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Abstract

We present an approach for conducting multivariate statistical process control (MSPC) in noisy environments, i.e., when the signal to

noise ratio is low, and, furthermore, noise standard deviation (uncertainty) affecting each collected value can vary over time, and is

assumingly known. This approach is based upon a latent variable model structure, HLV (standing for heteroscedastic latent variable model),

that explicitly integrates information regarding data uncertainty. Moderate amounts of missing data can also be handled in a coherent and

fully integrated way through HLV. Several examples show the added value achieved under noisy conditions by adopting such an approach

and a case study illustrates its application to a real industrial context of pulp and paper product quality data analysis.

D 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Wide streams of data are typically acquired and stored in

modern industrial plants containing relevant and updated

information about the status of the processes along time.

Within the Statistical Process Control (SPC) framework, data

are frequently fed to control charts, in order to decide whether

it is operating under statistical control or if some special cause

has interfered with it [1]. The normal operation conditions

(NOC [2]) in control charts are set by analyzing data collected

from periods of normal operation using Phase 1 methods [3]

and, as long as the process rests within the NOC limits during

Phase 2 implementation, no corrective actions should be

taken. But, as soon as it moves outside of such boundaries, the

root cause of abnormality should be identified and corrected,

in such a way that the process is brought back to normal

operation.

From what was stated above, we can see that measure-

ments do play a central role in SPC. However, the growing
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availability and increasing complexity of measurement

systems often raises practical problems that require adapta-

tion of the classical SPC frameworks in order to accom-

modate for them. For instance, there was a certain tradition

of using SPC charts in the supervision of single isolated

variables, through univariate SPC charts, but it is now

widely recognized that such a procedure is not effective

when dealing with multivariate data exhibiting correlated

behaviour [1]. Therefore, multivariate SPC (MSPC) proce-

dures based on the Hotelling T2 statistic were developed to

redefine the shape of the multivariate NOC regions. As the

number of variables to be monitored increases, even MSPC

control charts begin to experiment some difficulties, and

methodologies based on latent variables models [4],

specially suited for environments where the underlying

dimension of the process is (much) smaller than the

dimensionality of data, were developed [2].

All of the above SPC approaches not only solve a

particular problem raised by a given measurement data

structure, but also rely on a particular assumed statistical

description for the process common cause variability, from

which statistical limits that define the NOC regions are

derived. In this regard, current SPC methodologies based
tory Systems 80 (2006) 57 – 66
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on latent variables do not take explicitly into consideration

measurement uncertainty information that is often avail-

able. As such, they do not explore this quite valuable

knowledge, which is becoming even more so given the

current trend towards the explicit consideration of data

quality in all data analysis tasks, where ‘‘data quality’’ can

be adequately expressed by the uncertainty figures

associated with raw data values, a well defined quantity

that can be evaluated following standard guidelines [5–7].

Some previous works can be referred regarding efforts

undertaken in order to integrate measurement uncertainties

in various data analysis contexts. Wentzell et al. [8]

developed the so-called maximum likelihood principal

component analysis (MLPCA), that estimates a PCA

model in an optimal maximum likelihood sense when

data are affected by measurement errors exhibiting com-

plex structures, such as cross-correlations along sample or

variable dimensions. The reasoning underlying MLPCA

was then applied to multivariate calibration [9] extending

the consideration of measurement uncertainties to some

input/output modelling approaches closely related to PCA.

