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Abstract

The identification and incorporation of quality costs and robustness criteria is becoming a critical issue while addressing
chemical process design problems under uncertainty. This article presents a systematic design framework that includes Taguchi
loss functions and other robustness criteria within a single-level stochastic optimization formulation, with expected values in the
presence of uncertainty being estimated by an efficient cubature technique. The solution obtained defines an optimal design,
together with a robust operating policy that maximizes average process performance. Two process engineering examples (synthesis
and design of a separation system and design of a reactor and heat exchanger plant) illustrate the potential of the proposed design
framework. Different quality cost models and robustness criteria are considered, and their influence in the nature and location of
best designs systematically studied. This analysis reinforces the need for carefully considering/addressing process quality and
robustness related criteria while performing chemical process plant design. © 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

At the design stage of a process system, decisions
have to be made in the presence of high uncertainty
level. For instance, equipment configuration and di-
mensions, and their operating conditions have to be
decided on the basis of an available process model,
whose parameters may be uncertain, and on external
information, which commonly exhibits a random
behavior.

Taguchi (1986) approach to quality engineering pro-
vides a robust design strategy aimed at determining
nominal settings for the design variables (parameter
design) and their associated tolerance limits (tolerance
design), in order to reduce process sensitivity to uncer-
tainty. The traditional Taguchi methodology, which is
based on running statistically designed experiments on
a process prototype, is not, however, directly applicable
to early process system design. On the other hand,

process design and optimization under uncertainty (Pis-
tikopoulos, 1995) offers a systematic optimization-
based vehicle to address process system design issues in
the presence of uncertainty. However, in most such
optimization studies, robustness issues are not explicitly
considered, although attempts to link robustness/qual-
ity engineering aspects to stochastic process design opti-
mization have begun to appear in the literature (Straub
& Grossmann, 1993; Diwekar & Rubin, 1994; Bernardo
& Saraiva, 1998; Samsatli, Papageorgiou & Shah, 1998;
Georgiadis & Pistikopoulos, 1999).

In this article, we introduce a systematic design
framework for process quality that embeds Taguchi’s
method and other robustness criteria within a stochas-
tic optimization formulation. Quality related con-
straints are relaxed and process robustness is
guaranteed through the explicit incorporation of ro-
bustness criteria in the optimization formulation, such
as penalty terms in the objective function and/or limits
on the variance of quality variables. With the relaxation
strategy mentioned above, feasibility tests are not re-
quired, and thus the objective function expected value
is obtained through integration over the entire uncer-
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tainty space. As a consequence, the original two-stage
optimization problem was transformed into a single-
level stochastic optimization formulation.

The computation of multiple integrals over the un-
certainty space is a critical numerical issue in stochastic
process design. Integration techniques applied so far to
this kind of problems include Gaussian quadrature and
stratified sampling techniques. In the first case, the
number of points where the integrand function need to
be evaluated increases exponentially with the integral
dimension (the number of uncertain parameters), mak-
ing the problem untreatable for a reasonably large
number of uncertain parameters (Pistikopoulos & Ier-
apetritou, 1995). On the other hand, sampling tech-
niques may be computationally more attractive, since
the number of points required does not necessarily
increase with the number of uncertain parameters.
However, even the most efficient sampling techniques,
such as the Hammersley sequence sampling (HSS) in-
troduced by Diwekar and Kalagnanam (1997a,b) re-
quire some hundreds of points to achieve a reasonable
accuracy.

At the numerical level, the present work employs a
cubature technique (Stroud, 1971) to compute the mul-
tiple integrals involved in the stochastic problem formu-
lation. When all uncertain parameters are normally
distributed, a specialized cubature formula is applied,
reducing significantly the number of points needed
when compared with other integration strategies, such
as product Gauss rules or efficient sampling techniques
(Bernardo & Saraiva, 1998).

The remaining parts of this paper are structured as
follows. First, the proposed mathematical problem for-
mulation, addressing process quality, is developed,
based upon a two-stage stochastic optimization frame-
work. Next, robustness criteria and their implementa-
tion are described in more detail. Finally, the proposed
formulation is illustrated through two chemical process
design examples (synthesis and design of a separation
system and design of a reactor and heat exchanger
system).

2. Stochastic formulation for process quality

The problem of process design under uncertainty can
be represented mathematically according to the follow-
ing general formulation:

max
d,z,x,y

f(d, z, x, u)

s.t. h(d, z, x, u)=0

g(d, z, x, u)50

gq(y, y*)50

d�D, z�Z, x�X, y�Y, u�U (1)

where d, z and x are the vectors of design, control and
state variables, respectively; y stands for the vector of
quality-related variables (usually a simple function of
state and control variables), with desired values y*, and
u represents the vector of uncertain parameters over the
domain U. The performance metric to be optimized is
defined by the scalar function f, the model equalities h
refer to process model equations (heat and mass bal-
ances, equilibrium relationships, etc.), the inequalities
gq reflect quality constraints and the inequalities g other
types of constraints.

Several approaches have been suggested to formulate
and solve problem (Eq. (1)), differing in how uncer-
tainty is handled, how an operating policy is selected in
the face of uncertainty and also in the design objective
considered. In the following paragraphs, we will briefly
discuss some of these different approaches, while at the
same time trying to clarify the assumptions that lie
behind our approach.

2.1. Uncertainty formulation

With respect to the way uncertainty is handled, three
different approaches can be stated, (i) scenario-based
approach (Grossmann & Sargent, 1978; Halemane &
Grossmann, 1983; Varvarezos, Grossmann & Biegler,
1992; Ahmed & Sahinidis, 1998); (ii) stochastic ap-
proach (among others, Pistikopoulos & Ierapetritou,
1995; Bernardo & Saraiva, 1998) and (iii) para-
metric approach (Acevedo & Pistikopoulos, 1996, 1997;
Pertsinidis, Grossmann & McRae, 1998).

