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Abstract

A strategy based on Nonlinear Programming (NLP) sensitivity is developed to establish stability bounds on the plant/model
mismatch for a class of optimization-based Model Predictive Control (MPC) algorithms. By extending well-known nominal stabi-

lity properties for these controllers, we derive a su�cient condition for robust stability of these controllers. This condition can also
be used to assess the extent of model mismatch that can be tolerated to guarantee robust stability. In this derivation we deal with
MPC controllers with ®nal time constraints or in®nite time horizons. Also for this initial study we concentrate only on discrete time

systems and unconstrained state feedback control laws with all of the states measured. To illustrate this approach we give two
examples: a linear ®rst-order dynamic system and a nonlinear SISO system involving a ®rst order reaction. # 1999 Elsevier Science
Ltd. All rights reserved.
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1. Introduction

Model predictive control (MPC) for both linear and
nonlinear systems has seen considerable research over
the past decade. Widely used linear predictive formula-
tions such as Quadratic Dynamic Matrix Control
(QDMC), or Generalized Predictive Control (GPC) [1]
are common for industrial applications. These con-
trollers have their greatest advantage for MIMO pro-
cesses as they provide a direct way for coordinating and
balancing interactions among inputs and outputs. Qin
and Badgwell [2] provide an overview of the industrial
application of commercial packages of Model Predictive
Control (MPC) technology and also point out future
developments such as Nonlinear MPC (see also [3]).
Nonlinear model predictive controllers have been shown
to be advantageous on a variety of processes. Examples
where these are essential include processes with sign
changes in the gain matrix over desired regions of
operation, non-steady state processes where an optimal
pro®le is required and systems that have complex inter-
actions with constraints and nonlinear phenomena.

For both linear and nonlinear systems, a key feature
of the control law is the formulation and solution of a
nonlinear programming problem. Using optimization-

based formulations, a large class of linear and nonlinear
controllers has been derived. Several approaches are
used to implement MPC frameworks (see [4] and refer-
ences therein), which include nonlinear programming
(NLP) strategies for nonlinear MPC. In addition, a
prominent aspect of the research in the Nonlinear
Model Predictive Control ®eld is the development of a
theoretical analysis framework to study the stability and
robustness of the control system to disturbances and
plant/model mismatch.

Related to this analysis, several authors cite short-
comings to the naive approaches taken in the imple-
mentation of MPC with poor or no guaranteed stability
properties (e.g. [5±7]). Lee [8] provides a tutorial survey
of the recent theoretical developments in MPC. As a
result, stability properties of these controllers have been
better understood in recent years. This is particularly
true for the nominal (so called perfect model) properties
of these controllers. In particular, Lyapunov type stabi-
lity analyses have been developed for model predictive
control of discrete time systems and these apply both to
in®nite time horizon systems and to ®nite time problems
with endpoint constraints on the states. Another impor-
tant question deserving further investigation and impli-
citly related to these issues, is the problem of solution
existence for the optimal control problem. Here, relevant
results for the case of general discrete-time systems have
been shown in Keerthi and Gilbert [9], based on pre-
vious work by Keerthi and Gilbert [10] and Dolezal [11].
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Moreover, the performance of nonlinear model pre-
dictive controllers is largely determined by the formula-
tion and solution of the optimization problem. The
nonlinear MPC formulation, initially termed Newton-
type control, is based on the work of Economou [12]
and was later extended by Li [13] and Oliveira [14]. This
formulation has been demonstrated to deal with com-
mon di�culties in nonlinear control, such as open-loop
instabilities, stability problems introduced by the pre-
sence of active hard-constraints, and some amount
of ill-conditioning in the predictive model [15±20].
Moreover, with highly nonlinear and open-loop
unstable processes, the integration of the model equa-
tions becomes numerically unstable, thus deteriorating
the performance and/or leading to a failure of the non-
linear controller. To overcome this type of di�culty a
boundary value approach to enhance the stability and
problem conditioning of the open-loop prediction pro-
blem [21] can be used. Here a multiple shooting strategy
is adopted to solve the model equations [22], which
includes a Successive Quadratic Programming (SQP)
formulation to handle terminal state constraints that are
derived for controller stability [5,7,9]. Consequently,
since the design of nonlinear predictive controllers
includes the development and implementation of opti-
mization tools, future research in the ®eld must be done
in parallel with the development of new optimization
approaches and the interplay between optimization and
control in the design of robust nonlinear model pre-
dictive controllers [23]. In addition to the above MPC
controllers, recent nonlinear control laws include dual
mode controllers [7] as well as direct nonlinear exten-
sions of classical LQ strategies and MPC [5,9].

All of these results rely on perfect predictive models
and little work has been done in assessing the stability
of model predictive controllers in the presence of model
mismatch. In this area, Yang and Polak [24] consider a
special class of model predictive controllers and investi-
gated these for robust stability. Scokaert and Rawlings
[25] also considered the stability of model predictive
controllers under perturbations. Finally, Badgwell [26]
considered a modi®cation of the Lyapunov stability
results for model predictive control in order to deal with
model mismatch. This analysis leads to additional con-
straints that are added to the NLP for the MPC con-
troller. This constraint then enforces robust stability for
a speci®ed set of model uncertainties. The com-
plementary approach of Badgwell [26] enforces robust-
ness by enforcing a constraint derived from a set of
plants with known uncertainties. Thus the study of
Badgwell [26] addresses the question: ``Given a known
uncertainty, how can we make the algorithm robust for
that range of uncertainty?'' The robustMPC algorithm is
then implemented by solving a constrained NLP online.

In this study we address the complementary question:
``Given an MPC algorithm how much mismatch can it

tolerate and how can we assess this mismatch for stabi-
lity of the MPC controller?'' This analysis is o�ine and
the NLPs for the MPC controller are guaranteed to be
feasible (based on existence results in [10,11]). This
approach applies to all optimization based controllers
for which nominal stability can be shown with a Lya-
punov type analysis. For clarity of presentation, we
treat only the unconstrained state feedback discrete-
time case in this study. Therefore we assume that at
every time index k all the states can be measured. Also
to simplify our analysis we do not consider dis-
turbances. Nevertheless, it should be noted that the
analysis tools and results are not restricted to these
cases and can be extended to more general ones, as
shown in the next section.

