Brief Communication

Increase of cannabinoid CB1 receptor density in the hippocampus of streptozotocin-induced diabetic rats

João M.N. Duarte a,b, Célia Nogueira c, Ken Mackie d, Catarina R. Oliveira a, Rodrigo A. Cunha a,b, Attila Köfalvi a,c,⁎

a Center for Neurosciences of Coimbra, University of Coimbra, 3004-504 Coimbra, Portugal
b Institute of Biochemistry, University of Coimbra, 3004-504 Coimbra, Portugal
c Institute of Microbiology, Faculty of Medicine, University of Coimbra, 3004-504 Coimbra, Portugal
d Departments of Anesthesiology and Physiology and Biophysics, University of Washington, Seattle, WA 98195-6540, USA
e Instituto de Investigação Interdisciplinar, University of Coimbra, 3004-504 Coimbra, Portugal

Received 25 August 2006; revised 10 November 2006; accepted 28 November 2006
Available online 11 January 2007

Abstract

In the hippocampus, impaired neurophysiology, compromised neurogenesis, and eventually apoptosis accompany cognitive deficits in insulinopenic (type-1) diabetes (T1D). The underlying pathological mechanisms remain to be defined. The hippocampus has a high density of the cannabinoid type 1 receptor (CB1R), which has been shown to control several brain functions affected by diabetes, such as synaptic plasticity, glucose utilisation, memory consolidation and cognition, and maturation and survival of hippocampal neurons. However, the role of this receptor has not been investigated yet in diabetic encephalopathy. We report now that in the streptozotocin animal model of T1D, the hippocampal densities of CB1R protein and of specific CB1R binding sites are significantly increased both in the nerve terminals and in total membranes (changes between 13% and 38%), whereas CB1R mRNA expression is decreased by 25%, suggesting that CB1Rs might play a role in diabetic encephalopathy.

© 2006 Elsevier Inc. All rights reserved.

Diabetes mellitus is the most common metabolic disorder in man. It affects a plethora of tissues and organs, including the brain. “Diabetic encephalopathy” encompasses characteristic biochemical, electrophysiological, morphological and cognitive deficits in diabetic patients (for review see Trudeau et al., 2004). T1D rats display a similar cognitive impairment and display compromised long-term potentiation (LTP) and marked changes in the density of pre- and postsynaptic synaptic markers, decreased cell proliferation, and apoptosis have all been observed in certain cortical regions (Chabot et al., 1997; Grillo et al., 2005; Jackson-Guilford et al., 2000; Li et al., 2002). However, the etiology of diabetic encephalopathy is still ill-defined.

CB1R are ubiquitously expressed in the brain, where they are mostly located presynaptically (although also located postsynaptically) in a wide range of neurons (for review see Mackie, 2005). In particular, they are highly abundant in the human and the rodent hippocampus (Katona et al., 1999, 2000; Degroot et al., 2006; for review see Mackie, 2005). Activation of presynaptic hippocampal CB1Rs diminishes the release of GABA (Katona et al., 1999, 2000), glutamate (Kawamura et al., 2006), dopamine and acetylcholine (Degroot et al., 2006). These neurochemical findings may underlie the ability of CB1R activation to control cognition and memory consolidation (Hampson and Deadwyler, 1999). Apart from their role in controlling neurotransmitter release, CB1Rs also control ion channels and intracellular signaling pathways that are linked to apoptotic processes (for review see Guzmán et al., 2001). CB1R activation also can promote adult hippocampal neurogenesis (Jiang et al., 2005), and regulate subtype-selective interneuron
migration and specification (Berghuis et al., 2005). Of particular interest is the finding that in several brain areas including the hippocampus, CB1R has been shown to modulate glucose utilisation (Pontieri et al., 1999; Freedland et al., 2003). In other words, CB1Rs are intricately involved in a wide spectrum of physiological and pathological mechanisms that are affected in diabetic encephalopathy. Thus, we aimed to test whether the density and the expression of CB1R receptor is changed in a classic animal model of T1D.