In the scenario-based approach, the uncertainty do-
main U was approximated by a set of discrete scenarios
(periods) with a given probability and, as a result, the
original problem (Eq. (1)) was transformed into a mul-
tiperiod optimization problem. In the stochastic ap-
proach, uncertain parameters were assumed to follow a
given joint probability density function (PDF) and an
expected average criterion was optimized via a stochas-
tic optimization strategy. In the parametric approach,
no assumption was made about the uncertainty model
and problem (Eq. (1)) was solved parametrically in the
space of the uncertain parameters. The resulting solu-
tion was itself a function of the uncertain parameters
realizations, providing a full map of the optimal deci-
sions over the uncertainty domain considered. The for-
mulation presented in this article follows a stochastic
approach, defining the uncertainty domain U as a prob-
abilistic space of the form U={u :u� j(u)}, where j is a
joint PDF for the random vector of uncertain parame-
ters u, which may be related or mutually independent.

2.2. Operating policy

The selection of an operating policy in the presence
of uncertainty is another issue to be considered when
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addressing problem (Eq. (1)). Several approaches are
possible, the most conservative one being to assume
fixed setpoints for the control variables, regardless of
operation information that is available. Under this
perspective, both design and control variables are
treated as ‘here-and-now’ decisions that remain con-
stant during process operation. The work by Diwekar
and Rubin (1994), Bernardo and Saraiva (1998) can be
included in this category, but with the additional fea-
ture that control variables are taken as random vari-
ables following a certain PDF.

The two-stage approach, on the other hand, relies on
the assumption of perfect information and control: the
design variables are considered ‘here-and-now’ deci-
sions, while the control variables are ‘wait-and-see’
decisions, whose setpoints can be optimally adjusted to
uncertainty during operation, according to observed
values (among others, Grossmann, Halemane &
Swaney, 1983; Pistikopoulos & Ierapetritou, 1995).

While the ‘here-and-now’ approach is conservative,
the two-stage approach is rather optimistic. The differ-
ence between them quantifies the value of perfect
information regarding uncertainty (Ierapetritou, Pis-
tikopoulos & Floudas, 1996). A more realistic approach
should fall somewhere between these two extreme ap-
proaches, selecting an operating policy that makes use
of plant data through available supervisory control
systems. The work by Bhatia and Biegler (1997) points
in this direction by considering that available informa-
tion about uncertainty is subject to an assumed feed-
back control law relating state and control variables.
Our formulation in this article is based on the two-stage
approach, but in the future we intend to define a more
effective formulation, taking into account which infor-
mation is (or should be) available during plant opera-
tion.

2.3. Design objecti6e

Recent literature on process design under uncertainty
has mainly focused on the concept of stochastic flexibil-
ity, defined as the probability of feasible process opera-
tion under the presence of uncertainty (Pistikopoulos &
Mazzuchi, 1990; Straub & Grossmann, 1990). The de-
sign objective considered is either to achieve an optimal
degree of feasibility/flexibility subject to a maximum
investment cost (Straub & Grossmann, 1993), or to
maximize an expected economic objective, while simul-
taneously measuring design feasibility (Pistikopoulos &
Ierapetritou, 1995). In our formulation, the design ob-
jective integrates process profitability and quality, incor-
porating Taguchi loss functions and other robustness
criteria in a stochastic formulation. By process quality
we refer here to a wide concept that may cover product
quality, environmental issues, safety, risk, hazards or
any other relevant concerns, through an overall inte-
grated process analysis.

Before discussing the incorporation of robustness/
quality issues in our formulation, we will look into the
two-stage stochastic formulation, assuming average
process performance as the design objective.

Design stage: max
d

ERn(d){ f %(d, u)}

d�D, u�U

Operating stage: f %(d, u)=max
z,x,y

f(d, z, x, u)

s.t. h(d, z, x, u)=0

g(d, z, x, u)50

gq(y, y*)50

z�Z, x�X, y�Y (2)

The design variables are selected in the first (design)
stage and remain fixed in the second (operating) stage,
where the goal is to determine an optimal vector of
control variables z for each possible realisation of the
uncertain parameters u lying within the corresponding
feasible region Rn(d):

Rn(d)={u�U �×(z, y, z):h(d, z, x, u)=0

�g(d, z, x, u)50�gq(y, y*)50} (3)

The expectancy operator E over the region Rn is
defined as the following n-dimensional integral, where n
is the number of uncertain parameters and f a general
scalar function:

ERn(d)( f )=
&

Rn(d)

f(u)j(u) du (4)

The above formulation considers both sets of con-
straints (g and gq) as hard constraints that must always
be verified, with process stochastic flexibility (SF) being
defined as the probability that these constraints are
satisfied. On the other hand, Taguchi’s approach to
quality engineering allows quality variables to take any
value in face of uncertainty, penalizing deviations from
a given target value, which is equivalent to consider
quality constraints gq as soft constraints. To clarify the
difference between these two perspectives, let us con-
sider the constraint yL5y5yU. Taguchi’s perspective
is continuous, considering that a process can operate
with y outside the interval [yL; yU], although leading to
high quality cost, since there are deviations from an
optimal target value y* for which the quality cost is
zero (Fig. 1). The hard constraint perspective is differ-
ent and binary, considering infeasible operation outside
the interval [yL; yU] (infinite quality cost) and feasible
operation with zero quality cost inside it (Fig. 1). If the
quality variable y is, for instance, a product stream
composition, Taguchi’s perspective will in general
provide a better representation. In fact, under a realistic
scenario, the process will still operate, even if product
composition is outside the so-called ‘feasible’ region
(yL5y5yU), and it is likely for quality to decrease
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gradually as one moves away from y*. However, for
situations where namely market demands or safety
constraints translate into well-defined specification in-
tervals, a mathematical representation in the form of
hard constraints may be also needed.

