)=x

α · (ξ ·Ta(w))⊗V′ (α ·a)(x,x)≤

≤
∨

w∈T (T X×X):
T πT X (w)=X
T πX (w)=x

α((ξ ·Ta(w))⊗V a(x,x))≤

≤ α(
∨

w∈T (T X×X):
T πT X (w)=X
T πX (w)=x

(ξ ·Ta)(w)⊗V a(x,x))≤

≤ α(a(µX(X),x)).

Each (T,V, T̂ξ )-functor f : (X ,a)→ (Y,b) gives rise to a morphism

Fα f : (X ,α ·a)→ (Y,α ·b)
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in (T,V′, T̂ξ ′)-Cat. In fact, for each x ∈ T X and x ∈ x, since a(x,x)≤ b(T f (x), f (x)), we have

α(a(x,x))≤ α(b(T f (x), f (x))).

One can easily verify that Fα is a functor. �

Remarks 3.3.20 If the lax quantale homomorphism α : V → V′ is a full embedding, then the induced
functor Fα : (T,V, T̂ξ )-Cat → (T,V′, T̂ξ ′)-Cat is a full embedding as well.

This covers the situation studied in Proposition 3.3.12 for the free-monoid monad W = (W,µ,η).
In fact, considering the extensions W∧ and W⊗, the lax quantale homomorphism α : V → V is the
identity morphism 1V : V → V and, for V integral,

α ·ξ∧ ≥ ξ
⊗ ·Wα,

since the following diagram ⊗n
i=1 ui

""��∧n
i=1 ui πu j

// u j

commutes by the universal property of the meet.

The situation given in Proposition 3.3.19 interests mostly in the case of the full embedding

ι : 2 ↪→ V

defined by
⊤ 7→ kV ⊥ 7→ ⊥V,

which is nothing but the composition 2 E−→ 2Vop L−→ V in Section 2.2.2. The functor

Fι : (T,2,T)-Cat ↪→ (T,V, T̃)-Cat

induced by ι , where T is the Barr extension of the Set-monad T= (T,µ,η), with T satisfying BC,
and T̃ is the uniform extension described in Section 2.2.2, is still a full embedding. Of course we
need to assume that V is a ccd quantale such that kV = ⊤V or T preserves the ⊥-relation. Having
in mind our goal, that is to investigate possible relations between effective descent morphisms in
(T,2,T)-Cat and effective descent morphisms (T,V, T̃)-Cat, the first question is to ask whether such
a full embedding Fι preserves and reflects effective descent morphisms.

Lemma 3.3.21 The full embedding

Fι : (T,2,T)-Cat ↪→ (T,V, T̃)-Cat

preserves pullbacks.
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Proof
Just recall first how the functor Fι is defined. To each (T,2,T)-category (X ,a),

Fι(X ,a) = (X , ι ·a).

For each x ∈ T X and x ∈ X , the map ι ·a : T X ×X → V is defined by

ι ·a(x,x) =

{
kV, if a(x,x) =⊤,
⊥V, if a(x,x) =⊥.

Let f : (X ,a)→ (Y,b) and g : (Z,c)→ (Y,b) be morphisms in (T,2,T)-Cat. Take the pullback in
(T,V, T̃)-Cat

(X ×Y Z, d̃)

π1

��

π2 // (Z, ι · c)

Fι g
��

(X , ι ·a)
Fι f

// (Y, ι ·b).

For each w ∈ T (X ×Y Z) and (x,z) ∈ X ×Y Z, the map d̃ : T (X ×Y Z)× (X ×Y Z)→ V is described by

d̃(w,(x,z)) =

{
kV, if a(T π1(x),x) =⊤ & c(T π2(w),z) =⊤,
⊥V, otherwise.

The structure d̃ is precisely the structure ι · d̄ on X ×Y Z, where d̄ : T (X ×Y Z)× (X ×Y Z)→ 2 is the
pullback structure in (T,2,T)-Cat. �

Proposition 3.3.22 Let V be a ccd and integral quantale. Let T= (T,η ,µ) be a Set-monad such that
T satisfies BC, and let T̃= (T̃ , µ̃, η̃) be its uniform extension to V-Rel. Assume that every naturality
square of η̃ with respect to V-relations with finite fibres is a BC-square. Then the full embedding

Fι : (T,2,T)-Cat ↪→ (T,V, T̃)-Cat

reflects effective descent morphisms.

Proof
Let f : (X ,a)→ (Y,b) be a morphism in (T,2,T)-Cat such that Fι : (X , ι ·a)→ (Y, ι ·b) is an effective
descent morphism in (T,V, T̃)-Cat. Since by Lemma 3.3.21 the functor Fι preserves pullbacks, we
need to show that for each pullback diagram

(X ×Y Z, d̃)

π1

��

π2 // (Z,c)

g
��

(X , ι ·a)
Fι f

// (Y, ι ·b)

in (T,V, T̃)-Cat,
(X ×Y Z, d̃) ∈ (T,2,T)-Cat ⇒ (Z,c) ∈ (T,2,T)-Cat.
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The fact that Fι f is an effective descent morphism implies that Fι f is, in particular, a final morphism.
Therefore also π2 is final, since final morphisms are pullback stable (if T satisfies BC), and, since
(X ×Y Z, d̃) is in (T,2,T)-Cat, it follows that (Z,c) belongs to (T,2,T)-Cat as well. �

Proposition 3.3.23 The full embedding

Fι : (T,2,T)-Cat ↪→ (T,V, T̃)-Cat

preserves *-quotient morphisms.

Proof
Let f : (X ,a)→ (Y,b) be a *-quotient morphism in (T,2,T)-Cat. We want to show that Fι : (X , ι ·a)→
(Y, ι ·b) is a *-quotient morphism in (T,V, T̃)-Cat, i.e., for each Y ∈ T 2Y , y ∈ TY and y ∈ y,

T̃ (ι ·b)(Y,y)⊗ (ι ·b)(y,y) =
∨

X∈T 2X :T 2 f (X)=Y
x∈T X :T f (x)=y

x∈X : f (x)=y

T̃ (ι ·a)(X,x)⊗ (ι ·a)(x,x).

It immediately follows from the fact that the diagram

Rel

ι

��

T // Rel

ι

��
V-Rel

T̃
// V-Rel

is commutative, where the functor ι : Rel → V-Rel is induced by the full embedding ι : 2 ↪→ V. �

This proposition turns out to be particularly useful when *-quotient morphisms coincide with effective
descent morphisms in (T,2,T)-Cat, as it is, for example, the case of the identity monad and the
M-ordered monad.

3.3.4 The relational method for effective descent morphisms in (T,V, T̃)-Cat

Throughout this section the quantale V is assumed to be a ccd frame. We present a method, which we
call relational method, to study effective descent morphisms in (T,V, T̃)-Cat. Let T= (T,η ,µ) be a
Set-monad such that T has BC. Let T : Rel → Rel be the Barr extension of T and let T̃ : V-Rel →
V-Rel be the uniform lax extension of T to V-Rel. Each morphism f : (X ,a)→ (Y,b) in (T,V, T̃)-Cat
defines a family of morphisms

( fu : (X ,au)→ (Y,bu))u∈V

in (T,2,T)-Cat, where au : T X ×X → 2 and bu : TY ×Y → 2 are defined, respectively, by

au(x,x) =⊤⇔ u ≤ a(x,x) and bu(y,y) =⊤⇔ u ≤ b(y,y).

We check first that, for each u ∈ V, (X ,au) ∈ (T,2,T)-Cat. Let x ∈ X . Then

au(ηX(x),x) =⊤, i.e., u ≤ a(ηX(x),x),
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since ⊤= k ≤ a(ηX(x),x) from the fact that (X ,a) is reflexive. Hence (X ,au) is itself reflexive.
To prove that (X ,au) is also transitive, let X ∈ T 2X , x ∈ T X and x ∈ X such that T au(X,x) =⊤ and
au(x,x) =⊤. The last one means of course, by definition, that u ≤ a(x,x). Since

T̃ a(X,x)⊗a(x,x) =
∨
{u ∈ V : T au(X,x) =⊤}⊗a(x,x),

we have
u = u⊗u ≤ T̃ a(X,x)⊗a(x,x)≤ a(µ̃X(X),x),

where the last inequality follows from the transitivity of the (T,V, T̃)-algebra (X ,a). Hence,

u ≤ a(µX(X),x)⇒ au(µX(X),x) =⊤

as wished. It remains to show that, for each x ∈ T X and x ∈ X ,

au(x,x) =⊤⇒ bu(T f (x), f (x)) =⊤.

Let then x ∈ T X and x ∈ x such that au(x,x) =⊤, i.e., u ≤ a(x,x). Since f : (X ,a)→ (Y,b) is a morph-
ism in (T,V, T̃)-Cat, u ≤ a(x,x) implies that u ≤ b(T f (x), f (x)), proving that bu(T f (x), f (x)) =⊤.

The idea is to use informations in (T,2,T)-Cat, where there are several examples involving the char-
acterization of the effective descent morphisms, to obtain results in (T,V, T̃)-Cat. To do that, starting
from a morphism f : (X ,a)→ (Y,b) in (T,V, T̃)-Cat, we split it into slices ( fu : (X ,au)→ (Y,bu))u∈V

in (T,2,T)-Cat (i.e., morphisms of relational algebras), as we described above, in order to get
sufficient conditions for the (T,V)-functor f to be an (effective) descent morphism.

Remark 3.3.24 To define for each u ∈ V a morphism fu : (X ,au)→ (Y,bu) in (T,2,T)-Cat, starting
from a morphism f : (X ,a)→ (Y,b) in (T,V, T̃)-Cat, we need V to be integral ad idempotent. Since
all the examples of quantales given in Example 2.1.2 are commutative (except for P(M) unless the
monoid M is itself commutative), we assume V to be a frame for a smoother reading. Recall that
frames can be identified as those commutative quantales which are integral and idempotent.

Proposition 3.3.25 Let V be a ccd frame and let f : (X ,a)→ (Y,b) be a morphism in (T,V, T̃)-Cat.
If for each u ∈ V, fu : (X ,au)→ (Y,bu) is final, then f is final.

Proof
Let f : (X ,a) → (Y,b) be a (T,V, T̃)-functor and let ( fu : (X ,au) → (Y,bu))u∈V be the family of
(T,2,T)-functors induced by f such that fu is final for each u ∈ V. We want to show that for each
y ∈ TY and y ∈ Y ,

b(y,y) =
∨

x∈T X :T f (x)=y
x∈X : f (x)=y

a(x,x).

But
b(y,y) =

∨
{u ∈ V : u ≤ b(y,y)}=

∨
{u ∈ V : bu(y,y) =⊤}.

Let u ∈ V such that u ≤ b(y,y). Since fu is final, there exist x ∈ T X and x ∈ X such that au(y,y) =⊤,
i.e., u ≤ a(x,x). �
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Corollary 3.3.26 Let V be a ccd frame and let T = (T,η ,µ) be a Set-monad such that T satisfies
BC and every naturality square of η with respect to V-relations with finite fibres is a BC-square. A
morphism f : (X ,a) → (Y,b) in (T,V, T̃)-Cat is a descent morphism provided that fu : (X ,au) →
(Y,bu) is a descent morphism in (T,2,T)-Cat for each u ∈ V.

�

Theorem 3.3.27 If the ccd frame V is totally ordered, then a morphism f : (X ,a)→ (Y,b) in (T,V, T̃)-
Cat is of effective descent provided that fu : (X ,au)→ (Y,bu) is a pullback stable *-quotient morphism
in (T,2,T)-Gph for each u ∈ V.

Proof
Let f : (X ,a)→ (Y,b) be a morphism in (T,V, T̃)-Cat. We prove that f is a pullback stable *-quotient
morphism in (T,V, T̃)-Gph. We first prove that f is a *-quotient morphism, that is, for each Y ∈ T 2Y ,
y ∈ Y and y ∈ Y

T̃ b(Y,y)⊗b(y,y) =
∨

X∈T 2X :T 2 f (X)=Y
x∈T X :T f (x)=y

x∈X : f (x)=y

T̃ a(X,x)⊗a(x,x).

Let Y ∈ T 2Y , y ∈ TY and y ∈ Y . We have

T̃ b(Y,y)⊗b(y,y) =
∨
{u ∈ V : T bu(Y,y) =⊤}⊗

∨
{v ∈ V : v ≤ b(y,y)}=

=
∨
{u ∈ V : T bu(Y,y) =⊤}⊗

∨
{v ∈ V : bv(y,y) =⊤}=

=
∨
{u⊗ v : T bu(Y,y) =⊤ & bv(y,y) =⊤}.

Let u,v ∈ V with T bu(Y,y) = bv(y,y) =⊤. Since V is totally ordered, u ≤ v or v ≤ u.

· Case u ≤ v.
If u ≤ v, then u⊗v = u∧v = u and, since u ≤ v ≤ b(y,y), we conclude that bu(y,y) =⊤. Hence,
since fu : (X ,au)→ (Y,bu) is a *-quotient morphism, there exist X ∈ T 2X , x ∈ T X and x ∈ X ,
with T 2 f (X) =Y, T f (x) = y, f (x) = y, such that T au(X,x) =⊤ and au(x,x) =⊤.

· Case v ≤ u.
If v ≤ u, then u⊗ v = u∧ v = v and, since

bu ≤ bv ⇒ T bu ≤ T bv,

we conclude that T bv(Y,y) =⊤. Hence, since fv : (X ,av)→ (Y,bv) is a *-quotient morphism,
there exist X ∈ T 2X , x ∈ T X and x ∈ X , with T 2 f (X) = Y, T f (x) = y, f (x) = y, such that
T av(X,x) =⊤ and av(x,x) =⊤.

It remains to show the pullback stability. Let

(X ×Y Z,d)

π1

��

π2 // (Z,c)

g
��

(X ,a)
f
// (Y,b)



3.3 From Rel to V-Rel: the problem of effective descent morphisms 95

be a pullback diagram in (T,V, T̃)-Gph, where f is a *-quotient morphism. We want to show that π2

is a *-quotient morphism as well. We show that the morphism

(π2)u : (X ×Y Z,du)→ (Z,cu)

in (T,2,T )-Gph, induced by π2, is a *-quotient morphism for each u ∈ V. Recall that the structure
du : T (X ×Y Z)× (X ×Y Z)→ 2 is given by

du(w,(x,z)) =

{
⊤, if u ≤ d(w,(x,z)) = a(T π1(w),x)∧ c(T π2(w),z)
⊥, otherwise,

for each w ∈ T (X ×Y Z) and (x,z) ∈ X ×Y Z. We want to show that each of these (π2)u, for u ∈ V,
is the pullback in (T,2,T)-Gph of fu : (X ,au)→ (Y,bu) which, by hypothesis, are pullback stable
*-quotient morphisms. So, for each u ∈ V, consider the pullback diagram

(X ×Y Z,du)

πu
1
��

πu
2 // (Z,cu)

gu

��
(X ,au) fu

// (Y,bu)

in (T,2,T)-Gph, where fu is the (pullback stable *-quotient) morphism induced by f , gu is the
morphism induced by g, and du : T (X ×Y Z)× (X ×Y Z)→ 2 is the pullback structure in (T,2,T)-
Gph on the set X ×Y Z, given by

du(w,(x,z)) =

{
⊤, if au(T πu

1 (w),x) =⊤ & cu(T πu
2 (w),z) =⊤

⊥, otherwise,

for each w ∈ T (X ×Y Z) and (x,z) ∈ X ×Y Z. Since

au(T π
u
1 (w),x) =⊤ ⇒ u ≤ a(T π1(w),x)

cu(T π
u
2 (w),z) =⊤ ⇒ u ≤ c(T π2(w),z),

we conclude that (X ×Y Z,du)∼= (X ×Y Z,du). Hence, for each u ∈ V, (π2)u : (X ×Y Z,du)→ (Z,cu)

is a *-quotient morphism. �

The following example shows that the converse of Proposition 3.3.25 and of Theorem 3.3.27 is
not true.