Bro et al. [10] presented a general framework for

integrating data uncertainties in the scope of (maximum

likelihood) model estimation, comprehending MLPCA as a

special case. The issue of (least squares) model estimation

is also referred by Lira [7], along with the presentation of

general expressions for uncertainty propagation in several

input/output model structures. Both multivariate least-

squares (MLS) and its univariate version, bivariate least-

squares (BLS), were applied in several contexts of linear

regression modelling, when all variables are subject to

measurement errors with known uncertainties [11–13]. On

the other hand, Faber and Kowalski [14] explicitly

considered the influence of measurement errors in the

calculation of confidence intervals for the parameters and

predictions in PCR and PLS, and similar efforts can be

found in [15–18]. These techniques provide us with new

and more flexible tools, in the sense that they are

applicable in more general measurement error structure

contexts, including those not covered by the classical

approaches. Therefore, as SPC frequently shares the same

type of data sets as the above-referred methodologies, it is

quite relevant to develop SPC procedures that explicitly

take into account data uncertainties. In this paper, we

present an approach that enables one to extend the use of

well known control chart tools based on the T2 and Q

statistics [19,20] to such contexts, making explicit use of

measurement uncertainty information that is available.

We present the statistical model on which our approach

for integrating data uncertainties is based in the next

section, and show how it can be properly estimated. Then,

Section 3 provides a description of our MSPC procedure

based on latent variables when measurements have

heteroscedastic Gaussian behavior and, furthermore,

shows how the proposed approach can easily handle

missing data. In the following section, several examples
are presented in order to illustrate the various features of

the proposed approach, including a case study based upon

real industrial data collected from a Pulp and Paper mill.
2. Underlying statistical model

We consider the fairly common situation where a large

number of measurements are being collected and stored,

coming from different devices and sources within the

process and carrying important information about its current

state. Quite often the underlying process phenomena, along

with existing process constraints, do require a significantly

lower dimensionality to be described than that arising from

the consideration of all the variables. In fact, for monitoring

purposes, we are only interested in following what happens

around the subspace where the overall normal process

variability is concentrated. Latent variable models do

provide useful frameworks for modeling the relationships

linking the whole set of measurements, arising from

different sources, in terms of a few inner variability sources

[4]. Therefore, let us consider the following latent variable

multivariate linear relationship:

x kð Þ ¼ lx þ Al kð Þ þ em kð Þ ð2:1Þ

where x is the n�1 vector of measurements, lX is the n�1

mean vector of x , A is the n�p matrix of model

coefficients, l is the p�1 vector of latent variables and (m
is the n�1 vector of measurement noise. This model is

completed by specifying the probability density functions

relative to each random component:

l kð Þ¨iid Np 0;Dlð Þ
em kð Þ¨id Nn 0;Dm kð Þð Þ
l kð Þ and em jð Þ are independent 8k; j

ð2:2Þ

where Np stands for the p-dimensional multivariate normal

distribution, Dl is the covariance matrix for the latent

variables (l), Dm(k) is the covariance matrix of the

measurement noise at time k ((m(k)), given by Dm(k)=

diag(r2
m(k)) (diag(u), represents a diagonal matrix with the

elements of vector u along the main diagonal and r2
m(k) is

the vector of error variances for all the measurements at

time k), 0 is an array of appropriate dimension, with only

zeros in its entries. Thus, Eqs. (2.1) and (2.2) basically

consider that the multivariate variability of x can be

adequately described by the underlying behavior of a

smaller number of p latent variables, plus noise added in

the full variable space. We can also see that such model

essentially consists of two parts: one that captures the

variability due to normal process sources (lX +AIl(k)), and
the other that explicitly describes the characteristics of

measurement noise or uncertainties ((m(k)), each one with

its own independent randomness. In the sequel, we will

refer to this model as our Heteroscedastic Latent Variable

(HLV) model, to differentiate it from classical latent
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variable techniques, where measurement uncertainties

features are not explicitly accounted for.

Given the above model structure, parameter estimation is

achieved from the probability density function for x under

the conditions outlined above, which is a multivariate

normal distribution with the following form:

x kð Þ¨Nn

�
lX ;Rx kð Þ

�
ð2:3Þ

with

Rx kð Þ ¼ Rl þ Dm kð Þ

Rl ¼ ADlA
T : ð2:4Þ

The likelihood function for a reference data set,

composed by nobs multivariate observations, is then given

by:

L
�
lX ;Rl

�
¼

Ynobs
k¼1

(
1

2pð Þn=2
��Rx kð Þ

��1=2 exp
� � 1

2
x kð Þ�lXð ÞTR�1

x kð Þ x kð Þ � lXð Þ
�� )