Since our main goal here is to include robustness
aspects within a generic process design framework, our
formulation basically follows the Taguchi’s gradual
perspective, although hard robustness constraints can
also be added to the problem formulation, as we will
see later on. Thus, the explicit treatment of hard con-
straints of the form g(d, z, x, u)50 is not addressed by
our formulation, although that is possible by adopting
a decomposition approach in order to evaluate the
feasible region (Eq. (3)) (Pistikopoulos & Ierapetritou,
1995).

According to the above discussion, our formulation
is constructed relaxing hard quality constraints gq in
Eq. (2) and replacing them by corresponding Taguchi
loss functions. If one further assumes that all the con-
straints leading to infeasibility in the inner optimization
problem can be treated as quality constraints, the inte-
gration region Rn becomes the entire uncertainty space
U, and the expectancy operator is then defined as:

EU( f )=
&

U

f(u)j(u)du (5)

From an engineering point of view, this is equivalent
to allowing for process operation under every possible
scenario of the uncertain parameters, even if quality
constraints are not met.

To account for process quality, two different types of
robustness criteria can be incorporated in formulation
(Eq. (2)), (i) a penalty term in the objective function,
i.e. a quality cost term, Cq, such as a Taguchi loss
function; and/or (ii) explicit restrictions over process
robustness metrics, such as the variance of a quality
related variable. In the first case, the penalized objective
function is redefined as:

fq(d, z, x, y, y*, u)= f(d, z, x, u)−Cq(y, y*) (6)

In the second case, a general robustness metric is
defined as a function r of the statistical moments my of
the quality variable y, with the following constraint
being added to the problem formulation:

r(my)5g (7)

The statistical moments my are easily obtained using
the expectancy operator. The first three moments, mean
(my), variance (sy

2) and skewness (jy), are given by:

my=EU(y)

sy
2=EU{(y−my)2}

jy=EU

!�y−my

sy

�3"
(8)

As an example, the overall two-stage stochastic for-
mulation for process quality, using variance as robust-
ness metric, becomes as follows:

Design stage: max
d

EU{ f %q(d, u)}

s.t. EU{(y %−my)2}5g, my=EU(y %)

d�D, u�U

Operating stage: f %q(d, u)=max
z,x,y

fq(d, z, x, y, y*, u)

s.t. h(d, z, x, u)=0

g(d, z, x, u)50

y %=y

z�Z, x�X, y�Y (9)

The formulation for other robustness metrics can be
easily obtained using the appropriate Eq. (8) to com-
pute r(my).

The expectancy operator can be approximated using
an integration formula over the uncertainty space, with
a grid of Np points ui and the corresponding weights wi

(which reflect the value of the joint probability density
function j(ui)):

EU( f )=
&

U

f(u)j(u) du$ %
Np

i=1

wi f(ui) (10)

The two-stage formulation (Eq. (9)) may be then
simplified to a single-level optimization problem:

max
d,zi,xi,yi

%
Np

i=1

wi fq(d, zi, xi, yi, y*, ui)

s.t. %
Np

i=1

wi(yi−my)25g, my= %
Np

i=1

wi yi

h(d, zi, xi, ui)=0

g(d, zi, xi, ui)50

d�D, zi�Z, xi�X, yi�Y

i=1, …, Np (11)
Fig. 1. Quality cost models accordings to (a) Taguchi’s perspective
and (b) hard constraint perspective.
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Table 1
Taguchi loss functions

Example of a quality variableLoss function

(L1) Nominal-the-best Cq(y, y*)=k(y−y*)2, same k for Product stream with a target composition y*
all y(symmetric)
Cq(y, y*)=k(y−y*)2; k=k1, if Product stream with minimum purity requirement y* (k2=0)(L2) Nominal-the-best

(asymmetric) yBy*; k=k2, if y]y*
Cq(y, y*)=k(y−y*)2; k=k1, if(L3) Larger-the-better Product stream purity with maximum possible value y*
yBy*; k=0, if y]y*

Concentration of a pollutant in a waste stream where the minimum(L4) Smaller-the-better Cq(y, y*)=k(y−y*)2; k=0, if
yBy*; k=k2 if y]y* concentration that can be achieved is y*

This formulation has the advantage of keeping the
structure of the corresponding deterministic problem,
and therefore, if both the deterministic problem and
r(my) are convex (which is the case for r(my)=sy

2), the
resulting stochastic problem of the form (Eq. (11)) is
also going to be convex.

The number of points in the integration formula, Np,
is the critical factor that determines the computational
effort required to solve problem (Eq. (11)) and thus
adopting an efficient integration technique is crucial. In
the Appendix A, we present a cubature formula, espe-
cially constructed for the case where all uncertain
parameters are normally distributed, that requires a
significantly smaller number of points when compared
with product Gauss formulae. However, there are prob-
lems for which the number of points needed is still
significant, leading to computational complexity associ-
ated with the direct solution of problem (Eq. (11)). In
these cases, a decomposition approach can be advanta-
geous, transforming, for a fixed design, the original
large problem in a sequence of smaller problems for
each integration point (although in this case constraints
r(my)5g cannot be considered as such). Recent ad-
vances in directly solving problem (Eq. (11)) have been
reported by van den Heever and Grossmann (1999).