Example 3.3.28 Let V = ([0,∞],≤,∧) be the ccd totally ordered frame giving rise to the category
V-Cat of (generalized) ultrametric spaces and non-expansive maps. Let

f : (N∪{∞},a)→ ({y,∞},b)
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be the non-expansive map defined by

f (∞) = ∞ and f (n) = y,∀n ∈ N.

The structure a : (N∪{∞})× (N∪{∞})→ V is defined as follows

· a(n,∞) = 1− 1
n , ∀n ∈ N,

· a(n,n) = a(∞,∞) = 1, ∀n ∈ N,

· a(n,m) = 0, ∀n ̸= m,

· a(∞,n) = 0, ∀n ∈ N,

while the structure b : {y,∞}×{y,∞}→ V is given by

· b(y,∞) = b(y,y) = b(∞,∞) = 1,

· b(∞,y) = 0.

One can easily check that f is a **-quotient morphism, and therefore effective for descent, since
**-quotient morphisms are pullback stable in V-Gph (a first direct proof of that is given in [15] but
it can be immediately deduced from Theorem 3.3.9, applied to M = 1, the trivial monoid). But, for
u = 1, the 2-functor

fu : (X ,au)→ (Y,bu)

is not an effective descent map in Ord. Actually it is not even a regular epimorphism. In fact,

1 ≤ b(y,∞) = 1 ⇒ b1(y,∞) =⊤.

But none of the elements n ∈ N is in relation with ∞ in (X ,a1) since

1 � 1− 1
n
= a(n,∞), ∀n ∈ N.

3.4 A Van Kampen Theorem in categories of lax algebras

In Section 1.5.6 a categorial version of the Van Kampen Theorem is given, showing its relation with
Descent Theory (see Lemma 1.5.4 and Theorem 1.5.5). Therefore one can be interested in studying it
in the context of lax algebras since, as it is mentioned in Section 2.3.2, the category (T,V)-Cat is a
lextensive category. Let p : (X1 +X2,b)→ (X ,a) be the (T,V)-functor from the coproduct of (X1,a1)

and (X2,a2) into (X ,a) induced by the embeddings g1 : X1 ↪→ X and g2 : X2 ↪→ X

(X1,a1)

g1 &&

τ1 // (X1 +X2,b)

p
��

(X2,a2)
τ2oo

g2xx
(X ,a)
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where τ1 and τ2 are the canonical injections. The structure b : T (X1 +X2)× (X1 +X2) → V on
X1 +X2 = (X1 ×{1})∪ (X2 ×{2}) is described by

b(y,(x, i)) =

{
ai(yi,(x, i)), if y= T τi(yi) for yi ∈ T Xi,
⊥, y /∈ T τi(Xi),

for y ∈ T (X1 +X2) and (x, i) ∈ X1 ×X2. In [14] M.M. Clementino and D. Hofmann give a Van
Kampen Theorem in the context of lax algebras with respect to the class of morphisms given by all the
(T,V)-functors. It includes all the categories of (T,V)-categories where the Set-monad T= (T,µ,η)

and its (flat) lax extension T̂= (T̂ ,µ,η) to V-Rel satisfy the following conditions:

(C0) every naturality square of η with respect to V-relations with finite fibres is a BC-square;

(C1) T̂ is left-whiskering;

(C2) µ satisfies BC;

(C3) T preserves coproducts.

Theorem 3.4.1 [14, Theorem 3.5] Let V be a cartesian closed quantale and let T̂ be a flat lax
extension to V-Rel of a Set-monad T= (T,µ,η), where T satisfies BC and conditions (C0)− (C3)
hold. Denoting by C the category (T,V, T̂)-Cat, if the following diagram

(X0,a0)

f2
��

f1 // (X1,a1)

g1

��
(X2,a2) g2

// (X ,a)

is a pullback, with g1 and g2 embeddings, then the functor

Kg1,g2 : C ↓ X → (C ↓ X1)×C↓X0 (C ↓ X2)

is an equivalence of categories if and only if the morphism p : (X1 +X2,b)→ (X ,a), induced by g1

and g2, is a final morphism.

This is an immediate consequence of the Theorem below.

Theorem 3.4.2 [14, Theorem 3.3] Let V be a cartesian closed quantale and let T̂ be a flat lax
extension to V-Rel of a Set-monad T= (T,µ,η), where T satisfies BC and conditions (C0)− (C3)
hold. If (X1,a1) and (X2,a2) are (T,V)-subcategories of (X ,a) and p : (X1 +X2,b)→ (X ,a) is the
(T,V)-functor induced by their embeddings g1 and g2, then the following conditions are equivalent in
(T,V)-Cat:

(i) p is a pullback stable *-quotient morphism in (T,V)-Gph;

(ii) p is of effective descent;

(iii) p is a descent morphism;
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(iv) p is final;

(v) for any x ∈ T X and x ∈ X, either there exists i ∈ {1,2} such that x ∈ T gi(T Xi) and x ∈ gi(Xi),
or a(x,x) =⊥.

The two theorems above include for instance the identity monad I and the ultrafilter monad U with
corresponding suitable extensions as it is, if V is ccd, the uniform extension. Recall that in Top a
version of the Van Kampen Theorem, with respect to the class of all continuous maps, was already
given (see Theorem 1.5.6). The M-ordered monad M is not mentioned in the paper but we remark that,
considering its uniform extension to V-Rel, it satisfies the conditions above, so that it can be included
in the list. Although the free-monoid functor W does not preserve coproducts, also in (W,V,W⊗)-Cat
a version of the Van Kampen Theorem is given. In fact, in [14, Theorem 3.4], it is proved that the
same result holds for p in (W,V,W⊗)-Cat. In general observe that (i)⇒ (ii) follows from Theorem
3.0.6 and (ii)⇒ (iii) is always true by definition. The implication (iii)⇒ (iv) is where condition
(C0) and the flatness of the extension are required while (iv)⇔ (v) is proved to be always true. If we
assume an extra condition on V, namely

(C4) u⊗ v =⊥⇒ u =⊥ or v =⊥, for all u,v ∈ V,

then Theorem 3.4.2, and so also Theorem 3.4.1, are true in (W,V,W∧)-Cat. The proof is similar to
the case where the extension is given by W⊗.

Theorem 3.4.3 Let V be a ccd and cartesian closed quantale such that condition (C4) is satisfied.
If (X1,a1) and (X2,a2) are (W,V,W∧)-subcategories of (X ,a) and p : (X1 + X2,b) → (X ,a) is
the (W,V,W∧)-functor induced by their embeddings g1 and g2, then the following condition are
equivalent in (W,V,W∧)-Cat:

(i) p is a pullback stable *-quotient morphism in (W,V)-Gph;

(ii) p is of effective descent;

(iii) p is a descent morphism;

(iv) p is final;

(v) for any x ∈ T X and x ∈ X, either there exists i ∈ {1,2} such that x ∈ T gi(T Xi) and x ∈ gi(Xi),
or a(x,x) =⊥.

Proof
We start observing that conditions (C0)− (C2) are satisfied even if condition (C1) is not longer
required. The implications (i)⇒ (ii), (ii)⇒ (iii), (iii)⇒ (iv) and (iv)⇔ (v) follow as before. So
what one really needs to show is (iv)⇒ (i). Recall that, since W satisfies BC, final morphisms are
pullback stable in (W,V)-Gph. Let then p be a final morphism. We need only to show that p is
a *-quotient morphism. Let X= ((x1

1, . . . ,x
1
m1
), . . . ,(xn

1, . . . ,x
n
mn
)) ∈W 2X , x= (x1, . . . ,xn) ∈WX and

x ∈ X such that
W∧a(X,x)⊗a(x,x) ̸=⊥.



3.4 A Van Kampen Theorem in categories of lax algebras 99

Since p is final, there exists j ∈ {1,2} such that x ∈ WX j and x ∈ X j. Assume, without loss of
generality, that j = 1. Transitivity of a guarantees that a(µX(X),x)≥W∧a(X,x)⊗a(x,x) ̸=⊥ and,
since p is final, there exists i ∈ {1,2} such that µX(X) ∈WXi and x ∈ Xi. The diagram

W 2Xi

W 2gi
��

µXi //WXi

Wgi

��
W 2X

µX
//WX

is a BC-square, so that X ∈W 2Xi.

- if i = 1 the proof is complete, since µX(X) ∈WX1 ⇒ X ∈W 2X1.

- if i = 2 we have that X ∈Wg2(WX2)−Wg1(WX1) and x ∈ g2(X2). The proof is then complete
if x ∈Wg2(WX2). If this is not the case, i.e., there exists l ∈ {1, . . . ,n} such that xl /∈ X2, one
can consider Xl ∈W 2X defined by

Xl = ((x1
1, . . . ,x

1
m1
), . . . ,(xl), . . . ,(xn

1, . . . ,x
n
mn
)).

Basically Xl is given by the same words of X with the only difference that in the position l the
word (xl

1, . . . ,x
l
ml
) is replaced by the word (xl). Since V is integral,

W∧a(Xl,x) =
∧

i∈{1,...,n}−{l}
a((xi

1, . . . ,x
i
mi
),xi) ̸=⊥.

Then, by condition (C4),

a(µX(Xl),x)≥ (
∧

i∈{1,...,n}−{l}
a((xi

1, . . . ,x
i
mi
),xi))⊗a((x1, . . . ,xn),x) ̸=⊥.

But, under our assumptions, µX(Xl) /∈Wg1(WX1)∪Wg2(WX2), which contradicts finality of
p.

�

If we now consider the powerset monad P= (P,µ,η), and its uniform extension P̃ to V-Rel, we have
the following result.

Theorem 3.4.4 Let V be a ccd and cartesian closed quantale such that condition (C4) is satisfied. If
(X ,a1) and (X ,a2) are (P,V, P̃)-subcategories of (X ,a) and p : (X1 +X2,b)→ (X ,a) is the (P,V, P̃)-
functor induced by their embeddings, then for the statements

(i) p is final;

(ii) for any A ∈ PX and x ∈ X, either there exists i ∈ {1,2} such that A ∈ Pgi(PXi) and x ∈ gi(Xi),
or a(A,x) =⊥;

(iii) p is a pullback stable *-quotient morphism in (P,V)-Gph;
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(iv) p is effective for descent;

(v) p is a descent morphism;

one has the implications (i)⇔ (ii)⇒ (iii)⇒ (iv)⇒ (v).

Proof
From the observations we did previously, one has the implications (i)⇔ (ii), (iii)⇒ (iv) and (iv)⇒
(v). Therefore we only need to show (ii)⇒ (iii). Final morphisms are pullback stable in (P,V)-Gph,
since P satisfies BC and V is assumed to be cartesian closed. Therefore we have to show only that p
is a *-quotient morphism. Let A ∈ P2X , A ∈ PX and x0 ∈ X such that

P̃a(A,A)⊗a(A,x0) ̸=⊥.

By definition of the uniform extension, P̃a(A,A) ̸= ⊥ implies the existence of an element u ∈ V
(u ̸=⊥) such that Pau(A,A) =⊤, i.e.,

∀AA ∈ A ∃x ∈ A : u ≤ a(AA,x) and ∀x ∈ A ∃AA ∈ A : u ≤ a(AA,x).

Since p is final, there exists j ∈ {1,2} such that A ∈ PX j and x0 ∈ X j. Assume, without loss of
generality, that j = 1. Transitivity of a guarantees that a(µX(A),x0)≥ P̃a(A,A)⊗a(A,x0) ̸=⊥ and,
since p is final, there exists i ∈ {1,2} such that µX(A) ∈ PXi and x ∈ Xi. The diagram

P2Xi

P2gi
��

µXi // PXi

Pgi

��
P2X

µX
// PX

is a BC-square, so that A ∈ P2Xi.

- if i = 1 the proof is complete, since µX(A) ∈ PX1 ⇒ A ∈ P2X1.

- if i = 2 we have that A ∈ Pg2(PX2)−Pg1(WX1) and x0 ∈ g2(X2). The proof is then complete
if A ∈ Pg2(WX2). If this is not the case, i.e., there exists x∗ ∈ A such that x∗ /∈ X2, one can
consider Ax∗ ∈ P2X defined by

Ax∗ = A∪{{x∗}}.

We prove that P̃(Ax∗ ,A) ̸= ⊥. We already know that there is an element u ∈ V such that
Pau(A,A) = ⊤. For the same element u one has, moreover, Pau(Ax∗ ,A) = ⊤. In fact, for
{x∗} ∈ Ax∗ , one has u ≤ a({x∗},x∗) =⊤, since V is integral. Then, by condition (C4),

a(µX(Ax∗),x0)≥ P̃a(Ax∗ ,A)⊗a(A,x0) ̸=⊥.

But, under our assumptions, µX(Ax∗) /∈ Pg1(PX1)∪Pg2(PX2), which contradicts finality of p.

�

We remark that the theorem above does not accomplish completely our goal, since we do not know
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whether implication (v)⇒ (i) is true, as it is in the other cases analyzed before. The reason comes
from the fact that the powerset monad does not satisfy condition (C0). By Theorem 3.4.4, we can
anyway state the following result.

Theorem 3.4.5 Let V be a ccd and cartesian closed quantale such that condition (C4) is satisfied.
Let P̃ be the uniform extension to V-Rel of the powerset monad P = (P,µ,η). Denoting by C the
category (P,V, P̃)-Cat, if the following diagram

(X0,a0)

f2
��

f1 // (X1,a1)

g1

��
(X2,a2) g2

// (X ,a)

is a pullback, with g1 and g2 embeddings, then the functor

Kg1,g2 : C ↓ X → (C ↓ X1)×C↓X0 (C ↓ X2)

is an equivalence of categories if the morphism p : (X1 +X2,b)→ (X ,a), induced by g1 and g2, is a
final morphism, i.e., for any A ∈ PX and x ∈ X, either there exists i ∈ {1,2} such that A ∈ Pgi(PXi)

and x ∈ gi(Xi), or a(A,x) =⊥.

�





Chapter 4

Effective étale-descent morphisms in
categories of lax algebras

In Chapter 1 we saw several developments concerning the study of (effective) étale-descent maps in
Top, including the complete characterization of the effective étale-decent morphisms in Ord, given
by G. Janelidze and M. Sobral, which solves the problem of the characterization for finite topological
spaces. Our first contribution concerning the more general problem of étale-descent in categories of
lax alegbras is given by the complete characterization of the effective étale-descent morphisms in
M-Ord in [2], which we are going to recall in Section 4.2.

4.1 Étale morphisms

In [16] M.M. Clementino, D. Hofmann and G. Janelidze give a characterization of local homeomorph-
isms between topological spaces in terms of ultrafilter convergence. This characterization suggests a
definition of local homeomorphisms (étale morphisms) in the context of lax algebras. We recall that
a local homeomorphism between topological spaces is a continuous map f : X → Y such that each
x ∈ X has an open neighbourhood Ux with f (Ux) open and the restriction fUx : Ux → f (Ux) of f to Ux

a homeomorphism. Equivalent formulations are given.

Proposition 4.1.1 For a continuous map f : X → Y , consider the following commutative diagram

X

1X

%%

1X

!!

δ f

##
X ×Y X

π1
��

π2 // X

f
��

X
f
// Y

where the square is a pullback and the map δ f : X → X ×Y X, x 7→ (x,x), is the one induced by the
universal property. The following are equivalent:

(i) f is a local homeomorphism;

103



104 Effective étale-descent morphisms in categories of lax algebras

(ii) f is open and locally injective;

(iii) both f and δ f are open.