Animals were handled according with the EU guidelines for use of experimental animals (86/609/EEC). Diabetes was induced in 8-week-old male Wistar rats (Harlan Ibérica, Barcelona, Spain) with i.p. injection of streptozotocin (STZ, 65 mg/kg), dissolved in citrate buffer (10 mM, pH 4.5). Blood glucose levels were measured with a glucometer (Elite, Bayer-Portugal). Age-matched, vehicle-injected control rats were maintained in the same conditions, i.e. with food and water ad libitum. 30 days after the STZ treatment, rats were decapitated under halothane anaesthesia. Both hippocampi were rapidly dissected on ice and total membranes from the hippocampus were prepared as previously described (Köfalvi et al., 2005; Duarte et al., 2006). Briefly, the hippocampal tissue from each rat was homogenized at 4 °C in sucrose solution (0.32 M, containing 10 mM HEPES, 1 mM EDTA and 1 mg/ml BSA, pH 7.4), then centrifuged at 3000 × g for 10 min at 4 °C. The supernatant was centrifuged at 14,000 × g for 20 min at 4 °C, and an aliquot was resuspended in 5% (w/v) sodium dodecyl sulphate (SDS) solution. To obtain nerve terminal-enriched (synaptosomal) membranes, the remainder of the supernatant was resuspended in 1 ml of a 45% (v/v) Percoll solution made up in a Krebs solution (in mM: NaCl 140, KCl 5, HEPES 10, EDTA 1, glucose 1, pH 7.4). After centrifugation at 14,000 × g for 2 min at 4 °C, the top layer was washed in 1 ml Krebs solution and resuspended in 5% (w/v) SDS solution. Western blotting was performed as previously described (Köfalvi et al., 2005; Duarte et al., 2006). Briefly, protein concentration was determined and each sample was diluted with 5 volumes of SDS–PAGE buffer containing 30% (v/v) glycerol, 0.6 M dithiothreitol, 10% (w/v) SDS and 375 mM Tris–HCl, pH 6.8, boiled at 95 °C for 5 min and incubated for 2 h at 37 °C. Three different dilutions of the samples and pre-stained molecular weight markers (Amersham, UK) were loaded into polyacrylamide gels (7.5%), separated according to protein molecular weight by SDS–PAGE under reducing conditions, and then electro-transferred to polyvinylidene dene difluoride membranes (0.45 μm, Amersham). After blocking for 2 h at room temperature with 5% milk in Tris-buffered saline (pH 7.6; containing 0.1% Tween 20 (TBS-T)), membranes were incubated overnight at 4 °C with the L-15 rabbit anti-CB1R antibody, directed against the last 15 amino acids of the rat CB1R (1:500 dilution). The selectivity of the antibody has been confirmed in total membrane preparations, prepared from the brain of CB1R null-mutant mice (Ledent et al., 1999) and of CD-1 wild-type mice (Fig. 1). After washing, membranes were incubated with alkaline phosphatase-conjugated anti-rabbit secondary antibody (Amersham, 1:100,000). We also confirmed that the secondary antibody did not yield any signal in the absence of the primary antibody. After three 20-min washes in TBS-T with 0.5% milk, membranes were incubated with Enhanced Chemi-Fluorescence reagent (Amersham) for 5 min and then digitalized with a VersaDoc 3000 (Bio-Rad, USA), and densitometrically analyzed using the Quantity One (Bio-Rad) software package. Membranes were then stripped and re-probed with an anti-α-tubulin antibody (1:3000; Zymed Laboratories) to confirm that equal amounts of protein were applied to the gels. Radioligand binding assays were performed essentially identically to a previous study (Thomas et al., 1998). Briefly, hippocampal (either total or nerve terminal-enriched) membranes were resuspended in the incubation buffer (50 mM Tris, 2 mM MgCl2, 1 mM EGTA, pH 7.4). A saturation curve was constructed using 5 different concentrations (0.25–10 nM) of the CB1R receptor antagonist [3H]SR141716A (Amersham, 42.0 Ci/mmol). Binding was carried out for 1 h at room temperature (23–25 °C) with 32–51 μg of protein in a final volume of 200 μl of the incubation buffer. Specific binding was determined by subtraction of the non-specific binding, which was measured in the presence of 10 μM AM251 (Tocris), another selective CB1R antagonist. All binding assays were performed in duplicate. The binding reactions were stopped by rapid vacuum filtration through glass fiber filters (GF/C filters; Whatman) using a 24-well Brandel harvester, followed by washing with 5 ml of incubation buffer containing 0.5% (w/v) BSA. The filters were then placed in scintillation vials with 4 ml of scintillation liquid (Packard Ultima Gold). The specific binding derived from these saturation experiments was fitted by non-linear regression to a one binding site equation, using the Raphson–Newton method, performed with a commercial software (GraphPad), to determine the binding parameters (dissociation constant, KD; and maximal number of binding sites, Bmax). For quantitative real-time PCR (QRT-PCR) analysis, we began by extracting total RNA from hippocampal tissue with MagNA Lyser Instrument and MagNA Pure Compact RNA Isolation kit (Roche, Portugal), according to the manufacturer’s instructions. Reverse transcription for first-strand cDNA synthesis from each sample was performed using random hexamer primer with the Transcriptor First Strand cDNA Synthesis kit (Roche) according to manufacturer’s instructions. Resulting cDNAs were used as template for real-time PCR, which was carried out on LightCycler instrument (Roche) using the FastStart DNA Master SYBR Green I kit (Roche), and CB1R mRNA expression was calculated relative to β-actin mRNA expression. The following primers (obtained from Tib MolBiol, Germany) were used (accession numbers from NCBI database in parenthesis): CB1R (NM_012784): forward 5′-AGA CCT CCT CTA CGG CTC G-3′, reverse 5′-GTA CAG CGA TGG CCA GCT G-3′, which originates a 314-bp product (Hansson et al., 2007); and β-actin (V01217): forward 5′-AAG TCC ACC ACC TCCCAA AAA G-3′, reverse 5′-AAG GAA TGC TGT CTC CCT CCC-3′, originating a 97-bp product (Peinsequin et al., 2004). Quantification was carried out based on standard curves run simultaneously with the test samples. The CB1R and β-actin standards were generated by conventional PCR amplification. The PCR products were run in a 3% agarose gel electrophoresis to verify fragment size and the absence of other contaminating
fragments, quantified by 260 nm absorbance, and serially diluted to produce the standard curve (100 to 108 copies/μl). Each real-time PCR reaction was run in triplicate and contained 2 μl of cDNA template, 0.3 μM of each primer, and 3 or 3.5 mM MgCl2 (for CB1R or β-actin, respectively), in a reaction volume of 20 μl. Cycling parameters were (for CB1R or β-actin, respectively): 95 °C for 10 min to activate DNA polymerase, followed by 40 or 45 cycles at 95 °C for 10 s, annealing temperature of 62 °C for 10 s or 61 °C for 5 s, and a final extension step at 72 °C for 14 s or 4 s, in which fluorescence was acquired. Melting curve analysis was performed to ensure that only a single product was amplified. Data are presented as mean±SEM (or as mean and 95% confidence interval for K_D values). Student’s t-test was used to compare data and significance was considered to be reached when P<0.05.

