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Abstract

A nonlinear model predictive control algorithm is implemented on-line to control the liquid level and temperature in a pilot plant
CSTR, where an irreversible exothermic chemical reaction is simulated experimentally by steam injection. The dynamic behavior of
the pilot plant reactor is represented using a mechanistic, first principle model and a comparison between off-line simulation and

experimental data is presented. Several sources of model mismatch and unmeasured disturbances are identified that affect the quality
of the model in representing the reactor dynamics. Despite these mismatches and disturbances, the closed loop system is able to
track setpoint changes and reject disturbances quite well. In particular, the NMPC controller is demonstrated for different tuning

parameters and under conditions of constraint saturation at unstable points. r 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Model predictive control (MPC) with nonlinear
process models (or NMPC) is being applied increasingly
often in the chemical industry and many of these
applications are viewed as essential for a number of
process control problems. NMPC is needed especially
for nonlinear, unsteady batch processes where a
trajectory needs to be followed from the prediction of
a nonlinear model. It is especially useful for processes
operating at or near ‘singular’ points (e.g., input
multiplicities and other sign changes in the process
gains) that cannot be captured by linear controllers and
where higher order information is needed. It is also
necessary for processes with wide swings in operation,
beyond the ranges of a local linearization. These
characteristics are observed in many process problems
including changeovers in continuous processes, tracking
problems in startup and batch processes and the control

of nonlinear reactors. For these systems, NMPC is
a more natural and straightforward approach than
gain scheduling or intermittent approximation by linear
models. NMPC uses the nonlinear dynamic model
to predict the effect of sequences of control steps on
the controlled variables. The aim is to derive an optimal
set of control steps, which will drive these output
variables to the desired steady state setpoints, based on
economic, safety, environmental or product considera-
tions.

There are a number of NMPC studies that deal with
experimental and industrial applications. For instance,
in their survey Qin and Badgwell (2000) report 88
industrial NMPC applications. However, if one con-
siders only those that incorporate the on-line solution of
nonlinear dynamic optimization problems applied to
first principle models, then their number dwindles to
five. This clearly indicates the difficult nature of NMPC
problems in this class. Moreover, Qin and Badgwell also
mention the challenges and difficulties of dealing with
the efficient solution of nonconvex optimization pro-
blems on-line, particularly with accurate, first principle
process models. This is a key feature addressed in this
experimental study.
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This study considers the application of NMPC to an
experimental pilot plant reactor apparatus. It involves a
continuous stirred tank reactor (CSTR) with a capacity
of 80 liters, fitted with a cooling jacket and a hydraulic
stirring system. Here an exothermic zero order chemical
reaction, A-B, is experimentally simulated in the
vessel. This is done on-line by calculating the amount
of live steam to inject into the vessel contents, in order to
simulate the heat generated by the chemical reaction
(Pinheiro a Kershenaum, 1999; Afonso, Oliveira, a
Castro, 1996; Kershenbaum a Kittisupakorn, 1994).
Since no reaction actually takes place, the system
described in this study is more properly defined as a
‘pseudo-reactor’. Nevertheless, it still features nonlinear
dynamics and exhibits open loop instability under
certain operating conditions.

There are a number of advantages to the particular
experimental system on which our study was applied.
First, the system is flexible, easily configured and safe.
Second, it can handle exothermic reaction mechanisms
of arbitrary kinetic complexity (in addition to the zero
order reaction considered here), without the additional
bother of handling hazardous chemicals. Moreover, as
an experimental system (with steam valves, boilers, etc.)
it incorporates unmeasured and unmodeled distur-
bances, model mismatches and many other real world
limitations that often cannot be appreciated in a
simulation study. Finally, the safety and relative
simplicity of this system allows research to focus on
the validation of advanced control and estimation
algorithms under real world conditions, and to provide
detailed case studies that are often not considered in
more complex industrial systems.