Definition 4.1.2 A continuous map f : X → Y of topological spaces is a discrete fibration if for each
x ∈ X and each ultrafilter y with y→ f (x) in Y , there exists a unique ultrafilter x such that x→ x in X
and f (x) = y,

X

f
��

∃!x❴

��

// x❴

��
Y y // f (x).

A local homeomorphism is a discrete fibration while the converse is not true in general, as proved in
[16] where the following counter-example is given.

Example 4.1.3 [16, Example 2] Let x be a non-principal ultrafilter on the set N of natural numbers
equipped with the topology {A ⊆ N : 0 ∈ A ⇒ A ∈ x}. Let f : N→{0,1} defined by

n 7→

{
0, if n = 0,
1, otherwise,

where {0,1} is the Sierpiński space with non-trivial open subset {1}. Then f is not a local homeo-
morphism, since it is not injective at any neighbourhood of 0, but it is a discrete fibration.

The following characterization holds.

Theorem 4.1.4 [16, Theorem 2] For a continuous map f : X → Y , the following conditions are
equivalent:

(i) f is a local homeomorphism;

(ii) f is a pullback stable discrete fibration;

(iii) both f and δ f are discrete fibrations.

Based on the above results in Top, definitions of discrete fibrations and étale morphisms, in the context
of (T,2)-categories, have been introduced in [17] by M.M. Clementino, D. Hofmann and G. Janelidze.
Let T= (T,µ,η) be a Set-monad where T satisfies BC.

Definition 4.1.5 A (T,2)-functor f : (X ,a) → (Y,b) is said to be a discrete fibration if for each
x ∈ X and each y ∈ TY with b(y, f (x)) =⊤, there exists a unique x ∈ T X such that a(x,x) =⊤ and
T f (x) = y,

X

f
��

∃!x❴

��

// x❴

��
Y y // f (x).



4.1 Étale morphisms 105

Following the same arguments given in [16] in the case of the ultrafilter monad, for each (X ,a)∈ (T,2)-
Cat, one denotes by Conv(X ,a) the set of pairs (x,x), where x ∈ X and x ∈ T X with x → x, i.e.,
a(x,x) =⊤. The set Conv(X ,a) has a canonical convergence structure, giving rise to the functor Conv
studied in Section 3.2. Each (T,2)-functor f : (X ,a)→ (Y,b) induces a map

Conv( f ) : Conv(X ,a)→ Conv(Y,b), (x,x) 7→ (T f (x), f (x)).

A (T,2)-functor f : (X ,a)→ (Y,b) is a discrete fibration if and only if the diagram

Conv(X ,a)

πX

��

Conv( f )// Conv(Y,b)

πY

��
X

f
// Y

is a pullback in Set, where πX and πY are the projection maps.

Proposition 4.1.6

(1) Let f : (X ,a) → (Y,b) and g : (Y,b) → (Z,c) be (T,2)-functors. If g · f and g are discrete
fibrations, then so is f .

(2) Let

W

h
��

k // X

f
��

Z g
// Y

be a pullback diagram in (T,2)-Cat, such that k is an injective map. If T : Set → Set satisfies
BC, then if f is a discrete fibration, then so is h. In particular, the class of discrete fibrations is
stable under pullback along injective (T,2)-functors.

Proof

(1) Consider the following commutative diagram in Set

Conv(X ,a)

πX

��

Conv( f )// Conv(Y,b)

πY

��

Conv(g)// Conv(Z,c)

πZ

��
X

f
// Y g

// Z.

Since, by hypothesis, the outer diagram and the right-hand square are pullback diagrams, also
the left-hand square is a pullback diagram, and the result follows.
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(2) In the commutative diagram

W

h

��

k // X

f

��

Conv(W,d) //

Conv(h)

��

πW

::

Conv(X ,a)

Conv( f )

��

πX

::

Z g
// Y

Conv(Z,c)

πZ

::

Conv(g)
// Conv(Y,b)

πY

::

we only need to show that the maps πW : Conv(W,d) → W and Conv(h) : Conv(W,d) →
Conv(Z,c) are jointly monic. This is true since πX and Conv( f ) are jointly monic, because f is
a discrete fibration and Conv(k) is injective, (since k is) by hypothesis.

�

Observe that the description of the set Conv(X ,a) can be done also starting from an object (X ,a) ∈
(T,2)-Gph so that the proposition above remains true in (T,2)-Gph.

Definition 4.1.7 A (T,2)-functor f : (X ,a)→ (Y,b) is an étale morphism if it is a pullback stable
discrete fibration.

Remark 4.1.8 If the functor T : Set → Set is cartesian then discrete fibrations are pullback stable,
so that the class of étale morphisms coincides with the class of discrete fibrations, as it happens, for
instance, in Ord.

The following characterization holds.

Proposition 4.1.9 For a (T,2)-functor f : (X ,a)→ (Y,b), consider the following commutative dia-
gram

X

1X

%%

1X

!!

δ f

##
X ×Y X

π1
��

π2 // X

f
��

X
f
// Y

where the square is a pullback and the (T,2)-functor δ f : X → X ×Y X is the one induced by the
universal property. The following conditions are equivalent:

(i) f is an étale morphism;

(ii) both f and δ f are discrete fibrations;

(iii) both f and δ f are open.
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Proof
(i)⇒ (ii) By definition, f is a discrete fibration. Let x ∈ X and w ∈ T (X ×Y X) such that w→ (x,x),
i.e., T π1(w) → x and T π2(w) → x. Since π2 is a discrete fibration, T π2(w) is the only element
converging to x and mapped by T δ f into w. Therefore also δ f is a discrete fibration.
(ii)⇒ (iii) Follows by definition of discrete fibration.
(iii)⇒ (i) We start proving that f is a discrete fibration. We already know that f is open so let x ∈ X
and y ∈ TY with y→ f (x). Let us suppose that there exist x and x′ in T X such that x→ x, x′ → x
and T f (x) = T f (x′) = y. Therefore the pair (x,x′) belongs to T X ×TY T X . In the following diagram
induced by the universal property of the pullback

T (X ×Y X)

T π2

''

T π1

&&

k

''
T X ×TY T X

pr1

��

pr2 // T X

T f
��

T X
T f

// TY,

since T satisfies BC, there exists an element w ∈ T (X ×Y X) such that k(w) = (x,x′). Moreover
w → (x,x), since T π1(w) = x → x and T π2(w) = x′ → x. But, since δ f is open, there exists an
element x̄ ∈ T X such that T δ f (x̄) =w and x̄→ x. By the equalities

(T π1 ·T δ f )(x̄) = T π1(w̄) = x, (T π1 ·T δ f )(x̄) = T (π1 ·δ f )(x̄) = T 1X(x̄) = 1T X(x̄) = x̄

we conclude that x̄= x. The same holds for x′ so that x= x̄= x′.
It remains to show the pullback stability. Consider the following pullback diagram

X ×Y Z

pr1

��

pr2 // Z

g
��

X
f
// Y

where f is a discrete fibration. We want to show that pr2 is a discrete fibration as well. Since T
satisfies BC, we know that pr2 is open. It is enough to show that δpr2 is open. Consider the following
commutative diagram

X ×Y Z

1pr1

��

δpr2 // (X ×Y Z)×Z (X ×Y Z)

2pr1×g pr1

��

//
// X ×Y Z

3pr1

��

pr2 // Z

g
��

X
δ f

// X ×Y X //
// X

f
// Y

where 1 2 3 = 3 and 2 3 are pullbacks. Therefore, by general properties of pullback squares,
also 1 is a pullback and, since δ f is open, also δpr2 is open. �
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The notion of étale morphism for a V-functor has been introduced in [15] by M.M. Clementino
and D. Hofmann. In particular,

Definition 4.1.10 A V-functor f : (X ,a)→ (Y,b) is an étale morphism if both f and δ f are open.

One can verifies that δ f : (X ,a)→ (X ,a)×(Y,b) (X ,a) is open if and only if for all x1,x′1,x0 in X with
f (x1) = f (x′1) and x1 ̸= x′1,

a(x1,x0)∧a(x′1,x0) =⊥.

This suggests a more general definition for étale morphism for an arbitrary (T,V)-functor.

Definition 4.1.11 A (T,V)-functor f : (X ,a)→ (Y,b) is an étale morphism if both f and δ f are open.

This definition covers both cases where V = 2 (see Definition 4.1.7 and Proposition 4.1.9) and T= I
(see Definition 4.1.10). In case of V-functors, by Definition 4.1.10, if V is totally ordered one has that
a V-functor f : (X ,a)→ (Y,b) is an étale morphism if and only if the following condition holds:

∀y1 ∈ Y,x0 ∈ X ∃!x1 ∈ X : f (x1) = y1 & b(y1, f (x0)) = a(x1,x0),

with a(x′1,x0) =⊥ for each x′1 in X such that x′1 ̸= x1 and f (x′1) = y1.
On the other hand, if the quantale V is ccd, then one has the following characterization.

Proposition 4.1.12 Let V be a ccd quantale. For the V-functor f : (X ,a) → (Y,b) the following
statements are equivalent:

(i) f is an étale morphism;

(ii) ∀y1 ∈ Y,x0 ∈ X ,u ≪ b(y1, f (x0))(u ̸=⊥) ∃!x1 ∈ X : f (x1) = y1 & u ≪ a(x1,x0);

(iii) ∀y1 ∈ Y,x0 ∈ X ,u ≪ b(y1, f (x0))(u ̸=⊥) ∃!x1 ∈ X : f (x1) = y1 & u ≤ a(x1,x0).

Proof
(i)⇒ (ii) Let y1 ∈ Y,x0 ∈ X ,u ∈ V such that u ̸=⊥ and u ≪ b(y1, f (x0)). Since f is open,

b(y1, f (x0)) =
∨

x1∈X : f (x1)=y1

a(x1,x0).

Hence,
u ≪

∨
x1∈X : f (x1)=y1

a(x1,x0)

implies, since V is ccd, that there exists x1 ∈ X such that f (x1) = y1 and u ≪ a(x1,x0). Let us suppose
now there exists x′1 ∈ X , with x′1 ̸= x1, such that f (x′1) = y1 and u ≪ a(x′1,x0). Since δ f is open,
a(x1,x0)∧a(x′1,x0) =⊥. Therefore, u ≤ a(x1,x0)∧a(x′1,x0)⇒ u =⊥, giving rise to a contradiction.
(ii)⇒ (iii) It immediately follows.
(iii)⇒ (i) We start by proving f to be open. Let y1 ∈ Y and x0 ∈ X . We want to show that

b(y1, f (x0))≤
∨

x1∈X : f (x1)=y1

a(x1,x0),



4.2 Effective étale-descent morphisms in M-Ord 109

since the other inequality is trivially satisfied. Since V is ccd,

b(y1, f (x0)) =
∨
{u ∈ V : u ≪ b(y1, f (x0))}.

Since (iii) holds, for each u ≪ b(y1, f (x0)), with u ̸= ⊥, there exists a unique x1 ∈ X such that
f (x1) = y1 and u ≤ a(x1,x0). Hence,

b(y1, f (x0)) =
∨
{u ∈ V : u ≪ b(y1, f (x0))} ≤

∨
x1∈X : f (x1)=y1

a(x1,x0)

as claimed. It remains to show that δ f is open. Let x0 ∈ X and let x1,x′1 ∈ X with x1 ̸= x′1 and
f (x1) = f (x′1). We want to show that a(x1,x0)∧ a(x′1,x0) = ⊥. If this is not the case, since V is
ccd, there would exist an element u ∈ V, with u ̸= ⊥, such that u ≪ a(x1,x0)∧ a(x′1,x0). But the
implication

⊥ ̸= u ≪ a(x1,x0)∧a(x′1,x0)≤ b( f (x1), f (x0)) = b( f (x′1), f (x0))⇒ u ≪ b( f (x1), f (x0))

gives rise to a contradiction. �

4.2 Effective étale-descent morphisms in M-Ord

In [2] we give a complete characterization of the effective étale-descent morphisms in the category
M-Ord of M-ordered sets and monotone maps. It has been inspired by the results given in [31] by
G. Janelidze and M. Sobral, where effective étale-descent morphisms in Ord are characterized (see
Section 1.4.3), and in [50] by M. Sobral, where a characterization of effective descent morphisms in
Cat, with respect to the class of discrete (co)fibrations, is given. As we will see, the result in M-Ord
represents a consequence of the one in Cat, so that we decided to dedicate a section to show how
the characterization in Cat of the effective descent morphisms, with respect to the class of discrete
fibrations, is obtained.

4.2.1 Effective descent morphisms in Cat with respect to the class of discrete fibra-
tions

We start pointing out that Cat is a category of V-categories; in fact, although in Chapter 2 we defined
(T,V)-categories with respect to Set-monads T and quantales V, we remarked that more general
settings can be considered such us, for instance, where V is a monoidal closed category (see [21]). In
this context the category Cat of small categories and functors turns out to be (up to isomorphism) a
category of V-categories, where V = Set. The work in Cat represents a generalization of the work in
Ord, since a (pre)ordered set X can be identified as a small (thin) category where the object class is
the set X and there is a morphism x1 → x0 from x1 to x0 if and only if x1 ≤ x0. The notion of discrete
fibration presented in Section 4.1 is a translation to the context of (T,V)-categories of the notion of
discrete fibration in Cat. In fact, when applied to Ord ↪→ Cat, it coincides with discrete fibration in
Cat. Recall that a functor F : X → Y in Cat is called a discrete fibration if for every object x0 ∈ X
and every morphism in Y of the form g : y1 → F(x0) there exists a unique morphism f : x1 → x0 in X
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such that F( f ) = g,

X

F
��

x1

↓

∃! f // x0❴

��
Y y1 g

// F(x0).

The strategy is the same as in the case of Ord (see diagram (3.3.25)). Let E be the class of discrete
fibrations in Cat and let P : E → B be a functor between small categories E and B. The standard
equivalence E(X) ≃ SetXop

, for a small category X , is an equivalence of Cat-indexed categories
A : Catop → CAT and B : Catop → CAT defined respectively by

E ✤ // E(E)

P∗

��

E ✤ // SetEop

SetPop

��
B

P

OO

✤ // E(B) B

P

OO

✤ // SetBop
.

The category DesE(P) of descent data (with respect to A) is then equivalent to the category DesB(P)
of descent data with respect to the pseudo-functor B (we denoted this category by X in the case of
Ord). This is given by pairs (X ,ξ ) where X : Eop → Set is a functor and ξ is a family of functions
ξx,x′ : X(x)→ X(x′), defined for x,x′ ∈ E with P(x) = P(x′), and satisfying the following conditions:

- ξx,x = 1X(x), for each x ∈ E;

- ξx′,x′′ ·ξx,x′ = ξx,x′′ , for each x,x′,x′′ ∈ E with P(x) = P(x′) = P(x′′);

- the diagram

X(x0)

X( f )
��

ξx0 ,x
′
0 // X(x′0)

X( f ′)
��

X(x1)
ξx1 ,x

′
1

// X(x′1)

is commutative for all f : x1 → x0 and f ′ : x′1 → x′0 in E such that P( f ) = P( f ′).