STZ destroys pancreatic β-cells hampering insulin release (Gai et al., 2004; Szkudelski, 2001), a key feature of T1D. Accordingly, blood analysis showed that STZ-treated rats developed sustained hyperglycemia at days 3 and 30 (Table 1) following STZ treatment. Furthermore, STZ-treated rats failed to gain body weight (Table 1). As illustrated in Fig. 1A, STZ-treatment significantly increased CB1R immunoreactivity in
Table 1
Body weight and glycemia of the rats used in the experiments before and after the induction of diabetes (n=6 for each condition)

<table>
<thead>
<tr>
<th></th>
<th>Weight (g)</th>
<th>Glycemia (mg/dl)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Control</td>
<td>STZ-treated</td>
</tr>
<tr>
<td>Before treatment</td>
<td>225±14</td>
<td>231±11</td>
</tr>
<tr>
<td>3 days after treatment</td>
<td>n.d.</td>
<td>221±7</td>
</tr>
<tr>
<td>1 month after treatment</td>
<td>327±21*</td>
<td>208±15**</td>
</tr>
</tbody>
</table>

n.d.: not determined.
* P<0.01, different from before treatment.
** P<0.01, different from control.

Table 2

<table>
<thead>
<tr>
<th></th>
<th>Weight (g)</th>
<th>Glycemia (mg/dl)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Control</td>
<td>STZ-treated</td>
</tr>
<tr>
<td>Before treatment</td>
<td>225±14</td>
<td>231±11</td>
</tr>
<tr>
<td>3 days after treatment</td>
<td>n.d.</td>
<td>221±7</td>
</tr>
<tr>
<td>1 month after treatment</td>
<td>327±21*</td>
<td>208±15**</td>
</tr>
</tbody>
</table>

n.d.: not determined.
* P<0.01, different from before treatment.
** P<0.01, different from control.