This pilot plant has been the subject of several studies
and was used as a benchmark to test control algorithms
and other tools (Afonso et al., 1996; Afonso, Ferreira,
a Castro, 1998; Afonso, 1998). In these studies the
reactor dynamics were described by a reduced model
structure: a global mass and energy balance to the
reactor, representing the level and temperature evolu-
tion, and using experimental correlations to predict
some of its parameters. This study involves a more
detailed model of the reactor that includes the descrip-
tion of the jacket temperature dynamics and the
evolution of the concentration of the reactant (Santos,
Afonso,a Castro, 1998). The purpose of this work is to
implement an NMPC algorithm on-line, using the
formulation as described in Santos, Oliveira, and Biegler
(1995) and in Santos (2001).

Section 2 presents a description of the operating
conditions of the reactor, the strategy used to simulate
the zero order chemical reaction and the reactor model
development. Section 3 provides a brief description of
the NMPC algorithm, and issues related to the on-line
implementation. Section 4 provides details on NMPC
performance as well as a comparison between experi-

mental and simulation results, while Section 5 concludes
the paper.

2. Pilot plant reactor

As seen in Fig. 1, the reactor feed consists of two
inlet water streams, with feed rates F1 and F2 and
temperatures T1 and T2, while the outlet stream with
flow rate F3 flows by gravity through valve Vc5. The
reactor features a jacket equipped with a spiral baffle
and a hydraulic stirring system. The flow rate of the
cooling fluid, Fj, with inlet temperature Tj0 and outlet
temperature Tj2, is determined by the aperture of
the valve Vc3, l3. In order to provide a higher
cooling capacity, the recirculating cooling water is
purged continuously and fresh water is added. The
speed of the agitator is controlled by manipulating
valve Vc4. Both the reactor vessel and pipes are
insulated to minimize heat losses. The reactor is
equipped with standard equipment to measure and
manipulate the process variables, along with a computer
interface for both acquisition and control. A more
detailed description of the pilot plant installation can be
found in Afonso (1998).

2.1. Experimental reaction simulation

The zero order exothermic chemical reaction is
experimentally simulated by injecting steam directly
into the liquid inside the reactor. This strategy was also
used by Kershenbaum and Kittisupakorn (1994). To
simulate the heat released by the reaction, Afonso et al.
(1996) obtained an experimental correlation that deter-
mines the power released by the injection of steam into

Fig. 1. Pilot plant reactor diagram. The fluid in the streams denoted

by * is water.
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the liquid inside the reactor, as a function of the
aperture of valve Vc6

Qsteam ¼ ceðdl6Þ; ð1Þ

where c ¼ 1203W and d=3.22. Since the steam
resources available are limited, this correlation is valid
only for 0pl6p0:9. Setting Eq. (1) to the heat genera-
tion term from the reactor energy balance equation and
solving for l6, leads to

l6 ¼
1

d
ln

@rAVð@DHrÞ
c

� �
; ð2Þ

where (@DHr), V and rA are the heat of reaction, the
reactor liquid volume and the rate of consumption of
reactant A ð@rA ¼ k0 expf@Ea=ðRTrÞgÞ, respectively.
Although the kinetic model used in (2) is identical to the
one used in the model for the NMPC calculations, there
are several sources of uncertainty resulting from this
experimental system (Afonso et al., 1996). For instance,
the valve that controls the steam flow rate, Vc6, exhibits
considerable hysteresis (see Graphic IV in Figs. 6 and 7)
and the steam pressure is subject to continuous changes
as the total load in the boiler oscillates. Here the steam
pressure near the reactor is around 3 bar and the boiler
pressure oscillates between 4.5 and 5 bar.

Thus, all of these operating difficulties can be viewed
as uncertainty in the kinetic system. In principle, other
reaction processes can be simulated using this type of
experimental arrangement (Kershenbaum a Kittisupa-
korn, 1994). However, the zero order reaction simula-
tion is simpler to implement because the rate of reaction
does not depend on the reactant concentration. More-
over, the kinetics feature open loop unstable system
behavior and this can severely affect the reactor
temperature under certain operating conditions.

