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In this work, the exactly integrated form of the Clapeyron equation found by Mosselman
et al. has been used in a systematic manner to derive a comprehensive set of equations
describing the first-order transition curves of pure substances. The application of each of
these equations requires the knowledge of only one (reference) point on the particular
equilibrium line, of the corresponding enthalpy of transition, and some ancillary data
(molar volumes and heat capacities of the phases at equilibrium). No fitting to (p, T)
experimental data is needed. In this respect the equations developed here can be regarded
as a source for calculatinga priori the phase equilibrium curves. The results have been
tested for a number of selected pure substances of variable molecular complexity, and the
uncertainties attached to the calculations have been assessed. Empirical equations currently
used for first-order transitions are compared with those obtained from the exact integration.
As far as we are aware, no equation was previously proposed for solid+ solid equilibrium
lines. c© 2001 Academic Press
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1. Introduction

The Clapeyron equation is not an exact differential equation in the mathematical sense.
This statement becomes evident if the equation is written in the form

dp − (1β
α Hm/1β

αVm)T−1dT = 0, (1)

where p and T are the natural variables pressure and temperature,Hm and Vm are
the molar enthalpy and molar volume of the equilibrium phases, and the symbol1

β
α X

indicates the difference between the values of the thermodynamic propertyX of the
two phases at equilibriumα andβ (e.g. the molar enthalpy for the transitionα → β,
1

β
α Hm = Hβ

m − Hα
m). Equation (1) governs all first-order phase transitions of pure

substances whichever the physical nature of the (α, β)-pair of phases involved;i .e. α

and β can be either solid (cr), or liquid (l), or gaseous (g). This equation is useful in
aTo whom correspondence should be addressed.
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many respects, particularly in the description of the joint rate of change of the primary
variables pressure and temperature (dp/dT) along the phase equilibrium lines, and also in
estimating the derived properties molar enthalpy and molar volume of transition. However,
one is frequently interested in knowing the relation between the equilibrium values ofp
andT instead of their mutual rate of change. This leads to try and integrate equation (1).
Since bothHm andVm are functions of pressure and temperature, and the (mathematically)
necessary separation of variables cannot be accomplished in any direct, known manner, the
integration of equation (1) has been carried out through approximate methods ever since the
equation was first established in the nineteenth century. By making use of thermodynamic
cycles Ziegler and his co-workers in a remarkable series of studies devised a method(1)

capable of arriving at precise results for a number of selected pure substances. Their work is
limited to (solid+ gas) and (liquid+ gas) equilibria below atmospheric pressure and does
not attempt at any general integration of equation (1). It was only in 1982 that Mosselman
et al.(2) found the integration factor that transforms the Clapeyron equation into an exact
differential equation. By applying the integration factor (T−1

· 1
β
αVm) to equation (1) the

Dutch research group obtained

T−11β
αVm(p, T)dp + 1β

α Hm(p, T)dT−1
= 0, (2)

which abides by Euler’s criterion for exact differentials:

{∂1β
α Hm(p, T)/∂p}T = [∂{T−11β

αVm(p, T)}/∂T−1
]p.

Using standard mathematical procedures Mosselmanet al. arrived at two solutions for the
exact integration of equation (2). For subsequent thermodynamic developments one of the
two expressions is clearly preferable for most applications. Since

{∂1β
α Hm(p, T)/∂T}p=p0

= 1β
αCp,m(p0, T),

whereCp,m(p0, T) is the molar heat capacity at constant pressurep0, the necessary sub-
stitutions and rearrangements yield the exactly integrated form of Clapeyron equation:(2)

T−1
∫ p

p0

1β
αVm(p, T)dp +

∫ T−1

T−1
0

{∫ T

T0

1β
αCp,m(p0, T)dT

}
dT−1

= 1β
α Hm(p0, T0)(T

−1
0 − T−1). (3)

Mosselman and his co-workers applied this relationship to the vapourization equilibrium
of pure substances to extrapolate vapour pressure data and to estimate values of1

β
α Hm at

temperatures not too far from the normal boiling point. In our opinion equation (3) can also
be used endeavouring rather wider objectives. Since no constraints are imposed in deriving
this equation it provides a universal basis to try and work out general equations for all
first order phase equilibrium curves of pure substances. The usefulness of this statement
relies, of course, on the assumption that a reference point of coordinates(p0, T0) on each
of the equilibrium lines is known, and that suitable analytical forms can be found for the
integrand functions1β

αVm(p, T) and1
β
αCp,m(p0, T). It is clear from equation (3) that a

single value of the molar enthalpy of transition1
β
α Hm(p0, T0) is needed to carry out the

calculations, and therefore no assumptions have to be made concerning the temperature
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and/or pressure dependence of this property. Moreover, and most important, no fitting of
(p, T) data for any (α, β)-phase equilibrium curve needs to be involved.