Total membranes (13.0±2.5%, n=6, P<0.05), as well as in nerve terminal-enriched membranes (14.8±3.7%, n=6, P<0.05), derived from the hippocampus. These data correspond to the average of the mean differences found for each tested amount of protein. Previously, we observed that changes in protein density in membranes may not automatically mean similar changes in the density of binding sites (Duarte et al., 2006). Thus, we analysed CB1R binding in total and nerve terminal-enriched membranes. We found a 38% increase in the Bmax (a measure of the density of the receptor) in the total membranes of the hippocampus of the STZ-treated rats (n=4, P<0.05, Fig. 1B), and an 18% increase in the nerve terminal-enriched membranes (n=4, P<0.05, Fig. 1B). These different percentage (i.e. relative) increases of CB1R density might correspond to similar absolute amounts of CB1Rs since the Bmax of [3H]SR141716A was 86% greater (P<0.05) in nerve terminal-enriched than in total hippocampal membranes (Fig. 1B, black bars). In parallel, we observed that the KD values (a measure of the affinity of a ligand for a receptor) tend to increase upon STZ treatment, although this did not reach the level of significance (from 1.61 nM [95% confidence interval: 1.21–2.01 nM] to 2.71 nM [1.80–3.62 nM] in total membranes; and from 1.06 nM [0.89–1.24 nM] to 1.59 nM [1.10–2.08 nM] in nerve terminal-enriched membranes). To test if increased CB1R density in hippocampal membranes of STZ-treated rats is due to an altered mRNA expression, we performed QRT-PCR in total hippocampal membranes obtained from vehicle-injected and STZ-treated rats, 30 days after injection. Melting curve analysis confirmed that one single product has been obtained. Intriguingly, the expression of CB1R mRNA (normalized to β-actin from the same sample) is significantly decreased by 25% (n=7, P<0.05, Fig. 1C) in the STZ-treated animals.

Involvement of the CB1R in metabolic disorders such as obesity and non-insulin-dependent diabetes (T2D) has attracted much attention in the last decade. Deletion of CB1Rs leads to leanness and resistance to diet-induced obesity (Cota et al., 2002), which anticipates a major role for CB1Rs in controlling T2D, given that obesity is a major risk factor for T2D. CB1Rs can also control insulin levels (Juan-Pico et al., 2006, Matias et al., 2006), and CB1R blockade can decrease hyperinsulinemia in obese subjects (Gelfand and Cannon, 2006). Furthermore, obese and/or hyperglycemic T2D patients exhibit higher endocannabinoid concentrations in serum and visceral fat (Matias et al., 2006). Accordingly, therapy with the CB1R antagonist SR141716A (introduced to the European market under the name of Acomplia) is associated with weight loss, favourable changes in serum lipid levels, improved glycemic control in pre-diabetic and T2D patients, and decreased hyperinsulinemia in obese subjects (Gelfand and Cannon, 2006; Matias et al., 2006). However, to date, no report has suggested that CB1Rs might play a role in T1D. In our T1D model, using STZ, we show now for the first time that CB1R density is increased both in the total and in the nerve terminal-enriched membrane fraction in the rat hippocampus. This increased density of presynaptic CB1Rs may reflect an elevated neuromodulator power for the CB1R. In the hippocampus, endogenous activators of the CB1R (i.e. endocannabinoids such as anandamide or 2-arachidonoyl glycerol) are released upon postsynaptic activation and then travel back to the presynaptic site to activate presynaptic CB1Rs, inhibiting transmitter release (for review see Freund et al., 2003). This so-called retrograde transmission participates in both short and long forms of synaptic plasticity thought to be key elements of cognitive behaviour. LTP is impaired in STZ-induced diabetic animals (for review see Trudeau et al., 2004), which also display an impairment of Ca2+-dependent regulation of postsynaptic AMPA receptors (Chabot et al., 1997). Since endocannabinoids can facilitate the induction of LTP in the hippocampus via presynaptic blockade of GABAergic neurotransmission (Carlson et al., 2002) the upregulation of presynaptic CB1Rs may contribute to restoring normal LTP functions. Alternatively, the increased CB1R density may be an adaptive response to counterbalance impaired postsynaptic Ca2+ level regulation and AMPA functions that result in a diminished endocannabinoid release. Opposing to these, CB1R activation can restrict LTP via presynaptic CB1R activation in glutamatergic terminals (Slanina et al., 2005). Clearly, further functional studies will be required to explore the modification of CB1R signalling in GABAergic and glutamatergic synapses in the hippocampus of STZ-treated rats to pinpoint the exact functional relevance of this modified density of CB1Rs. It is of interest to note that we previously found that other G protein-coupled receptors (adenosine receptors) also undergo changes in their density after STZ treatment (Duarte et al., 2006). However, as for CB1Rs, only functional studies will allow establishing if these changes in adenosine receptors are compensatory or part of the pathophysiological mechanisms in T1D. The observed increase in CB1R density in total membranes upon STZ treatment suggests that there is a broader modification of CB1R function in T1D. In fact, total membranes include a majority of synaptic component (<3%) and a majority of non-synaptic as well as intracellular membranes. Elevated CB1R density in these fractions may reflect a compensatory role for CB1Rs not only in synaptic plasticity but also in metabolic control, cell survival and neurogenesis. Indeed, CB1Rs, forming heterodimers with TrkB NGF receptors, are responsible for correct migration and axonal arborization of certain neurons (Berghuis et al., 2005). The level of phosphorylated (active) Akt is also increased in the STZ model of diabetes, with a concomitant increase in levels of phosphorylated (inactive) glycogen synthase kinase 3β (GSK3β) (Clodfelder-Miller et al., 2005). Since CB1Rs can activate the survival factor Akt (Gómez del Pulgar et al., 2002), and thus indirectly inhibit GSK3β, they can promote survival, as
well as dendritic arborization, which are normally controlled by the active form of GSK3β (for review see Kalkman, 2006). Controlling glucose utilisation of hippocampal neurons (Pontieri et al., 1999; Freedland et al., 2003) is another aspect whereby CB1Rs may either worsen or improve neuronal functions and survival chances in the absence of insulin, i.e. in T1D. Finally, the hypothesis that CB1Rs might control glia-related functions, survival chances in the absence of insulin, i.e. in T1D. Finally, the active form of GSK3β well as dendritic arborization, which are normally controlled by