2.2. Pilot plant reactor model

The literature abounds with models that represent the
dynamic behavior of continuous pilot plant reactors.
Depending on the design, size and operating conditions,
several modeling approaches can be adopted. Assuming
perfect mixing with densities of the input and output
streams identical to the liquid inside the reactor, the
total reactor mass balance is given by

dV

dt
¼ F1 þ F2@F3; ð3Þ

where F1 and F2 are the inlet flows, F3 is the outlet flow,
and V is the reactor liquid volume. The volume is
given by V ¼ V0 þ pr2 h, with [V ]=m3, [h]=m,
V0 ¼ 4:2� 10@3 m3, and the reactor radius is
r ¼ 0:232m (Afonso et al., 1996). An experimental
correlation determines the outlet flow F3 as a function
of the outlet valve aperture l5. This is used in the
neighborhood of the nominal operating level h=0.30m,

which corresponds to a reactor liquid volume of 55 liters
(Santos, 2000). The mass balance for reactant A is
given by

dCA

dt
¼
F1

V
ðCA1@CAÞ þ

F2

V
ðCA2@CAÞ@k0e

@En=ðRTrÞ:

ð4Þ
Assuming negligible heat generated by the agitator and
identical heat capacities for the reactor liquid and feed
streams, the dynamics of the reactor temperature can be
described by

dTr

dt
¼

1

br
ð@QR þQGÞ; ð5Þ

where QR is the rate of heat removal and QG is the rate
of heat generated by the reaction, given by

QR ¼@rCpF1ðT1@TrÞ@rCpF2ðT2@TrÞ

þUAðTr@TjÞ; ð6Þ

QG ¼ ð@DHrÞVk0e@En=ðRTrÞ: ð7Þ

Here Cp is the specific heat capacity of the fluid, U is the
overall heat transfer coefficient and A is the heat transfer
area which is related to the liquid level and reactor
radius r as: ACprðrþ 2hÞ. Since the reaction is zero
order, both the evolution of the reactant concentration
and the reactor temperature are independent of CA.

The jacket features a spiral baffle made of steel. In our
model, we lump the mass of this metal strip, which is
spirally wound around the vessel wall. Assuming a
uniform temperature, the evolution of the jacket
temperature is represented by

dTi

dt
¼

1

bj
ðrjCpjFjðTj0@TjÞ þUAðTr@TjÞÞ; ð8Þ

where Cpj is the specific heat capacity of the coolant,
and Fj is the coolant flow rate. At each sampling time
the temperature Tj in the right-hand side of Eq. (8)
is approximated to the average of the inlet and
outlet jacket stream temperature measurements:
Tj ¼ ðTj0 þ Tj2Þ=2. Finally, the coefficients br and bj in
Eqs. (5) and (8) are given by

br ¼ rCpV þ ar; bj ¼ rjCpjVj þ aj; ð9Þ

where ar and aj represent the contribution of the wall
and spiral baffle jacket thermal capacitances. This is an
approximation to account for the influence of the metal
wall and spiral baffle on the reactor and jacket
temperature dynamics, partitioned here over both the
liquid reactor and jacket energy balances. Note that
Eqs. (5) and (8) were derived under the assumption of
negligible heat losses. In fact, the reactor vessel is
insulated and the heat losses are not significant for the
range of temperatures of plant operation (Afonso,
1998).