� Rx kð Þ ¼ Rl þ Dm kð Þ: ð2:5Þ

Therefore, the log-likelihood function, in terms of which

calculations are actually conducted, is (C stands for a

constant):

K
�
lX ;Rl

�
¼ nInobs

2
ln 2pð Þ � 1

2

Xnobs
k¼1

ln

���Rx kð Þ
���

� 1

2

Xnobs
k¼1

x kð Þ�lXð ÞTR�1
x kð Þ x kð Þ � lXð Þ

h i

¼ C � 1

2

Xnobs
k¼1

ln
��Rx kð Þ

��
� 1

2

Xnobs
k¼1

x kð Þ�lXð ÞTR�1
x kð Þ x kð Þ�lXð Þ

h i
:

ð2:6Þ

Parameter estimates are then found from those elements

of the parameter vector h =[lX
T, vec(~l)

T]T that maximize

the log-likelihood function:

ĥhML ¼ max
h

K hj x kð Þ; rm kð Þf gk¼1;nobs

� 

: ð2:7Þ

In fact, the situation is more involved, as ~l has certain a

priori properties that should be satisfied also by its estimate,

~l, namely that it should be both symmetric and non-

negative definite [21]. During the course of our work,

several approaches to solve (2.7) were tried out, with

different degrees of enforcement of the restrictions arising
from symmetry and non-negative definiteness. The one that

provided more consistent performance is based upon the

(usual) assumption that latent variables have a diagonal

covariance matrix, Dl, being the coefficient matrix A

estimated according to a procedure similar to the one

adopted in [8]. In this procedure, we start from an initial

estimate, A0, and the numerical optimization algorithm

proceeds by finding the optimal rotation matrix R, defined

by the angles a
¯
= [a1, a2, . . ., an�1]

T, that maximizes (along

with the reminding parameters, Dl and l
¯
l) objective function

(2.7):

Â¼ R
�
a;
�
Â0 ð2:8Þ

R
�
a;
�
¼ R1 a1ð ÞIR2 a2ð Þ:N :Rn�1 an�1ð Þ ð2:9Þ

where,

R1 a1ð Þ

cosa1 � sina1 0 N 0

sina1 cosa1 0 N 0

0 0 1 N 0

s s s G s

0 0 0 N 1

3
7777775

2
6666664

;

R2 a2ð Þ ¼

1 0 0 N 0

0 cosa2 � sina2 N 0

0 sina2 cosa2 N 0

s s s G s

0 0 0 N 1

3
7777775

2
6666664

; etc:
ð2:10Þ

As ~l = ÂDl Â
T (from the invariance property of the

maximum likelihood estimators, [22]), the symmetry

property is automatically satisfied. With these considera-

tions, the optimization problem to be solved remains an

unconstrained one, and we have used a gradient optimiza-

tion algorithm to address it. Approaches based on the

Alternating Least Squares principle [8] are also worth being

explored in future developments.
3. HLV-MSPC statistics

In this section we present the monitoring statistics that

we do propose and discuss some issues regarding the

implementation of MSPC within the scope of our HLV

model, formulated in the previous section. Efforts were

directed towards developing statistics that would be

analogous to their well known counterparts, i.e., to T2 and

Q for MSPC based on PCA [20].

3.1. Monitoring statistics

The conventional T2 and Q statistics were designed to

follow the behavior of the two random components present



Normal operation 
region 

Estimated value using a 
paralell imputation tecnique 

a) No external knowledge: use any 
value + “Infinite” uncertainty

b) Knowledge of normal operation:
use mean value + uncertainty 
encompassing normal operation
region

c) Knowledge about an estimate of 
the missing value: use estimate  
+ estimate uncertainty