In the following sections we give account of the assumptions and developments made to
establish integrated forms of the equations for first order equilibrium curves, and discuss
the results obtained for sublimation, vapourization, fusion, and solid+ solid equilibria.
(The particular case of liquid+ liquid equilibrium has not been examined at this stage.) The
testing of the general equations established in this way is also carried out in this work, in
which we report on the uncertainties attached to the proposed procedures, and on important
thermodynamic quantities derived from those equations. Some of the empirical equations
currently used to describe (p, T) transition lines of pure substances are assessed in this
context.

2. Theory

In this work our main purpose is to derive explicit expressions relating the equilibrium
values of the natural variablesp andT along the two-phase first-order transition lines of
pure substances. The starting point is equation (3), valid for all these transitions. To carry
out the necessary integrations one needs to use adequate expressions for the integrand
functions1β

αVm(p, T) and1
β
αCp,m(p0, T). This means that these functions should satisfy

three essential conditions: (i) firstly, both functions should give account as precisely as
possible of the pressure and/or temperature dependence of, respectively, the changes in
molar volume and in molar heat capacity of the phases involved (α, β ≡ cr, l, g) along
each of the equilibrium lines; (ii) secondly, the form of these functions should be such that
the subsequent integrations in equation (3) can be carried out analytically; and (iii) finally,
the number of terms in each of the two mentioned functions should be kept at a minimum
compatible with the precision required for the final equationsp = p(T), obtained upon
integration, to describe the two-phase equilibrium curves.

After careful examination and selection of the experimental data available in the
literature for a significant number of molecularly simple (and not so simple) substances
the following expressions, which satisfy the three conditions above, were found to be
convenient for the representation of the molar volume of the pure phases(3). For the gas
phase, we used the (Berlin form of the) virial equation of state truncated after the second
term,

Vg
m(p, T) = RT/p + B(T), (4)

where

B(T) =

m∑
i =1

bi T
(1−i ), (5)

is the second virial coefficient, thebi being parameters derived from experiment, and
m 6 4. For the molar volume of saturated condensed phases (liquid or solid) simple
polynomial functions were selected. Exception made for the substances that contract on
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melting, the approximation

V l,cr
m (p, T) ≈ V l,cr

m (T) =

n∑
i =1

v
l,cr
i T i −1, (6)

works well when the coefficientsvl,cr
i are obtained from experimental data. In this

expressionn 6 3. In particular, for solid+ solid equilibria and for the fusion of substances
that expand on melting a single coefficientv

l,cr
1 suffices. In these cases the molar volume

of the condensed phase at the reference point of coordinates (p0, T0) was taken:

V l,cr
m (p, T) ≈ v

l,cr
1 = V l,cr

m (p0, T0). (7)

In most of this study (but not always) the triple-point (cr+ l + g) was selected as reference.
For solid+ liquid equilibria of substances which contract on melting the approach

V l,cr
m (p, T) ≈ V l,cr

m (p) =

n∑
i =1

ul,cr
i pi −1, (8)

where the coefficientsui are obtained for experiment, andn = 3 was found to be adequate.
As for the molar heat capacities one has

Cg
p,m(p0, T) = Cpg

p,m(T) −

∫ p0

0
T

(
∂2Vg

m

∂T2

)
p
dp, (9)

where the molar heat capacity of the perfect gasCpg
p,m(T) is a polynomial function of

temperature,

Cpg
p,m(T) =

k∑
i =1

cpg
i T i −1, (10)

with k 6 4. Thecpg
i coefficients are easily obtained from spectroscopic data. For saturated

condensed phases (l or cr) there is no need to go beyond the approximation

Cl,cr
p,m(p0, T) ≈ Cl,cr

p,m(T) =

j∑
i =1

cl,cr
i T i −1, (11)

where j 6 4 for sublimation, andj = 1 for all other transitions,i .e.

Cl,cr
p,m(p0, T) ≈ cl,cr

1 = Cl,cr
p,m(p0, T0). (12)

By inserting the analytical expressions given by equations (4)–(12) into equation (3),
and carrying out the necessary integrations and algebraic manipulations(3) the following
results are obtained for first-order phase equilibria.