explore if the CB1R antagonist SR141716A, which is now a

hampered cell proliferation and apoptosis upon sustained
cognitive abnormalities, which involve synaptic deficits,
pathophysiological process. This change can either counteract
be related to oxidative stress found in the hippocampus of STZ-
injected rats (Ates et al., 2006).

In conclusion, the elevated density of the CB1R protein and
CB1R binding sites may represent a compensatory or a
pathophysiological process. This change can either counteract
or contribute to pathophysiological, structural and eventually,
cognitive abnormalities, which involve synaptic deficits,
hampered cell proliferation and apoptosis upon sustained
hyperglycemia. Therefore, this study prompts the need to
explore if the CB1R antagonist SR141716A, which is now a
therapeutically used drug, would worsen or improve neuro-
pathological consequences of T1D.

Acknowledgments

This work was supported by Fundação para a Ciência e a
Tecnologia (FCT, grant POCTI/SAU-NEU/56098/2004), Por-
tugal. João M.N. Duarte acknowledges a PhD grant from FCT
(SFRH/BD/17795/2004), Ken Mackie was supported by NIH
grants DA00286 and DA11322 and Attila Köfalvi was sup-
ported by the III/BIO/56/2005 and FCT (POCI2010/SFRH/
BD/17795/2004), Ken Mackie was supported by NIH
Tecnologia (FCT, grant POCTI/SAU-NEU/56098/2004), Por-

References

Ates, O., Yucel, N., Cayli, S.R., Altinoz, E., Yologlu, S., Kocak, A., Cakir, C.O.,
Turkoz, Y., 2006. Neuroprotective effect of etomodine in the central nervous
system of streptozotocin-induced diabetic rats. Neurochem. Res. 31,
777–783.

Berghuis, P., Dobszay, M.B., Wang, X., Scano, S., Ledda, F., Sousa, K.M.,
Schulte, G., Ernfors, P., Mackie, K., Paratcha, G., Hurd, Y.L., Harkány, T.,
2005. Endocannabinoids regulate interneuron migration and morphogenesis
by transactivating the TrkB receptor. Proc. Natl. Acad. Sci. U. S. A. 102,
19115–19120.

Carlson, G., Wang, Y., Alger, B.E., 2002. Endocannabinoids facilitate the

modulation of AMPA receptors by calcium-dependent processes in
streptozotocin-induced diabetic rats. Brain Res. 768, 249–256.

press. Alterations in mammalian target of rapamycin signaling pathways
publication ahead of print).