The optimal solution of problem (Eq. (11)) defines
the best design d*, together with a robust operating
policy Z*, under the assumption of perfect information
and control. This solution corresponds to the best
average process performance that can be achieved con-
sidering the robustness criteria imposed in the problem
formulation. General trade-offs between process ro-
bustness and profitability can be established by varying
the weight of the quality cost, Cq, or the value of the g

parameter.
Although the optimal solution found does not give

complete information about the output probability dis-
tributions, approximate PDFs for each quality variable
can be obtained using the statistical moments estimates
(Eq. (8)). The approximation presented by Tørvi and
Hertzberg (1997) provides a truncated series based on a
normal distribution whose coefficients are a function of
the statistical moments for the real probability distribu-

tion. Computed the first three moments, the approxi-
mate PDF is given by:

p̃(y)=
1


2psy

e−u2/2�1+
jy

6
(u3−3u)

n
u=

y−my

sy

(12)

3. Robustness criteria

The formulation presented so far in this article ad-
dresses quality related issues by means of two different
strategies, penalization of the objective function
through Taguchi loss functions and/or explicit con-
straints assumed over certain robustness metrics.

3.1. Taguchi loss functions

Taguchi loss functions are models that express the
loss of quality when a variable y deviates from its
desired value y* (Phadke, 1989). The most common
one is the quadratic loss function, that considers the
quality cost, Cq, to be proportional to the square of the
deviation of y from its desired value y*:

Cq(y, y*)=k(y−y*)2 (13)

The constant of proportionality, k, is designated as
quality loss or penalty coefficient, and must be esti-
mated based on economic considerations.

The quadratic loss function (Eq. (13)) is sufficiently
flexible to account for different situations in quality
engineering. Table 1 presents four kinds of loss func-
tions based on the quadratic form (Eq. (13)), together
with relevant application examples.

The nominal-the-best loss function penalizes both
positive and negative deviations from the desired value
y* (Fig. 1), and therefore, can be used, for instance, to
evaluate the quality level of a product stream with a
certain target composition y*. When it is desirable to
penalize deviations in different ways, an asymmetric
loss function can be used, by assuming k=k1, if yBy*,
and k=k2, otherwise. If k2=0, we have a one-sided



F.P. Bernardo et al. / Computers and Chemical Engineering 25 (2001) 27–4032

loss function, well suited to quantify quality losses
referring, for instance, to a product stream with a
certain minimum purity requirement y*.

In Phadke (1989) different forms of loss functions
can be found for the larger-the-better and smaller-the-
better types, based on the assumptions that the desired
value for y is, respectively, � and 0. Since these as-
sumptions are not usually applicable in many process
engineering problems, we also consider quadratic loss
functions for such cases. Under this formulation, in the
larger-the-better situation y* stands for the maximum
possible value for the quality variable that may be
reached (Saraiva, 1993), and all the scenarios for which
yBy* are penalized; in the smaller-the-better loss func-
tion, y* represents the minimum possible value that one
can achieve.

The incorporation of a loss function like (L1) in
formulation (Eq. (11)) is straightforward, without intro-
ducing any sort of discontinuities. The implementation
of an assymetric loss function, like (L2), (L3) or (L4),
needs to be addressed more carefully, because although
the loss function and its derivative are continuous, they
are defined in a discontinuous way. To handle this
problem, we could introduce binary variables for each
scenario to decide whether or not yi is lower than y*.
This strategy would, however, increase drastically the
complexity of the optimization problem, since the num-
ber of binary decision variables would be equal to
dim(y)×Np. An alternative consists of including the
following formulation to switch between k1 and k2, with
the additional variables ki and li, i=1, …, Np (a similar
formulation was used by Bhatia and Biegler (1997) to
correct an operating policy in the presence of active
bounds for control variables):

Dyi=yi−y*

Cq,i=ki(Dyi)2

liDyi]0

liDyi]Dyi

05li51

ki= (1−li)k1+li k2

i=1, …, Np (14)

When yiBy*, the switching parameter li is equal to
0 and ki=k1; when yi\y*, li=1 and ki=k2. This
formulation has the disadvantage of being non-convex
and, in the case of yi=y*, there is no guarantee that
l=1.

In the case of a one-sided or a larger-the-better loss
function (k2=0), a more reliable and convex formula-
tion is possible:

Cq,i=k1(Dyi)2

Dyi]y*−yi (C1)

Dyi]0 (C2)

i=1, …, Np (15)

Since Cq is being minimized, when yBy*, (C1) is
active; otherwise, (C2) is active and therefore, the qual-
ity cost is zero. A similar formulation can be con-
structed for the case of a smaller-the-better loss
function (k1=0):

Cq,i=k2(Dyi)2

Dyi]yi−y* (C1)

Dyi]0 (C2)

i=1, …, Np (16)

3.2. Robustness metrics

Taguchi loss functions can describe the quality loss in
a wide range of situations, either by varying the penalty
coefficient k or by modifying the functional form of the
loss function considered. However, there are problems
in which it may be desirable to explicitly limit a given
robustness metric, instead of using a Taguchi loss func-
tion, or to use both criteria simultaneously. Table 2
presents three examples of robustness metrics that can
be applied to a quality variable, such as the purity of a
product stream.

Although a Taguchi loss function contributes to cen-
ter a quality variable PDF around the desired value y*,
we may want to directly consider the mean value of
that variable. In these cases, a minimum mean criterion
may be used. The maximum variance criterion can be
useful in a broad scope of situations; in two-stage
planning problems, for instance, operational robustness
can be guaranteed by limiting the variance of second-
stage cost (Ahmed & Sahinidis, 1998); another situation
arises when a one-sided loss function is used (the vari-
ability in the region y]y* is not penalized, and there-
fore, it may be convenient to explicitly restrict the
variance of y).

As was discussed, Taguchi’s approach to quality
engineering is based on a continuous view of quality
loss related with the values assumed by quality vari-
ables. Imposing bounded hard constraints on quality

Table 2
Robustness metrics

Robustness metric Constraint r(my)5gRobustness criterion

my]mminMean Minimum mean
Variance Maximum variance sy

25smax
2

	ymin
−� p(y)dy5qq Quantile Minimum q quantile
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variables may lead to overdesigns, because they may
behave as continuous random variables with p(y)\0,
Öy�Y. Therefore, it may be more appropriate to as-
sume constraints on the variable quantiles (Table 2).