The pair (X ,ξ ) can be seen as a double functor from the (double) category Eq(p), the internal category
in Cat given by the kernel pair of P, to the (double) category S(Set) of commutative squares in Set
described by:

- horizontal arrows, i.e., elements x,x′ ∈ E such that P(x) = P(x′)

x // x′ 7→ X(x)
ξx,x′ // X(x′)

- vertical arrows, i.e., morphisms f : x1 → x0 in E

x0

7→

X(x0)

X( f )
��

x1

f

OO

X(x1)
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- squares in E

x0 // x′0

7→

X(x0)

X( f )
��

ξx0 ,x
′
0 // X(x′0)

X( f ′)
��

x1

f

OO

// x′1

f ′
OO

X(x1)
ξx1 ,x

′
1

// X(x′1)

preserving horizontal and vertical compositions as well as all identities. Therefore one can use again
the adjunction (1.26) to identify double functors from Eq(P) to S(Set) with functors from Z(Eq(P))
to Set. In [50] the category Z(Eq(P)) of zigzags induced by the internal category Eq(P) in Cat is
described as the quotient category Ẽ/∼, where Ẽ is the free category generated by the disjoint union
E1+(E0×B0 E0), where E1 and E0 (B0) are the discrete categories of the morphisms and of the objects
of the category E (B), respectively, and ∼ is the smallest equivalence relation containing

- all pairs (· f−→ · g−→ ·, · g f−→ ·) if f ,g ∈ E1;

- all pairs (x → x′ → x′′,x → x′′) if x → x′,x′ → x′′ ∈ E0 ×B0 E0, meaning that P(x) = P(x′) =
P(x′′);

- and ( f ′ · (x1,x′1),(x0,x′0) · f )
x1

f

��

// x′1

f ′

��
x0 // x′0

if (xi,x′i) ∈ E0 ×B0 E0, for i = 0,1, and P( f ) = P( f ′).

Therefore objects in Z(Eq(P)) are the same as in E while morphisms are equivalent classes of
morphisms in Ẽ of the form

x′n

fn

��
xn−1 // x′n−1

fn−1

��
xn−2 // x′n−2

�� //

�� // x′1
f1

��
x0
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with P(xi) = P(x′i), for i = 1, . . . ,n−1, f j ∈ E1, for j = 1, . . . ,n, which, as in Ord, one calls n-zigzags
and denotes by z = (x0,x′0) f1 · · · fn(xn,x′n. The factorization (1.25) of P through Z(Eq(p)) still holds

E

ψ $$

P // B

Z(Eq(p))
ϕ

::

with ψ( f ) = [ f ], the equivalent class of f ∈ E1 in Ẽ, ϕ(x) = P(x), for each x ∈ E and ϕ([z]) =
P( f1) · · ·P( fn−1) ·P( fn), for each zigzag z as above.

Theorem 4.2.1 [50, Theorem 2] The functor P : E → B is an effective E-descent morphism if and
only if ϕ is a full and faithful lax epimorphism.

Corollary 4.2.2 [50, Corollary 3] The functor P : E → B is an effective E-descent morphism if and
only if

(i) for each morphism g : P(x1) → P(x0) in B there exists a unique (up to equivalence) zigzag
z = (x0,x′0) f1 · · · fn(xn,x′n) in Z(Eq(p)) with g = P( f1) · · ·P( fn−1) ·P( fn);

(ii) every object y ∈ B is a retract of an object in P(E), i.e., for each y ∈ B there exists an object
x ∈ E such that 1y = t · s, for s : y → P(x) and t : P(x)→ y in B.

Theorem 1.4.14 is an immediate consequence of the Corollary above.

Corollary 4.2.3 [50, Corollary 4] If B is a (pre)ordered set considered as a category, a functor
P : E → B is an effective E-descent morphisms if and only if the functor ϕ : Z(Eq(P)) → B is an
equivalence of categories.

Remarks 4.2.4

- A discrete cofibration is the dual notion of discrete fibration. The results given in Theorem
4.2.1 and in Corollary 4.2.2 are self-dual so that they represent also a characterization of the
effective descent morphisms in Cat, with respect to the class of discrete cofibrations.

- Two 1-zigzags in Z(Eq(P)) with the same image by ϕ are equivalent.

4.2.2 The characterization of the effective étale-descent morphisms in the category of
M-ordered sets

Let M = (M×,µ,η) be the M-ordered monad, where M = (M, ·,1M) is a monoid, and let M be its
Barr extension to Rel. In Example 2.3.3 we already saw how for a relation a : M×X−→7 X one can
write x m−→ y instead of a((m,x),y) =⊤. As remarked in [29, Section V.1.4], this arrow notation for the
structure of an (M,2)-category (X ,a) emphasizes that X is actually the object set of a small category,
denoted again by X , with hom-sets

X(x,y) = {(x,m,y) | m ∈ M and x m−→ y}
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for x,y ∈ X ; moreover this small category comes equipped with a faithful functor

νX : X → M, (x,m,y) 7→ m,

with M considered as a one-object category. Under this perspective identity morphisms and composi-
tion in an M-ordered set X are given by

x 1M−→ x and (x m−→ y & y n−→ z ⇒ x n·m−−→ z),

while a morphism f : X → Y must satisfy

x m−→ y ⇒ f (x) m−→ f (y)

for all x,y ∈ X and m ∈ M. Defining an M-norm to be a functor from the small category X to the
category M, we have a full embedding

E : (M,2)-Cat ↪→ Cat ↓ M (4.1)

which sends each (M,2)-category (X ,a) to the pair (X ,νX).

Proposition 4.2.5 [29, Proposition V.1.4.2] The functor E is reflective and identifies (M,2)-categories
as those small categories over M whose norm is faithful.

Remark 4.2.6 [29, Remarks V.1.4.3]

(1) In the trivial case where M = 1, the trivial monoid, (M,2)-Cat in nothing but 2-Cat ∼= Ord,
also identified as the full subcategory of Cat given by small categories X for which the functor
X → 1 is faithful;

(2) The category (M,2)-Cat is isomorphic to P(M)-Cat: for a P(M)-category (X ,a), one assigns
the (M,2)-category (X ,aM) defined by

aM((m,x),y) =⊤⇔ m ∈ a(x,y);

on the other hand, for an (M,2)-category (X ,a) one defines the P(M)-category (X ,aP(M)) by

aP(M)(x,y) = {m ∈ M : a((m,x),y) =⊤}.

Now let E be the class of étale morphisms in M-Ord. Since the monad M is cartesian, the class
of étale morphisms coincides with the class of discrete fibrations. Using the arrow notation, an
equivariant map f : X → Y in M-Ord is an étale morphism if and only if

∀x0 ∈ X , ∀y1 ∈ Y, ∀m ∈ M : y1
m−→ f (x0)⇒∃!x1 ∈ f−1(y1) : x1

m−→ x0,
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X

f
��

∃!x1❴

��

m // x0❴

��
Y y1 m

// f (x0).

Therefore the notion of discrete fibration for a morphism in M-Ord coincides with the notion of
discrete fibration for functors in Cat when we consider M-ordered sets as (M-normed) small categories.
This tells us that the arguments used in Cat for the characterization of effective descent morphisms,
with respect to the class of discrete fibrations, can be applied in this context. By Theorem 4.2.1 we
have the following.

Theorem 4.2.7 [2, Theorem 3.1] An equivariant map p : E →B is an effective étale-descent morphism
in M-Ord if and only if ϕ : Z(Eq(p))→ B is a full and faithful lax epimorphism in Cat.

Proof
Let p : E → B be an equivariant map in M-Ord. Consider the following diagram

(M,2)-Cat E−→ Cat ↓ M U−→ Cat,

where E is the full embedding (4.1) and U is the obvious forgetful functor. Since E preserves
pullbacks, the pullback functor p∗ : E(B)→ E(E) is described by the following diagram

E ×B A

π1

��

π2 // A

α

��
E

νE
��

p // B

νB{{
M

where the square is in Cat. In fact for a discrete fibration α : A → B of small categories, being in
particular a faithful functor, the composition

A α−→ B νB−→ M

gives an M-valued norm for A making α : A → B an object in E(B). Hence the arguments in Cat
of Section 4.2.1, leading to the characterization of effective descent morphisms in Cat with respect
to the class of discrete fibrations, can be used to get a characterization of the effective étale-descent
morphisms in M-Ord. Following those arguments, the equivariant map p : E → B can be then
factorized in Cat in the following way

E

ψ $$

p // B

Z(Eq(p)),
ϕ

::
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where Z(Eq(p)) is the category of zigzags with E as object-set and morphisms given by equivalent
classes of zigzags of the form

x′n

mn

��
xn−1 // x′n−1

mn−1

��
xn−2 // x′n−2

�� //

�� // x′1
m1

��
x0

where p(xi) = p(x′i) for i = 1, · · · ,n−1, and x′i
mi−→ xi−1 in E for i = 1, · · · ,n. The notation for such an

n-zigzag as above will be
z = (x0,x′0)m1 · · ·mn(xn,x′0n).

The morphism ψ is defined as the identity on objects and ψ(x1
m−→ x0) = [x1

m−→ x0] on morphisms,
while ϕ on objects acts as p and the image of an equivalent class of an n-zigzag z via ϕ is

ϕ([z]) = p(xn)
mn−→ p(x′n)

mn−1−−−→ ·· · m1−→ p(x′0) = p(xn)
m1···mn−1·mn−−−−−−−→ p(x′0).

By Theorem 4.2.1, we can then state that the equivariant p : E → B is an effective étale-descent
morphism if and only if ϕ is a full and faithful lax epimorphism in Cat. �

Corollary 4.2.8 [2, Corollary 3.2] An equivariant map p : E → B is an effective étale-descent morph-
ism in M-Ord if and only if

(i) For each p(x) l−→ p(x′) in B with l ∈ M there exists a (unique up to equivalence) zigzag
z = (x0,x′0)m1 · · ·mn(xn,x′n) in Z(Eq(p)) with l = m1 · · ·mn−1 ·mn;

(ii) every point y ∈ B is in relation to a point of the image via a right-invertible element of the
monoid, i.e., for each y ∈ B there exist x ∈ E, n,m ∈ M such that p(x) n−→ y and y m−→ p(x) with
n ·m = 1M.

�

Remarks 4.2.9 [2, Remark 3.3]

- As we already mentioned in Remarks 4.2.6, when M = 1, 1-Ord ∼= Ord. Hence the charac-
terization of effective étale-descent morphisms in M-Ord generalizes the characterization in
Ord.



116 Effective étale-descent morphisms in categories of lax algebras

- As in Ord uniqueness of zigzags encodes the fact that Z(Eq(p)) is a (pre)ordered set, here it
encodes the property that Z(Eq(p)) is an M-ordered set, with the norm given by

Z(Eq(p))
ϕ−→ B νB−→ M.

- As in Cat, the results given by Theorem 4.2.7 and by Corollary 4.2.8 are self-dual, so that they
also represent a characterization of the effective descent morphisms in M-Ord, with respect to
the class of discrete cofibrations.

4.3 Towards effective étale-descent morphisms in V-Cat

In Chapter 3 we introduced (what we called) the relational method for which, knowing data about
(effective) descent morphisms in (T,2,T)-Cat, one can get informations to study the problem of
descent in (T,V, T̃)-Cat. This has been possible since a morphism p : (E,e)→ (B,b) in (T,V, T̃)-
Cat, where T̃ is the uniform extension to V-Rel of T, can be split up in a family of morphisms
(pu : (E,eu)→ (B,bu))u∈V in (T,2,T)-Cat, where T is the Barr extension of T. Of course one has to
assume some conditions on T and V, such as T satisfies BC and V is a ccd frame. In this section we
want to apply the same method for what concerns effective étale-descent morphisms. In particular we
will consider the case when T= I, the identity monad, so that the categories involved are Ord, where
effective étale-descent morphisms are characterized (see Section 1.4.3), and V-Cat, where we want to
obtain informations.

4.3.1 Regular epimorphisms in V-Cat

The example in Ord suggests that for a morphism to be effective étale-descent, the property of being a
regular epimorphism might play a key role, in particular for what concerns its description in terms of
convergence. In [28] D. Hofmann obtained a characterization of regular epimorphisms in categories
of lax algebras. The main motivation was to obtain a characterization using convergence based on
the (already) known characterization of quotient maps in the category Ord of (pre)ordered sets and
monotone maps.

Theorem 4.3.1 [28, Theorem 10] Let T̂ be a flat lax extension to V-Rel of a Set-monad T= (T,µ,η)

such that µ extends to a (strict) natural tranformation and T̂ is left-whiskering. Then a morphism
f : (X ,a)→ (Y,b) in (T,V)-Cat is a regular epimorphism if and only if there exists an ordinal γ such
that

b = f ·aγ

f ·T
γ f op · (µγ

Y )
op = f ·aγ

f · (µ
γ

X)
op ·T f op,

where aγ

f is the "zigzag" structure aγ

f : T γX−→7 X (see [28, Section 4]).

In case of the ultrafilter monad U = (U,µ,η) and its Barr extension to Rel one has the following
characterization.
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Theorem 4.3.2 [28, Theorem 12] A continuous map f : X → Y in Top is a regular epimorphism if
and only if there exists an ordinal γ such that, for any y ∈UY and y0 ∈ Y ,

y→ y0 ⇐⇒

{
there exist X ∈U γX and x0 ∈ X such that
U f ·µ

γ

X(X) = y & f (x0) = y0 & Xaγ

f x0.

For our purpose, we are mainly interested in the case of the identity monad.

Theorem 4.3.3 [28, Theorem 11] A morphism f : (X ,a)→ (Y,b) in V-Cat is a regular epimorphism
if and only if, for each y1 and y0 in Y , b(y1,y0) is the supremum of all a(x′n,xn−1)⊗a(x′n−1,xn−2)⊗
·· ·⊗a(x′1,x0) obtained from zigzags

x′n

a(x′n,xn−1)

��
xn−1 // x′n−1

a(x′n−1,xn−2)

��
xn−2 // x′n−2

�� //

�� // x′1
a(x′1,x0)

��
x0

(4.2)

in (X ,a) (n ∈ N) with f (x′n) = y1, f (x0) = y0 and f (xi) = f (x′i), for i = 1, . . . ,n−1.

Observe that if V = 2 one obtains the characterization of regular epimorphisms in Ord (see diagram
(1.23)). When V is ccd we can get equivalent formulations which turn out to be useful to study
effective étale-descent morphisms.

Proposition 4.3.4 Let V be a ccd quantale. For a V-functor f : (X ,a)→ (Y,b) the following condi-
tions are equivalent:

(i) f is a regular epimorphism;

(ii) for each y1,y0 ∈ Y and u ≪ b(y1,y0), there exists a zigzag (4.2) in (X ,a) with f (x′n) = y1,
f (x0) = y0, f (xi) = f (x′i), for i = 1, . . . ,n−1, and such that

u ≪ a(x′n,xn−1)⊗a(x′n−1,xn−2)⊗·· ·⊗a(x′1,x0);

(iii) for each y1,y0 ∈ Y and u ≪ b(y0,y1), there exists a zigzag (4.2) in (X ,a) with f (x′n) = y1,
f (x0) = y0, f (xi) = f (x′i), for i = 1, . . . ,n−1, and such that

u ≤ a(x′n,xn−1)⊗a(x′n−1,xn−2)⊗·· ·⊗a(x′1,x0).
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Proof
(i) ⇒ (ii) Let f : (X ,a) → (Y,b) be a regular epimorphism in V-Cat and let y1,y0 ∈ Y and u ≪
b(y1,y0). By Theorem 4.3.3,

b(y1,y0) =
∨
{a(x′n,xn−1)⊗a(x′n−1,xn−2)⊗·· ·⊗a(x′1,x0) obtained from zigzags (4.2)}.

Since V is ccd, there exists a zigzag such that

u ≪ a(x′n,xn−1)⊗a(x′n−1,xn−2)⊗·· ·⊗a(x′1,x0).

(ii)⇒ (iii) It immediately follows.
(iii)⇒ (i) Let y1 and y0 in Y . Since V is ccd,

b(y1,y0) =
∨
{u ∈ V : u ≪ b(y1,y0)}.