Fig. 1. Three levels of knowledge incorporation with regard to missing data

estimation: (a) no external knowledge; (b) knowledge about the mean and

standard deviation under normal operation conditions; (c) imputation of

missing data values using a parallel imputation technique.
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in a PCA model: one reflecting the structured variation

arising from latent variables sources, which is ‘‘followed’’

by the T2 statistic, and the other reflecting the unstructured

part, driven by the residuals, followed by the Q statistic. As

in our underlying model we also have structured and

unstructured components (Section 2), we will pursue the

same rational. Regarding the structured or ‘‘within’’ latent

variables subspace variability, we will monitor it in the

original variable domain, instead of the latent variable

domain (as done in PCA-MSPC), in order to account for the

effects of the (known) measurement uncertainties. This

leads to the definition of the following statistic:

T 2
w kð Þ ¼ x kð Þ � lXð ÞTR�1

x kð Þ x kð Þ � lXð Þ

Rx kð Þ ¼ Rl þ Dm kð Þ

Rl ¼ ADlA
T

� �
ð3:1Þ

where x(k) represents the kth measured multivariate

observation, and the other quantities maintain the same

meaning as before. It follows a v2(n) distribution, n being

the number of variables. Tw
2(k) considers simultaneously the

variability arising from both the structured (process) and

unstructured (measurement noise) variability. Let us now

define the statistic Qw, that considers only the unstructured

part of the HLV model, say r(k), associated with measure-

ment noise:

Qw ¼ rT kð ÞD�1
m kð Þr kð Þ

r kð Þ ¼ x kð Þ � lX � Al kð Þ ¼ e;m kð Þ ð3:2Þ

which follows a v2(n�p) distribution, with n and p being

the number of variables and latent variables (pseudo-rank),

respectively. In practice, we don_t know the true values for

the above quantities, but will use those that maximize the

log-likelihood function as their estimates. Furthermore, l(k)

values are calculated using non-orthogonal (maximum

likelihood) projections [9], given by:

l̂lML kð Þ ¼ ÂAT
MLD

�1
m kð ÞÂAML

� ��1
ÂAT
MLD

�1
m kð Þ x kð Þ � l̂lX ;ML

� �
:

ð3:3Þ

3.2. Missing data

The incorporation of uncertainty information regarding

each measured value in our HLV-MSPC analysis not only

adds a new important dimension to it, but also brings some

parallel additional advantages. One of them is the inherent

ability to handle reasonable amounts of missing data, in a

coherent and integrated way. Usually, missing data are

replaced by conditional estimates obtained under a set of

more or less reasonable assumptions, or through iterative

procedures where, in practical terms, the missing values

play the role of additional parameters to be estimated. In the
proposed procedure, when a datum is missing, we simply

have to assign a value to it, together with its associated

uncertainty. This assigned datum can simply be the mean of

the normal operation data, with the corresponding standard

deviation as an adequate uncertainty value. Alternatively,

we can also assign the mean value together with a very large

score for its associated measurement uncertainty, the

rational being that a missing value is virtually given by

any value with an ‘‘infinite uncertainty’’. More precise

estimates, obtained through data imputation techniques, can

also be adopted if they are able to provide us also with the

associated uncertainties (Fig. 1).
4. Illustrative applications of HLV-MSPC

In this section we present the main results obtained with

the application of our HLV-MSPC procedure to a number of

different simulated scenarios where measurement uncertain-

ties are allowed to vary (heteroscedastic noise). A final case

study, based upon real industrial pulp quality data covering

an extended operation period for a particular Portuguese

plant, is also shown, where the purpose regards the

extraction of knowledge regarding variability patterns in a

real world context.