(i) Sublimation (α ≡ cr; β ≡ g):

ln p = As − Bs/T + Cs ln T +

4∑
i =2

Ds,i T
i −1

+ Es(T)p/T, (13)
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where

As = ln p0 +

{
1

g
crHm(p0, T0) − T01

pg
cr c1 ln T0 − f1(T0) − T0 f2(T0) −

p0T0v
cr
2 + p0

m∑
i =2

(1−i )bi T
1−i
0

}/
RT0, (14)

Bs =

{
1

g
crHm(p0, T0) − f1(T0) + p0v

cr
1 − p0

m∑
i =2

ibi T
1−i
0

}/
R, (15)

Cs = 1
pg
cr c1/R, (16)

Ds,i = [{1
pg
cr ci / i (i − 1)} − p0v

cr
i +1]/R, (17)

Es(T) = {Vcr
m (T) − B(T)}/R. (18)

The quantitiesf1(T0) and f2(T0) are given by

f1(T0) =

l∑
i =1

1
pg
cr ci T

i
0/ i , (19)

f2(T0) =

l∑
i =2

1
pg
cr ci T

i −1
0 /{i (i − 1)}, (20)

wherel 6 4.

(ii) Vapourization (α ≡ l; β ≡ g):

ln p = Av − Bv/T + Cv ln T + DvT + Ev(T)p/T, (21)

whereAv is obtained fromAs {equation (14)}, by changing superscriptcr into l , with f2(T0)
= 0, and by considering only the first term (i = 1) in equation (19). For Bv, Cv and
Ev(T) similar considerations apply. Of course, all1

g
crX should be replaced by1g

l X. Dv
in equation (21) is given by

Dv = −p0v
l
3/R. (22)

(iii) Fusion (α ≡ cr; β ≡ l):
In the case of fusion equilibria two equations were obtained:

p = p0 + (Af + DfT + FfT ln T)/{1l
crVm(p0, T0)}, (23)

for substances which expand on melting, and

3∑
i =1

(1l
crui / i )(pi

− pi
0) = Af + DfT + FfT ln T, (24)

if the substances contract on melting. In these two equations,

Af = 1l
crc1T0 − 1l

crHm(p0, T0), (25)

Df = 1l
crHm(p0, T0)/T0 − 1l

crc1(1 + ln T0), (26)

Ff = 1l
crc1. (27)
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Equations (23) and (24) both reduce to the same linear equation

p = A + DT, (28)

where A and D are constants, when1l
crui = 0 for i = 2, 3, and1l

crc1 = 0, an
oversimplification not necessary to deal with fusion.

(iv) Solid + solid equilibria (α ≡ crI; β ≡ crII):
For solid + solid equilibria the resulting expression has analytical form identical to

equation (23), where the changes1β
α X in equations (25)–(27) are now defined as1β

α X =

1crII
crI X. Sometimes, in consequence of the lack of extensive high-temperature data, it may

prove necessary to use simplified versions of equation (23) which is sufficiently flexible to
admit approximations going as farther as its simplest form, equation (28).

3. Results and discussion

Having obtained explicit expressions for the equilibrium curves on (p, T) phase
diagrams—equations (13), (21), (23), and (24)—it seemed worth examining their range of
application, and the relative importance of the terms involved in each of them. A group
of 24 substances on which accurate thermodynamic data were found in the literature was
selected(3) to test the equations derived in the previous sections. This set includes both
organic and inorganic substances, of polar and non-polar molecules, and of complexity
ranging from simple monatomic species—the rare gases and some metals—to aromatic
hydrocarbons. According to the nature and availability of the data, subsets from the
wider group of substances were selected to test each of the equilibrium equations above.
Whenever possible the temperature scales in the original papers were transformed into
ITS-90 by recommended techniques.(4)

SUBLIMATION

In most cases accurate molar volumes of the solid phases were assessed from low-
temperature X-ray measurements of the lattice parameters as functions of temperature.
However, it was found that in no case such values contribute significantly to the
calculated sublimation pressure. Therefore, they can be dropped from equations (14),
(15), (17), and (18). The influence of second virial coefficients on the quantityEs(T) {cf.
equation (18)} is significant only when the pressure of the reference pointp0 is relatively
high, as is the case with carbon dioxide. Since for most substances(p0, T0) have been
taken as the triple-point coordinates, term{Es(T)p/T} in equation (13) can be neglected
whenever the triple-point pressure is low (p0 < 10 kPa). Apart from this all the remaining
terms in equation (13) should be taken into account. In absolute value

Cs ln T > Bs/T >
∑

Ds,iT
i −1.