By hypothesis, for each u ≪ b(y1,y0), there exists a zigzag (4.2) in (X ,a) with f (x′n) = y1, f (x0) = y0,
f (xi) = f (x′i), for i = 1, . . . ,n−1, and such that

u ≤ a(x′n,xn−1)⊗a(x′n−1,xn−2)⊗·· ·⊗a(x′1,x0).

Hence the set {u ∈ V : u ≪ b(y1,y0)} has the supremum of all a(x′n,xn−1)⊗ a(x′n−1,xn−2)⊗ ·· ·⊗
a(x′1,x0), obtained from zigzags (4.2), as upper bound. Therefore,

b(y1,y0)≤
∨
{a(x′n,xn−1)⊗a(x′n−1,xn−2)⊗·· ·⊗a(x′1,x0) obtained from zigzags (4.2)}.

It remains to show the other inequality. For a zigzag (4.2) in (X ,a) with f (x′n) = y1, f (x0) = y0,
f (xi) = f (x′i), for i = 1, . . . ,n−1, we have

a(x′n,xn−1)⊗a(x′n−1,xn−2)⊗·· ·⊗a(x′1,x0)≤ b(y1, f (xn−1))⊗·· ·⊗b( f (x1),y0)≤ b(y1,y0).

Hence,

∨
{a(x′n,xn−1)⊗a(x′n−1,xn−2)⊗·· ·⊗a(x′1,x0) obtained from zigzags (4.2)} ≤ b(y1,y0).

�

4.3.2 The relational method for effective étale-descent morphisms in V-Cat

Let p : (E,e)→ (B,b) be a V-functor where V is assumed to be a frame. Let

(pu : (E,eu)→ (B,bu))u∈V

be the family of monotone maps in Ord defined accordingly and let E be the class of étale morphisms
in V-Cat. We claim that, if V is ccd and totally ordered, then p is an effective étale-descent morphism
in V-Cat provided that pu is an effective étale-descent morphism in Ord for each u ∈ V. We show,
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under our assumptions, that the (comparison) functor

Φ
p
E : E(B,b)→ DesE(p)

is an equivalence of categories. We split the proof in three lemmas, showing, in each step, that the
comparison functor is faithful, full and essentially surjective on objects.

Lemma 4.3.5 Let V be a ccd frame. The functor Φ
p
E is faitfhful provided that there exists an u ∈ V

(u ̸=⊥) such that pu : (E,eu)→ (B,bu) satisfies condition (iii) of Corollary 1.4.15.

Proof
Let

f ,g : ((A,a),α)→ ((A′,a′),α ′)

be morphisms in E(B,b) such that Φ
p
E( f ) = Φ

p
E(g), i.e., 1E ×B f = 1E ×B g. This condition implies

that for each z ∈ A with α(z) ∈ p(E) we have f (z) = g(z). Hence, in order to show that f = g, let z be
an element in A such that α(z) /∈ p(E). By hypotheses there exists an u ∈ V (with u ̸=⊥) such that the
monotone map pu : (E,eu)→ (B,bu) in Ord satisfies condition (iii) of Corollary 1.4.15. Therefore
there exists x ∈ E such that

u ≤ b(α(z), p(x)) and u ≤ b(p(x),α(z)).

Let ū ≪ u such that ū ̸= ⊥. Since α is an étale morphism, there exists a unique zx ∈ A such that
α(zx) = p(x) and ū≤ a(zx,z). The fact that both f and g are V-functors implies that ū≤ a′( f (zx), f (z))
and ū ≤ a′(g(zx),g(z)), where f (zx) = g(zx). Now, since α is an étale morphism, there exists a unique
element z̃ ∈ A such that α(z̃) = α(z) and ū ≤ a(z̃,zx). But the fact that ū ≤ a(z̃,zx)∧a(zx,z)≤ a(z̃,z)
implies z̃ = z, since α is étale. Hence ū ≤ a′( f (z), f (zx)) and ū ≤ a′(g(z),g(zx)) give that f (z) = g(z),
since α ′ is an étale morphism. �

Lemma 4.3.6 Let V be a ccd and totally ordered frame. The functor Φ
p
E is full provided that

pu : (E,eu)→ (B,bu) is effective for étale-descent in Ord for each u ∈ V.

Proof
We start considering p : (E,e) → (B,b) surjective. Let ((A,a),α) and ((A′,a′),α ′) be objects in
E(B,b) and let

f : ((E ×B A,d),pr1,1E ×B pr2)→ ((E ×B A′,d′),pr′1,1E ×B pr′2)

be a morphism in DesE(p) where ((E ×B A,d),pr1,1E ×B pr2) and ((E ×B A′,d′),pr′1,1E ×B pr′2) are
the images by Φ

p
E of ((A,a),α) and ((A′,a′),α ′), respectively. We want to define a morphism

f̄ : ((A,a),α)→ ((A′,a′),α ′)

such that Φ
p
E( f̄ ) = f . Let z ∈ A. Since we are assuming p surjective, there exists x ∈ X such

that α(z) = p(x). Hence the pair (x,z) is an elements in E ×B A so that we can map it by f . Let
(x,z′) = f (x,z). Define then f̄ by

z 7→ z′. (4.3)
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Notice that the choice of such z′ might depend on the choice of the element x∈X such that α(z) = p(x).
But, since f is a morphism in DesE(p), we have that the diagram

E ×B (E ×B A)

1E×Bpr2
��

1E×B f // E ×B (E ×B A′)

1E×Bpr′2
��

E ×B A
f

// E ×B A′

is commutative. Hence, the map f̄ given by (4.3) is well-defined, making the Set-diagram

A

α
��

f̄ // A′

α ′
��

B

commutative. It remains to show that f̄ : (A,a)→ (A′,a′) is a V-functor, that is, for each z1,z0 ∈ A

a(z1,z0)≤ a′( f̄ (z1), f̄ (z0)).

To prove the inequality above, we show that for each u ≪ a(z1,z0) we have u ≤ a′( f̄ (z1), f̄ (z0)). Let
u ∈ V with u ≪ a(z0,z1). We can assume that u ̸=⊥. Since α : (A,a)→ (B,b) is a V-functor,

u ≪ a(z1,z0)≤ b(α(z1),α(z0))⇒ u ≪ b(α(z1),α(z0)).

Hence, since pu : (E,eu) → (B,bu) is an effective étale-descent morphism in Ord, there exists a
unique (up to equivalence) zigzag

x′n

��
xn−1 // x′n−1

��
xn−2 // x′n−2

�� //

�� // x′1

��
x0
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in (E,eu), with n ∈N, such that p(x0) = α(z0), p(xn) = α(z1), p(xi) = p(x′i), for i = 1, . . . ,n−1. The
fact that the horizontal arrows in the zigzag above are in (E,eu) means that

u ≤ e(x′i,xi−1), for i = 1, . . . ,n.

Let us assume that n = 2 and that the zigzag is then of the form

x2

��
x1 // x′1

��
x0,

with p(x0) = α(z0), p(x2) = α(z1), p(x1) = p(x′1) and u ≤ e(x2,x1), u ≤ e(x′1,x0).
Let ū ≪ u such that ū ̸= ⊥. Since α is an étale morphism, there exists a unique z̃1 ∈ A such
that α(z̃1) = p(x1) = p(x′1) and ū ≤ a(z̃1,z0). Moreover, there exists a unique z̄1 ∈ A such that
α(z̄1) = α(z1) = p(x2) and ū ≤ a(z̄1, z̃1). But, since α is étale, we must have z̄1 = z1. Hence, since
f : (E ×B A,d)→ (E ×B A′,d′) is a V-functor,

ū ≤ e(x2,x1)∧a(z1, z̃1)≤ e(x2,x1)∧a′( f̄ (z1), f̄ (z̃1))≤ a′( f̄ (z1), f̄ (z̃1))

and
ū ≤ e(x′1,x0)∧a(z̃1,z0)≤ e(x′1,x0)∧a′( f̄ (z̃1), f̄ (z0))≤ a′( f̄ (z̃1), f̄ (z0)).

Therefore,
ū ≤ a′( f̄ (z1), f̄ (z̃1))∧a′( f̄ (z̃1), f̄ (z0))≤ a′( f̄ (z1), f̄ (z0)).

Since u =
∨
{ū ∈ V : ū ≪ u}, we conclude that u ≤ a′( f̄ (z1), f̄ (z0)).

Let us now assume p : (E,e)→ (B,b) not surjective. Let z ∈ A such that α(z) /∈ p(E) and let u ∈ V
with u ̸=⊥. Since p : (E,eu)→ (B,bu) is effective for étale-descent, there exists x ∈ E such that

u ≤ b(α(z), p(x)) and u ≤ b(p(x),α(z)).

Let ū ≪ u. Since α is an étale morphism, there exists a unique zx ∈ A such that α(zx) = p(x) and
ū ≤ a(zx,z). Since (x,zx) ∈ E ×B A, we know how to map the point zx by f̄ . Let f̄ (zx) = z′x ∈ A′. Now,
since α ′ is étale, there exists a unique z′ ∈ A′ such that α ′(z′) = α(z) and ū ≤ a′(z′,z′x). Define then

f̄ (z) := z′.

We must now verify that the definition we gave does not depend on the choice of u ∈ V and on the
choice of ū ≪ u. We start with the latter. Let ¯̄u ≪ u with ¯̄u ̸= ⊥ and ¯̄u ̸= ū. Since α is an étale
morphism, there would exist a unique z̃x ∈ A such that α(z̃x) = p(x) = α(zx) and ¯̄u ≤ a(z, z̃x). But,
since V is totally ordered, z̃x = zx. Hence, in A′, f̄ (z̃x) = f̄ (zx). Now, since α ′ is an étale morphism,
there would exist a unique z̃′ ∈ A′ such that α ′(z̃′) = α(z) = α(z′) and ¯̄u ≤ a(z̃′, f̄ (zx)). Since V is
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totally ordered, we conclude that z̃′ = z′.
Let now ũ ∈ V with ũ ̸=⊥ and ũ ̸= u. We then use that fact that pũ : (E,eũ)→ (B,bũ) is effective for
étale-descent in Ord. Hence there might exist x̃ ∈ X , with x̃ ̸= x, such that

ũ ≤ b(α(z), p(x̃)) and ũ ≤ b(p(x̃),α(z)).

Let ¯̃u ≪ ũ. Since α is an étale morphism, there exists a unique zx̃ ∈ A such that α(zx̃) = p(x̃) and
¯̃u ≤ a(zx̃,z). Observe that ¯̃u∧ ū ≤ a(zx̃,zx). Now, since α ′ is an étale morphism, there exists a unique
z̃′ ∈ A′ such that α ′(z̃′) = α(z) and ¯̃u ≤ a′(z̃′, f̄ (zx̃)). Hence,

⊥ ̸= ¯̃u∧ ( ¯̃u∧ ū)≤ a′(z̃′, f̄ (zx̃))∧a′( f̄ (zx̃), f̄ (zx))≤ a(z̃′, f̄ (zx)).

Since V is totally ordered, we conclude that z̃′ = z′. From the construction we made, it follows that
f̄ : (A,a)→ (A′,a′) is a V-functor such that α ′ · f̄ = α . �

Lemma 4.3.7 Let V be a ccd and totally ordered frame. The functor Φ
p
E is essentially surjective on

objects provided that pu : (E,eu)→ (B,bu) is effective for étale-descent in Ord for each u ∈ V.

Proof
Let ((C,c),γ,ξ ) be an object in DesE(p). We want to find an object ((A,a),α) ∈ E(B) such that

Φ
p
E((A,a),α)∼= ((C,c),γ,ξ ).

We use the technique studied in Chapter 1 to construct the left adjoint Ψ
p
E of the comparison factor.

Consider (Q,q) the object part of the coequalizer ((Q,q),π) in V-Cat of the pair

E ×B C
ξ

//
π2 // C π // Q.

The quotient set Q is given by the following equivalence relation ∼ξ defined on the set C: for z,z′ ∈C,

z ∼ξ z′ ⇐⇒ p(γ(z)) = p(γ(z′)) and z′ = ξ (γ(z′),z),

while the structure q : Q×Q → V is the final structure of the morphism π : (C,c) → Q. Since
p · γ · π2 = p · γ · ξ , by the universal property of the coequalizer, there exists a unique morphism
δ : Q → B such that the diagram

E ×B C
ξ

//
π2 // C

p·γ
��

π // Q

δ��
B

commutes. In Section 1.1 we referred to the diagram above as the descent situation describing Q. We
claim ((Q,q),δ ) is an object in E(B) such that Φ

p
E((Q,q),δ )∼= ((C,c),γ,ξ ).

We start assuming p : (E,e)→ (B,b) surjective. We show first that δ : Q → B is open. Let [z0] ∈ Q,
y1 ∈ B and u ∈ V such that u ̸= ⊥ and u ≪ b(y1,δ [z0]). Since pu : (E,eu)→ (B,bu) is an effective
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étale-descent morphism in Ord, there exists a unique (up to equivalence) zigzag

x′n

��
xn−1 // x′n−1

��
xn−2 // x′n−2

�� //

�� // x′1

��
x0

(4.4)

in (E,eu), with n ∈ N, such that p(x0) = δ [z0], p(x′n) = y, p(xi) = p(x′i) for i = 1, . . . ,n−1. The fact
that the horizontal arrows of the zigzag above are in (E,eu) means that

u ≤ e(x′i,xi−1) for i = 1, . . .n.

Assume n = 2 so that the zigzag is of the form

x2

��
x1 // x′1

��
x0,

where p(x0) = δ [z0], p(x2) = y, p(x1) = p(x′1) and u ≤ e(x2,x1), u ≤ e(x′1,x0). Let ū ≪ u with ū ̸=⊥
and let z0 ∈ π−1[z0]. We can assume that γ(z0) = x0 since, if it is not the case, we just take ξ (x0,z0).
This is a point in C such that γ(ξ (x0,z0)) = x0 and π(ξ (x0,z0)) = [z0]. Since γ is an étale morphism,
there exists a unique z′1 ∈C such that γ(z′1) = x′1 and ū ≪ c(z′1,z0). Take now the point z1 = ξ (x1,z′1).
This is a point in C such that γ(z1) = x1 and z1 ∼ξ z′1. Since γ is étale, there exists a unique z2 ∈C
such that γ(z2) = x2 and ū ≤ c(z2,z1). Now, since π : C → Q is a V-functor, we conclude that

ū ≤ q(π[z2],π[z′1])∧q(π[z1],z0])≤ q(π[z2],z0]).

This proves that δ : Q → B is open, in fact u ≤ q(π[z2], [z0]), since u =
∨
{ū ∈ V : ū ≪ u}.

We now show that δ : Q → B is étale. Let [ζ ] ∈ Q such that [ζ ] ̸= π[z2], δ [ζ ] = y1 and u ≤ q([ζ ], [z0]).
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Let ū ≪ u. Since π : C → Q is a regular epimorphism, there exists a zigzag

ζ ′
m

c(ζm,ζm−1)

��
ζm−1 // ζ ′

m−1

c(ζ ′
m−1,ζm−2)

��
ζm−2 // ζ ′

m−2

�� //

�� // ζ ′
1

c(ζ ′
1,ζ0)

��
ζ0

(4.5)

in (C,c), with m ∈ N, such that π(ζ0) = [z0], π(ζ ′
m) = [ζ ], π(ζ j) = π(ζ ′

j) for j = 1, . . . ,m−1, and

ū ≤ c(ζm,ζm−1)∧ c(ζ ′
m−1,ζm−2)∧·· ·∧ c(ζ ′

1,ζ0).