4.1. Application case studies

Our first four examples are based on data generated by

the following latent variable model:

x kð Þ¼5I

�
1 0

0 1

1 1

1 � 1

�
Il kð Þ þ e;m kð Þ

l kð Þ¨iid N
�
0;Rl

�
;Rl ¼

�
4 0

0 1

�

e;m kð Þ¨id N 0;Dm kð Þð Þ

: ð4:1Þ



Table 1

Median of the percentages of significant events identified in 100

simulations, for normal and abnormal operation conditions (Faults F1

and F2)

Fault Statistic Normal operation Abnormal operation

F1 T2 2.40 17.80

Q 31.40 79.70

Tw
2 1.20 27.80

Qw 1.00 25.20

F2 T2 2.30 1.40

Q 31.60 45.20

Tw
2 1.20 4.80

Qw 1.00 6.80

Table 3

Median of the percentages of significant events identified in 100

simulations, for normal and abnormal operation conditions (Fault F1)

Fault Statistic Normal Operation Abnormal operation

F1 T2 0.40 4.80

Q 0.20 1.60

Tw
2 1.00 28.00

Qw 1.10 30.20
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The measurement noise covariance can vary along time

in various ways, as explained below, and each example

covers a different scenario regarding time variation of

measurement uncertainty. For comparative purposes, the

results obtained using classic PCA are also presented. The

statistics for PCA-MSPC are denoted by T2 and Q, and

those for HLV-MSPC as Tw
2 and Qw. All simulations

carried out for the different scenarios share a common

structure: first, in the training phase, 1024 multivariate

observations are generated using model (4.1) in order to

estimate the reference PCA and HLV models; then, in the

testing phase, 1000 observations of new data are

generated, half of which are relative to normal operation

(from observations 1 to 500), while the other half

correspond to an abnormal operation situation (observa-

tions 501 to 1000). For each of these two parts we

calculate MSPC statistics, and the percentage of significant

events identified (events above statistical limits), for the

significance level adopted (a=0.01). In order to enable for

a more sound assessment of results, the testing phase was

repeated 100 times, and the performance medians over

such repetitions computed. Furthermore, two abnormal

situations (faults) are explored in each scenario, as

follows:

(F1) A step change of magnitude 10 is introduced in all

variables.
Table 2

Median of the percentages of significant events identified in 100

simulations, for normal and abnormal operation conditions (Faults F1

and F2)

Fault Statistic Normal operation Abnormal operation

F1 T2 0.40 5.20

Q 0.00 1.00

Tw
2 1.00 23.80

Qw 1.00 24.00

F2 T2 0.40 0.20

Q 0.00 0.00

Tw
2 0.80 3.80

Qw 1.00 6.00
(F2) A structural change in the model is simulated, by

modifying one of the entries in the coefficient matrix:

1 0

0 1

1 1

1 � 1

3
775

2
664 Y

1 0

0 1

1 � 0:5
1 � 1

3
775

2
664 ð4:2Þ

Example 1. Constant uncertainty for the reference data (at

minimum level).

In this example, measurement noise standard deviations

for the reference data set (used to define control limits) were

kept constant and at the minimum values that will be used

during the test phase. For the test data, measurement

uncertainties are allowed to vary randomly, according to

the uniform distribution rXi
m(k)¨U(2, 6) (we will refer to

this situation as ‘‘complete heteroscedasticity’’). The corre-

sponding results are presented in Table 1, for the two types

of faults mentioned above (F1 and F2).

The PCA Q statistic detects a very large number of false

alarms, whereas T2 detects almost twice the expected rate

under the adopted statistical significance level (0.01). The

apparently good performance of Q under abnormal con-

ditions is a consequence of the low statistical limits

established, which are related with the low noise reference

data used. This leads to a sensitive detection of any fault, but

at the expense of a very large rate of false alarms under

normal operation. HLV-MSPC statistics perform consis-

tently better, particularly when we compare Tw
2 and T2

performances.
Table 4

Median of the percentages of significant events identified in 100

simulations, for normal and abnormal operation conditions (Faults F1

and F2)

Fault Statistic Normal Operation Abnormal operation

F1 T2 1.00 8.80

Q 1.40 15.40

Tw
2 1.00 25.20

Qw 1.00 25.00

F2 T2 1.00 0.80

Q 1.40 3.40

Tw
2 1.00 4.60

Qw 1.00 6.60



Table 5

Results for fault F1, with variable uncertainty both in the reference and test

data

Fault Statistic Normal Operation Abnormal operation

F1 T2 0.80 9.90

Q 1.90 13.40

Tw
2 1.00 28.50

Qw 1.00 29.20
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Example 2. Constant uncertainty for the reference data (at

maximum level).