A summary of the main process variables and model
parameters is listed in Table 1. Since the kinetic
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parameters are imposed for the zero order kinetics, the
most relevant model parameters to be estimated are U,
ar and aj . Using dynamic tests, previous studies (Santos
et al., 1998; Santos, 2001) found that ar can be set to
zero, while typical estimates of aj and U at the nominal
level operating conditions, h=0.30m, are approximately
7� 105 J/K and 900W/(m2K), respectively. The plot of
the heat generation and removal terms (7) and (6),
shows two steady states (Fig. 2 and Table 3): one stable
at TrC31:51C and an unstable steady state at TrC401C.
Here the slope of QR is maintained constant by
adjusting the coolant flow rate Fj. Table 2 gives the
data for the remaining parameters and variables.

From the linearized form of the model equations at
conditions given in Tables 2 and 3, the Jacobian of the
model has an eigenvalue with a positive real part over an
operating region of reactor temperatures. Moreover, the
real part of this eigenvalue increases as the reactor
temperature increases. Therefore, the operation of the
reactor at higher reactant conversions can be more
problematic because it is easier for small disturbances to
destabilize the system.

3. Nonlinear MPC

In this section, we describe the basic framework for
the NMPC algorithm and the implementation of the
algorithm with the pilot plant reactor.

3.1. Control problem formulation

The nonlinear MPC framework considered here
requires a mechanistic model of the process of the form

’x ¼ f ðx; u; d; hÞ; ð10Þ

y ¼ gðx; hÞ ð11Þ

with f and g twice continuously differentiable, where
xARns is the state vector, uARnm is the control vector,
dARnd is the disturbance vector, hARny is the parameter
vector and yARno is the vector of output variables. An
optimization formulation with different output and
input predictive horizon lengths (denoted by p and m
respectively, with pXm) is used to solve the model

(10–11) over the predictive horizon p, where the state
equations are integrated inside each sampling interval
(Santos et al., 1995).

Our NMPC approach includes a number of desirable
features. In particular, we apply a Newton-type
algorithm which exploits the structure of NMPC
problems. Compared to general purpose nonlinear
programing solvers, this leads to solution of NMPC
problem in far fewer iterations (see Oliveira a Biegler,
1995). Moreover, as described in Santos et al.

Table 1

List of the model variables and parameters

Variables

F1, F2, T1, T2, h, Tj0, Tj2, Fj, l5, Tr Measured

Tj, CA, F3, V, CA1, CA2 Calculated from the model

selected by the user

Parameters

U, aj, ar To be estimated

Cp, Cpj, (Ea=R), Vj, k0, (@DHr), r, rj Known a priori

Fig. 2. Heat generation and heat removal curves (QG and QR) using

the data from Table 2.

Table 2

Model data

CA1 2.0 (mol/l)

CA2 10.0 (mol/l)

Cp, Cpj 4184.0 (J/(kgK))

F1 0.0 (l/min)

F2, F3 4.0 (l/min)

Ea/R 10080 (K)

k0 6.20� 1014 (mol/(m3 s))

r 0.232 (m)

T1 21.0 (1C)

T2 21.0 (1C)

Tj0 26.0 (1C)

U 900.0 (W/(m2K))

Vj 0.014 (m3)

aj 7.0� 105 (J/K)

ar 0.0 (J/K)

(@DHr) 33488.0 (J/mol)

r; rj 1000.0 (kg/m3)

Table 3

Multiple steady states and the respective cooling flow rate

Steady states Lower Upper

h 0.30 0.30 (m)

CA 7.82 4.60 (mol/l)

Tr 31.5 40.1 (1C)

Tj 28.0 28.0 (1C)

Fj 14.0 48.8 (l/min)
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(1995), multiple shooting is applied to the mechanistic
model (10–11) in order to obtain NMPC solutions for
unstable systems. This is essential because direct
integration methods often fail on open loop unstable
systems.

In addition, this formulation is extended to
include integral action as described in Oliveira
and Biegler (1995). This is necessary to eliminate
the steady state offset in the process outputs
resulting from step disturbances and to compensate
for the model mismatch. Moreover, in addition to
input, state, and output constraints, this model
predictive control formulation can handle output
terminal constraints, control move rate constraints,
as well as relaxations that convert these to soft
constraints.