This implies that ū ≤ c(ζ ′
j,ζ j−1) for j = 1, . . . ,m. The image by γ of the above zigzag in (C,c) will

be a zigzag in (E,e) of the form

γ(ζ ′
m)

ū≤e(γ(ζ ′
m),γ(ζm−1))

��
γ(ζm−1) // γ(ζ ′

m−1)

ū≤e(γ(ζ ′
m−1),γ(ζm−2))

��
γ(ζm−2) // γ(ζ ′

m−2)

�� //

�� // γ(ζ ′
1)

ū≤e(γ(ζ ′
1),γ(ζ0))

��
γ(ζ0).

Since pū : (E,eū)→ (B,bū) is an effective étale-descent morphism in Ord, this zigzag of length m
must be equivalent to the zigzag (4.4) of length n we got to prove that δ is open. We assumed that
n = 2. Hence, we study the cases where m = 1 and m = 2.

Case m = 1
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In (C,c) we have

z2
ū≤c(z2,z1) // z1

z′1
ū≤c(z′1,z0) // z0

ζ1
ū≤c(ζ1,ζ0) // ζ0,

while in (E,e) we have

x2
ū≪e(x2,x1) // x1

x′1
ū≪e(x′1,x0) // x0

γ(ζ1)
ū≤e(γ(ζ1),γ(ζ0)) // γ(ζ0).

Since the two zigzags above must be equivalent with respect to (E,eū), there exists a chain in (E,e)
of the form

χ2
ū≤e(χ2,χ1) // χ1

ū≤e(χ1,χ0) // χ0

with p(χ2) = y, p(χ1) = p(x1) = p(x′1) and p(χ0) = δ [z0].
Let ¯̄u ≪ ū with ¯̄u ̸=⊥ and let t0 = ξ (χ0,z0). Then, in (C,c), we have that

t0 ∼ξ z0 ∼ξ ζ0.

Since γ is an étale morphism, there exists a unique t1 ∈ C such that γ(t1) = χ1 and ¯̄u ≤ c(t1, t0).
Consider now the points (x0, t0) and (x′1, t1) in E ×B C. Since ξ : E ×B C →C is a V-functor,

¯̄u ≤ e(x′1,x0)∧ c(t1, t0)≤ c(ξ (x′1, t1),ξ (x0, t0)) = c(ξ (x′1, t1),z0).

Since γ is an étale morphism, we conclude that z′1 = ξ (x′1, t1). Therefore,

t1 ∼ξ z′1 ∼ξ z1.

The same construction gives the existence of a unique element t2 ∈C such that γ(t2) = χ2, ¯̄u ≤ c(t2, t1)
and

t2 ∼ξ z2.

Since ξ : E ×B C →C is a V-functor,

¯̄u ≤ e(γ(ζ1),γ(ζ0))∧ c(t2, t0)≤ c(ξ (γ(ζ1), t2),ξ (γ(ζ0), t0)) = c(ξ (γ(ζ1), t2),ζ0).

Since γ is an étale morphism, we conclude that

z2 ∼ξ t2 ∼ξ ζ1,
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which contradicts the fact that π[z2] ̸= [ζ ].

Case m = 2
In (C,c) we have

z2
ū≤c(z2,z1) // z1

z′1
ū≤c(z′1,z0) // z0

ζ2
ū≤c(ζ2,ζ1) // ζ1

ζ ′
1

ū≤c(ζ ′
1,ζ0) // ζ0,

while in (E,e) we have

x2
ū≪e(x2,x1) // x1

x′1
ū≪e(x′1,x0) // x0

γ(ζ2)
ū≤e(γ(ζ2),γ(ζ1))// γ(ζ1)

γ(ζ ′
1)

ū≤e(γ(ζ ′
1),γ(ζ0))// γ(ζ0).

In fact, since the two zigzags above must be equivalent with respect to (E,eū), we have that

p(x1) = p(x′1) = p(γ(ζ1)) = p(γ(ζ ′
1)).

Since the pairs (x′1,ζ
′
1), (x0,ζ0) are in E ×B C, and since ξ : E ×B C →C is a V-functor, we have

ū ≤ e(x′1,x0)∧ c(ζ ′
1,ζ0)≤ c(ξ (x′1,ζ

′
1),ξ (x0,ζ0)) = c(ξ (x′1,ζ

′
1),z0),

by the fact that z0 ∼ξ ζ0. Since γ is an étale morphism, we have ξ (x′1,ζ
′
1) = z′1, so that,

z1 ∼ξ z′1 ∼ξ ζ
′
1 ∼ξ ζ1.

An analogous argument leads to the equivalence

z2 ∼ξ ζ2,

which contradicts the fact that π[z2] ̸= [ζ ].
It remains to show that Φ

p
E((Q,q),δ ) ∼= ((C,c),γ,ξ ). The image of ((Q,q),δ ) by Φ

p
E is the triple



4.3 Towards effective étale-descent morphisms in V-Cat 127

((E ×B Q,d),pr1,1E ×B pr2), where

(E ×B Q,d)

pr1

��

pr2 // (Q,q)

δ

��
(E,e) p

// (B,b)

is the pullback in V-Cat of δ along p, with d the pullback structure. The isomorphism

i : (C,c)→ (E ×B Q,d)

in V-Cat is given by
z 7→ (γ(z), [z]).

The map i is injective; in fact, given z0,z1 ∈C such that (γ(z0), [z0]) = (γ(z1), [z1]),i.e., γ(z0) = γ(z1)

and z0 ∼ξ z1, we conclude that z0 = z1, since

z0 = ξ (γ(z0),z0) = ξ (γ(z1),z0) = z1,

by the properties of the descent data ξ .
Surjectivity of i also follows: given an element (x, [z]) ∈ E ×B Q, let ξ (x,z) ∈C. Then,

i(ξ (x,c)) = (γ(ξ (x,z)), [ξ (x,z)]) = (x, [z]),

again using properties of the descent data ξ . So far we proved that i : C →E×B Q is a Set-isomorphism.
Since i is also a V-functor, in fact c(z1,z0)≤ e(γ(z1),γ(z0))∧q([z1], [z0]) for each z0,z1 ∈C, it remains
to show that

e(x1,x0)∧q([z1], [z0])≤ c(ξ (x1,z1),ξ (x0,z0)),

for each (x0, [z0]) and (x1, [z1]) in E ×B Q.
Let u ≤ e(x1,x0)∧ q([z1], [z0]). We want to show that u ≤ c(ξ (x1,z1),ξ (x0,z0)). Let ū ≪ u with
ū ̸= ⊥. Since π : C → Q is a regular epimorphism, there exists a zigzag as in (4.5) in (C,c), with
m ∈ N, such that π(ζ ′

m) = [z1], π(ζ0) = [z0], π(ζ j) = π(ζ ′
j), for j = 1, . . . ,m−1, and

ū ≤ c(ζ ′
m,ζm−1)∧ c(ζ ′

m−1,ζm−2)∧·· ·∧ c(ζ ′
1,ζ0).

Assume m = 2. Since ū ≪ e(x1,x0), and since γ : C → E is an étale morphism, there exists a unique
t1 ∈C such that γ(t1) = x1 and ū ≤ c(t1,ξ (x0,z0)). We want to show that

t1 ∼ξ ξ (x1,z1)



128 Effective étale-descent morphisms in categories of lax algebras

since this would imply, by the properties of the descent data ξ , that t1 = ξ (x1,z1). The situation is
quite similar to the case where we had to construct the étale morphism δ : Q → B. In (E,e) we have

γ(ζ2)
ū≪e(γ(ζ2),γ(ζ1))// γ(ζ1)

γ(ζ ′
1)

ū≪e(γ(ζ ′
1),γ(ζ0))// γ(ζ0)

x1
ū≤e(x1,x0) // x0

and, since pū : (E,eū)→ (B,bū) is an effective étale-descent morphism, the two zigzags above must
be equivalent. Hence, there exists in (E,e) a zigzag of the form

χ2
ū≤e(χ2,χ1) // χ1

ū≤e(χ1,χ0) // χ0

with p(χ2) = p(x1) = δ [z1], p(χ1) = p(γ(ζ1)) = p(γ(ζ ′
1)) and p(χ0) = p(x0) = δ [z0].

Taking in (C,c) the point z0 = ξ (χ0,z0), since γ is an étale morphism, we have a zigzag in (C,c) of
the form

z2
ū≤c(z2,z1) // z1

ū≤c(z1,z0) // z0

such that γ(z2) = χ2 and γ(z1) = χ1.
Summing up, in (C,c) we have the following situation

ζ2
ū≤c(ζ2,ζ1) // ζ1

ζ ′
1

ū≤c(ζ ′
1,ζ0) // ζ0

Z1
ū≤c(Z1,ξ (x0,z0)) // ξ (x0,z0)

z2
ū≤c(z2,z1) // z1

ū≤c(z1,z0) // z0,

where
Z1 ∼ξ z2 ∼ξ ζ2 ∼ξ z1 ∼ξ ξ (x1,z1)

as claimed. The same argument holds for each ū ≪ u and, since u =
∨
{ū ∈ V : ū ≪ u}, the result

follows.
To conclude the proof, it remains to show that the following diagram

E ×B C

ξ

��

1E×Bi // E ×B (E ×B Q)

1E×Bpr2
��

C
i

// E ×B Q
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is commutative. Let (x,z) be an element in E ×B C. Then,

(i ·ξ )(x,z) = (x, [ξ (x,z)]) = (x, [z]) = (1E ×B pr2 ·1E ×B i)(x,z),

which proves that the diagram above is commutative.
To prove that Φ

p
E : E(B,b)→ DesE(p) is essentially surjective on objects, we assumed p : (E,e)→

(B,b) surjective. If it is not the case, the construction of the étale morphism δ : Q → B has the
following modification: to the set Q, constructed in the same way as in the surjective case, we need to
add the points of B− p(E) with values

q(y, [z]) = b(y,δ [z])

for each y ∈ B− p(E) and [z] ∈ Q. �

The three lemmas give the following result.

Theorem 4.3.8 If V is a ccd totally ordered frame, then a morphism p : (E,e)→ (B,b) in V-Cat is
of effective étale-descent provided that pu : (E,eu)→ (B,bu) is an effective étale-descent morphism in
Ord for each u ∈ V. �

Remark 4.3.9 The relational method turns out to be not much useful in case p is not surjective. To
study this situation we consider the following V-functor p : (E,e)→ (B,b), where V = Iinf.

E

p
��

B

x1

❴

��

y1

1
2 //

y0
1
2

oo

Although p restricted to its image is the one-element set identity, Theorem 4.3.8 can not be applied
since for 1

2 < u ≤ 1 the monotone map pu : (E,eu)→ (B,bu)

E

pu

��

B

x1

❴

��

y1 y0
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is not effective for étale-descent in Ord. In fact condition (iii) of Corollary 1.4.15 is not satisfied.
Observe that it is the case only if we replace the value 1

2 with 1. With this replacement each pu, for
all u ∈ V, is an effective étale-descent morphism in Ord and the theorem can be applied to conclude
that p is effective for étale-descent in Iinf-Cat. Observe anyway that Lemma 4.3.5 can be applied,
concluding that the comparison functor Φ

p
E is faithful. If p is surjective, the relational method for the

problem of étale-descent in V-Cat turns out to more useful, as the following example suggests.

Example 4.3.10 Consider the following morphism p : (E,e)→ (B,b) in Iinf-Cat.

E

p

��

B

x2 1
2

// x1

x′1 1
4

// x0

χ2 1
6

// χ1

χ ′
1 1

6

// χ0

❴

��

y2

1
4

  1
2 // y1

1
4 // y0

Observe that p is not effective for descent, since it is not a *-quotient morphism (see Theorem 3.3.3).
In Section 4.4 we will show that a V-functor, for an arbitrary quantale V, is an effective étale-descent
morphism provided that it is effective for global-descent. Therefore this can not be applied in our
case to conclude that p is an effective étale-descent morphism but we can check if the hypotheses of
Theorem 4.3.8 are satisfied. Accordingly, we split p into suitable slices pu : (E,eu)→ (B,bu) in Ord.
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Case 0 ≤ u ≤ 1
6 :

E

pu

��

B

x2 // x1

x′1 // x0

χ2 // χ1

χ ′
1

// χ0

❴

��

y2
((// y1 // y0

Case 1
6 < u ≤ 1

4 :

E

pu

��

B

x2 // x1

x′1 // x0

χ2 χ1

χ ′
1 χ0

❴

��

y2
((// y1 // y0
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Case 1
4 < u ≤ 1

2 :

E

pu

��

B

x2 // x1

x′1 x0

χ2 χ1

χ ′
1 χ0

❴

��

y2 // y1 y0

In all the cases pictured above the monotone map pu is effective for étale-descent in Ord, as an easy
inspection of Corollary 1.4.15 reveals. In the case 1

2 < u ≤ 1 no arrows are involved for pu, neither
in the domain E nor in the codomain B, so that all the conditions of Corollary 1.4.15 are trivially
satisfied. Therefore, by Theorem 4.3.8, we conclude that p is an effective étale-descent morphism in
Iinf-Cat.

Remark 4.3.11 The converse of Theorem 4.3.8 in not true in general, as Example 3.3.28 reveals. The
Iinf-functor p : (E,e)→ (B,b) is effective for descent and so, by Theorem 4.4.6, an effective étale-
descent morphism, but the monotone map p1 : (E,e1)→ (Y,b1) is not even a regular epimorphism.

4.3.3 A sufficient condition for effective étale-descent in V-Cat

In the previous section a criterion to study effective étale-descent morphisms in V-Cat is given. The
sufficient condition we stated in Theorem 4.3.8 is quite strong, as Remark 4.3.11 suggests. Also
the condition on V to be a frame is restrictive since, for instance, only three cases in Example 2.1.2
are included. Therefore, in this section, we try to give a another sufficient condition for effective
étale-descent in V-Cat, not requiring V to be a frame. Let V = (V,⊗,k) be a ccd totally ordered
quantale satisfying the condition (called (C4) in Section 3.4)

u⊗ v =⊥⇒ u =⊥ or v =⊥, for all u,v ∈ V. (4.6)

This condition makes the map

q : V → 2, q(u) =⊤⇔ u >⊥V
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a quantale homomorphism so that the induced morphism

q : V-Cat → Ord, (4.7)

defined by (X ,a)→ (X ,q ·a), is a functor. We remark that the quantale homomorphism q : V → 2 is
the left adjoint of the full embedding ι : 2 ↪→ V

u 7→

{
kV, if u =⊤,
⊥V, if u =⊥,

if and only if V is integral but this is not a condition we need. Let p : (E,e)→ (B,b) be a V-functor,
E the class of étale morphisms in V-Cat and Φ

p
E : E(B,b)→ DesE(p) the comparison functor. As

done in the previous section, we show that Φ
p
E is faithful, full and essentially surjective on objects.

Lemma 4.3.12 Let V be a ccd and totally ordered quantale such that condition (4.6) is satisfied. The
functor Φ

p
E is faithful provided that

∀y ∈ B ∃x ∈ E : b(y, p(x))⊗b(p(x),y) ̸=⊥. (4.8)

Observe that the condition above, since (4.6) holds, is equivalent to the fact that both b(y, p(x)) and
b(p(x),y) are different from the bottom element ⊥.

Proof
Let

f ,g : ((A,a),α)→ ((A′,a′),α ′)

be morphisms in E(B,b) such that Φ
p
E( f ) = Φ

p
E(g), i.e., 1E ×B f = 1E ×B g. This equality implies

that for each z ∈ A such that α(z) ∈ p(E) we have f (z) = g(z). Hence, in order to show that f = g,
let z be an element in A such that α(z) /∈ p(E). By (4.8), there exists x ∈ E such that

b(α(z), p(x)) ̸=⊥ and b(p(x),α(z)) ̸=⊥.