In Section 2 we provide a general description of the
system plant under study and state some assumptions
about the plant, the model and the mismatch error.
Section 3 then follows with a description of the model
predictive control problem formulation, and a char-
acterization of the convergence properties of the control
problem without and with model mismatch. From this
we consider the in¯uence of the mismatch term on
robust stability; characterization of this term through
NLP sensitivity in Section 4 leads to a su�cient condi-
tion for robust stability, together with a strategy to
estimate the resulting bound on this stability condition.
We illustrate this property in Section 5 with two simple
examples with parametric plant/model mismatch: a
®rst-order linear system and a SISO reactor system with
a ®rst order reaction. Finally, Section 6 provides some
perspective for this approach as well as directions for
future work, including extension of this analysis to
constrained controllers and output feedback systems.

2. Description of the system

In the nonlinear MPC framework we assume the
dynamics of the plant to be controlled are described by
the following nonlinear, continuous-time set of equa-
tions:

_x � f�x; u� �2:1�

y � g�x� �2:2�

where x 2 Rns is the vector of states,u 2 Rni is the vector
of inputs, with f : Rns � Rni ! Rns and y 2 Rno is the
vector of outputs, with g : Rns ! Rno .

For this study we treat only the state feedback case
and assume that at every time index k all the states can
be measured accurately. The stationary discrete-time
counterpart of Eq. (2.1) is given by
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xk�1 � fk�xk; uk� � f��t; xk; uk� �2:3�

where �t is the sampling period, xk 2 Rns , uk 2 Rni , with
fk : Rns � Rni ! Rns . To develop the nonlinear control
law, a model with the same dimension as (Eq. (2.3)) is
considered, represented by the following nonlinear sta-
tionary discrete-time equations:

zk�1 � �k�zk; uk� �2:4�

where zk 2 Rns is the vector of nominal states, uk is the
same vector of inputs as in Eq. (2.3), with
�k : Rns � Rni ! Rns . This model may be linear or non-
linear. We consider �xk; uk� � �0; 0� the point at which
both the plant and the model operate at steady state,
such that �k�0; 0� � fk�0; 0� � 0, for all k, k50.

From [9] we also apply the de®nition of a function
belonging to class K1, along with related assumptions.

De®nition 2.1. A function W�r� : R� ! R�, r 2 R�, is
said to belong to class K1 if:

a. it is continuous;
b. W(r)=0!r=0;
c. it is nondecreasing;
d. W�r� ! 1 when r!1.

Moreover, if W1 belongs to class K1 then for

W2�r� � �1W1�r�;W3�r� � �2W1�r�

with �1 and �2 positive constants, and

W4�r� �W2�r� �W3�r�;W5�r� �W2�r��W3�r� �2:6�

it follows that W2;W3;W4 and W5 are also in class K1.
We de®ne k�k as the Euclidean norm and make the

following assumptions:

Assumption 2.1. There exists a Lipschitz constant L
(independent of k) such that for all pairs �xk; uk�,
�x0k; u

0
k�,�zk; uk� and �z

0
k; u

0
k� 2 Dk,k50,Dk � Rns � Rni ,

k fk�xk; uk� ÿ fk�x0k; u0k� k4L�k xk ÿ x0k k � k uk ÿ u0k k�
�2:7�

k �k�zk; uk� ÿ �k�z0k; u0k� k4L�k zk ÿ z0k k � k uk ÿ u0k k�
�2:8�

Assumption 2.2. There exists a modeling bound func-
tion Wm, that is in class K1, such that for all pairs
�xk; uk� 2 Dk, k50, Dk � Rns � Rni ,

k fk�xk; uk� ÿ �k�xk; uk� k4Wm�k xk k� �2:9�

Assumption 2.3. There exist positive constants Km and 

such that for all k50 the function Wm in Assumption
2.2 is of the form

Wm�k xk k� � Km k xk k
 �2:10�

Assumption 2.1 requires that, for every k50, the plant
and model system set of equations are continuous and
have a unique solution in some region Dk about any
pair �x0k; u

0
k� and �z

0
k; u

0
k� respectively. Assumption 2.2

states that the mismatch error is bounded by a mono-
tonic function that is in class K1. A similar formalism
to bound the plant uncertainty can also be found in
[24,27]. Because the inputs in the model predictive con-
trol problem formulation are given by a state feedback
law, hence the control pro®le is a function of the initial
states, the modeling bound in (Eq. (2.9)) can be expres-
sed as a function of the states only. Assumption 2.3
leads to the derivation of a su�cient condition for sta-
bility whose formulation permits us to estimate easily a
stability bound using the NLP framework.

While Assumptions 2.2 and 2.3 may appear restrictive
in the treatment of uncertainty, there are a number of
straightforward extensions that can be made which still
satisfy these assumptions. For instance, if we consider
an additive state disturbance (dk) that belongs in class
K1, it is clear from (2.6) that:

k fk�xk; uk� ÿ ��k�xk; uk� � dk� k4 k fk�xk; uk�
ÿ �k�xk; uk� k � k dk k4Wm�k xk k�

�2:11�
and the analysis developed here can be used. This dis-
turbance class also includes asymptotically decaying
disturbances considered by Scokaert and Rawlings [25].