The combination of these features leads to the
following nonlinear programing formulation which we
solve at every time index i (Santos, 2001):

min
*X ;U ;e

Uið *Y ;U ; eÞ ¼ Wið *Y ;UÞ þ PiðeÞ ð12Þ

s:t: ’x ¼ f ðx; u; d; hÞ; y ¼ gðx; hÞ

uðtÞ ¼ uðti@1þmÞ; tA½tiþm; tiþp	

*xiþk ¼ /ð *xiþk@1; uiþk@1Þ;

k ¼ 1; y; p ð13Þ

ziþk ¼ ziþk@1 þ K1ðyiþk@ysp;iþkÞ;

k ¼ 1; y; p ð14Þ

yiþp@ysp;iþppTol ð15Þ

*XLp *Xp *XU ð16Þ

*YL@eyp *Yp *YU þ ey ð17Þ

UL@eupUpUU þ eu ð18Þ

DUmin@eDupDUpDUmax þ eDu ð19Þ

eX0; ð20Þ

where the subscripts sp, L and U stand for setpoint, lower
and upper bounds, respectively. The objective function
(12) is defined such that

Wið *Y ;UÞ ¼
Xp
k¼1

*eTiþkQyk *eiþk

þ
Xm
k¼1

uiþk@1@ur;iþk@1

� �T�Qukðuiþk@1@ur;iþk@1Þ;

where the subscript r stands for reference, Quk and
Qyk are diagonal weighting matrices, and *eiþk ¼
*ysp;iþk@ *yiþk. In (12) PiðeÞ is the penalty term when
constraint relaxation is requested, and e is a measure of
the original constraint violations on the outputs, inputs

and control move rates, defined by

e ¼ eTy eTu eTDu

h iT
:

For instance, if the penalty term is defined according to
the exact penalty formulation, it follows that
PiðeÞ ¼ rTe, where r is the vector of penalty parameters
of appropriate size defined by: r ¼ r 
 ½1?1	T; rARþ.
The augmented vectors *X ; *Y ;U and DU are defined by

*X ¼

*xiþ1

^

*xiþp

2
64

3
75; *Y ¼

*yiþ1

^
*yiþp

2
64

3
75; U ¼

ui

^

uiþm@1

2
64

3
75

and

DU ¼ DuTi DuTiþ1 ? DuTiþm@1

� �T
;

where Duiþk ¼ uiþk@uiþk@1; k ¼ 2;y; m@1: The
notation *xiþk and *yiþk denote the augmented state and
output vectors using the additional state equations (14)
for integral action:

*xiþk ¼
xiþk

ziþk

" #
; *yiþk ¼

yiþk

ziþk

" #
:

In (14), K1 is a constant diagonal matrix that determines
the speed of the response of the integrator element.
Vectors DUmin and DUmax in (19) are defined as follows:

DUmin ¼ DuTmin ? DuTmin

� �T
;

DUmax ¼ DuTmax ? DuTmax

� �T
;

where Dumino0 and Dumax > 0; Dumin; DumaxARnm.
Although we assume DUmin and DUmax to be constant
over the entire input predictive horizon, the implemen-
tation of variable profile bounds is also straightforward.
Moreover, to obtain stable, bounded solutions, we
employ a multiple shooting formulation where
/ð *xiþk@1; uiþk@1Þ is obtained through the integration
of (10) inside the sampling interval tAðtiþk@1; tiþkÞ only.
The constraints (13) are then satisfied directly within the
optimization problem, and the states and outputs
converge to continuous profiles over the predictive
horizon. Finally, the vector Tol in (15) is the vector of
tolerances for the output terminal constraints, which
again promotes the stability of the solution. The control
problem formulation (12–20) is implemented in a
computational framework coded in Fortran 77. A
detailed description of this NMPC control formulation
can be found in Santos (2001).