The minimum mean and maximum variance criteria
are easily implemented using Eq. (8) to compute the
mean and variance and the integration formula (Eq.
(10)) to approximate the expectancy operator. The
criterion of minimum q quantile for the output PDF
p(y) is more difficult to implement in a rigorous way,
since the corresponding constraint involves the cumula-
tive distribution of y. However, if p(y) is not very far
from a normal distribution, the criterion can be ap-
proximately implemented using the constraint my+
zsy]ymin. The normal deviation z is such that
N(z)=q, where N is the cumulative PDF for the
standard normal distribution (m=0 and s=1). The
effectiveness of this approximate implementation
should be tested a posteriori by evaluating the ‘true’
cumulative probability:

p(y5ymin)=
& ymin

−�

p̃(y) dy (17)

with the approximate PDF p̃(y) being given by Eq.
(12).

4. Applications

In this section, we illustrate the usefulness of the
proposed stochastic formulation for process quality by
considering two process engineering examples — syn-
thesis and design of a separation system and design of
a reactor and heat exchanger system. We will perform
different analysis in the two examples in order to
illustrate different features and capabilities of the pro-
posed design framework.

4.1. Synthesis and design of a separation system

The problem addressed here is a variation of the
synthesis and design problem considered previously by
Ierapetritou (1995). The superstructure shown in Fig. 2
considers a separation system including three possible
configurations (flash drum, distillation column or flash
drum and distillation column in parallel), as well as
bypass streams. The goal was to select the best separa-
tion scheme to be used in the presence of parameter
uncertainty. The feedstream (F1) of two components (A
and B) must be separated into two product streams (P1
and P2) with minimum purity requirements of 78% of
A in product P1 and 70% of B in product P2. The
mathematical model considered is presented in Table 3
and the values of its deterministic parameters reported
in Table 4. The objective function (before penalty)
assumed is profit, given by the difference between rev-

Fig. 2. Separation process superstructure.

enue due to product sales and plant overall cost (invest-
ment plus operating costs).

The model considered here includes five uncertain
parameters (Table 5) described by normal distributions
N(mj, sj). The corresponding joint normal PDF is de-
noted by N(m, S), where m stands for the vector of
means and S for the covariance matrix. Assuming all
uncertain parameters to be mutually independent, ma-
trix S becomes equal to the variance matrix, V (diago-
nal matrix with the variances as diagonal elements).
This uncertainty space can be integrated using the
specialized cubature SC5,1, which for five uncertain
parameters leads to only Np=2×5+25=42 points,
ui. The cubature points in the uncertainty space are
obtained through the transformation Eq. (A.7).

The synthesis and design problem can now be formu-
lated as a single-level optimization problem of the form
Eq. (11), where the quality constraints are not included.
Binary decisions, together with the diameters of the
flash drum and column, are the design variables, d=
{yF, yD, DF, DC}, while the split fractions stand as
control variables, z={S1, S2, S3, S4}, that can be
optimally adjusted to uncertainty during operation. The
quality variables are the compositions of products 1
and 2 in components A and B, y={xA, xB}, with
desired values y*={0.78; 0.70}. This problem can be
convexified by using the substitutions dF=DF

2 , dC=
DC

2 , and redefining the quality variables as follows:

y1=P1A−
0.78
0.22

P1B, y1*=0

y2=P2B−
0.7
0.3

P2A, y2*=0
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Table 3
Separation system mathematical modela

F2A=S1F1ASplit mass balances F2B=S1(F1−F1A)
F8A=S2F1A F8B=S2(F1−F1A)

F9B=S3(F1−F1A)F9A=S3(F1−F1A)
F3B=S4(F1−F1A)F3A=S4F1A

05S45yC05S15yF

S1+S2+S3+S4=1
F4B= (1−kB)F2BF4A=0.75F2AFlash mass balances
F5B=kBF2BF5A=0.25F2A

F6B=0.125F3BF6A=0.825F3ADistillation column mass balances
F7B=0.875F3BF7A=0.175F3A

P1B=F4B+F6B+F8BP1A=F4A+F6A+F8AMixers mass balances
P2B=F5B+F7B+F9BP2A=F5A+F7A+F9A

Design equations
DF

2]
1.27M(F4A+F4B)

456rV DC
2]

1.27M(F3A+F3B)

356rV

6=0.064
(rL−rV)/rV

2.2yC5DC55.5yC2.2yF5DF55.5yFSize restrictions
P1A−(0.78/0.22)P1B]0Quality constraints P2B−(0.7/0.3)P2A]0
Profit=Pr1(P1A+P1B)+Pr2(P2A+P2B)Objective function
− (20yF+2DF

2+50yC+DC
2 (0.3Np+2))

− (CFF1+0.2(F2A+F2B)+2.5(F3A+F3B))

a Variables — yF, yC, binary variables representing the existence (or not) of the flash tank and column, respectively; DF, DC, diameters of flash
tank and column, respectively (m); S, split fractions; F and P, flowrates.

To account for process quality, the problem was
solved considering three different robustness criteria,
(R1), nominal-the-best Taguchi loss function; (R2),
one-sided loss function; and (R3), one-sided loss func-
tion plus maximum standard deviation (S.D.) for both
quality variables. For all of the above scenarios, the
global formulation is convex with loss function and
additional constraints as follows:

Cq,i=k(y1,i
2 +y2,i

2 ) (R1)

Á
Ã
Ã
Í
Ã
Ã
Ä

Cq,i=k1[(Dy1,i)2+ (Dy2,i)2]

Dy1,i]−y1,i

Dy2,i]−y2,i

Dy1,i]0

Dy2,i]0

(R2)

Á
Ã
Í
Ã
Ä

(R2)
s(y1)50.5
s(y2)50.5

(R3)

For the sake of simplicity, we are assuming equal
penalty coefficients for both products, although differ-
ent values might also be addressed, favoring the quality
of one product when compared with the other.