Moreover, if the states are not measured perfectly
or estimated from a set of outputs, we can apply the
same analysis as long as the di�erence between the
imperfectly measured states and the actual states,
� ~xk ÿ xk� are in class K1. In this case, we have from Eq.
(2.8):

k �k� ~xk; uk� ÿ �k�xk; uk� k4L�k ~xk ÿ xk k� �2:12�

and consequently:

k fk�xk; uk� ÿ �k� ~xk; uk� k4 k fk�xk; uk�
ÿ �k�xk; uk� k �L k ~xk ÿ xk k4Wm�k xk k�:

�2:13�

Therefore, certain cases of disturbances and state mis-
matches can also be treated by the analysis presented in
the next sections. Of course, this uncertainty description
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does not apply to all cases, but for this study we assume
that state estimation procedures allow us to invoke the
assumptions made above. The more interesting case of
output feedback will be treated in a later study.

3. Moving horizon problem solution

In this analysis we consider the formulation of the
MPC problem, also named Moving Horizon Control,
de®ned by an objective function:

	�xi; ui� �
Xi�p
k�i

h�zk; vk� �3:1�

with 	 : Rns�ni ! R and subject to the discrete time
equations Eq. (2.4). Here h�z; u� : Rns�ni ! R is a non-
negative, continuously di�erentiable function and is
zero if and only if z and u are both zero. This problem is
solved at every time index i, i50, with the initial condi-
tion, zi � xi. The objective function for this problem is
therefore evaluated over a ®nite time horizon of a given
length p,p51. The sequences zk and vk (with
ui � vi),k � i; . . . ; i� p, are the state and input trajec-
tories over the horizon p, respectively. This formulation
also allows a shorter input horizon m, with m4p and
vk � vi�mÿ1; k � i�m; . . . ; i� p. Finally, we impose the
constraint zi�p � 0, or if we allow p!1 then this
constraint is automatically satis®ed for a ®nite value of
the objective function Eq. (3.1).

A typical example of h�zk; vk� is the quadratic func-
tion given by

h�zk; vk� � zTkQ1kzk � vTkQ2kvk �3:2�

with h : Rns�ni ! R, h�0; 0� � 0. Here the weighting
matrix Q2k is positive de®nite and Q1k is symmetric
positive semide®nite. The development below, however,
also applies to more general functions.

Solving the moving horizon problem over horizon p
using the initial state conditions xi and the nominal
input sequence fvkg leads to a state prediction sequence
fzkg. Here we assume that the state initial conditions zi
are measured such that zi � xi. Because the problem is
initialized with xi and the optimal ui is an implicit func-
tion of xi we therefore denote the objective function Eq.
(3.1) as 	�xi�.

Thus the problem is to solve the open-loop con-
strained optimal control problem P �i�, given by

min
v

	�xi� �3:3�

s:t: zk�1 � �k�zk; vk�; k � i; . . . ; i� pÿ 1 �3:4�

zi�p � 0 �3:5�
zi � xi �3:6�

with �zk; vk� 2 Dk, Dk � Rns � Rni and optional con-
straints added for a shorter input horizon, m4p. Sol-
ving P �i� generates the optimal control sequence fvkg
which leads to an optimal predicted state pro®le fzkg
(with zi � xi). At every i, only the ®rst element of this
sequence is implemented in the plant, thus ui � vi, and
the entire calculation procedure is repeated at the next
time index. The main steps of the control algorithm are
the following:

1. match zi to the plant measurements, zi � xi.
2. Solve the optimal control problem P �i� for the

predicted inputs vk and states zk over the time
horizon p.

3. Set ui � vi; i � i� 1 and go to 1.

We denote the optimal value of the objective function
Eq. (3.1) from solving the problem P �i� by 	��xi�.

Existence properties of the solution of P �i� have been
shown in [9], based on previous work by Keerthi and
Gilbert [10] and Dolezal [11]. A key requirement for the
existence of a solution to P �i� is that an admissible
pro®le exists for the endpoint constraint. As a result, we
do not impose additional constraints in P �i� but assume
that both the states and controls remain in bounded
subspaces. To handle any additional constraints, the
problem formulation can easily be extended through the
use of exact penalty terms in the objective, as developed
in [18], but this extension will be deferred to a future
study. In addition, we assume a controllability property
(termed Property C in [9]) where there exists a su�-
ciently long horizon that insures an admissible trajec-
tory for the terminal constraint (Eq. (3.5)).
Unfortunately, for general nonlinear systems, this
property can only be checked by trial and error. Never-
theless, we assume that such a horizon exists in the
analysis of our controller. Clearly this also allows the
imposition of an in®nite state horizon.

3.1. Perfect model case

First, we brie¯y review conditions for which repeated
solution of the optimal control problem P �i� over i
converges to the origin. Here we assume there exists a
su�ciently long (and possibly in®nite) horizon that
insures an admissible trajectory to satisfy the terminal
state constraint. As a result of solving the problem P �i�
the states and inputs are zeroed such that
�zk; vk� � �0; 0� for k5i� p, that is

	��xi� �
Xi�pÿ1
k�i

h�zk; vk� � h�zi�p; vi�p�|��������{z��������}
�0

�3:7�
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Moreover the resulting optimal sequence zk; vk,
k � i; . . . ; i� pÿ 1, is a feasible solution for the pro-
blem at time index i� 1, P �i� 1�, when using the
model equations Eq. (2.4). Thus the di�erence
between 	��xi� and the value of the objective function
at i� 1 evaluated with these state and input sequences,
	�xi�1�, gives

	��xi� ÿ	�xi�1� �
Xi�pÿ1
k�i

h�zk; vk� ÿ
Xi�p
k�i�1

h�zk; vk�

� h�xi; ui�
�3:8�

In the perfect model case, zi � xi, and the solution of
the problem P �i� 1� cannot be worse than the value at
time index i because now the terminal constraint (Eq.
(3.5)) has only to be satis®ed one interval ahead.
Therefore 	��xi�1�4	�xi�1� and from Eq. (3.7) and
(3.8), this leads to the following inequality:

	��xi� ÿ	��xi�1�5h�xi; ui�: �3:9�

This relation is satis®ed in the ®nite horizon case by
enforcing the terminal state constraints [Eq. (3.5)] and
also holds for an in®nite horizon problem.