Looking now to what happens if uncertainties in the

reference data are held constant at the maximum levels used

in the test data set (Table 2), we can see that the opposite

detection pattern occurs with the T2 and Q statistics, as

expected. In these examples, as the reference data consists

of highly noisy measurements, and therefore the control

limits are set at higher values, the detection ability for false

alarms becomes smaller when noise characteristics change.

This also drastically reduces the capability for detecting

significant events. Under this situation, HLV-MSPC statis-

tics also outperform their classical counterparts.

In the previous results, measurement uncertainties for

each value of each variable in the test set were allowed to

change randomly from observation to observation, accord-

ing to the probability distribution referred. We also tested

scenarios where the values for all variables in the same row

were assumed to have the same uncertainty, and found out

that the same conclusions hold for this situation. For

illustrative purposes, we present in Table 3 the results

obtained for fault F1, when the reference data was generated

at maximum uncertainty values.

Example 3. Variable data uncertainty for reference and test

sets.

The examples mentioned so far address situations where

the training set variables have constant measurement

uncertainty, whereas the test set uncertainties have hetero-

scedastic behavior. This mismatch between training and

testing situations has serious consequences in the perform-

ance of PCA-based MSPC. The following examples explore

situations where both the reference and test data were

generated under similar conditions of measurement uncer-

tainty heteroscedasticity. First, we consider the already

described situation of complete heteroscedasticity. From

Table 4, it is possible to see that HLV-MSPC statistics still

seem to present the best performance, although PCA-based
Table 6

Median of the percentages of significant events identified in 100 simulations, for

Statistic Operation PCA (orig) PCA (MD)

T2 Normal 1.10 0.80

Abnormal (F1) 10.80 8.40

Q Normal 2.80 5.70

Abnormal (F1) 18.80 24.10
MSPC counterparts also achieve good scores for normal

operation.

Once again, the above conclusions do not change for the

situation where uncertainty for all of the variables does

change together, as shown for fault F1 in Table 5.

Example 4. Handling the presence of missing data.

This example explores the capability of the proposed

methodology for handling missing data randomly scattered

through data sets. The underlying model used to generate

noiseless data sets is the same as before (Example 1), but we

now removed some data records using an automatic random

procedure that approximately eliminates a pre-specified

percentage of values (it removes on average the chosen

percentage), here fixed at 10%. As it happened with our

previous examples, results presented below regard testing

data performances. For HLV-MSPC we followed two

different simple procedures for replacement of missing

data: (i) in the first one (MD I) we inserted the un-weighted

mean for each variable in a missing datum position, and

associated to it a high value for the corresponding position

in the uncertainty table (e10); (ii) in the second procedure

(MD II) we refined this estimate, using the available

reference data to estimate the mean and standard deviations

for each variable, being the former used to replace missing

data and the last one to specify the associated uncertainty.

For PCA-MSPC we estimated missing data using the

reference data unweighted means (MD). Table 6 presents

the results obtained for fault F1, with the values for HLV-

MSPC and PCA-MSPC for the original data (i.e., without

missing data) also being reported. It is possible to verify that

there is a sensible and expected decrease of detection

performances for the HLV-MSPC statistics under the more

pessimistic imputation method, MD I, which are improved

by using procedure MD II. From these results we can say

that it is still advisable to continue with the implementation

of HLV-MSPC in the presence of missing data, as the results

with missing data are in general superior to those of PCA-

MSPC without missing data.

Example 5. Analysis of pulp quality data.