Table 6 shows the results for k=k1=64, obtained
using GAMS/(CONOPT2,OSL) as optimization rou-
tines (Brooke, Kendrick & Meerans, 1992). As we can
see, process performance in terms of product quality
depends on the imposed robustness criteria. A nominal-
the-best loss function leads to a solution centered
around the desired values together with a low variabil-

ity. The one-sided penalty allows process operation for
a wider region, resulting in a less conservative solution,
with higher associated profit. The variability of both
products’ composition is now greater, especially in the
case of xB, since its PDF is located in the region of no
penalization. With criterion (R3), the S.D. of xB is
reduced from 0.0382 to 0.0096, with a modest decrease
in the expected profit. The substantial increase in the
CPU time is due to the additional constraints imposed
on xA and xB S.D., that add a new dense region to the
optimization problem matrix, which was originally
sparse.

General trade-offs between expected profit and qual-
ity requirements can be established by solving the prob-
lem parametrically in terms of the penalty coefficient.
In Fig. 3, expected profit and optimal values for the

Table 4
Deterministic parameter values

F1 33Feed flowrate
Molecular weightM 92

rL Liquid density of the feed 883
Vapor density of the feedrV 3
Velocity of vapor phase in drumsV 1.10

Np Number of plates in the column 20

Table 5
Uncertainty model

Flowrate of A in the feedstreamF1A N(15, 0.667)
Separation constant of B in the flash tankkB N(0.84, 0.1)
Price of product P1Pr1 N(75, 1.25)
Price of product P2Pr2 N(55, 1.25)

N(8, 0.5)Cost of feedCF
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Table 6
Results for different robustness criteria

(R2) k1=64(R1) k=64 (R3) k1=64

15651491 1523E (profit)a

(1,1)(yF, yC) (1,1)(0,1)
3.015– 3.194DF (m)

4.635DC (m) 4.388 4.849
0.77780.7778 0.7778m(xA)
0.0020s(xA) 0.00180.0011
0.79370.7000 0.7708m(xB)

s(xB) 0.0022 0.0382 0.0096
85.664.7 389.1CPU (s)

a Including penalty term. Fig. 4. Normalised quality costs vs. penalty coefficient.

flash and column diameters are represented as a func-
tion of the penalty coefficient k, for the case of criterion
(R1). As the penalty coefficient becomes larger, ex-
pected profit decreases, with a discontinuity that corre-
sponds to a change in the binary optimal decisions,
while investment costs also become larger (except for
the higher k values in the ‘only flash’ region).

The corresponding improvement in product quality
can be seen in Fig. 4, where normalized quality costs
are plotted as a function of the penalty coefficient —
normalized quality cost associated with product A,
CqA/k ; product B, CqB/k ; and total normalized quality
cost, Cq/k. As can be seen, the decrease in Cq/k is
mainly due to a decrease in the normalized quality cost
associated with product A, meaning that the xA PDF is
critical to overall quality achievement. In the ‘only
flash’ region, although a slight increase in CqB/k can be
observed, the total normalized quality cost is always
decreasing, indicating an improvement of overall
quality.

In Fig. 5, the mean and S.D. estimates obtained for
both products are represented as a function of the
quality loss coefficient. As it increases, the mean value
of both products’ composition moves in the direction of
the corresponding target values y*={0.78, 0.70}. In
the ‘only flash’ region, the xA S.D. increases, which at
first sight could indicate a decrease in product A related

quality. However, as discussed in the previous para-
graph, this is not the case; the S.D. increase is compen-
sated by a large mean value increase, resulting globally
in smaller A quality costs. In the ‘only column’ region,
the mean value of product B composition remains
practically constant and equal to the 0.70 target value
meaning that in this region quality improvement re-
garding B is only due to a reduction of xB S.D.

4.2. Design of a reactor and heat exchanger system

Fig. 6 presents a flowsheet consisting of a reactor and
a heat exchanger, where a first order exothermic reac-
tion A�B takes place (Halemane & Grossmann, 1983;
Chacon-Mondragon & Himmelblau, 1996). The goal
here is to determine the optimal design (reactor volume,
V, and area of the heat exchanger, A) for a minimum A
conversion of 0.9, under the presence of parameter
uncertainty. Table 7 describes the system mathematical
model, including mass and heat balances, process con-
straints and quality specifications, while deterministic
parameter values are shown in Table 8. The objective
function (before penalty) considered is the total plant
annual cost including investment and operating costs.

Uncertainties in this case include five parameters
(Table 9), described by a normal distribution N(m, S),
where m is the vector of means and S the corresponding
covariance matrix. Uncertainty associated with parame-
ter j is described using the notation mj(19oj), j=1, …,
n, where oj is the relative error around the mean value,
mj ; S.D. is such that p [mj(1−oj)5uj5mj(1+oj)]=
0.998 and thus sj=ojmj/3.09. For instance, the feed
flowrate has a relative error of 20% around its mean
value of 45.36 kmol h−1; and therefore, its S.D. is
s(F0)=0.20×45.36/3.09=2.936 kmol h−1.

The feed temperature, T0, and the cooling water inlet
temperature, Tw1, are assumed to have a positive corre-
lation of 0.7. The covariance matrix is then given by
S=V1/2rV1/2, where V stands for the variance matrix
and r for the correlation matrix:

Fig. 3. Expected profit and optimal flash and column diameters vs.
penalty coefficient.