Thus the sequence f	��xi�g over N time indices
decreases and because the cost function h is bounded
from below by zero it converges. Taking the sum of the
di�erences given by Eq. (3.9) over N we obtain

	��x1� ÿ	��xN�1� �
XN
i�1
�	��xi� ÿ	��xi�1��5

XN
i�1

h�xi; ui�

�3:10�

Also, because the sequence f	��xi�g is decreasing, then
as N!1, h�xi; ui� ! 0 and xi ! 0.

3.2. Model mismatch case

We consider now the problem of plant/model mis-
match. The natural question that arises is how much
error can be tolerated by the closed loop system at every
time index i, such that the controller drives the system
to the setpoints. Therefore, our aim is to determine how
large the modeling bounds in Eq. (2.10), Km, should be
for the closed-loop system to remain stable and con-
verge to its desired state.

From the existence and controllability properties in
[9] we have a solvable optimal control problem P �i� at
every i. Let �xi�1 � zi�1jxi, i.e. the state prediction given
by the solution of P �i� at time index i� 1. Because there
is model error the state measurements at i� 1, xi�1, do
not match the prediction �xi�1. Thus, using either �xi�1 or
xi�1 as initial condition to initialize the model [Eq. (2.4)]
in the process of solving P �i� 1� leads to two di�erent

optimal solutions, i.e. two di�erent state and input
optimal sequences over the pÿ step horizon (Fig. 1).
Here we emphasize that in both cases the state predic-
tion over the horizon is performed using the model
equations [Eq. (2.4)].

The optimal objective function resulting from the

plant measurements at i� 1 is denoted by 	��xi�1� with
corresponding state and input optimal sequences

fzkgi�p�1k�i�1 (with zi�1 � xi�1) and fvkgi�p�1k�i�1 respectively.

On the other hand, for the initial condition �xi�1 and

	�� �xi�1� we use the bar notation to denote the optimal

state and input optimal sequences f �zkgi�p�1k�i�1 (with

�zi�1 � �xi�1) and f �vkgi�p�1k�i�1 respectively, using xi.

To account for the existence of mismatch, we con-
sider the di�erence between 	��xi� and 	��xi�1� by
adding and subtracting 	�� �xi�1�, that is

	��xi� ÿ	��xi�1� � �	��xi� ÿ	�� �xi�1�

ÿ �	��xi�1� ÿ	�� �xi�1��
�3:11�

The term 	��xi� ÿ	�� �xi�1� represents the di�erence
between the optimal objective functions at time indices i
and i� 1 for the model prediction and satis®es the
inequality [Eq. (3.9)]. It follows that

	��xi� ÿ	��xi�1�5h�xi; ui� ÿ �	��xi�1� ÿ	�� �xi�1��
�3:12�

To ensure the sequence 	��xi�f g is decreasing, we need
the quantity [Eq. (3.12)] to be positive and bounded by
a positive function W�k xi k� of class K1 such that

h�xi; ui� ÿ �	��xi�1� ÿ	�� �xi�1��5W�k xi k� �3:13�

with W�k xi k� ! 0 as k xi k! 0, for all i, i50.

Fig. 1. Plant/model state trajectory mismatch.
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Therefore, a su�cient robust stability condition is that,
for all i, the mismatch term 	��xi�1� ÿ	�� �xi�1� in Eq.
(3.13) be smaller than h�xi; ui� to satisfy inequality [Eq.
(3.12)]. Under this condition, taking the sum of the dif-
ferences over N time indices, we obtain

	��x1� ÿ	��xN�1� �
XN
i�1
�	��xi� ÿ	��xi�1��

5
XN
i�1

W�k xi k�
�3:14�

Then as N!1, k xN k! 0.

4. Characterizing the mismatch term

To obtain the conditions for which the closed loop
system remains stable in the presence of plant/model
mismatch, we need to characterize the magnitude of the
e�ect of the mismatch term in the inequality [Eq. (3.13)],
expressed in terms of the di�erence given by

	��xi�1� ÿ	�� �xi�1� �
Xp
k�1
�h�zi�k; vi�k� ÿ h� �zi�k; �vi�k��

�4:1�

To do this we invoke the mean value theorem:

	��xi�1� ÿ	�� �xi�1� �
�1
0

d

dx
	�� �xi�1

� ��xi�1 ÿ �xi�1��T�xi�1 ÿ �xi�1�d�
�4:2�

and rely on concepts from NLP sensitivity analysis to
obtain d	�=dx. By taking the norm of Eq. (4.2) and
using Eqs. (2.3), (2.4), (2.9) or (2.10) to characterize
�xi�1 ÿ �xi�1� we obtain:

j	��xi�1� ÿ	�� �xi�1�j

4k
�1
0

d

dx
	�� �xi�1 � ��xi�1 ÿ �xi�1��Td�k�kxi�1 ÿ �xi�1k

4k
�1
0

d

dx
	�� �xi�1 � ��xi�1 ÿ �xi�1��Td�k�Wm�kxik�

� k
�1
0

d

dx
	�� �xi�1 � ��xi�1 ÿ �xi�1��Td�k� Kmkxik


�4:3�

We will also see that this approach can also be used
to establish a bound on the model errors (e.g. Km) in
order to guarantee stability for the control problem.

To develop these concepts we ®rst simplify the nota-
tion and introduce augmented vectors as

s�i�k � �zTi�k�1vTi�k�T; �si�k � � �zTi�k�1 �vTi�k�T; and "i�k
� ��Ti�k; �Ti�k�T;

where �i�k � zi�k�1 ÿ �zi�k�1 and �i�k � vi�k ÿ �vi�k, with
k � 1; . . . ; p . Here the vector s�i�k corresponds to the
optimal state and input vector sequences obtained by
solving problem P �i� with the plant measurement xi as
the initial condition. On the other hand, �si�k is the
optimal vector of states and inputs obtained from sol-
ving P �i� 1� with the initial condition given by �xi�1.
The di�erence between the two solutions, �i�k, provides
a measure of the error mismatch.