Term As, which is a positive constant, is smaller than (the absolute of) terms involving
Cs andBs. The quantities (CslnT) and (Bs/T) are positive, while the summation including
Ds,i is negative in every case. All these contributions are relatively important in magnitude,
although considerable partial cancelation between them always occurs. The value of the
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FIGURE 1. a, Sublimation pressurep plotted against temperatureT . b, Deviation plot of the plotted
against temperatureT . b, Deviation plot of the sublimation pressure against a reduced temperature
(T/T0); δp = pcalc − p, where pcalc is calculated from equation (13) and p is the experimental
sublimation pressure at the same temperature;T0 is the temperature of the reference point, taken
as Ttr for all substances in the plot except carbon dioxide, for whichT0 was considered to be
the normal sublimation temperature. Legend: curves obtained from equation (13); H, triple-points
from Staveleyet al.(5); 1, nitrogen:◦, Keesom and Bijl(6); +, Giauque and Clayton(7); 2, argon:
◦, Flubacheret al.(8); +, Chenet al.(9); ♦, Lemming and Pollack(10); �, Levenson(11); 3, methane:
◦, Tickner and Lossing(12); +, Rossini(13); 4, ethylene:◦, Bigleisenet al.(14); +, Chu Liang(15);
5, ethane:◦, Tickner and Lossing(12); 6, hydrogen chloride:◦, Giauque and Wiebe(16); +, Chihara
and Inaba(17); ♦, Ser and Larher(18); 7, dinitrogen oxide:◦, Atake and Chihara(19); +, Blue and
Giauque(20); ♦, Terlain(21); �, Bryson et al.(22); 8, carbon dioxide:◦, Giauque and Egan(23);
+, Tickner and Lossing(12); ♦, Ambrose(24); �, Brysonet al.(22); 4, Anguset al.(25); 9, ammonia:
◦, Overstreet and Giauque(26); 10, benzene:◦, Jackowski(27); 11, water:◦, Jancsoet al.(28);
+, Ambrose(29); ♦, Keenanet al.(30); �, Brysonet al.(22); 12, naphtalene:◦, De Kruif et al.(31);
+, Bradley and Cleasby(32); ♦, Ambroseet al.(33); �, Sinke(34).

enthalpy of sublimation at the reference point1
g
crHm(p0, T0) carries the main contribution

to As andBs. For this reason1g
crHm(p0, T0) should be known as accurately as possible if

precise estimates of the sublimation pressure are aimed at. Uncertainties of±0.1 K in T0,
and of±1 per cent inCcr

p,m andCpg
p,m have negligible influence (of less than 1 per cent) on
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the calculated sublimation pressure, down to temperatures as low as 0.5 · T0 or even lower.
In general the equilibrium pressures estimated through equation (13) lay within about
±1 per cent of the corresponding experimental values even at the lowest temperatures at
which measurements have been reported, as figure1 suggests. It is important to emphasize
that these results were obtained from the knowledge of the reference point coordinates
(p0,T0), and the information required by equations (14) to (20), with no need of any other
experimental points on the sublimation curve. The equilibrium pressure calculations start
at any adequate reference point (p0, T0) proceeding to lower temperatures if the reference
is the triple-point (cr+ l + g). For substances exhibiting more than one solid phase, when
a solid+ solid transition is reached the coordinates of the corresponding transition point
should be taken as new reference for the subsequent calculation of the sublimation pressure
of the lower-temperature solid form. Of course, the molar enthalpy of the particular solid
→ solid transition1crII

crI Hm must be taken into account through the exact relationship,

1
g
crI Hm = 1

g
crII Hm + 1crII

crI Hm, (29)

at the new reference point.
The molar enthalpy of sublimation as a function of temperature is obtained from

Clapeyron equation by using equation (13) in the calculation of (dp/dT). After algebraic
rearrangements the following expression is obtained:(3)

1
g
crHm = R

[
Bs + CsT +

4∑
i =2

(i − 1)Ds,i T
i
+ {dEs(T)/dT}pT2

]
. (30)

When two or more solid phases are present the calculation of the enthalpy of sublimation
as function of temperature must take equation (29) into account. In figure2 the results of
our estimates of1g

crHm(T) are compared with data from the literature. The enthalpy of
sublimation is markedly dependent on temperature (changes of up to 15 per cent over the
sublimation range), exhibiting a maximum for every substance. It can be shown(3) that the
maximum of1g

crHm always occurs at the temperature for which the molar heat capacities
of the solid and gaseous phases are equal,i .e. whenCcr

p,m = Cg
p,m. It may be interesting

to note that for all hydrocarbons in the test group of substances the maxima are observed
at T = (52.2 ± 0.7) K. In no case does the deviation between the calculated values of
1

g
crHm and the literature ones exceed±0.5 per cent. The uncertainty in the estimated

1
g
crHm(T) comes mainly from the uncertainty attached to the (experimental) values of