A selected subgroup of nine key quality variables relative

to the pulp produced in an integrated pulp and paper

Portuguese mill (Portucel) was collected during a period of

four and a half years, and are to be analyzed in order to

identify any relevant variation patterns along time, as well

as process upsets and disturbances, so that potential root

causes can then be found and worked out, leading to process
normal and abnormal operation conditions (fault F1)

ML-HLV (orig) ML-HLV (MD I) ML-HLV (MD II)

1.00 0.80 1.20

31.90 25.80 27.80

1.20 0.80 1.20

32.20 24.60 28.00
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Fig. 2. Patterns of data uncertainty variation along time index for the 9 pulp quality variables analyzed (data is aggregated in periods of 8 days, and such time

periods are reflected by the time index shown here).
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improvement. These variables are related to paper structure

properties, strength and optical properties. The first decision

that one has to make concerns the time scale for conducting

data analysis. A preliminary study did lead us to choose

non-overlapping time windows of 8 days, over which we

computed the average value for each variable. The

associated uncertainties were initially estimated using a

priori knowledge available regarding the measurement

devices and the number of significant digits employed in

the records (following a Type B procedure for evaluating

measurement uncertainty, and assuming constant distribu-

tions in ranges defined by the last significant digit, [5]).

However, this approach usually tends to provide rather

optimistic estimates for the uncertainty figures in industrial

settings, since additional noise sources come into place

when one is not under standard and well-controlled

conditions. Therefore, these estimates were corrected by

analyzing noise characteristics of the signals using a

wavelet-based approach (noise standard deviation was

estimated from the details obtained in the first decom-

position [23]), and the corresponding values for the averages

over non-overlapping 8 days windows computed using

standard uncertainty propagation formulas [5,7]. These
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Fig. 3. HLV-MSPC: values for the Tw
2 sta
uncertainty profiles along time are represented in Fig. 2.

Since all of these variables are derived from the plant quality

control laboratory, their acquisition periodicity is almost the

same, and therefore their profiles do exhibit similar patterns.

We conducted a Phase I study, and calculated the HLV-

MSPC statistics in order to analyze the variability structure

along time. For setting the pseudo-rank parameter, a first

guess can be easily provided by applying classical PCA to

our data and then using one of the associated selection

procedures available (e.g. [24–30]) for identification of the

proper number of PC to retain. This initial guess can then be

tested and revised in pilot implementations of the method

over real data. A final selection should also be validated

against the values of the diagonal matrix, Dl, estimated from

such implementations, in order to check if they are also

consistent with such choice. In the present case study, we

did set p =3. Fig. 3 illustrates the values obtained for the Tw
2

statistic, where it is possible to identify a process shift after

period 240, occasionally spiked with some rare but very

significant abnormal events. For comparison purposes, we

also present, in Fig. 4, the values obtained for the analogous

T2 statistic, obtained by conducting the same analysis using

PCA-MSPC, where the sustained shift in the last period of
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time is almost overlooked, whereas high data variability

present in the beginning, where uncertainties have higher

values, is not properly down-weighted, leading to an

inflated variation pattern.

The Tw
2 profile provides a rough vision over the conjoint

time behavior, but we can zoom into it (without having to

analyze the variables separately, in which case we would be

missing any changes in their correlation structure), by
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looking to what happens to the HLV scores provided by Eq.

(3.3), as shown in Fig. 5. It is therefore possible to identify

several trends affecting the three scores: a long range

oscillatory pattern for the first score, a decreasing trend with

shorter cyclic patterns superimposed for the second score,

and a stable pattern that begins to oscillate in the final

periods of time for the third score. By looking into the

variables that are responsible for such behaviors, namely
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pulp quality data set.



Table 7

Mean and standard deviation of the results obtained for the angle, distance and similarity factor between the estimated subspace and the true one, using PCA

and HLV (first row); paired t-test statistics for each measure, regarding 100 simulations carried out, along with the respective p-values (second row)

Ang(PCA) (-) Ang(HLV) (-) Dist(PCA) Dist(HLV) Simil(PCA) Simil(HLV)

Mean (Standard dev.) 26.62 (3.58) 17.23 (2.63) 0.42 (0.06) 0.30 (0.04) 0.91 (0.02) 0.95 (0.01)

t Statistic ( p-value) 29.84 (N10�5) 30.54 (N10�5) �25.89 (N10�5)
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through contribution plots for the scores, we can get more

insight into the nature of these disturbances, and, eventually,

about their root causes. Even though a detailed discussion

can not be given here, due to space restrictions, one should

notice that these types of trends are common in pulp and

paper quality data, and can be due to issues ranging from

seasonal wood variability and harvesting cycles to wood

supply policies.