Since the cost function h is continuously di�erentiable
and its derivative exists over the horizon p and is con-
tinuous in Rns�ni , then from the mean value theorem it
follows that

h�s�i�k� ÿ h��si�k� �
�1
0

5h��si�k � �"i�k�T"i�kd� �4:4�

for any �si�k, ��si�k � �"i�k� 2 Rns�ni , k51. Substituting
Eq. (4.4) in Eq. (4.1) gives

	��xi�1� ÿ	�� �xi�1� �
Xp
k�1

�1
0

5h��si�k � �"i�k�T"i�kd�

�4:5�

To bound Eq. (4.5) we need to determine "i�k,
k � 1; . . . ; p, based on the deviation between the two
initial conditions for the states available to solve the
problem P �i� 1�, i.e. the state prediction �xi�1 obtained
from the solution of P �i� and the true state xi�1. As
explained at the end of this section, this determination is
done by o�-line solution of the optimal control pro-
blem, using initial conditions xi�1 and �xi�1. For this
purpose we take the optimality conditions for the opti-
mal control problem P �i� 1� and consider the case with
xi�1 as the initial state condition. We de®ne the decision
vectors

s� � �s�Ti�1; s�Ti�2; � � � s�Ti�p�T �4:6�

and de®ne 	i�1�s�� � 	�xi�1�. For the equality con-
strained case, problem P �i� 1� can be rewritten as fol-
lows and solved to obtain s�:

min
s

	i�1�s�
s:t: c�s� � 0

�4:7�
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where c�s� �
"
zk�1 ÿ �k�zk; vk�; k � i� 1; . . . ; i� pÿ 1

zi�p

#

The Lagrangian for this problem is given by
L�s; l� �  i�1�s� � lTc�s�, where l is the Lagrange
multiplier vector. The optimality conditions are

5s i�1�s�� � 5sc�s��Tl�
c�s��

� �
� 0 �4:8�

We also assume that the matrix 5sc�s�� has full row
rank and we de®ne a basis, Z, for the null space of this
matrix:

5sc�s��Z � 0:

By taking the projection of 5s i�1�s�� � 5sc�s��Tl� on
the null space of 5sc�s��, from (Eq. (4.6)) it follows that

ZT 5s 	i�1�s��
c�s��

� �
� 0 �4:9�

Consider now the problem of solving P �i� 1� using the
predicted states �xi�1 as the initial conditions. Here the
decision vector is �s with the same dimension as Eq.
(4.6). The Lagrangian is given by L� �S; �l� �
 i�1��s� � �lTc��s�. Similarly we have that

�ZT 5s  i�1��s�
c��s�

� �
� 0 �4:10�

To obtain a bound on Eq. (4.5) we need to determine a
bound on "i�k, i.e. the deviation of �si�k from s�i�k. This
can be determined by application of NLP sensitivity and
the mean value theorem. For this calculation we solve
(Eqs. (4.8)) for �xi�1; s�. To simplify the notation we set
 � �  i�1�s�� and c � c�s��.

Now considering the a�ne approximation to Eq.
(4.9) for variations of �' � � �xTi�1; �sT�T, such that Eqs.
(4.9) and (4.10) are satis®ed, it follows that�1

0

:

�5xi�1Z
T 5s  

� � ZT 5sxi�1  
�

5xi�1c

5sZ
T 5s  

� � ZT 5ss  
�

5sc

�
j'�'�d d� � 0

with '� � � �xTi�1; �sT�T � �d and d � � xi�1 ÿ �xi�1
s� ÿ �s

�.
Solving to get the solution vector of the optimal control
problem we obtain

s� ÿ �s � �ÿ
�1
0

:� 5sZ
T;5s 

� � ZT;5ss 
�

5sc
�j'�'�d��ÿ1

�
�1
0

:� 5xi�1Z
T;5s 

� � ZT;5sxi�1 
�

5xi�1c
�j'�'�d��xi�1 ÿ �xi�1�

�4:11�

The solution vector s� ÿ �s is well de®ned and unique
and the integral matrix is nonsingular in a neighbor-
hood of the optimal solution, as long as Eq. (4.7) has a
strong local minimum and 5sc�s�� has full row rank
[28]. Eq. (4.11) shows how the solution of the NLP
changes with errors in the initial conditions xi�1 ÿ �xi�1.
To bound the integral terms in Eq. (4.11) we de®ne
positive constants B, Bx 2 �0;1�, such that

k ÿ
�1
0

:
5sZ

T 5s  
� � ZT 5ss  

�

5sc

� �
j'�'�d�

� �ÿ1
k4B;

k
�1
0

:
5xi�1Z

T 5s  
� � ZT 5sxi�1  

�

5xi�1c

" #
j'�'�d�k4Bx:

Using various values of xi�1, these constants can be
estimated o�ine from the plant model and the bound
on the model mismatch, and the resulting inequalities
are a measure of the sensitivity of the states over the
horizon p with respect to the initial state conditions.
Substituting in Eq. (4.11) and taking the norm we
obtain

k s� ÿ �s k4BBx k xi�1 ÿ �xi�1 k4ÿ k xi�1 ÿ �xi�1 k
�4:12�

i.e. the solution of the optimal control problem Eq. (4.7)
is bounded by the deviation on the initial state condi-
tions. Thus, for all i, i50, k5i, we establish a bound on
the di�erence vector "i�k such that,

k"i�kk4ks� ÿ �sk �4:13�

These quantities can be evaluated directly from the
solution of the NLP. Note also that if the model is lin-
ear and the objective is quadratic, then the integrands
are constant and B and Bx can be determined once and
for all, from a single NLP solution.