1
g
crHm(p0, T0). The enthalpy of sublimation atT → 0, closely related to the so-called

lattice cohesion energy—a quantity of interest in the study of intermolecular forces, and
otherwise—is also readily assessed. In fact, from equation (30), atT → 0 one has:

1
g
crHm(0 K) = RBs. (31)

Table 1 summarizes the results obtained for1
g
crHm(0 K) using equation (31), and

compares them with literature values. The agreement is striking. For linear hydrocarbons
1

g
crHm(0 K) seems to be a linear function of the number of carbon atomsnc in the chain,

1
g
crHm(0 K)/(kJ · mol−1) = 2.90+ 7.95nc. (32)

The slope is close to that suggested by Moelwyn–Hughes.(56)
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FIGURE 2. Molar enthalpies of sublimation1g
crHm of pure substances plotted against

temperatureT . Legend: curves obtained from equation (30). • and ◦ are values from
the literature; the full circles are experimental, and the open circles are calculated;
1, nitrogen:◦, Ziegleret al.(35); 2, argon:◦, Ziegleret al.(36); 3, methane:◦, Ziegleret al.(37);
4, ethylene:◦, Ziegleret al.(1); 5, ethane:◦, Ziegleret al.(38); 6, hydrogen chloride:•, Eucken and
Donath(39); ◦, Giauque and Wiebe(16); 7, dinitrogen oxide:•, Eucken and Donath(39); 8, carbon
dioxide:•, Eucken and Donath(39); ◦, Giauque and Egan(23); Mullins et al.(40); Newitt et al.(41);
9, ammonia:•, Eucken and Donath(39); 10, benzene:•, De Boer(42); ◦, Jackowski(27); 11, water:
◦, Keenanet al.(30); 12, naphtalene:•, Murataet al.(43); 13, propane:◦, Yarbrough and Tsai(44).
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TABLE 1. Molar entalphy of sublimation1g
crHm of

pure substances atT = 0 K

Substance 1
g
crHm(0 K)/(J · mol−1)

This work Literature

1 Nitrogen 6883 6925± 20(45)

6861(46)

2 Argon 7733 7724± 29(47)

7740± 50(48,49)

3 Methane 9199 9168(50)

9360± 21(51)

4 Ethylene 19060 19096(52)

5 Ethane 20090

6 Hydrogen chloride 20078 20222(18)

7 Dinitrogen oxide 24149 24210(19)

24263± 21(21)

8 Carbon dioxide 26190 26250± 90(25)

26229(53)

26222(41)

9 Ammonia 29220 28870(54)

10 Benzene 49684

11 Water 47348 47346± 17(55)

12 Naphthalene 76651

13 Propane 27431

VAPOURIZATION

Most of the considerations made for the sublimation curve, equation (13), apply to
equation (21) which governs the vapour pressure curve. However, the term{Ev(T)p/T},
which is always positive, is not negligible for the vapourization equilibrium due to the
relatively higher contribution of the second virial coefficient and the vapour pressure.
For the test substances in this study neglecting term (DvT) in equation (21) introduces a
maximum error of 0.4 per cent in the calculated vapour pressure at the critical temperature.
This is a consequence of the comparatively small values ofvl

3 parameters in equation (22).
By ignoring (DvT) in equation (21) it becomes,

ln p = Av − Bv/T + Cv ln T + Ev(T)p/T, (33)

formally identical to the equation proposed by Graetz(57) in 1903. The approximation made
by introducing equation (12) is a consequence of the lack of experimental data forCl

p,m
over wide temperature ranges. However, this approximation is not critical because liquid
molar heat capacities are weak functions of temperature. Since in the vapour pressure
calculations the normal boiling point is a convenient choice for the reference coordinates
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(p0, T0), the values ofCl
p,m at that point (which are known from experiment with sufficient

accuracy) have been used in equation (12). For the liquid molar volumes the coefficients
vl

i in equation (6) were obtained by fitting to experimental data usually extending from the
triple-point up to reduced temperatures of aboutTr = T/Tc = 0.75 along the saturation
line. Tc is the critical temperature. In the present approach we did not use critical exponents
for the molar volumes in order to keep the mathematical complexities at a minimum. This
means that in describing the vapour pressure curve near the critical point some room
for improvement clearly exists. In spite of the approximations made the mean relative
deviation in the estimated vapour pressure for most of the test substances is less than
±1 per cent up to aboutTr = 0.95, as illustrated in figure3. As for the influence of
the uncertainties attached to the ancillary data needed in the vapour pressure calculations
using equation (21), uncertainties of±2 per cent in the second virial coefficient and of
±1 per cent inV l