3.2. Reactor control settings

In this study, output terminal constraints, control
move rate constraints and constraint relaxations were
turned off. The NMPC control configuration uses as
output variables yT ¼ ½hTr	 and controls uT ¼ ½Fj F3	.
Table 4 gives the operating constraints that are
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incorporated into the control algorithm. The lower
bound on the level avoids a zero value, which can cause
a failure of the numerical integrator. The level upper
bound prevents the reactor from overflowing; the upper
bounds on the controls are specified based on the pilot
plant operating limits. The results presented in Section 4
were obtained assuming that the model is perfect and all
the state variables are measured. The control tuning
parameters selected in this study are given in Section 4.

3.3. On-line implementation

In the experimental apparatus, the outlet reactor and
coolant flow rates are manipulated through PI con-
trollers, which manipulate the valves Vc5 and Vc3,
respectively (Fig. 1). Here, the setpoints of these two PI
controllers are determined by the NMPC algorithm.
However, as the outlet flow rate is not measured, an
experimental correlation is used to predict F3 as a
function of l5 (see f ðl5Þ in Fig. 3) (Santos, 2000). This
value is then compared with the corresponding NMPC
setpoint to calculate the error for the outlet flow rate PI
controller. Also, since there are no concentration
measurements, the prediction of CA made at the
previous instant is used to initialize the model at each
sampling time. The operating constraints in Table 4 are
also incorporated in the control problem, except that a
lower bound of 10 l/min has to be set on the coolant flow
rate. This lower bound on Fj prevents the flow meter
from getting stuck at low flow rates.

The NMPC framework runs simultaneously with
another program that implements all of the PI
controllers as well as the simulation algorithm for the
chemical reaction. The sampling time is 2 s for the PI
controllers and the reaction simulation, and at least 15 s
for the NMPC controller. Both programs are imple-
mented in Fortran 77, and run on a Linux Pentium
133MHz laptop. For the experiments in this study, the
CPU time to solve the NMPC control problem at every
time index averages between 2 and 3 s. An overview of
the experimental control arrangement with a description
of the data flow between the plant, the NMPC frame-

work, the PI controllers and the chemical reaction
simulation algorithm is given in Fig. 3.

4. Experimental results

We now consider a number of experimental control
scenarios for this system. In particular, we consider
setpoint changes so that we can operate at an unstable
point with a higher reactant conversion. Next we
consider the influence of saturation constraints at this
point and the ability of the NMPC control to deal with
this feature. Finally, we consider the performance of the
NMPC controller in dealing with the effects of
unmeasured disturbances and model mismatch. All of
the simulation results presented in this subsection were
obtained with only a single feed to the reactor (i.e.,
F1 ¼ 0) and the agitator speed set constant at 145 rpm.

4.1. Operating at an unstable point

We first consider a sequence of setpoint changes in the
reactor temperature. The aim of these changes is to drive
the reactor to operating conditions around the unstable
steady state and to get a higher rate of conversion of
reactant A. Based on simulation tests, output and input
diagonal weighting matrices Qyk ¼ diagð5�102; 105Þ
and Quk ¼ diagð10@1; 10@3Þ; k ¼ 1;y; p, are used to
improve the conditioning of the control problem.
Also, the integral action in our NMPC controller is
turned off.

The effect of the tuning parameters is significant at
this operating point. For instance, under steady state
operating conditions, without any setpoint change or
large disturbances, the control variables exhibit a
ringing behavior around the nominal operating value.
On the other hand, if we penalize the control moves (by
increasing Qu) we obtain sluggish servo and regulatory

Table 4

Operating constraints on the state and control variables

States Lower Upper

h 0.08 0.41 (m)

CA 0 None (mol/l)

Tr 0 None (1C)

Tj 0 None (1C)

Controls Lower Upper

F3 0 12 (l/min)

Fj 0 76 (l/min)

Fig. 3. Diagram of the data flow between the plant, the NMPC

framework, the PI controllers and the chemical reaction simulation

algorithm.
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responses. It turns out that by simultaneously increasing
the value of the penalty weights on the errors, Qyk, the
closed loop response speed is recovered.