4.2. Discussion

The approach proposed in this paper was designed to

perform SPC under noisy environments, i.e., scenarios

where the signal to noise ratio (or, more adequately, signal

to uncertainty ratio) is rather low, and, furthermore, where

the magnitude of the uncertainty affecting each collected

value can vary across time. Not only standard measurement

systems that conform to the underlying statistical model are

covered by this approach (e.g. laboratory tests, measure-

ment devices), but also any general procedure for obtaining

data values with an associated uncertainty (e.g. computa-

tional calculations, raw material quality specifications,

etc.). The added value of this approach increases when

the signal variation to uncertainty ratio becomes smaller.

Therefore, it provides an alternative to PCA-MSPC for

applications where low signal to noise ratio tends to

happen.

The better capability of our approach to estimate the

underlying true data subspace was also analyzed through a

simulation study. Noiseless data were generated using the

model described in Example 1, and then corrupted with

noise, whose measurement uncertainties vary randomly

between 2 and 6 (uniform distribution). For each trial, 100

multivariate observations were used to estimate the under-

lying latent variable subspace using classical PCA and our

HLVapproach. The angle that these estimates make with the

true subspace, as well as the respective distances [31] and

the Krzanowski similarity factor [32] between the estimated

and the true subspaces, were calculated: ANG(PCA),

ANG(HLV), DIST(PCA), DIST(HLV), SIMIL(PCA) and

SIMIL(HLV), respectively. The Krzanowski similarity

factor is a measure of the similarity between two PCA

subspaces, ranging from 0 (no similarity) to 1 (exact

similarity). The means and standard deviations for these

quantities derived from 100 trials are presented in Table 7,

along with the values of the t-statistic for paired t-tests

between PCA and HLV results, and the respective p-values.

A highly significant better estimation performance in favor

of the HLV procedure was thus obtained.
5. Conclusions

We presented and discussed an approach for performing

SPC in a multivariate process, explicitly incorporating

measurement uncertainty information. It is a generalization

of the current latent variable approach to MSPC based on

PCA to a more general scenario where measurement

uncertainties can vary from observation to observation. A

statistical model was defined and statistics analogous to T2

and Q were derived, that allow one to monitor both the

within model variability as well as the variability around the

identified model. Furthermore, this approach adequately

handles the presence of missing data in a simple and

consistent way. Preliminary results point out in the direction

of advising the use of this framework when measurement

uncertainties are available and significant noise affects

process measurement behaviour. So far we have imple-

mented and tested our approach in examples that do cover

dozens of variables. In even larger scale problems, we may

apply the same methodology over a subset of variables

where heteroscedasticity is believed to be more critical.
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[28] M. Meloun, J. Èapek, P. Mikxı́k, R.G. Brereton, Anal. Chim. Acta 423

(2000) 51–68.

[29] B.K. Dable, K.S. Booksh, J. Chemom. 15 (2001) 591–613.

[30] E.V. Thomas, J. Chemom. 17 (2003) 653–659.

[31] G.H. Golub, C.F. Van Loan, Matrix Computations, The John Hopkins

University Press, Baltimore, 1989.

[32] W.J. Krzanowski, J. Am. Stat. Assoc. 74:367 (1979) 703–707.


	Heteroscedastic latent variable modelling with applications to multivariate statistical process control
	Introduction
	Underlying statistical model
	HLV-MSPC statistics
	Monitoring statistics
	Missing data

	Illustrative applications of HLV-MSPC
	Application case studies
	Discussion

	Conclusions
	Acknowledgements
	References