m, Cl
p,m, andCpg

p,m lead (each of them) to deviations inp of less than
±1 per cent of the experimental vapour pressure, from the triple-point temperature up to
aboutTr = 0.95 for most of the substances in the subset. In no case these deviations
are larger than±2 per cent. The error introduced in the calculated vapour pressure by an
uncertainty as large as 0.1 K in the value of the reference point temperature (T0) is less than
±1 per cent over the complete vapour+ liquid equilibrium line (i .e. from the triple-point
temperatureTtr up toTc) if T0 > 100 K, as is the case for most substances considered here.
An error of±1 per cent in the value of1g

l Hm(p0, T0) can rise deviations in the calculated
vapour pressure as high as±5 per cent for temperatures from aboutTr = 0.40 to about
Tr = 0.85. For this reason values of the enthalpy of vapourization at the normal boiling
temperature estimated through current empirical methods (cf. Reidet al.(84)) should not
be recommended to be used in accurate applications of equation (21). Fortunately for most
substances of interest1

g
l Hm at that temperature is known with much lower uncertainty,

typically of about±0.1 (or 0.2) per cent from accurate experimental work, and this leads
to deviations from that source not exceeding±1 per cent in the vapour pressure up to the
critical temperature.

It is interesting to compare the form of equation (21) with some of the current empirical
vapour pressure equations suggested by approximate methods of integration of the
Clapeyron equation. The equations named after Wrede,(57,85) Rankine–Kirchhoff,(57,85)

van Laar,(57) Honnig and Hook,(86) and Cragoe,(85,87) respectively,

ln p = A − B/T, (34)

ln p = A − B/T + C ln T, (35)

ln p = A − B/T + C ln T + DT, (36)

ln p = A − B/T + C ln T + D1T + D2T2, (37)

ln p = A − B/T + D1T + D2T2, (38)

are, of course, particular forms of equation (21)—as already pointed out, at least in part, by
Mosselmanet al.(2)—while the empirical equations of Graetz(57) and Frost–Kalkwarf,(88)

ln p = A − B/T + C ln T + Ep/T , (39)
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FIGURE 3. a, Vapour pressurep as a function of temperatureT . Note the different scales on
the insert. b, Deviation plot of the vapour pressure against reduced temperatureTr = T/Tc;
δp = pcalc − p, where pcalc is calculated from equation (21) and p is the experimental vapour
pressure at the same temperature. Legend: curves obtained from equation (21). H, triple-points
from Staveleyet al.(5); N, critical points from various authors;•, normal boiling points (whose
temperatureTb as been taken as referenceT0) from various authors; 1, nitrogen:◦, Wagner(58); 2,
argon:4, Wagner(58); 3, methane:◦, Kleinrahm and Wagner(59); +, Prydz and Goodwin(60); 4,
ethylene:◦, Douslin and Harrison(61); +, Michels and Wassenaar(62); ♦, Bigeleisenet al.(14);
�, Egan and Kemp(63); 5, ethane:◦, Douslin and Harrison(64); +, Straty and Tsumura(65);
♦, Carruth and Kobayashi(66); 6, hydrogen chloride:+, Thomas(67); �, Hendersonet al.(68);
◦, Giauque and Wiebe(16); 9, ammonia:◦, Beattie and Lawrence(69); +, Baehret al.(70); ♦, Cragoe
et al.(71); �, Overstreet and Giauque(26); 4, Streatfeildet al.(72); 10, benzene:◦, Ambrose(73,74);
+, Golding and Machin(75); 11, water:◦, Satoet al.(76); 14, carbon monoxide:◦, Michelset al.(77);
+, Clayton and Giauque(78); 15, oxygen:◦, Wagneret al.(79); +, Hilsenrath(80); 16, hydrogen
sulphide:◦, Kay and Rambosek(81); +, Clarke and Glew(82); ♦, Giauque and Blue(83).

ln p = A − B/T + C ln T + Ep/T2, (40)

respectively, both derived on the assumption that the vapour phase is a van der Waals
gas, show different dependences on temperature in the last term. In all these equations
the empirical parametersA, B, C, D, Di , and E ought to be determined by fitting to
vapour pressure measurements, while the calculation of the corresponding parameters in
equation (21) is madea priori requiring the knowledge of only one point on the vapour
pressure curve—the reference point (p0, T0)—and the above mentioned ancillary data. It
should be noted thatEv(T) in equations (21) and (33) is temperature dependent.
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The coefficients in the polynomial expression chosen to represent the change in the
molar volume of the liquid with temperature{cf. equation (6)} were obtained by fitting to
experimental values up toTr = 0.75, as said. This limits the accuracy of equation (21)
in estimating the molar enthalpy of vapourization beyond that temperature, up toTc. To
overcome this insufficiency an alternative method has been developed. Since from the
Clapeyron equation1g

l Hm is given as

1
g
l Hm = RT21

g
l Z · (d ln p/dT), (41)

where (Z = pVm/RT) is the compressibility factor, an attempt was made to try and find a
generalized expression for1

g
l Z as function of the reduced variablespr and/orTr along the

saturation line. This led to:

1
g
l Z = z0(1 − pr )

0.32
+

3∑
w=1

zw(1 − pr)
w, (42)

wherez0 = 0.4635,z1 = 0.6186,z2 = −0.5784, andz3 = 0.4815, valid over the complete
liquid range. In this way accurate estimates of1

g
l Hm from Ttr to Tc can be made by using

equation (41) in conjunction with equation (42) for 1
g
l Z, and equation (21) to calculate

(d ln p/dT).

FUSION

We have not been able to devise a general treatment of fusion equilibria capable of
achieving one equation applicable to both kind of substances, those which expand on
melting and those, relatively more rare, which contract in the same process. Of course,
equation (24) reduces to equation (23) if the simplest approximationi = 1 is considered. In
general equations (23) and (24) yield values of the fusion pressure which lay within±6 per
cent of the measured pressure in the immediate vicinity of the reference temperatureT0.
At higher temperatures, of the order of 2 to 3· T0 (at which the fusion pressure reaches
103 MPa and much higher), the deviations inp become lower, not exceeding±3 per cent,
as shown in figure4. Important exceptions among the test substances used in this work
are argon and mercury, for which the corresponding pressure deviation are always much
smaller (±1 to±2 per cent at the most). For these two substances abundant information of
high quality on the ancillary data needed is available in the literature. For the calculations
involving (solid + liquid) equilibria, either the triple-point or the normal melting point
are convenient choices as reference (p0, T0). Both have been used in this work according
to the availability of accurate data in the literature. While the uncertainty attached to the
value of p0 has no influence on the results of the calculations, uncertainties of±0.1 K
in the reference temperatureT0 yield deviations of up to±4 per cent in the calculated
values of the fusion pressurep, at temperatures lower than 1.2 · T0. At temperatures
higher than this the uncertainty decreases markedly. For some substances,e.g. the rare
gases, and water, the difference in the molar volumes of the two phases at the reference
point can be assessed from experimental data for each one of the phases at equilibrium
but in many cases that difference has been reported directly as the change1l

crVm along
the fusion line. Whatever the form of the original data, uncertainties in this quantity give
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FIGURE 4. a, Fusion pressurep plotted against temperatureT . b, Deviation plot of the fusion
pressure against a reduced temperatureT/T0, whereT0 is a reference temperature taken as the triple-
point temperature or the normal melting temperature;δp = pcalc − p, where pcalc is calculated
from equation (23) for substances that expand on melting, or from equation (24) for substances
that contract on melting, andp is the experimental fusion pressure at the same temperature. Note
the different scales forT/T0; Legend: curves obtained from equation (23) for substances that
expand on melting, or from equation (24) for substances that contract on melting; 1, nitrogen:
◦, Chenget al.(89); +, Bridgman(90); ♦, Grilly and Mills(91); 2, argon:◦, Chenget al.(92);
+, Bridgman(90); ♦, Crawford and Daniels(93); �, Stichov and Fedosimov(94); ×, Hardyet al.(95);
3, methane:4, Chenget al.(89); ♦, Nunes da Ponte and Staveley(96); �, Stryland et al.(97);
11, water: (ice I):◦, Henderson and Speedy(98); +, Bridgman(99); 14, carbon monoxide:◦, Clusius
et al.(100); +, Barreiroset al.(101); 17, krypton:◦, Lahr and Eversole(102); +, Strylandet al.(97);
♦, Michels and Prins(103); 18, xenon: same as for krypton; 19, mercury:◦, Michelset al.(104); +,
Bridgman(105); 20, bismuth:◦, Kennedy and Newton(106); +, Bridgman(107).

origin to deviations of the same relative magnitude in the estimated fusion pressure. The
heat capacities of the equilibrium phases (liquid and solid) at the reference point used in
this study have seldom been measured. However, short extrapolations ofCcr

p,m andCl
p,m

as functions of temperature toT0 yield values of1l
crCp,m(p0, T0) affected by estimated

uncertainties of±2 per cent, from which a maximum deviation of±1 per cent should
be expected in the calculated fusion pressure by using equations (23) and/or (24). The
difference in the heat capacities determines the curvature of the temperature dependence
of the fusion pressure line through term (Ff T lnT). Due to the scarcity of data on heat
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capacities along the fusion curve the (necessary) approximation embodied in equation (27)
limits the range of application of equations (23) and (24) since for many substances the
experimental information available indicates that1l

crc1 = 1l
crCp,m(p0, T0) is nearly zero.