Figs. 4 and 5 show the reactor closed loop response to
a sequence of temperature setpoint step changes, as well
as to a step disturbance in the inlet jacket temperature.
The profiles were obtained with predictive horizons
(p;m)=(20, 5) and a sampling time Dt=30 s. This
corresponds to a predictive time horizon of 10min.
Note that the effect of the controller action to comply
with the setpoint changes starts up 10min before the
setpoint change is formally considered, because setpoint
profiles in the predictive control framework are updated
in response to scheduled setpoint changes.

4.2. Influence of saturation constraints

From Fig. 4, we see that the coolant flow rate reaches
its upper operating constraint at time tC130 min. At
this point, no more cooling capacity is available to
control the temperature rise. On the other hand, we see
that as Fj increases from tC100 min up to its maximum
operating value, the controller stabilizes the reactor by
reducing the residence time, and this keeps the level at a
value below its setpoint. Moreover, if we decrease the
weighting parameter in Qyk corresponding to the level
setpoint, the controller drives the level to an even lower

value. As a result, this behavior reduces the demand for
additional cooling capacity for the reactor.

On the other hand, if additional cooling capacity is
not needed, more conventional closed loop behavior is
observed. For instance, in Fig. 5 we introduce a
disturbance in the reactor inlet jacket temperature Tj0.
This temperature is decreased from 26 to 101C at time
t=165min and the coolant flow rate decreases signifi-
cantly in order to maintain a zero offset on the reactor
temperature. Moreover, because of these more favorable
operating conditions the controller actuates on F3 to
eliminate the level offset (165ptp173 min). Here,
maintaining the temperature at its setpoint value
requires a much lower coolant flow rate. Also, as seen
in Fig. 5, the temperature setpoint change at t=217min
is easily handled by the NMPC controller. This permits
the reactor to operate at a higher reactant conversion,
with the system remaining closed loop stable.

4.3. Effect of unmeasured disturbances and model
mismatch

There are a number of unmeasured and unmodeled
disturbances associated with this experimental system.
Firstly, note the oscillatory behavior on the controls Fj

and F3, for instance in Graphic III of Figs. 4 and 6. This
behavior can be attributed to oscillations on the flow

Fig. 4. Reactor closed loop response to a sequence of step changes in the reactor temperature: DTrsp=+21C at t=80 and 100min, and DTrsp=+11C

at t=120min (continued on Fig. 5).
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measurements and to the fact that the PI controllers are
not fast enough to reach their setpoints within the
NMPC sampling time. Since the model is reinitialized at
each sampling time, this leads to frequent variations of
the PI controller setpoints. Secondly, as explained in
Section 3.3, there is no measurement available for F3;
this variable is inferred from the valve position for Vc5.
The arrangement made to control F3, along with the
hysteresis associated with valve Vc5 is a source of
permanent oscillations. Lastly, there are also periodic
disturbances on the feed F2 (see Graphic I in Figs. 6 and
7) because of pressure variations in the water storage
tank. Nevertheless, despite these unmeasured distur-
bances, Figs. 4–7 show that the NMPC controller
performs very well in tracking the setpoints and rejecting
disturbances.

To show this performance in more detail, we modified
the weighting matrices of the NMPC controller to cope
with a different performance scenario: Qyk=diag(106,
106), Quk=diag(1.25,1), k ¼ 1; y; p. Now the penalties
on both outputs are the same and the penalties on the
control moves are substantially increased, in an attempt
to reduce the ringing behavior of the inputs. Also, the
integral action was turned on with integral constants
K1=diag(0.005, 0.3) to compensate for unknown dis-
turbances and model mismatch and to eliminate the

offset in the level and temperature. Finally, the length of
the predictive horizon was reduced in order to reduce
the computation time. This was done to avoid longer
computation delays in the closed loop system, which
would deteriorate the overall closed loop performance.
These delays increase the possibility of unstable closed
loop behavior and more oscillation on the manipulated
variables. Due to limitations on the available computa-
tional power, predictive horizon lengths were set to
(p,m)=(10, 2) with a sampling time Dt=15 s. This
corresponds to a predictive time horizon of only
2.5min, which is much less than the time horizons
presented in Section 4.1. Again, about 2.5 s are required
to solve each NMPC problem.