F.P. Bernardo et al. / Computers and Chemical Engineering 25 (2001) 27–4036

Fig. 5. Mean (a) and S.D. (b) of the quality variables vs. penalty
coefficient.

Fig. 6. Reactor and heat exchanger system.

and y=xA, with a minimum acceptable value of y*=
0.9. Three different robustness criteria were then
adopted, (R4) one-sided loss function; (R5) one-sided
loss function plus maximum S.D. for xA and (R6)
one-sided loss function plus minimum 0.05 quantile for
xA. The loss functions and additional constraints corre-
sponding to each case are:

Cq,i=k1(DxA,i)2

DxA,i]0.9−xA,i (R4)

DxA,i]0

(R5)

s(xA)5smax (R5)

(R6)

m(xA)−1.65s(xA)]xA,min (R6)

where it should be noted that criterion (R6) was imple-
mented in an approximate way, since the deviation
value of z=1.65 is based on a xA normal distribution.

Table 10 shows the results obtained for particular
values of k1, smax and xA,min, using GAMS/CONOPT2
as optimization routines. One can examine the price
‘paid’ for when additional quality requirements that
correspond to criteria (R5 and R6) are considered —

Í
Ã

Ã

Á

Ä

r=

Æ
Ã
Ã
Ã
Ã
Ã
È

1 0 0 0 0

0 1 0.7 0 0

0 0.7 1 0 0

0 0 0 1 0
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Once again, integration over the uncertainty space
was performed using the specialized cubature formula
SC5,1 with 42 points, ui, and corresponding ui points in
the uncertainty space obtained according to Eq. (A.7).

The design problem can now be formulated as a
single-level optimization problem of the form (Eq.
(11)), excluding the quality constraint xA]0.9, with the
variables classified as follows: d={V, A}, z={F1, Fw}

Í
Á

Ä

Í
Á

Ä

Table 7
Reactor and heat exchanger system mathematical modela

Reactor material balance F0xA−kR exp(−(E/RT1))CA0(1−xA)V=0, xA= (CA0−CA1)/CA0

F0Cp(T0−T1)−F1Cp(T1−T2)+(−DHR)F0xA=0Reactor heat balance
F1Cp(T1−T2)=AUDTlm, DTlm= ((T1−Tw2)−(T2−Tw1))/ln[(T1−Tw2)/(T2−Tw1)]Heat exchanger design equation

Heat exchanger energy balance F1Cp(T1−T2)=Fwcpw(Tw2−Tw1)
Temperature bounds (K) 3115T15389, 3115T25389, 2945Tw25323
Heat exchanger operation constraints T1−T2]0, Tw2−Tw1]0 T1−Tw2]11.1, T2−Tw1]11.1

xA]0.9Quality constraint
Objective function ($ per year) Cost=691.2V0.7+873.6A0.6+1.76Fw+7.056F1

a V, reactor volume (m3); A, heat transfer area for the heat exchanger (m2); F1, reactant flowrate in the heat exchanger (kmol h−1); Fw, cooling
water flowrate (kg s−1); xA, conversion of A in the reactor; T1, reactor temperature (K); T2, reactant temperature after cooling (K); Tw2, cooling
water outlet temperature (K).
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Table 8
Deterministic parameter values

CA0 32.04 kmol m−3Concentration of A in the feed stream
Ratio of activation energy to the 555.6 KE/R
perfect gas constant
Molar heat of reaction −23 260 kJ kmol−1DHR

Reactant heat capacityCp 167.4 kJ kmol−1 K−1

Cpw Cooling water heat capacity 4.184 kJ kg−1 K−1

to estimate the probability of xA5xA,min. The results
obtained are 0.056, 0.055 and 0.058, for xA,min equals
to 0.90, 0.93 and 0.96, respectively. Comparing these
values with 0.05 (the restricted quantile), we find that
criterion (R6) is subject to an error smaller than a
cumulative probability of 0.008.

5. Conclusions

We have developed a stochastic optimization
framework for conducting process design under un-
certainty that takes explicitly into account process ro-
bustness and product quality issues. Although the
formulation is based in a two-stage approach, under
the assumption of perfect information and control
during process opera
tion, the design problem has been formulated as a
single-level stochastic optimization problem, where a
Taguchi’s perspective of continuous quality loss is
adopted. The incorporation of different robustness
criteria and their applicability has also been discussed
in the context of process engineering applications.

An efficient cubature technique, suitable to inte-
grate normally distributed uncertainties, has been ap-
plied for the estimation of multiple integrals involved
in the formulation, reducing significantly the compu-
tational effort required, when compared with other
integration methodologies, such as product Gauss
rules or stratified sampling techniques.

The potential of the proposed design framework is
illustrated with two process engineering application
examples, where different robustness criteria are stud-
ied — nominal-the-best Taguchi loss functions, one-
sided Taguchi loss functions, maximum variance and
quantile constraints for a quality related variable.
From such case studies, one can see quite clearly
what implications and consequences are derived from
considering different models to express quality related
issues while addressing chemical process design prob-
lems.

Table 9
Uncertainty model

F0 Feed flowrate 45.36(190.20) kmol h−1

Feed temperatureT0 333(190.04) Ka

293(190.04) KaCooling water inletTw1

temperature
Arrhenius rate constant 12(190.20) h−1kR

Overall heat transfer 1635(190.20) kJ (m−2 h−1 K−1)U
coefficient

a Positive correlation coefficient, r(T0, Tw1)=0.7.

optimal design decisions with higher investment costs
are associated with more demanding quality require-
ments.

