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Abstract 
This work describes the experimental implementation of an automatic scheme for the on-line detection and 
identification (FDI) of faults in the sensors of an industrial scale pilot plant reactor under process control, 
where a pseudo zero-order exothermic chemical reaction is partially simulated. The main goals of this research 
are to enhance the safety of reactor operations and to demonstrate the potential of FDI for practical industrial 
applications. 
The automatic fault detection and identification method proposed here has two main steps: (1) the detection 
stage, which relies on a sequential statistical analysis of the process parameters that are continuously estimated 
by means of a general regression software package (GREG) suitable for non-linear models; (2) the identification 
step, which is based on an Extended Kalman Filter (EKF) to provide values for the state variables estimates. 
These values are compared to those given by the sensors thus enabling the identification of the faulty sensor. 
Moreover, this classification procedure ensures that automatic process control can still be carried on even in 
such a faulty situation. 
Despite the strong non-linearities and the high number of uncertainties, the proposed strategy exhibited very 
promising results concerning the detection and identification of the faulty sensors. Furthermore, it enabled a 
satisfactory controller performance for a reasonable period of time, when any of the sensors was disabled and 
control actions were solely based on state estimates. 0 1998 Elsevier Science Ltd. All rights reserved. 

Introdaction 
Plants in the chemical and biochemical industries are 
becoming larger and more complex. The growing envi- 
ronmental and safety demands are now forcing indus- 
try to look for new and more powerful techniques for 
the diagnosis of process faults. 
Although important contributions in this subject are 
reported in the literature, including a few surveys (Is- 
ermann, 1984; Gertler, 1988; Frank, 1990), computer 
simulated plants are often used to illustrate the pro- 
posed methodologies. Non-linearities, model mismatch 
and instrumentation inaccuracies are always present in 
real chemical processes. They play an important role 
in FDI algorithms particularly in what concerns false 
alarms. Therefore, in many cases the robustness of 
such sophisticated algorithms can not be totally guar- 
anteed when applied to industrial environments, 
This paper is concerned with an experimental imple- 
mentation of an automatic scheme for fault detection 
and identification in an industrial scale pilot plant, 
used in a natural resins industry. A stirred tank reac- 
tor equipped with a cooling jacket and a hydraulic 
stirring system composes the core of the plant. 
In order to cover a wider range of conditions and also 
for economy and safety reasons, it is of utmost con- 
venience to partially simulate the chemical reaction 
(Kershenbaum and Kittisupakorn, 1994). The energy 
is supplied by introducing steam in the vessel at an 
appropriate flow rate. 
At this stage, our main goal is to detect and identify 
failures in sensors located in a control loop and to 
compute the correct control actions. This task is ac- 
complished with a dynamic process model, whose pa- 

rameters are not well known and time varying. The 
fault detection method proposed here is based on the 
process parameters that describe some physical law 
included in the model. Therefore, a change in some 
relevant statistical properties of the parameter esti- 
mates may indicate that a fault has occurred in the 
system. 
The selected parameters were chosen based on a sen- 
sitivity analysis and are continuously estimated by 
using GREG (Stewart et ol., 1992). The fault detec- 
tion step is performed through a statistical decision 
test, which analyses the estimates of the process pa- 
rameters and compares them to the expected proper- 
ties during normal operation. 
In a higher hierarchical level, when a failure condition 
is detected, the measurements from each sensor are 
compared with the estimated values obtained through 
an EKF, enabling the identification of the faulty sen- 
sor. In this situation the defective sensor is automati- 
cally disabled and process control is carried on 
through the corresponding state estimate. 

Process Description 
The scheme depicted in Fig.1 represents the pilot 
plant where the experimental tests were carried out. 
The plant is composed by a stirred tank reactor of 80 
litre capacity equipped with a cooling jacket. The liq- 
uid reactants (water) Bow from Tank 1 and Tank 2 
with flow rates Ql and 42 at temperatures Tl and T2, 
respectively. The reactor outflow is regulated through 
control valve VC5, whereas the flow rates Ql and Q2 
are manipulated respectively by control valves VCl 
and VC2. The cooling fluid is controlled by means of 
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valve VC3, and steam injection into the reactor is ad- 
justed by control valve VC6. 