Figs. 6 and 7 show the response of the process
variables under NMPC control to a sequence of changes
on the reactor temperature setpoint Tr sp, followed by
level setpoint changes after time t=165min. Note that
the NMPC controller tracks these setpoint changes
quickly and accurately. On the other hand, this
performance also allows us to identify a number of
sources of model mismatch. For example, Graphic IV in
Figs. 6 and 7 shows the evolution of the steam valve
aperture calculated from Eq. (2) and the corresponding
measurement. This valve (Vc6) is slow to respond and
exhibits significant hysteresis, requiring the PI controller

Fig. 5. (continued from Fig. 4). Reactor closed loop response to a step change in the inlet jacket temperature with DTj=@161C at t=165min, and

to a step change in the reactor temperature setpoint, DTrsp=+21C, at t=217min.
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to track the valve aperture calculated from the kinetic
simulation algorithm.

Also, Graphics I, II and III in Figs. 6 and 7 show
the evolution of the process variables. The comparison
of the experimental profiles with the ones obtained
by off-line simulation (labeled with the subscript sim)
and with the same control tuning parameters, shows
plant/model mismatch, especially for the reactor tem-
perature profiles (Graphic II). This is also evident from
the difference between the profiles of the coolant flow
rates (Graphic III), Fj and Fjsim. Although this difference
can be somewhat reduced by refining the parameters aj
and U, it is also necessary to take into account the
effect of the recirculation of the coolant (see Fig. 1). Due
to current operating limitations it is not possible to
keep the inlet jacket temperature constant, even with the
help of the purge scheme in the circulation loop. Thus,
as Tr increases Tj0 also increases (as seen in Graphic II
of Fig. 6). The effect of this increase in reactor
temperature therefore requires a higher coolant flow
rate, and this is indeed enforced by the NMPC
controller.

5. Conclusions

A Newton-type NMPC controller is implemented on
a pilot plant reactor. This reactor deals with a simulated
zero order reaction and features highly nonlinear
behavior. Moreover, under certain operating conditions
it can become open loop unstable. Here a model is
developed and validated with experimental data.
Although it appears there is a good comparison between
simulated and experimental results, there are several
sources of unmeasured disturbances as well as a
significant degree of plant/model mismatch within this
system. Despite these challenges the NMPC controller
performs very well in tracking the setpoints and rejecting
disturbances. This is done through the rapid on-line
solution of nonlinear programs, which incorporate first
principle models, stable problem formulations, integral
action and superior methods for constraint handling.

A number of issues need to be considered for future
work. To achieve better performance it may be
necessary to consider on-line parameter estimation.
However, before moving to this level of sophistication,

Fig. 6. Response to a sequence of changes of the reactor temperature setpoint (35-36-37-37.51CFgraphic II). Labels with the subscript sim

identify off-line simulation profiles. Graphic IV shown the evolution of the steam value aperture to simulate the chemical reaction (continued on

Fig. 7).
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a number of plant improvements can be made: using an
intermediate jacket temperature sensor to obtain better
jacket temperature information; using a flow meter to
measure the outlet flow rate F3; modifying the cooling
system to guarantee a constant and lower inlet coolant
temperature, Tj0; and using a faster computer for
simulation and control. Nevertheless, despite these
operating difficulties and plant/model mismatch, the
NMPC closed loop system follows the setpoints and
rejects disturbances quite well.
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