Since α is an étale morphism, there exists a unique zx ∈ A such that α(zx) = p(x), a(zx,z) =
b(p(x),α(z)) and a(z̃x,z) = ⊥ for each z̃x ̸= zx such that α(z̃x) = p(x). The fact that both f and
g are V-functors gives

a(zx,z)≤ a′( f (zx), f (z))∧a′(g(zx),g(z)),

where f (zx) = g(zx). Now, since α is an étale morphism, there exists a unique element z̄ ∈ A such that
α(z̄) =α(z), a(z̄,zx) = b(α(z), p(x)) and a( ˜̄z,zx) =⊥ for each ˜̄z ̸= z̄ such that α( ˜̄z) =α(z). Moreover,
with condition (4.6), we have that z̄ = z. Hence in A′ we get f (z) = g(z) as wished. �

Lemma 4.3.13 Let V be a ccd and totally ordered quantale such that condition (4.6) is satisfied.
Assume p : (E,e)→ (B,b) surjective. The functor Φ

p
E is full provided that for each u ≪ b(y1,y0) there
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exists a unique (up to equivalence) zigzag

x′n

e(xn,xn−1)

��
xn−1 // x′n−1

e(x′n−1,xn−2)

��
xn−2 // x′n−2

�� //

�� // x′1
e(x′1,x0)

��
x0

(4.9)

in (E,e) with n ∈ N, p(x′n) = y1, p(x0) = y0, p(xi) = p(x′i), for i = 1, . . . ,n−1, and

u ≪ e(x′n,xn−1)⊗ e(x′n−1,xn−2)⊗·· ·⊗ e(x′1,x0).

We did not define yet the equivalence class for a zigzag as above and here is where the functor
q : V-Cat → Ord of (4.7) is needed. In Section 1.4.3 an equivalence relation for zigzags in Ord is
defined so that we say that the equivalence class of a zigzag (4.9) is given by the equivalence class of
the zigzag in Ord obtained by mapping (4.9) via q.

Proof
Let ((A,a),α) and ((A′,a′),α ′) be objects in E(B,b) and let

f : ((E ×B A,d),pr1,1E ×B pr2)→ ((E ×B A′,d′),pr′1,1E ×B pr′2)

be a morphism in DesE(p), where ((E ×B A,d),pr1,1E ×B pr2) and ((E ×B A′,d′),pr′1,1E ×B pr′2) are
the images by Φ

p
E of ((A,a),α) and ((A′,a′),α ′), respectively. We want to define a morphism

f̄ : ((A,a),α)→ ((A′,a′),α ′)

such that Φ
p
E( f̄ ) = f .

Let z ∈ A. Since p is surjective, there exists x ∈ X such that α(z) = p(x). Hence the pair (x,z) is an
element in E ×B A so that we can map it by f . Let (x,z′) = f (x,z). Define then f̄ by

z 7→ z′. (4.10)
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Notice that the choice of such z′ might depend on the choice of the element x∈X such that α(z) = p(x).
But, since f is a morphism in DesE(p), we have that the diagram

E ×B (E ×B A)

1E×Bpr2
��

1E×B f // E ×B (E ×B A′)

1E×Bpr′2
��

E ×B A
f

// E ×B A′

is commutative. Hence, the map f̄ given by (4.10) is well-defined, making the Set-diagram

A

α
��

f̄ // A′

α ′
��

B

commutative. It remains to show that f̄ : (A,a)→ (A′,a′) is a V-functor, that is, for each z1,z0 ∈ A

a(z1,z0)≤ a′( f̄ (z1), f̄ (z0)).

To prove the inequality above, we show that for each u ≪ a(z1,z0) we have u ≤ a′( f̄ (z0), f̄ (z1)). Let
u ∈ V, with u ̸=⊥, such that u ≪ a(z1,z0). Since α : (A,a)→ (B,b) is a V-functor,

u ≪ a(z1,z0)≤ b(α(z1),α(z0))⇒ u ≪ b(α(z1),α(z0)).

By hypotheses, there exists a unique (up to equivalence) zigzag (4.9) in (E,e), with n ∈ N, such that
p(x0) = α(z0), p(x′n) = α(z1), p(xi) = p(x′i), for i = 1, . . . ,n−1, and

u ≪ e(x′0,x1)⊗·· ·⊗ e(x′n−1,xn).

Let us assume that n = 2 and that the zigzag is then of the form

x2

e(x2,x1)

��
x1 // x′1

e(x′1,x0)

��
x0,

with p(x0) = α(z0), p(x2) = α(z1), p(x1) = p(x′1) and u ≪ e(x2,x1)⊗ e(x′1,x0). Since α is an
étale morphism, there exists a unique z̃1 ∈ A such that α(z̃1) = p(x1) = p(x′1) and a(z̃1,z0) =

b(p(x1),α(z0)), with a(z̄1,z0) =⊥ for each z̄1 ̸= z̃1 with α(z̄1) = p(x1) = p(x′1). Moreover, since α

is étale, a(z1, z̃1) = b(α(z2), p(x1)). Hence, since f : (E ×B A,d)→ (E ×B A′,d′) is a V-functor,

e(x2,x1) = e(x2,x1)∧a(z2, z̃1)≤ e(x2,x1)∧a′( f̄ (z2), f̄ (z̃1))≤ a′( f̄ (z2), f̄ (z̃1))
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and
e(x′1,x0) = e(x′1,x0)∧a(z̃1,z0)≤ e(x′1,x0)∧a′( f̄ (z̃1), f̄ (z0))≤ a′( f̄ (z̃1), f̄ (z0)).

Therefore,

u ≪ e(x2,x1)⊗ e(x′1,x0)≤ a′( f̄ (z2), f̄ (z̃1))⊗a′( f̄ (z̃1), f̄ (z0))≤ a′( f̄ (z2), f̄ (z0))

as claimed. �

Remark 4.3.14 In case p : (E,e)→ (B,b) is not surjective, one has to define f̄ : (A,a)→ (A′,a′) for
elements z ∈ A such that α(z) /∈ p(E). For that one needs condition (4.8). In fact, for an element z ∈ A
such that α(z) /∈ p(E), by condition (4.8), there exists an element x ∈ E such that

b(α(z), p(x))⊗b(p(x),α(z)) ̸=⊥.

Since α is étale, there exists a unique element zx ∈ A such that α(zx) = p(x), a(zx,z) = b(p(x),α(z))
and a(z̃x,z) =⊥ for each z̃x ̸= zx with α(z̃x) = p(x). Consider z′x = f̄ (zx) ∈ A′. Since α ′ is an étale
morphism, there exists a unique element z′ ∈ A′ such that α ′(z′) = α(z), a′(z′,z′x) = b(α(z), p(x)) and
a′(z̃′,z′x) =⊥ for each z̃′ ̸= z′ with α ′(z̃′) = α(z). The assignment

z 7→ z′ (4.11)

makes f̄ : (A,a)→ (A′,a′) a well-defined V-functor (in fact (4.11) does not depend on the choice of
x ∈ E) such that α ′ · f̄ = α .

Lemma 4.3.15 Let V be a ccd and totally ordered quantale such that condition (4.6) is satisfied.
Assume p : (E,e)→ (B,b) surjective. The functor Φ

p
E is essentially surjective on objects provided

that for each u ≪ b(y1,y0) there exists a unique (up to equivalence) zigzag (4.9) in (E,e) with n ∈ N,
p(x′n) = y1, p(x0) = y0, p(xi) = p(x′i), for i = 1, . . . ,n−1, and

u ≪ e(x′n,xn−1)⊗ e(x′n−1,xn−2)⊗·· ·⊗ e(x′1,x0).

Proof
Let ((C,c),γ,ξ ) be an object in DesE(p). We want to find an object ((A,a),α) ∈ E(B) such that

Φ
p
E((A,a),α)∼= ((C,c),γ,ξ ).

As we did in the previous section, to construct such an element ((A,a),α) in E(B) we use the general
arguments for the construction of the left adjoint of the comparison functor (see diagram (1.5) in
Section 1.1). Consider the object part (Q,q) of the coequalizer ((Q,q),π) in V-Cat of the pair

E ×B C
ξ

//
π2 // C π // Q.

The quotient set Q is given by the equivalence relation ∼ξ defined on the set C: for z,z′ ∈C,

z ∼ξ z′ ⇐⇒ p(γ(z)) = p(γ(z′)) and z′ = ξ (γ(z′),z),
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while the structure q : Q×Q → V is the final structure of the morphism π : (C,c) → Q. Since
p · γ · π2 = p · γ · ξ , by the universal property of the coequalizer, there exists a unique morphism
δ : Q → B such that the diagram

E ×B C
ξ

//
π2 // C

p·γ
��

π // Q

δ��
B

commutes. We claim that ((Q,q),δ ) is an object in E(B) such that Φ
p
E((Q,q),δ ) = ((C,c),γ,ξ ). We

show first that δ : Q → B is open. Let [z0] ∈ Q, y1 ∈ B and u ∈ V with u ≪ b(y1,δ [z0]). By hypothesis,
there exists a unique (up to equivalence) zigzag (4.9) in (E,e), with n ∈ N, such that p(x0) = δ [z0],
p(x′n) = y1, p(xi) = p(x′i) for i = 1, . . . ,n−1, and

u ≪ e(x′n,xn−1)⊗ e(x′n−1,xn−2)⊗·· ·⊗ e(x′1,x0).

Assume n = 2 so that the zigzag is of the form

x2

��
x1 // x′1

��
x0,

where p(x0) = δ [z0], p(x2) = y1, p(x1) = p(x′1) and

u ≪ e(x2,x1)⊗ e(x′1,x0).

Let z0 ∈ π−1[z0]. We can assume that γ(z0) = x0 since, if it is not the case, we just take ξ (x0,z0).
This is a point in C such that γ(ξ (x0,z0)) = x0 and π(ξ (x0,z0)) = [z0]. Since γ is an étale morphism,
there exists a unique element z′1 ∈C such that γ(z′1) = x′1, c(z′1,z0) = e(x′1,x0) and c(z̃′1,z0) =⊥ for
each z̃′1 ̸= z′1 with γ(z̃′1) = x′1. Take now the point z1 = ξ (x1,z′1). This is a point in C such that
γ(z1) = x1 and z1 ∼ξ z′1. Since γ is étale, there exists a unique element z2 ∈C such that γ(z2) = x2,
c(z2,z1) = e(x2,x1) and c(z̃2,z1) = ⊥ for each z̃2 ̸= z2 with γ(z̃2) = x2. Now, since π : C → Q is a
V-functor, we conclude that

u ≪ c(z2,z1)⊗ (z′1,z0)≤ q(π[z2],π[z′1])⊗q(π[z1],z0])≤ q(π[z2],z0]).

which implies that u ≪ q(π[z2],z0]) proving that δ : Q → B is open.
We now show that δ : Q → B is étale. Let then [ζ ] ∈ Q such that [ζ ] ̸= π[z2], δ [ζ ] = y1 and u ≪
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q([ζ ], [z0]). Since π : C → Q is a regular epimorphism, there exists a zigzag

ζ ′
m

c(ζm,ζm−1)

��
ζm−1 // ζ ′

m−1

c(ζ ′
m−1,ζm−2)

��
ζm−2 // ζ ′

m−2

�� //

�� // ζ ′
1

c(ζ ′
1,ζ0)

��
ζ0

(4.12)

in (C,c), with m ∈ N, such that π(ζ0) = [z0], π(ζ ′
m) = [ζ ], π(ζ j) = π(ζ ′

j) for j = 1, . . . ,m−1, and

u ≪ c(ζ ′
m,ζm−1)⊗ c(ζ ′

m−1,ζm−2)⊗·· ·⊗ c(ζ ′
1,ζ0).

The image by γ of the above zigzag in (C,c) will be a zigzag in (E,e) of the form

γ(ζ ′
m)

e(γ(ζ ′
m),γ(ζm−1))

��
γ(ζm−1) // γ(ζ ′

m−1)

e(γ(ζ ′
m−1),γ(ζm−2))

��
γ(ζm−2) // γ(ζ ′

m−2)

�� //

�� // γ(ζ ′
1)

e(γ(ζ ′
1),γ(ζ0))

��
γ(ζ0).

By hypothesis, this zigzag of length m must be equivalent to the zigzag of the form (4.9) of length n
we got to prove δ open. We assumed that n = 2. Hence, we study the cases where m = 1 and m = 2.

Case m = 1
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In (C,c) we have

z2
c(z2,z1) // z1

z′1
c(z′1,z0) // z0

ζ1
u≪c(ζ1,ζ0) // ζ0,

while in (E,e) we have

x2
e(x2,x1) // x1

x′1
e(x′1,x0) // x0

γ(ζ1)
u≪e(γ(ζ1),γ(ζ0)) // γ(ζ0).

Since the two zigzags above must be equivalent, there exists a chain in (E,e) of the form

χ2
e(χ2,χ1 )̸=⊥ // χ1

e(χ1,χ0 )̸=⊥ // χ0

with p(χ2) = y1, p(χ1) = p(x1) = p(x′1) and p(χ0) = δ [z0]. Let t0 = ξ (χ0,z0). Then, in (C,c), we
have that

t0 ∼ξ z0 ∼ξ ζ0.

Since γ is an étale morphism, there exists a unique element t1 ∈ C such that γ(t1) = χ1, c(t1, t0) =
e(χ1,χ0) and c(t̃1, t0) =⊥ for each t̃1 ̸= t1 with γ(t̃1) = χ1. Consider now the points (x0, t0), (x′1, t1)
in E ×B C. Since ξ : E ×B C →C is a V-functor,

⊥ ̸= e(x′1,x0)∧ c(t1, t0)≤ c(ξ (x′1, t1),ξ (x0, t0)) = c(ξ (x′1, t1),z0).

Since γ is an étale morphism, we conclude that z′1 = ξ (x′1, t1). Therefore,

t1 ∼ξ z′1 ∼ξ z1.

The same construction gives the existence of an element t2 ∈C such that γ(t2)= χ2, c(t2, t1)= e(χ2,χ1)

and
t2 ∼ξ z2.

Since ξ : E ×B C →C is a V-functor,

⊥ ̸= e(γ(ζ1),γ(ζ0))∧ c(t2, t0)≤ c(ξ (γ(ζ1), t2),ξ (γ(ζ0), t0)) = c(ξ (γ(ζ1), t2),ζ0).

Since γ is an étale morphism, we conclude that

z2 ∼ξ t2 ∼ξ ζ1,
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which contradicts the fact that π[z2] ̸= [ζ ].

Case m = 2 In (C,c) we have

z2
c(z2,z1) // z1

z′1
c(z′1,z0) // z0

ζ2
c(ζ2,ζ1) // ζ1

ζ ′
1

c(ζ ′
1,ζ0) // ζ0,

while in (E,e) we have

x2
e(x2,x1) // x1

x′1
e(x′1,x0) // x0

γ(ζ2)
e(γ(ζ2),γ(ζ1)) // γ(ζ1)

γ(ζ ′
1)

e(γ(ζ ′
1),γ(ζ0)) // γ(ζ0).

In fact the two zigzags above must be equivalent, so that

p(x1) = p(x′1) = p(γ(ζ1)) = p(γ(ζ ′
1)).

Since the pairs (x′1,ζ
′
1), (x0,ζ0) are in E ×B C, and since ξ : E ×B C →C is a V-functor, we have

⊥ ̸= e(x′1,x0)∧ c(ζ ′
1,ζ0)≤ c(ξ (x′1,ζ

′
1),ξ (x0,ζ0)) = c(ξ (x′1,ζ

′
1),z0),

by the fact that z0 ∼ξ ζ0. Since γ is an étale morphism, we have ξ (x′1,ζ
′
1) = z′1, so that,

z1 ∼ξ z′1 ∼ξ ζ
′
1 ∼ξ ζ1.