We can now relate " directly to the model mismatch.
From Eq. (2.9) it follows that:

kxi�1 ÿ �xi�1k � kfk�xi; ui� ÿ �k�xi; ui�k4Wm�kxik�
�4:14�

Combining Eq. (4.12) and (4.14) with Eq. (4.5) leads
to
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j	��xi�1� ÿ	�� �xi�1�j4
Xp
k�1
k
�1
0

5hTd�"i�kk

4ÿ
Xp
k�1
k
�1
0

5hd�kWm�kxik�
�4:15�

This expression can be applied to general receding hor-
izon control problems and, by using appropriate norms,
can even be applied to in®nite dimensional problems. On
the other hand, if we consider a ®nite prediction horizon,
p, substitute the quadratic function Eq. (3.2) and apply
Eq. (4.5) we obtain a sharper bound:

	��xi�1� ÿ	�� �xi�1� �
Xp
k�1
��si�k � "i�k�TQi�k"i�k �4:16�

where Qi�k � diagfQ1;i�k, Q2;i�kg is bounded in norm
by Q over the horizon p. Taking the norm of Eq. (4.16),
and from Eqs. (4.12) and (4.13), we have the change in
the objective function due to error mismatch given by

j	��xi�1� ÿ	�� �xi�1�j4Q
Xp
k�1
�k �si�k k

� ÿ k xi�1 ÿ �xi�1 k�ÿ k xi�1 ÿ �xi�1k:
�4:17�

Using Eq. (4.14), gives:

j	��xi�1� ÿ	�� �xi�1�j4Q
Xp
k�1
�k�si�kk

� ÿWm�k xi k��ÿWm�k xi k�
�4:18�

Now since k �si�k k�k �zi�k; �vi�k k, k51, depends on the
initial state xi, then from the feedback law and the NLP
problem we can establish

k �si�k k4K k xi k �4:19�

Substituting in Eq. (4.18) it follows that

j	��xi�1� ÿ	�� �xi�1�j4QpÿWm�k xi k��K̂ k xi k
� ÿWm�k xi k��

�4:20�

From de®nition Eq. (2.1) and from Eq. (2.5) and (2.6),
the right hand side of Eq. (4.20) is a function that
belongs to class K1 and therefore we can write that the
mismatch term is bounded by a generic function as fol-
lows:

j	��xi�1� ÿ	�� �xi�1�j4WB�k xi k� �4:21�

By Assumption 2.3, substituting in Eq. (4.20) with 
 � 1
it follows that

j	��xi�1� ÿ	�� �xi�1�j4QpÿKm�K̂� ÿKm� k xi k2
� KB k xi k2

�4:22�

where KB can be determined o�-line from the solution
of Eq. (4.7).

In Eq. (3.13), because ui is an implicit function from
xi we can replace h�xi; ui� by h�xi�. Thus, from Eq.
(3.13) and (4.22) the following condition is su�cient to
ensure stability:

h�xi� ÿ j	��xi�1� ÿ	�� �xi�1�j;5h�xi� ÿ KBk xi k2
�W�k xi k�

�4:23�

For general problems, a simpler way to estimate
values for KB we note that ÿ can be estimated from
information at the solution of Eq. (4.7). Note that since
Eq. (4.7) is not specialized to a ®nite p, it can be applied
to in®nite time horizons as well. In addition, the value
of K̂ can be estimated o�-line by comparing the solu-
tions of Eq. (4.7) with initial conditions at xi, and with
initial states at zero. Moreover, a tighter value for KB

can be obtained directly from:

KB5
max
xi

j	��xi�1� ÿ	�� �xi�1�j
k xi k2 �4:24�

This calculation can be made o�-line, according to the
following cycle:

1. For a given xi, i50, perform the following steps:
2. Solve the optimal control problem P �i� for the

predicted inputs vk and states zk over the time
horizon p; save the state prediction for i� 1,
�xi�1 � zi�1jxi.

3. Set ui � vi and i � i� 1.
4. Solve the optimal control problem P �i� 1� using

as initial condition the state measurement from the
plant, xi�1; obtain 	��xi�1�.

5. Solve the optimal control problem P �i� 1� using
as initial condition the state prediction obtained
from the solution of the problem P �i�, �xi�1; obtain
	�� �xi�1�.

6. Go to 1 and repeat steps with new values of xi.

Therefore for a nonzero xi we can compute a lower
bound for KB from Eq. (4.24). In addition, from this
calculation we estimate the value of Km in Eq. (2.10)
(with 
 � 1) which is needed to maintain robust stability.

240 L.O. Santos, L.T. Biegler/Journal of Process Control 9 (1999) 233±246



In the next section we give two examples which illustrate
this approach.

5. Examples

In this section we apply the procedure of the previous
section to assess the robust stability properties of both
linear and nonlinear model predictive controllers. In
both cases we use the objective function Eq. (3.2) and
apply Eq. (4.23) as the su�cient robust stability con-
dition. Moreover, the constant KB is estimated using
Eq. (4.24) and the bounding procedure described
above.

5.1. First-order linear system

Consider an open-loop stable ®rst-order system
described by the following continuous-time model

_x � ÿ 1

�p
x� �p

�p
u �5:1�

where x is the state variable, u the control variable and
�p and �p are the process time constant and the gain
respectively. The operating steady-state point is the ori-
gin �x; u� � �0; 0�. For this example we set �p � 3 and
�p � 5. We introduce parametric mismatch by consider-
ing di�erent values of the plant gain (�p) from the model
(�m), and we set �m=�p. For the evaluation of KB we
note that for linear systems, the matrices in Eq. (4.11)
are independent of xi and these constants can be eval-
uated relatively cheaply. In this example, this constant
was estimated for several values of model mismatch.

Fig. 2(a) and (b) represent the evolution of states and
the respective control action from the MPC for various
negative and positive values of the model gain, respec-
tively. For the MPC, these pro®les are obtained using
output horizon lengths (p) and input horizon lengths
(m) of �p;m� � �15; 1�. The weighting matrices in the
cost function Eq. (3.2) are Q1k � 1 and Q2k � 0 and the
sampling time is �t � 1. Consequently, from Eq. (4.23)
we require that KB < 1 for robust stability.