Figure 1 - Simplified flowsheet of the pilot plant 

Process Model 
The model equations can be written by deriving the 
appropriate mass and energy balances. Assuming con- 
stant density, the total mass balance leads to: 

:=$(Ql+Q2-43) 

The outflow Q3 is a function of both reactor level and 
VC5 position, and has been approximated by: 

43=&a aVC5 
l+VCS(a-1) 

As mentioned before, although there is no exothermic 
chemical reaction taking place in the reactor, any de- 
sired zero order kinetics can be simulated, by injecting 
steam directly into the mixture. It has been experi- 
mentally verified (Afonso, 1997) that the power re- 
leased can be approximated by: 

P steam =c.Exp(d.VCb) (3) 

Assuming perfect mixing, the temperature inside the 
reactor can be described by the following energy bal- 
ance: 

dT -= Q2(T2 -T) + Ql(T1 -T) 

dt Ah Ah 

The global heat transfer coefficient, Ug, has been ap- 
proximated by: 

U, =a,VC3+a,Tc+a,T+a, (5) 

Fault Detection and Identification Step 
During normal operation the process parameters can 
be tracked with some allowable tolerance due to proc- 
ess noise and model mismatch. The changes in these 
features are then determined with reference to the 
normal process, and subsequently used to recognise 
the fault and the time of its occurrence. In this case, 
this is accomplished by using a statistical decision test 

(Afonso et al., 1995) based on a conventional hypothe- 
sis test. 
For each one of the parameters involved, the hypothe- 
sis test is based on the change of their variance 0’ in 
this case, the decision between the following two hy- 
potheses: 

H,:cr: =a; (no fault) (6) 

H, :cr: #cv; (fault) (7) 

is determined by the ratio of the variances of the two 
samples 

F, =$ 
2 

(8) 

Ho is rejected if FO violates the confidence levels de- 
fined by an F distribution with m-1 and ns-1 degrees 
of freedom, for a determined significance level, where 
ni and n2 are the dimensions of the sample intervals. 
This strategy is particularly suited for the detection of 
abrupt failures, as these have a major effect on the 
estimates of the process parameters. Typically, abrupt 
faults play an important role in safety-relevant sys- 
tems, where hard-failures have to be detected early 
enough to avoid catastrophic results (Frank, 1990). 
Therefore, in order to improve the reliability of the 
fault identification scheme, an EKF state estimator 
provides redundant values for the state variables. The 
fault identification is achieved by comparing the esti- 
mates provided by the EKF with the measurements 
obtained from the process plant. By this way it is pos- 
sible to validate the fault occurrence and identify it. 
This procedure is only valid for the variables observed 
by the state estimator. For the remaining set of proc- 
ess variables the EKF must include additional states. 

Fault Tolerant Control Strategy 
Many sophisticated model based control algorithms 
have been developed under the assumption that all 
system components will not fail. Once a failure oc- 
curs, the system performance will degrade and may 
lead to divergence, generating dangerous situations, 
particularly when the failure occurs in the control 
loops. 
Generally speaking, the fault tolerant control can be 
seen as a complex sequential procedure involving a 
few steps: fault detection, identification, and decision 
tasks. In the later, the control strategy is redefined in 
order to guarantee safe plant operation, or in other 
words, the control of the process is maintained under 
acceptable limits during the faulty period. 
After the fault detection and the subsequent identifi- 
cation of the defective sensor, this is immediately dis- 
abled. The fault tolerant control is then achieved 
through an estimated measurement obtained by means 
of an EKF. 
It is well known that methods based on state estima- 
tion using EKF or observers, rely on the use of accu- 
rate models, and on numerous assumptions such as 
known model structure and parameters, known noise 
characteristics and known effect of the faults on the 
model. In this work, one is faced with a challenging 
problem due to the fact that real data is involved. 
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Experimental Results 
To assess the proposed strategy in a practical envi- 
ronment, a set of experiments was carried out in the 
pilot plant. In all test runs the system was excited 
during the first 30 minutes by introducing distur- 
bances in the level and temperature setpoints and in 
the flow rate Q2, in order to facilitate the initial proc- 
ess parameter identification. The physical parameters 
of the system and nominal operating conditions are 
given in Table 1. 

Table l-Physical parameters and operating conditions 

The fault detection method adopted here is based on 
the statistical properties of the. most sensitive pa- 
rameters of the process model, using just one parame- 
ter for each model equation. After evaluating the sen- 
sitivity profiles of level and temperature to physical 
process parameters (~1,. ,p4) defined according to 
es.(g). the choice led to p2 and p4 (Afonso et ol., 
1995). 

U 
PI=+, p2=Cv, p3=a, and P4=L 

PC, 

(9) 

The first two experiments with faults are illustrated in 
Figs.2 and 3, which correspond to upsets of different 
magnitudes deliberately introduced in the level and 
temperature sensors. Both tests lasted for 7200s and 
the faults were introduced 3600s after the beginning 
of the experiment. In Figs.Za) and 3a), h(rea1) and 
T(rea1) are the true values of these process variables, 
while h(EKF) and T(EKF) are the corresponding EKF 
estimates. The remaining process variables are shown 
in Figs2b), and Figs3b) and c). 

Figure 2 - Evolution of process variables after a fault 
in the level sensor. 