Clodfelder-Miller, B., De Sarno, P., Zmijewska, A.A., Song, L., Jope, R.S.,
2005. Physiological and pathological changes in glucose regulate brain Akt

Cota, D., Marciano, G., Tschop, M., Grubler, Y., Flachskamm, C., Schubert, M.,
Auer, D., Yassouridis, A., Thöne-Reinecke, C., Ortmann, S., Tomassoni, F.,
Cervino, C., Nisoli, E., Linthorst, A.C., Pasquali, R., Lutz, B., Stall, G.K.,
Pagotto, U., 2003. The endogenous cannabinoid system affects energy

Degroot, A., Kohl alvi, A., Wade, M.R., Davis, R.J., Rodrigues, R.J., Rebola, N.,
Cunha, R.A., Nomikos, G.G., 2006. CB1 receptor antagonism increases
hippocampal acetylcholine release: site and mechanism of action. Mol.
Pharmacol. 70, 1236–1245.

tion of adenosine A1 and A2A receptor density in the hippocampus of

consequences of the acute administration of the cannabinoid receptor
antagonist, SR141716A, in cannabinoid-naive and -tolerant animals: a

Gai, W., Schott-Olly, P., Schulte im Walde, S., Gleichmann, H., 2004. Differen-
tial target molecules for toxicity induced by streptozotocin and
112, 29–37.

Gelfand, E.V., Cannon, C.P., 2006. Rimonabant: a cannabinoid receptor type 1
blocker for management of multiple cardiometabolic risk factors. J. Am.
Cardiol. 47, 1919–1926.

Cannabinoids protect astrocytes from ceramide-induced apoptosis through
the phosphatidylinositol 3-kinase/protein kinase B pathway. J. Biol. Chem.
277, 36527–36533.

L.P., 2005. Immunocytochemical analysis of synaptic proteins provides new
insights into diabetes-mediated plasticity in the rat hippocampus. Neu-
roscience 136, 477–486.

Güz mán, M., Sánchez, C., Galve-Roperher, I., 2001. Control of the cell survival/

and memory. Life Sci. 65, 715–723.

Hansson, A.C., Bermúdez-Silva, F.J., Malinen, H., Hyttia, P., Sanchez-Vera,
I., Rimondini, R., Rodríguez de Fonseca, F., Kunos, G., Sommer, W.H.,
Heilig, M., 2007. Genetic impairment of frontocortical endocannabinoid
degradation and high alcohol preference. Neuropsychopharmacology 32,
117–126.

Jackson-Guilford, J., Leander, J.D., Nisenbaum, L.K., 2000. The effect of
streptozotocin-induced diabetes on cell proliferation in the rat dentate gyrus.

Jiang, W., Zhang, Y., Xiao, L., Van Cleemput, J., Ji, S.P., Bai, G., Zhang, X.,
2005. Cannabinoids promote embryonic and adult hippocampus neurogen-
esis and produce anxiolytic- and antidepressant-like effects. J. Clin. Invest.
115, 3104–3116.

Juan-Pico, P., Fuentes, E., Javier Bermudez-Silva, F., Javier Diaz-Molina, F.,
receptors regulate Ca2+ signals and insulin secretion in pancreatic beta-cell.
Cell Calcium 39, 155–162.

Kalkman, H.O., 2006. The role of the phosphatidylinositol 3-kinase–protein

Katon a, I., Sperlagh, B., Slank, A., Köf alvi, A., Vizi, E.S., Mackie, K., Freund, T.F.,
1999. Presynaptically located CB1 cannabinoid receptors regulate GABA
release from axon terminals of specific hippocampal interneurons. J. Neurosci.
19, 4544–4558.

Katan a, I., Sperlagh, B., Maglóczky, Z., Sántha, E., Köf alvi, A., Czirják, S.,
Mackie, K., Vizi, E.S., Freund, T.F., 2000. GABAergic interneurons are the
targets of cannabinoid actions in the human hippocampus. Neuroscience
100, 797–804.

Kawamura, Y., Fukaya, M., Maejima, T., Yoshida, T., Miura, E., Watanabe, M.,
Ohno-Shosaku, T., Kano, M., 2006. The CB1 cannabinoid receptor is the
major cannabinoid receptor at excitatory presynaptic sites in the hippocampus and cerebellum. J. Neurosci. 26, 2991–3001.