With values of �m below 0:05578 and above
ÿ0:055975 the feedback system for the MPC controller
becomes unstable. Also, in this range of �m the constant
KB is greater than one and the su�cient condition for
robust stability [Eq. (4.23)] is not satis®ed. The corre-
sponding values of KB and of the modeling bound con-
stant in Eq. (2.10), Km, are presented in Table 1. Figs. 3±
5 show how KB and Km change with the parametric
mismatch on the gain and illustrate the e�ect of the
horizon lengths as well. In Fig. 3, notice that in the
range of positive values of �m the discontinuity of KB

versus �m coincides with appearance of the ringing
phenomenon in curves (f) and (e) in Fig. 2(b).

Fig. 2. (a)Plant open-loop and closed-loop responses for initial state

x0 � 5 and control moves for various values of the model gain,with

�p;m� � �15; 1�: (a) �m � ÿ0:17; (b) �m � ÿ0:157189; (c) �m � ÿ0:14.
(b) Plant closed-loop response for initial state x0 � 5 and control

moves for various values of the model gain, with �p;m� � �15; 1�: (d)
�m � 0:1; (e) �m � 0:0165; (f) �m � 0:015.
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We observe that the robustness of the closed-loop
system increases with the increase of p. Thus KB > 1 is
reached only for a bigger di�erence of �m from �p and
therefore the MPC controller is robust to a higher
degree of parametric mismatch (Fig. 3). On the other
hand, with a ®xed p � 15, the robustness of the system
deteriorates when the input horizon is increased from
one to two intervals (Fig. 5). Since the controller has
more degrees of freedom with m � 2, the control action
is more aggressive. With m > 2 the control pro®les are
very similar and the estimated KB over various values of
the model gain are identical to the m � 2 case.

The total user CPU time to obtain the pro®les of 20
samples in Fig. 1 and 2 varies from 9s [case �d�] to 18s
[case �a�], on a Sun SPARCstation 10 to solve all of the
NLPs related to Eq. (4.24). In particular, to estimate
the constant KB for a given xi, the total user CPU time

is 2.7s for the case with �p;m� � �15; 1� and 4.2s for the
case with �p;m� � �25; 1�. These times are quite modest
especially as o�ine calculations.

5.1.1. Stable model/unstable plant and vise-versa

We consider now the case in which either the plant or
the model are open-loop unstable by switching the sign
on the ®rst term of the right hand side of Eq. (5.1). The
results obtained are given in Table 2. Fig. 6 shows
closed-loop response of the cases given in Table 2, with
horizons �p;m� � �25; 1�. From the four con®gurations
only the ®rst one is closed-loop unstable, and therefore
KB > 1. Cases III and IV are perfect model cases, thus
KB � 0. Although for the case II KB is also greater than
one because the model is open-loop unstable, the
resulting feedback system is still stable. This is con-
sistent with the fact that the condition KB < 1 is a su�-
cient but not necessary condition for stability. Here the
control action is initially much stronger than in case IV,
thus driving the state to the origin faster. Also, since the
model is unstable, increasing p leads to higher values of
KB.

To obtain the pro®les of twenty samples in Fig. 6, the
total user CPU time varies from 20s (case III) to 26s

Table 1

Values of the su�cient condition stability [Eq. (4.23)] constant, KB,

and of the modeling bound constant in Eq. (2.10), Km, for di�erent

parametric mismatch cases and with �p;m� � �15; 1�
Curve (a) (b) (c) (d) (e) (f)

�m ÿ0.17 ÿ0.157189 ÿ0.14 0.1 0.0165 0.015

Km 0.17710 0.19076 0.21302 0.27543 1.71736 1.89005

KB 0.89491 0.97128 1.09794 1.04101 0.47796 1.44454

Fig. 3. Variation of the constant bound in Eq. (4.23), KB, in function

of the model gain (�m) for various output horizons, with m � 1.

Fig. 4. Variation of the modeling bound in Eq. (2.10), Km, in function

of the model gain (�m) for various output horizons, with m � 1.

Fig. 5. Variation of the constant bound in Eq. (4.23), KB, in function

of the model gain (�m) for various input horizons, with p � 15.

242 L.O. Santos, L.T. Biegler/Journal of Process Control 9 (1999) 233±246



(case I). Table 3 shows total user CPU time to estimate
KB for a given xi with horizons �p;m� � �25; 1� and
�100; 1�.

5.2. SISO nonlinear system

We now consider an open-loop stable example to
illustrate the calculation of the modeling bounds Km

and to verify the su�cient stability condition Eq. (4.23).
The example is a SISO nonlinear system modeling an
ideal CSTR with a ®rst order reaction A! B, and with
temperature and volume constants. The behavior of the
system is described by a nonlinear equation derived
from the component A mass balance, given by:

dCA

dt
� Fi

V
�CAi ÿ CA� ÿ k0e

ÿEa

RT
CA �5:2�

The data for the operating conditions and reactor
design parameters are taken from a Van de Vusse reac-
tion example cited in several studies (e.g. [29]). The
nomenclature and nominal values for the parameters
and variables are given in Table 4. The control objective
is to keep CA constant by manipulating the feed rate Fi.

To introduce error mismatch in the model we select
di�erent values for the model parameters such that
there is no steady-state zero o�set. In this example at
least two parameters of the model must be changed such
that the input and state variables are the same for both
the plant and the model. Here we introduce mismatch
on the dynamic behavior of the system by selecting dif-
ferent values of V and k0 for the plant (subscript p) and
for the model (subscript m) such that

�Vk0�m � �Vk0�p �5:3�

This eliminates the steady state mismatch and satis®es
the assumptions made in Section 2. We therefore intro-
duce modeling errors by setting �k0�m � 1

� �k0�p, with
� 2 �0; ��, � > 0, and from Eq. (5.3) it follows that
�V�m � ���V�p.