This implies that a linear dependence of the fusion pressure on temperature is obtained
from equation (23), a situation not always observed in practice. For instance, the alkali
metals exhibit marked curvature in their respective fusion lines, a feature that can be
accounted for if the linear dependence

1l
crCp,m(p0, T) = 1l

crc1 + 1l
crc2(T − T0), (43)

is considered instead of equation (12). Obviously this would bring an additional term (in
T2) to the right-hand side of equation (23). Unfortunately, experimental data enabling the
determination of the parameter1l

crc2 have not been found in the literature. However, by
assuming relatively small values for this parameter the experimental trend of the fusion
curves can be described, as shown in figure5. For the test substances examined in this
study the uncertainty attached to their respective enthalpy of fusion at the reference point
is in no case larger than±1 per cent. Considering this figure the deviation in the calculated
fusion pressure is not larger than±1 per cent near the reference point, and decreases to
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±0.5 per cent at higher temperatures (or at lower temperatures if the substance contracts
on melting).

Estimates of1l
crHm(T) were carried out much in the same way as those for the other

phase equilibria previously reported in this work. Comparison with literature values is
made in figure6.

For substances which expand on melting the empirical equation named after Simon,(111)

p = p0 + a{(T/Ttr)
c
− 1}, (44)

wherea andc are parameters obtained by fitting to experiment, has been extensively used.
Voronel(112) showed that equation (44) is obtained by admitting that1l

crHm/1l
crVm is a

linear function of the fusion pressure of the form

1l
crHm/1l

crVm = (p + a)c. (45)

From our equation (23) one arrives at

1l
crHm/1l

crVm = p − {p0 − 1l
crHm(p0, T0)/1

l
crVm(p0, T0)} +

{1l
crc1/1

l
crVm(p0, T0)}(T − T0). (46)

In spite of the apparent differences between these two expressions our calculations showed
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that for the test substances the ratio1l
crHm/1l

crVm obtained from equation (46) is nearly
a linear function of the fusion pressure.(3)

(SOLID + SOLID) EQUILIBRIA

The wide variety of solid→ solid phase transition lines allied to the scarcity of accurate
experimental data necessary for the calculations makes it difficult to test the equations
found for the equilibria belonging to this class. Moreover, it is not easy to assess the
errors attached to most measurements reported in the literature. This situation impairs the
systematic study of the uncertainties in the derived quantities. Even so equation (23) written
for solid + solid equilibria has been applied to a number of substances for which data
of sufficient accuracy are available, and some general observations can be made from the
results obtained. The reference coordinates (p0, T0) have been taken as those of the various
triple-points in each diagram, whichever the nature of the three phases at equilibrium. In
general the molar volume changes1crII

crI Vm can be assessed by fitting of the reported molar
volumes of the equilibrium phases to simple temperature or pressure polynomials. The
situation is somewhat different in assessing the values of1crII

crI Cp,m. For most equilibria
studied in this work this quantity has not been measured, as far as we are aware. In these
cases it has been taken as zero (as suggested by a number of fusion equilibrium data).
This approximation implies that the calculated transition lines should be straight. It is only
when1crII

crI Cp,m 6= 0 that the calculated lines can exhibit some curvature, in which case
even modest values of the heat capacity change account for the observed nonlinear pattern
of the transition lines. For the substances tested in this work the equilibrium pressures have
been estimated with uncertainties not exceeding±6 per cent of the experimental values as
illustrated in figure7.

4. Conclusions

In this paper a consistent set of equations for first-order transition (p, T) curves of pure
substances has been established from the exactly integrated form of the Clapeyron equation
due to Mosselmanet al.(2) In general, the application of the equations proposed here
requires the knowledge of only one (reference) point on the respective equilibrium line,
of the corresponding enthalpy of transition, and some ancillary data (molar volumes and
molar heat capacities of the equilibrium phases). Since no fitting to (p, T) experimental
data is necessary, this procedure can be regarded as a method for estimatinga priori the
phase equilibrium curves. The equations presented in this work provide a comprehensive,
systematic means to describe the two-phase transition lines over large temperature ranges
within a few per cent of the measured equilibrium pressures. As far as we are aware no
prior quantitative, analytical treatment of (solid+ solid) equilibria has been reported in
the literature. Some derived phase transition properties, among which the enthalpies of
transition as functions of temperature, are readily obtained within experimental error from
the equations derived in this work. The enthalpy of sublimation atT → 0 is also easily
obtained. We believe that the method and the results presented here can be explored further
in many important directions.
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