An analogous argument leads to the equivalence

z2 ∼ξ ζ2,
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which contradicts the fact that π[z2] ̸= [ζ ].
It remains to show that

Φ
p
E((Q,q),δ )∼= ((C,c),γ,ξ ).

The image of ((Q,q),δ ) by Φ
p
E is the triple ((E ×B Q,d),pr1,1E ×B pr2), where

(E ×B Q,d)

pr1

��

pr2 // (Q,q)

δ

��
(E,e) p

// (B,b)

is the pullback in V-Cat of δ along p, with d the pullback structure. The isomorphism

i : (C,c)→ (E ×B Q,d)

in V-Cat is given by
z 7→ (γ(z), [z]).

The map i is injective; in fact, given z0,z1 ∈C such that (γ(z0), [z0]) = (γ(z1), [z1]),i.e., γ(z0) = γ(z1)

and z0 ∼ξ z1, we conclude that z0 = z1, since

z0 = ξ (γ(z0),z0) = ξ (γ(z1),z0) = z1,

by the properties of the descent data ξ .
Surjectivity of i also follows: given an element (x, [z]) ∈ E ×B Q, let ξ (x,z) ∈C. Then,

i(ξ (x,c)) = (γ(ξ (x,z)), [ξ (x,z)]) = (x, [z]),

again using properties of the descent data ξ . So far we proved that i : C →E×B Q is a Set-isomorphism.
Since i is also a V-functor, in fact c(z1,z0)≤ e(γ(z1),γ(z0))∧q([z1], [z0]) for each z0,z1 ∈C, it remains
to show that

e(x1,x0)∧q([z1], [z0])≤ c(ξ (x1,z1),ξ (x0,z0)),

for each (x0, [z0]) and (x1, [z1]) in E ×B Q.
Let u ≪ e(x1,x0)∧ q([z1], [z0]). We want to show that u ≤ c(ξ (x1,z1),ξ (x0,z0)). Since π : C → Q
is a regular epimorphism, there exists a zigzag (4.12) in (C,c), with m ∈ N, such that π(ζ ′

m) = [z1],
π(ζ0) = [z0], π(ζ j) = π(ζ ′

j), for j = 1, . . . ,m−1, and

u ≪ c(ζm,ζm−1)⊗ c(ζ ′
m−1,ζm−2)⊗·· ·⊗ c(ζ ′

1,ζ0).

Assume m = 2. Since γ : C → E is an étale morphism, there exists a unique element t1 ∈C such that
γ(t1) = x1, c(t1,ξ (x0,z0)) = e(x1,x0) and c(t̃1,ξ (x0,z0)) = ⊥ for each t̃1 ̸= t1 with γ(t̃1) = x1. We
want to show that

t1 ∼ξ ξ (x1,z1)
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since this would imply, by the properties of the descent data ξ , that t1 = ξ (x1,z1).
The situation is quite similar to the case where we had to construct the étale morphism δ : Q → B. In
(E,e) we have

γ(ζ2)
e(γ(ζ2),γ(ζ1)) // γ(ζ1)

γ(ζ ′
1)

e(γ(ζ ′
1),γ(ζ0)) // γ(ζ0)

x1
e(x1,x0) // x0

and, by hypotheses, the two zigzags above must be equivalent. Hence, there exists in (E,e) a zigzag
of the form

χ2
e(χ2,χ1 )̸=⊥ // χ1

e(χ1,χ0 )̸=⊥ // χ0

with p(χ2) = p(x1) = δ [z1], p(χ1) = p(γ(ζ1)) = p(γ(ζ ′
1)) and p(χ0) = p(x0) = δ [z0].

Taking in (C,c) the point z0 = ξ (χ0,z0), since γ is an étale morphism, we have a zigzag in (C,c) of
the form

z2
c(z2,z1) // z1

c(z1,z0) // z0

such that γ(z2) = χ2, γ(z1) = χ1 and c(z2,z1) = e(χ2,χ1), c(z1,z0) = e(χ1,χ0). Summing up, in (C,c)
we have the following situation

ζ2
c(ζ2,ζ1) // ζ1

ζ ′
1

c(ζ ′
1,ζ0) // ζ0

Z1
c(t1,ξ (x0,z0)) // ξ (x0,z0)

z2
c(z2,z1) // z1

c(z1,z0) // z0,

where
t1 ∼ξ z2 ∼ξ ζ2 ∼ξ z1 ∼ξ ξ (x1,z1).

To conclude the proof, it remains to show that the following diagram

E ×B C

ξ

��

1E×Bi // E ×B (E ×B Q)

1E×Bpr2
��

C
i

// E ×B Q

is commutative. Let (x,z) be an element in E ×B C. Then,

(i ·ξ )(x,z) = (x, [ξ (x,z)]) = (x, [z]) = (1E ×B pr2 ·1E ×B i)(x,z),
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which proves that the diagram above is commutative. �

Remark 4.3.16 If p : (E,e) → (B,b) is not surjective, the construction of the étale morphism δ :
Q → B needs only a little extra work: to the set Q, constructed in the same way as in the surjective
case, we need just to add the points of B− p(E) with values

q(y, [z]) = b(y,δ [z])

for each y ∈ B− p(E) and [z] ∈ Q.

By Lemmas 4.3.12, 4.3.13 and 4.3.15, the following theorem holds.

Theorem 4.3.17 Let V be a ccd and totally ordered quantale such that condition (4.6) is satisfied.
The V-functor p : (E,e)→ (B,b) is an effective étale descent morphism provided that

(i) for each u ≪ b(y1,y0) there exists a unique (up to equivalence) zigzag (4.9) in (E,e) with n ∈N,
p(x′n) = y1, p(x0) = y0, p(xi) = p(x′i), for i = 1, . . . ,n−1, and

u ≪ e(x′n,xn−1)⊗ e(x′n−1,xn−2)⊗·· ·⊗ e(x′1,x0);

(ii) ∀y ∈ B ∃x ∈ E : b(y, p(x))⊗b(p(x),y) ̸=⊥.

�

4.4 (Effective) global-descent versus (effective) étale-descent

In Section 1.4.4 we already studied the relation between the (effective) global-descent morphisms
and the (effective) étale-descent morphisms in the category Top of topological spaces and continuous
maps. Here we analyze the more general case concerning (T,V)-categories. Let T̂ be a lax extension
to Rel of a Set-monad T= (T,µ,η). To show that the effective descent morphisms are effective for
étale-descent in (T,2)-Cat we need first to recall the following result concerning discrete fibrations.

Proposition 4.4.1 [18, Proposition 5.2] If T satisfies BC then, for a pullback diagram in (T,2)-Cat

X ×Y Z

π1

��

π2 // Z

g
��

X p
// Y,

with p a final morphism, one has that if π1 is a discrete (co)fibration, then g is a discrete (co)fibration.

Theorem 4.4.2 Suppose that the following conditions are satisfied:

(i) T̂ is flat;

(ii) T satisfies BC;

(iii) every naturality square of η with respect to relations with finite fibres is a BC-square.
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Then an effective descent morphism p : (E,e)→ (B,b) in (T,2)-Cat is effective for étale-descent.

Proof
Let p : E → B be an effective descent morphism in (T,2)-Cat. We use Proposition 1.4.14 to show that
p is also effective with respect to the class of étale morphisms, i.e., pullback stable discrete fibrations.
Consider a pullback diagram in (T,2)-Cat

E ×B A

π1

��

π2 // A

g
��

E p
// B,

where π1 is an étale morphism. The relational structure on E ×B A = {(x,z) ∈ E ×A | p(z) = α(z)} is
defined by

w→ (x,z)⇔ T π1(w)→ x and T π2(w)→ z,

for any w ∈ T (E ×B A) and (x,z) ∈ E ×B A. We want to prove that g is an étale morphism as well. By
Theorem 3.0.7 and Proposition 4.4.1, g is a discrete fibration. To prove that every pullback of g is a
discrete fibration we consider the following diagram

E ×B A

π1

��

π2 // A

g

��

X ×B A

pr1

��

pr2

<<

E p
// B

X ×B E

π ′
2

99

π ′
1

// X
f

;;

where the three faces are pullbacks. We want to prove that pr1 is a discrete fibration. First of all
observe that since effective descent morphisms are pullback stable π ′

1 is an effective descent morphism.
Building the pullback on the left-side, i.e., the pullback of π1 along π ′

2, by universality we get a cube
such that all faces are pullbacks.

E ×B A

π1

��

π2 // A

g

��

(X ×B E)×E (E ×B A) //

pr′1

��

pr′2
::

X ×B A

pr1

��

pr2

::

E p
// B

X ×B E

π ′
2

99

π ′
1

// X
f

99
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Now, since π1 is an étale morphism, pr′1 is a discrete fibration, and, using the same argument that we
used to prove that g is a discrete fibration, we conclude that pr1 is a discrete fibration as well. �

The theorem is a generalization of Theorem 1.4.17 (where the same technique to get the proof
is used) since the ultrafilter monad and its Barr extension to Rel satisfy conditions (i), (ii) and (iii).
Other monads are included (with corresponding Barr extensions), namely the identity monad (we
already know from Section 1.4.4), the M-ordered monad and the free-monoid monad. For what
concerns the Barr extension of the powerset monad, condition (iii) is not satisfied and we do not
know whether the theorem remains true. The converse of Theorem 4.4.2 is not true in general, as
we already know by Section 1.4.4 where an example of an effective étale-descent morphism not
effective for descent (even in the surjective case) is given in Ord (see Example 1.4.21). This gives
also a counter-example in M-Ord since, as we saw, if M = 1, the trivial monoid, then 1-Ord ∼= Ord.
Anyway we can also exhibit a counter-example in the non-trivial case.

Example 4.4.3 [2, Remark 3.3] Thanks to Proposition 3.3.6 and Corollary 4.2.8, an easy inspection
of the picture below reveals that the monotone map p is an effective étale-descent morphism in M-Ord
but not effective for global-descent.

E

p
��

B

x2
m // x10

x11
n // x0

❴

��

y2

n·m
((m // y1

n // y0

Summing up, denoting the category (T,2)-Gph by D, the following diagram of implications holds in
(T,2)-Cat

pullback stable *-quotient in D

⇓

⇒ effective global-descent

⇓

⇒ effective étale-descent

⇓

global-descent

⇕

⇒ étale-descent

final ⇔ universal regular epimorphism

if conditions (i), (ii) and (iii) of Theorem 4.4.2 are satisfied. The diagram above is a generalization
of diagram (1.27), so that most of the counter-examples of the one-direction implications given in
Section 1.4.4 still work in this case. The only one where the case of the identity monad does not help is
for a morphism effective for descent not a pullback stable *-quotient morphism in (T,2)-Gph. In this
case, as we already saw from Theorem 3.3.10, a counter-example can be given for the free-monoid,
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that is, in MultiOrd.

We give now a criterion of a final morphism in (T,2)-Cat to be effective for étale-descent. Consider
the following two classes of morphisms

- E0={pullback stable discrete fibrations in (T,2)-Cat}

- E1={pullback stable discrete fibrations in (T,2)-Gph}.

We show that E0 ⊆ E1 in order to apply Proposition 1.4.14. Consider the following diagram

(X ×Y Z,d)

$$

π2 //

π1

��

(Z,c)
r(Z,c)

$$
g

��

(X ×Y Z, d̃)
π̃1

zz

π̃2

// (Z, c̃)

g̃zz
(X ,a)

f
// (Y,b)

where f ∈ E0, g is in (T,2)-Gph, r(Z,c) is the reflection of the object (Z,c) via the reflector r : (T,2)-
Gph → (T,2)-Cat, the bottom square is a pullback diagram in (T,2)-Cat and the upper square is
a pullback diagram in (T,2)-Gph. Since f ∈ E0, π̃2 is a discrete fibration. Let us suppose that
T : Set → Set satisfies BC. By Proposition 4.1.6, since r(Z,c) is an injective map, π2 is a discrete
fibration, proving that f ∈ E1 as claimed. Therefore, by Proposition 1.4.14, we then get the following
result.

Proposition 4.4.4 Let p : (E,e)→ (B,b) be a morphism in (T,2)-Cat which is effective for étale-
descent in (T,2)-Gph, where T : Set → Set satisfies BC. Then p is effective for étale-descent in
(T,2)-Cat if and only if for each pullback diagram in (T,2)-Gph

E ×B A

π1

��

π2 // A

α

��
E p

// B,

where α is a pullback stable discrete fibration,

E ×B A ∈ (T,2)-Cat ⇒ A ∈ (T,2)-Cat.

�

The proof of Theorem 4.4.2 still holds in (T,2, T̂)-Gph, where T̂ is any lax extension (not necessarily
flat) to Rel of the Set-monad T. In this case one requires only that T : Set → Set satisfies BC.
Therefore, since final morphisms in (T,2)-Cat are effective for étale-descent in (T,2)-Gph, the
following result holds.
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Corollary 4.4.5 Let p : (E,e)→ (B,b) be a final morphism in (T,2)-Cat, with T : Set → Set satisfy-
ing BC. Then p is effective for étale-descent in (T,2)-Cat if and only if for each pullback diagram in
(T,2)-Gph

E ×B A

π1

��

π2 // A

α

��
E p

// B,

where α is a pullback stable discrete fibration,

E ×B A ∈ (T,2)-Cat ⇒ A ∈ (T,2)-Cat.

�

If we assume that every naturality square of η with respect to relations with finite fibres is a BC-
square, the corollary above gives a criterion for descent morphisms to be effective for étale-descent in
(T,2)-Cat.

Also in V-Cat we can prove that effective descent morphisms are effective for étale-descent.

Theorem 4.4.6 A V-functor p : (E,e)→ (B,b) is an effective étale-descent morphism provided that
it is effective for descent.

Proof
We use again Proposition 1.4.14. Let

E ×B A

π1

��

π2 // A

g
��

E p
// B,

be a pullback diagram in V-Cat, where π1 is an étale morphism and p is an effective descent morphism.
We split the proof of g étale in two parts, that is, g open and δg open:

- g open: let y1 ∈ B and z0 ∈ A. Since p is, in particular, final, we have that

b(y1,g(z0)) =
∨

x1∈E:p(x1)=y1
x0∈E:p(x0)=g(z0)

e(x1,x0).

Since π1 is open, each element e(x1,x0) of the join above satisfies

e(x1,x0) =
∨

z1∈A:g(z1)=p(x1)

d((x1,z1),(x0,z0))≤
∨

z1∈A:g(z1)=y1=p(x1)

a(z1,z0).

Hence
b(y1,g(z0))≤

∨
z1∈A:g(z1)=y1=p(x1)

a(z1,z0).

The other inequality is trivially satisfied.
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- δg open: consider the following diagram

E ×B A

1π2

��

δπ1 // (E ×B A)×A (E ×B A)

2π2×pπ2

��

//
// E ×B A

3π2

��

π1 // E

p
��

A
δg

// A×B A //
// A g

// B

where 1 2 3 = 3 and 2 3 are pullbacks. By general properties of pullback squares, also
the square 1 is a pullback. Therefore, since p is final, also π2 ×p π2 is final and, since δπ1 is
open, we get that δg is open as well. �

Therefore in V-Cat, for V cancellable, the following diagram of implications holds

**-quotient

⇕

⇔ effective global-descent

⇓

⇒ effective étale-descent

⇓

*-quotient

⇓

global-descent

⇕

⇒ étale-descent

final ⇔ universal regular epimorphism.

The converse of all the one-direction implications is not true in general, as the case for V = 2 (i.e., in
Ord) reveals (see Example 1.4.20 and Example 1.4.21 in Section 1.4.3).
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