Fig. 7 shows the open-loop response for various �.
Here CAn

is dimensionless CA and x0=CAn
ÿ CAn;sp,

where CAn;sp�1 is the setpoint. Note that � � 1 corre-
sponds to a perfect model case. With � < 1 the model
response is faster than the plant response and for � > 1

Table 2

Values of the su�cient condition stability [Eq. (4.23)] constant, KB, and of the modeling bound constant in Eq. (2.10), Km, for di�erent pairs

unstable/stable plant/model with horizons �p;m� � �15; 1�; �25; 1�; �35; 1�and�45; 1�
Case Open-loop response KB for di�erent p with m � 1 Closed-loop

Model Plant p=15 p=25 p=35 p=45 p=100
feedback-system

I Stable Unstable 2.28 2.46 2.49 2.49 2.49 Unstable

II Unstable Stable 5.45 10.84 16.65 22.56 55.21 Stable

III Unstable Unstable 0.00 0.00 0.00 0.00 0.00 Stable

IV Stable Stable 0.00 0.00 0.00 0.00 0.00 Stable

Fig. 6. Plant closed-loop response for initial state x0 � 5 with

�p;m� � �25; 1� and for the following cases: (I) stable model and

unstable plant; (II) unstable model and stable plant; (III) unstable

model and plant; IV) stable model and plant.

Table 3

Total user CPU time to estimate KB for a given xi

Case Open-loop response CPU (s) with m � 1

Model Plant p=25 p=100

I Stable Unstable 4.3 13.5

II Unstable Stable 3.5 22

III Unstable Unstable 3.3 21

IV Stable Stable 4 12
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it is slower. The system is always open-loop stable for
the range of � values we use in this study, � 2 �0:25; 4�.

In this simulation the weighting matrices in Eq. (3.2)
are Q1;k � I and Q2;k � 0 over the horizon p and the
sampling interval is �t � 0:005 h. Since we do not con-
sider constraints on the variables over the predictive
horizon, negative values for the control variable can be
obtained from solving the optimization problem. To
overcome this di�culty we introduce a simple smooth-
ing technique [30] by adding the following equation to
both the plant and model simulation frameworks.

Fi � maxf0; ug � �u
2 � "2�12
2

� u

2
�7�

where u is the solution from the optimization problem
and " � 0:001.

Again, the relation KB < 1 is su�cient for robust
stability. To estimate the values of Km and KB we solve
NLP problems o�-line as stated at the end of Section 4,
for di�erent values of � (�=0:25; 0:50; 2:0; 3:0 and 4:0).

We vary x0 by 0:25 from ÿ1 to 9. In this range of �
the MPC controller is always stable either with KB less
or greater than one. This is consistent with our analysis
as the condition KB < 1 is su�cient but not necessary
for stability. Fig. 8 shows pro®les of KB and Km with
�p;m� � �15; 1�. We observe that when the model has a
slower response than the plant (� > 1), KB increases with
x0. In this case the value of KB for the given mismatch, is

Table 4

Variables and steady state values of the example model

CA Concentration of A 1.3829 mol/l

CAi Feed concentration of A 5.1000 mol/l

Fi Feed rate 0.1883 m3/h

T Reactor temperature 407.29 K

V Reactor volume 0.0100 m3

Ea=R Energy of activation =R 9758.3 K

k0 Arrhenius constant 1.287�1012 hÿ1

Fig. 7. Open-loop response for various values of �.
Fig. 8. Variation of KB and Km with the initial state x0 for various �,
with �p;m� � �15; 1�.

Fig. 9. Variation of KB with the initial state x0 for various p, with

m � 1 (left), and for various m, with p � 20 (right), with � � 3.
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obtained from (Eq. (4.24)). Also, as � increases the KB

pro®le terminates for smaller values of x0. The reason is
that as � increases it is more di�cult to ®nd a solution
that satis®es the terminal constraint [Eq. (3.5)], thus
leading to a controller failure.

Fig. 9 shows the e�ect of p and m when � � 3. Here
the closed-loop system is also stable. Nevertheless, a
solution may not exist if the output horizon is too short,
and it becomes more di�cult to converge to a solution
as we increase the value of m. The total user CPU time
to obtain some of the pro®les of KB in Fig. 8 and 9 is
indicated in Table 5 (the runs were made on a Sun
SPARCstation 10). Again, these times are quite modest
especially as o�ine calculations.

6. Conclusions

We develop a strategy based on nonlinear program-
ming sensitivity that determines conditions under which
the MPC is robustly stable with respect to modeling
errors. Here, a su�cient condition for robust stability is
derived and an o�ine procedure is developed to evalu-
ate constants which determine su�cient conditions for
this property. These constants are available from
bounds on the model mismatch and from the NLP
solution of the receding horizon model. This procedure
is applicable to both linear and nonlinear model pre-
dictive controllers in discrete time that satisfy nominal
stability properties based on Lyapunov arguments. Two
small examples, one linear and one nonlinear, are pre-
sented to demonstrate the e�ectiveness of this approach.

As future work, we will demonstrate the application
of this approach to more challenging multivariable
nonlinear process models and plants. Also considering
the fact that the prediction horizon needs to be long
enough to insure existence of a feasible trajectory, we
will consider a more detailed analysis of the existence
problem. Moreover, the extension of this analysis to
deal with modeling errors, the e�ect of disturbances,
and the output feedback case is currently under
development. Here a more general formulation with
plant/model mismatch at the steady state operating
point as indicated in Mayne [27] would be taken in
consideration.

Finally, this research will be extended to the incor-
poration of input and output constraints in the for-
mulation of P �i�. Robust stability of MPC with hard
constraints was considered by Za®riou [16] and Za®r-
iou and Marchal [17]; properties were developed for
linear systems using contraction arguments instead of a
Lyapunov approach. In future work, we will apply
penalty function formulations instead that extend the
analysis of this paper in a straightforward way. In par-
ticular, the use of exact penalty terms in the objective
function as in Oliveira and Biegler [18] will allow us to
evaluate the robust stability of constrained MPC con-
trollers directly. Hard constraints will also be con-
sidered as needed.
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