The effects of a fault with an amplitude of 20% and a 
40 minute span can be directly observed in the profile 
of h(Sensor) (Fig.Za) or in the action of the level con- 
troller (see VC5 in Fig.2b). Here, the controller is 
initially misled by the wrong information from the 
sensor, but when the FDI mechanisms come success- 
fully into action, the controller is fed by the EKF level 
estimate and is then able to sustain the system under 
control. As can be seen, the detection is very quick 
and the initial response of controller (induced by the 

fault) reveals how disastrous the results would have 
been if the FDI scheme did not perform appropriately. 
This effective behaviour of the detection mechanism is 
connected to the good performance of the parameter 
estimation system (in particular of p2), shown in 
Fig.4a). 
Figure 4b) shows the results of the F-test for parame- 
ters p2 and p4. The horizontal lines correspond to the 
99% confidence intervals for a set of 101 sequential 
samples (Box and Tiao, 1973). At t=3600s the level 
sensor fault violates the confidence levels generating a 
fault alarm and therefore a detection. From this time 
on, by comparing h(Sensor) with h(EKF), one is able 
to identify the faulty sensor. This is thereafter dis- 
abled and its value replaced by the corresponding EKF 
estimate. The performance of the control system under 
the fault is highlighted in the interval between 
t=3600s and t=6000s of Figs.2 and can be regarded as 
quite satisfactory. This is because the controller is 
able to maintain the system under good control despite 
the erroneous information provided by the sensor. 

Figure 3 - Evolution of process variables after a fault 
in the reactor temperature sensor. 

nme (4 

Figure 4 - a) Estimates of parameter p2 and p4 corre- 
sponding to level fault. b) Statistical test correspond- 

ing to parameters p2 and p4. 

Figure 3 illustrates the behaviour of the system when 
a failure is introduced into the temperature sensor of 
the main control loop at t=3600s. The detection and 
identification mechanisms quickly play their role with 
success and control is carried on with the help of the 
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EKF estimate. However this begins to diverge, ap- 
proximately 1600s after such event. The control sys- 
tem then becomes unable of keeping the process sta- 
ble. Several other tests performed in the plant con- 
firmed the insufficient model prediction capability, 
when faults occur in the temperature measurement. 
With the purpose of investigating the role played by 
the prevision model, a new test was performed whose 
results are shown in Fig.5. The following strategy was 
adopted: after the fault is detected, the process model 
used to predict the observations continues to be up- 
dated by the parameter estimator, contrarily to what 
happened in the previous set of experiments. This 
procedure is only possible because the correct meas- 
urements from the plant are available, as the faults are 
artificial generated. This is, however unfeasible in a 
situation of real failure. 

mm (I, 

Figure 5 - Evolution of process variables after a fault 
in the temperature sensor when the adaptive mechanism is 

not switched off. 

From the analysis of Fig.5, the curves corresponding 
to T(EKF) and T(Rea1) are almost coincident, enabling 
the control system to effectively control the process 
for a much longer time. These results also mean that 
the modelling difficulties are not easily solved in the 
case of simulation a chemical reaction, which is be- 
lieved to be the first cause of model mismatch in this 
particular example. In practice, the quantity of energy 
that is introduced into the reactor by steam injection is 
subjected to numerous and strong inaccuracies. The 
parameter estimator could compensate for this devia- 
tion in the steady state regime, but the variations in 
the steam flow during the fault period unbalance the 
model and are then responsible for the poorer quality 
of the estimates. In this last test, the adaptive mecha- 
nism is not switched off and therefore there is always 
a compensation of the model. This explains the good 
results obtained and simultaneously identifies the 
source of the problems mentioned above. 

Coaclusioas 
Several real control runs have been performed on a 
pilot plant processing a partially simulated exothermic 
chemical reaction. This methodology has the benefit of 

being readily adapted to experimentally test several 
control strategies, due to the low costs involved. 
The FDI strategy highlighted here can validate the 
information that flows through instrumentation and 
consequently improves plant reliability. 
The results obtained are encouraging, taking into ac- 
count that the process is non-linear and that the plant 
can operate satisfactorily with a malfunctioning sen- 
sor. When the system becomes more complex and 
highly non-linear (as in the case of chemical reaction) 
leading to increased model uncertainties, the detection 
and identification mechanisms still exhibit a very ef- 
fective performance. Such inaccuracies, however, give 
rise to poorer EKF estimates and therefore to shorter 
periods of stable operation without information from 
the sensor in the main control loop. 
The good experimental results obtained, which exhibit 
simplicity, numerical robustness, and little computer 
effort, highlight their promising capabilities for in- 
dustrial application. Additional work should be done, 
considering the fault identification related to sensors 
and actuators in the control loops, which will demand 
different control strategies. 
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Notation 
A - Reactor cross-sectional area 
al,aa,as,ar,c,d, a - Process parameter 
C,- Fluid heat capacity 
Cv - Process parameter 
dr - Reactor diameter 
Ea - Activation energy 
h - Height of liquid in the reactor 
ha - Level offset 
ka - Frequency factor 
R - Gas constant 
T - Fluid temperature in the reactor 
Tc - Average coolant temperature 
At - Sampling time 
p - Fluid density 