In order to show how the PDF of xA varies as the
robustness criteria become harder, we have solved the
problem parametrically in terms of k1, for the case of
criterion (R4); smax (with k1=6.4×106), for the case
of criterion (R5) and xA,min (k1=6.4×106), for the
case of criterion (R6) (Fig. 7). As expected, an in-
crease in k1 shifts the PDF of xA in the direction of
greater conversion and reduces its variance. In the
case of criterion (R5), it is interesting to observe that
in order to comply with severe s(xA) constraints the
optimal solution leads to a distribution for xA that
lies in the region of high conversion. With criterion
(R6), as the parameter xA,min increases, not only the
PDF of xA is shifted in the direction of greater con-
version, but also its variance is reduced, confirming
that there is a larger process operation robustness as-
sociated with high conversion regions.

As stated before, the accuracy of criterion (R6)
should be tested after simulation, using equation 17

Table 10
Results for different robustness criteria

(R4) (R5) (R6)
(k1=6.4×106, smax=0.006) (k1=6.4×l06, xA,min=0.90)(k1=6.4×106)

E (cost)a 13 340 14 099 13 585
V (m3) 5.1515.3844.497

8.076 8.002A (m2) 7.760
0.9007 0.9148m(xA) 0.9121

s(xA) 0.0082 0.0060 0.0074
−0.2136j(xA) −0.7753 −0.2141

7.2CPU (s) 11.6 4.8

a Including penalty term.
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Fig. 7. PDF of xA vs. (a) penalty coefficient-criterion (R4); (b) bound
on s(xA)-criterion (R5); and (c) bound 0.05 quantile of xA-criterion
(R6).

&
Rn

f(u)w(u)du: %
Np

i=1

Bi f(ui) (A.1)

where f is a scalar function of the vector of independent
variables u, w a given weight function and Rn the
integration region in the n-dimensional Euclidean
space, En. The cubature formula has Np points ui which
lie in En and have corresponding coefficients or weights
Bi.

To compute integral (Eq. (5)) using a formula like
Eq. (A.1), we need to map the region Rn into the
uncertainty space U. This is achieved through the gen-
eral transformation of the form:

u=f(u) (A.2)

where u�Rn and u�U. Therefore, each ui point in
Rn-space has a correspondent ui point in U-space. The
transformed weights are given by:

Bi*=Bi �det Jac(ui)�, i=1, …, Np

where Jac(ui) is the Jacobian matrix of function f(u)
evaluated at the point ui (Davis & Rabinowitz, 1975).

Two different classes of cubature formulas can be
distinguished — product formulas constructed using
combinations of formulas for regions of dimension less
than n and non-product formulas constructed by other
methods. The most common product formula is the
product Gauss formula for the n-dimensional cube,
constructed using a Gaussian quadrature in each di-
mension, which results in a formula with a total num-
ber of points that increases exponentially with the
dimension n.

In the present work, we use a non-product cubature
formula especially constructed for the case where all
uncertain parameters are normally distributed. In this
case, integral (Eq. (5)) over the entire probability space
takes the following form:

EU( f )=
& +�

−�

···
& +�

−�

f(u)jN(u)du (A.4)

where jN(u) is the joint normal distribution for the
random vector u, with the vector of means m and
covariance matrix S (Johnson & Wichern, 1988):

jN(u)=
1

(2p)n/2(det S)1/2 exp
�

−
1
2

(u−m)TS−1(u−m)
n

(A.5)

We will denote this joint distribution by N(m, S), and
the corresponding uncertainty space by U={u :u�
N(m, S)}.

Our specialized cubature formula is based on the
rules reported by Stroud (1971) and labeled as En

r2
.

These rules are constructed to integrate the entire n-di-
mensional space with weight function:

wc=exp(−uTu) (A.6)

To integrate over the uncertainty space U={u :u�
N(m, S)}, we use the following transformation, which
allows one to handle correlated uncertainties:

Appendix A. Specialized cubature formula

Cubatures are numerical integration techniques that
generalize the principles of one-dimensional quadrature
to multidimensional integration. Based on the definition
of quadrature formula given by Engels (1980), we
define cubature formula as follows.

Definition. A cubature formula is a numerical rule
whereby the value of a multidimensional definite inte-
gral is approximated by use of information about the
integrand only at a set of discrete points where the
integrand is defined.

The mathematical notation that corresponds to such
a definition is (Stroud, 1971):
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u(u)=m+I
2%1/2u (A.7)

where I
2 is a diagonal matrix with all the diagonal
elements equal to 
2. The substitution of this transfor-
mation in Eq. (A.4) leads to:

EU( f )=
1

pn/2

& +�

−�

···
& +�

−�

f [u(u)]wc(u)du

$
1

pn/2 %
Np

i=1

Bi f [u(ui)]= %
Np

i=1

wi f [u(ui)] (A.8)

In the present work, we apply a fifth degree special-
ized cubature formula, labeled as SC5,1. The formula
degree is defined with respect to the function f, meaning
that the formula is exact when f(u) is a polynomial of
degree lower than or equal to 5. The formula is only
defined for n]3 and has a total number of points given
by Np=2n+2n. The grid of points ui and corresponding
weights wi are of the form:

(r, 0, …, 0)FS w0

(s, s, …, 0)FS w1

where FS denotes a fully symmetric set of points gener-
ated by permutation of the elements and its signs. The
values of r, s, w0 and w1 are functions of the integral
dimension n and provided by the following expressions:

r2=
n+2

4
s2=

n+2
2(n−2)

w0=
4

(n+2)2 w1=
(n−2)2

2n(n+2)2 (A.9)

The non-product cubature formula SC5,1 is much
more efficient than the fifth degree specialized product
Gauss formula (Np=3n) or the ninth degree product
Gauss formula (Np=5n, degree defined with respect to
f(u)j(u)). For integral dimensions of up to 10 it can
compete with the most efficient stratified sampling tech-
niques, such as the HSS technique. Further details on
the application of cubature formulae to process design
under uncertainty are provided in Bernardo, Pistiko-
poulos and Saraiva (1999).
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